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Shape of a moving fluxon in stacked Josephson junctions
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We study numerically and analytically the shape of a single fluxon moving in double stacked Josephson
junctions ~SJJ’s! for various junction parameters. We show that the fluxon in a double SJJ consists of two
components, which are characterized by different Swihart velocities and Josephson penetration depths. The
weight coefficients of the two components depend on the parameters of the junctions and the velocity of the
fluxon. It is shown that the fluxon in SJJ’s may have an unusual shape with an inverted magnetic field in the
second junction when the velocity of the fluxon is approaching the lower Swihart velocity. Finally, we study
the influence of fluxon shape on flux-flow current-voltage characteristics and analyze the spectrum of Cher-
enkov radiation for fluxon velocity above the lower Swihart velocity. An analytic expression for the wave-
length of Cherenkov radiation is derived.@S0163-1829~99!03642-5#
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I. INTRODUCTION

Properties of stacked Josephson junctions~SJJ’s! are of
considerable interest both for applications in cryoelectron
and for fundamental physics. A particular interest in SJ
was stimulated by the discovery of high-Tc superconductors
~HTSC’s!. Highly anisotropic HTSC compounds, such
Bi2Sr2CaCu2O81x , may be considered as stacks of atom
scale intrinsic Josephson junctions.1 The layered structure
determines many of the unusual properties of HTSC. T
behavior of model low-Tc SJJ’s and HTSC’s exhibit man
similarities.2 Due to mutual coupling of junctions in th
stack, the physical properties of SJJ’s can be qualitativ
different from those of single Josephson junctions~JJ’s!.
Therefore, a one-to-one comparison between single
stacked Josephson junctions is difficult to do. Hence,
basic properties of SJJ’s have to be studied in order to
scribe correctly the Josephson behavior of layered super
ductors.

Perpendicular (c-axis! transport measurements in ma
netic fieldH parallel to layers (ab plane! is an explicit way
of studying Josephson phenomena in SJJ’s. In this c
magnetic field penetrates the stack in the form of Joseph
type vortices~fluxons!, and thec-axis voltage is caused b
motion of such fluxons along the layers. The fluxon in SJ
is different both from Abrikosov vortex in bulk supercon
ductor, since it does not have a normal core, and from
sephson vortex in single JJ, since the circulating currents
not confined within one junction. The behavior of SJJ’s b
comes particularly complicated when the length of the st
in one directionL is much larger than the Josephson pene
tion depthlJ . One of the unusual properties of long SJJ’s
the existence of multiple quasiequilibrium fluxon mode3

and submodes,4 which are characterized by different fluxo
configurations in the stack. Due to the existence of s
modes and submodes, the state of the stack is not well
PRB 600163-1829/99/60~18!/13179~10!/$15.00
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fined by external conditions. Rather it can be described o
statistically with a certain probability of being in any of th
quasiequilibrium states. Experimental evidences for the e
tence of such modes were obtained both for HTSC intrin
SJJ’s~Refs. 4–6! and low-Tc multilayers.7 The existence of
fluxon modes and submodes dramatically changes the be
ior of long strongly coupled SJJ’s with respect to that
single long JJ’s. An example of this is the critical currentI c ,
which becomes multiple valued,4–6 the fluctuations ofI c be-
come anomalously large,4,6 and the magnetic field depen
dence ofI c becomes very complicated without periodicity
H.4

For understanding both the static and dynamic proper
of SJJ’s, the shape of the fluxon in SJJ’s is important, a
should be determined. In the static case, the shape of
single fluxon was studied for layered superconductors c
sisting of an infinite number of thin identical8 or
nonidentical9 layers and for SJJ’s.3,10 In our previous work,3

we have shown that in double SJJ’s, two special single co
ponent fluxon solutions exist, which are characterized by
ferent Swihart velocities and Josephson penetration dep
An approximate analytic fluxon solution was suggested a
linear combination of the single component solutions.3,11 For
the static case, the approximate solution was shown to b
a quantitative agreement with numerically obtained so
tions. Extending the approximate analytic solution to the d
namic case, it was predicted that drastic changes in
fluxon shape could occur with increasing the fluxon veloci
resulting, e.g., in possible inversion of the sign of the ma
netic field in the second junction and appearance of attrac
fluxon interaction.3 On the other hand, the choice betwe
the special single component solutions and the approxim
analytic fluxon solution was not addressed and the dep
dence of the fluxon shape on the junction parameters was
studied. Using the perturbation approach, the second o
correction to the approximate analytic solution was deriv
13 179 ©1999 The American Physical Society
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13 180 PRB 60V. M. KRASNOV AND D. WINKLER
and the accuracy of the solution was recently analyzed.11

To our knowledge, no comprehensive analysis of
single fluxon shape in SJJ’s exists for the dynamic case.
scope of the current paper is to study quantitatively the sh
of the moving fluxon in double SJJ’s for various junctio
parameters. Our analysis is based on numerical simulat
and analytical treatment of the coupled sine-Gordon eq
tion, which describes physical properties of SJJ’s.10 We
show that the single moving fluxon in double SJJ’s may
described by both a single component solution and a do
component solution, depending on the parameters of
stack and the fluxon velocity. Moreover, the shape of
fluxon may be quite anomalous, with inverted magnetic fi
in the second junction and with nonmonotonous change
phase.

The paper is organized as follows. In Sec. II, we rewr
the coupled sine-Gordon equation for the case of solito
fluxon motion and review analytic single fluxon solutio
obtained in Refs. 3,11. In Sec. III, we present numeri
simulations for frictionless fluxon motion for different pa
rameters of SJJ’s and compare those with analytical pre
tions. We also formulate and verify conditions for observ
tion of different fluxon solutions. In Sec. IV, we discus
implementations of the fluxon shape in experimental sit
tion. In Sec. IV A, we study the influence of a finite dampin
and simulate current-voltage characteristics. Finally, in S
IV B we consider the case of nonsolitonic fluxon motio
with the propagation velocity larger than the lower Swih
velocity. We have shown that such fluxon motion is acco
panied by plasma wave excitations and derive the expres
for the wavelength of such ‘‘Cherenkov’’ radiation.

II. GENERAL RELATIONS

We consider a double stack with the overlap geome
consisting of junctions 1 and 2 with the following param
eters: the critical current densityJci, the capacitanceCi , the
thickness of the tunnel barrier between the layerst i , the
thickness and London penetration depth of superconduc
layersdi and lSi , and the length of the stackL. Hereafter,
the subscripti on a quantity represents its number. The e
ments of the stack are numerated from the bottom to the
so that junctioni consists of superconducting layersi ,i 11,
and the tunnel barrieri. The fluxon will be placed in JJ 1, i
not stated otherwise.

The physical properties of SJJ’s are described by
coupled sine-Gordon equation,10 which for the double stack
with overlap geometry can be written as

Uw19

w29
U5U 1 2S2 /L1

2S2 /L1 L2 /L1
U

3U sin~w1!1ẅ11a1ẇ12
Jb

Jc1

Jc2

Jc1
sin~w2!1

C2

C1
ẅ21a2ẇ22

Jb

Jc1

U , ~1!

where w1,2 are gauge invariant phase differences in JJ’
and 2, the prime and overdots on the quantity represent
tial derivatives in space and time, respectively. Space
time are normalized to Josephson penetration depthlJ1
e
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5AF0c/8p2Jc1L1 and inverted Josephson plasma fr
quencyvp1

215AF0C1/2pcJc1, respectively, of the single J
1. HereF0 is the flux quantum,c is the velocity of light in
vacuum and

L i5t i1lSi cothS di

lSi
D1lSi11 cothS di 11

lSi11
D ,

Si5lSi cosechS di

lSi
D .

The last terms in the right hand side of Eq.~1! represent
total currents in the JJ’s, which consist of superconducti
displacement, and quasiparticle contributions, andJb repre-
sents the bias current density. Viscous damping due to q
siparticle current is characterized by the damping coeffici
a i5bci

21/2, where bci is the McCumber parameter of th
single JJi. The coupling strength in the double SJJ’s is d
scribed by a coupling parameterS5S2 /AL1L2. The mag-
netic induction in the stack is equal to3

B15
H0

2~12S2!
Fw181

S2

L1
w28G ,

B25
H0

2~12S2!
F S2

L2
w181

L1

L2
w28G , ~2!

whereH05F0 /plJ1L1.
For the solitonlike fluxon motion, the phase differences

the stack remain unchanged in the coordinate frame mov
along with the fluxon. Introducing the self-coordinate of t
fluxon j5x2ut, and neglecting damping coefficient, w
simplify Eq. ~1! and rewrite it as a system of coupled ord
nary differential equations~ODE’s!:

w1jj9 Fab2S2

12S2 G5a sin~w1!2
Jc2S2

Jc1L1
sin~w2!,

w2jj9 Fab2S2

12S2 G5b
Jc2L2

Jc1L1
sin~w2!2

S2

L1
sin~w1!, ~3!

where

a512
u2

c01
2

C2L2

C1L1
~12S2!,

b512
u2

c01
2 ~12S2!, ~4!

and c015l j 1vp1 is the Swihart velocity of the single JJ 1
Comparing Eqs.~1! and ~3!, it is seen that the task is now
reduced to solution of the static problem, but with para
eters depending on the fluxon velocity.

Equation~3! has a first integral
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1

12S2 Fb
~w1j8 !2

2
1a

L1

L2

~w2j8 !2

2
1

S2

L2
w1j8 w2j8 G1cos~w1!

1
Jc2

Jc1
cos~w2!5C, ~5!

which reduces to that from Ref. 3 for the static case,u50.
HereC is a constant of the first integral.

A. Special single component solutions

In Ref. 3 it was shown that Eq.~1!, linearized with respec
to w2, allows two special single component solutions of t
type

w1~j!5F1,254 arctan@exp~j/l1,2!#, ~6!

sin~w2!5k1,2
21 sin~w1!,

wherek1,2 are solutions of the quadratic equation.

S2

L1
k21kF12

Jc2L2

Jc1L1
1

u2

c01
2

L2

L1
S Jc2

Jc1
2

C2

C1
D ~12S2!G

2
Jc2S2

Jc1L1
50. ~7!

Therefore, for a double SJJ’s there exist two characteri
Josephson penetration depths

l1,2
2 5

l j 1
2

11k2,1S2 /L1
S 12

u2

c1,2
2 D ~8!

and two characteristic velocities

c1,2
2 5

c01
2

11k2,1~C2Jc1S2!/~C1Jc2L1!
. ~9!

B. Double component solution

Taking the single component solutions as eigenfuncti
of the linearized coupled sine-Gordon equation, an appr
mate analytic single fluxon solution in JJ 1 was obtained
Ref. 3:

w15
k1F12k2F2

k12k2
,

w25
F12F2

k12k2
. ~10!

Here F1,2 are the single component solutions, Eq.~6!.
Recently this solution was rederived more rigorously in R
11. It was shown, that for the static case Eq.~10! gives
perfect approximation forw1 in the whole space region an
for arbitrary parameters of the stack.11,3 Using the perturba-
tion approach the second order correction to Eq.~10! was
obtained in Ref. 11. As it is seen from Eq.~10!, the single
fluxon in double SJJ’s consists of two components. From
~8! it is seen that both components contract with increas
velocity, but the characteristic velocities for the contracti
are different for each component and are given by Eq.~9!.
ic

s
i-
n

f.

q.
g

For identical junctions the contraction of each componen
of the Lorentz type; however, the contraction of the flux
itself is different from Lorentz contraction. This is a cons
quence of the absence of Lorentz invariance for the coup
sine-Gordon equation. For nonidentical junctions, the para
etersk1,2, depend on the fluxon velocity and thus contra
tion of the components is somewhat different from Loren
contraction. In this case the maximum characteristic veloc
should be obtained from the equationu5c1,2 and Eqs.~7!,
~9!. By analogy with single JJ’s we will refer to the max
mum characteristic velocities as Swihart velocitiesc̃1,2. In
the general case, Swihart velocities are equal to12

c̃1,25

A2c01c02

Ac01
2 1c02

2 6A~c01
2 2c02

2 !214S2c01
2 c02

2

, ~11!

wherec025c01AC1L1 /C2L2 is the Swihart velocity of the
single JJ 2.

The most crucial changes in the fluxon shape occur as
velocity approaches the lowest Swihart velocityu→ c̃1.
Then the first component is totally squeezedl1→0 while the
contraction of the second component remains marginal;
Eq. ~8!. In this case the two components become clea
distinguishable: theF1 component transforms into a steplik
function which changes from zero to 2p within the distance
l1 at the fluxon center, while outside the central region
shape of the fluxon is defined by theF2 component. From
Eq. ~10! it follows that

sin~w1!

sin~w2!
5H k2 ,uxu@l1 ,

2k1 ,x→0
~u→ c̃1!. ~12!

For C2L2 /C1L151, and u5 c̃1, the parametersk1,2 are
equal to

k1,252AL1

L2
,AL2

L1

Jc2

Jc1
. ~13!

The parametersk1,2 determine the weight coefficients of th
components. From Eqs.~10!, ~13! it follows that F1 compo-
nent dominates forJc2 /Jc1!1, and F2 dominates for
Jc2 /Jc1@1.

From the analysis above, it is seen that the lineariz
coupled sine-Gordon equation allows both the single com
nent solutionsF1,2, Eq. ~6! and the double component solu
tion, Eq.~10!. At this stage it is not clear which of the solu
tions, Eqs.~6!, ~10!, should be realized in SJJ’s, since a
three solutions have roughly the same accuracy with res
to Eq. ~1!. In Refs. 3,11 it was shown that it is the doub
component solution Eq.~10! which is realized in the static
case. However, it was suggested that a single compo
solution could be achieved at high fluxon velocities. Inde
as we will show below, in the dynamic case both single a
double component solutions can exist and even coexist,
pending on parameters of the stack and the fluxon veloc
What is important, however, is that these are always
componentsF1,2 described by Eqs.~6!, ~7! which constitute
the fluxon.
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III. FRICTIONLESS CASE

In this section we will consider unperturbed,a i50, Jb
50, frictionless fluxon motion. We analyze the pure soli
nic fluxon motion for various junction parameters, make g
eral conclusions about transformation of the fluxon shap
dynamics, and compare it with analytical predictions. W
also derive and verify conditions for observation of sing
and double component fluxon atu→ c̃1. The effect of finite
damping and bias will be considered in Sec. IV. The num
cal procedure was based on a finite difference method w
successive iterations of ODE, Eq.~3!. The boundary condi-
tions were such that the total phase shift is equal to 2p in the
junction containing a fluxon and zero in the other one. T
fluxon will be placed in JJ 1 if not stated otherwise.

A. Identical junctions: Double component solution

In Fig. 1, profiles of~a! phase differencesw1,2, ~b! the
ratio sin(w1)/sin(w2), and ~c! magnetic inductionsB1,2 of a
single fluxon in JJ 1 are shown for a double stack consis
of identical strongly coupled JJ’s and for different fluxo
velocitiesu/ c̃150,0.61,0.92,0.98,0.998,0.9999~from left to
right curve!. The curves were shifted for clarity along thex
axis. Parameters of the stack aredi5t i50.01lJ1 , lSi
50.1lJ1 , S.0.5, C15C2. In Fig. 1~a! dotted lines show
profiles obtained from the analytic double component so

FIG. 1. Profiles of~a! phase differencesw1,2, ~b! the ratio
sin(w1)/sin(w2), and~c! magnetic inductionsB1,2 of a single fluxon
are shown for double SJJ’s consisting of identical strongly coup

junctions and for different fluxon velocities u/ c̃1

50,0.61,0.92,0.98,0.998,0.9999~from left to right curve!. In ~a!
dotted lines show profiles obtained from the analytic double co
ponent solution Eq.~10!. The rest of the curves were obtained n
merically. It is seen that the fluxon shape in this case is well
scribed by Eq.~10! and consist of contracted and uncontract

components. The sign inversion ofB2(0) at u. c̃1 is clearly seen.
-
-
in

i-
th

e

g

-

tion Eq. ~10!. Solid and dashed lines in Figs. 1~a!, 1~c! rep-
resent results of numerical simulations for JJ’s 1 and 2,
spectively. The data in Figs. 1~b!, 1~c! are obtained
numerically. The magnetic induction is normalized toH0
5F0 /plJ1L1.

As the velocity approaches the lower Swihart velocityc̃1,
the existence of the two fluxon components becomes cle
seen. For identical junctions, as it follows from Eqs.~10!,
~13!, exactly one half of the fluxon belongs to each comp
nent. TheF1 contribution transforms to a one-p step. Out-
side the fluxon center the fluxon is defined entirely by theF2
component, which is only marginally contracted. Moreov
from Fig. 1~a! it is seen that atu; c̃1 the phase differences in
both junctions are equal outside the fluxon center in agr
ment with analytical prediction, Eq.~12!. This is illustrated
in Fig. 1~b!, from which it is seen that the ratio
sin(w1)/sin(w2) approaches unity asu→ c̃1. From Fig.1~a! it
is seen that the approximate analytic solution is in go
agreement with the numerical solutions for all fluxon velo
ties. Another unusual feature of the moving fluxon in SJJ’s
seen from Fig. 1~c!. A dip in B2 is developed with increasing
fluxon velocity, leading to inversion of the sign at hig
velocities.3 From Eqs.~2!, ~10! it follows that for identical
SJJ’sB2(0)52B1(0) at u5 c̃1.

B. Fluxon in a weaker junction: Uncontracted single
component solution

Figure 2 shows the case when the fluxon is placed in
weaker junctionJc2 /Jc152; the rest of the parameters an
the way of presentation are the same as in Fig. 1. At velo

d

-

-

FIG. 2. The same as in Fig. 1 but forJc2 /Jc152. The fluxon is

placed in the weaker junction. Atu,0.98c̃1, the fluxon is well
described by the double component solution, Eq.~10!. At higher
velocities transformation to the singleF2 component solution, Eq
~6!, with k252, takes place.
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ties up to 0.98c̃1 the shape of the fluxon is well described b
the double component solution, Eq.~10!. At higher veloci-
ties, transformation to the singleF2 component solution, Eq
~6!, takes place. Indeed, from Fig. 3~b! it is seen that asu
→c̃1, sin(w1)/sin(w2)→k252 in the whole space region
From Fig. 3~c! it is seen that a dip inB2 at u. c̃1 is reduced
with respect to that in Fig. 1~c!, due to absence of the con
tractedF1 component.

C. Fluxon in a stronger junction: Two component solution

Figure 3 shows the case when the fluxon is placed in
stronger junctionJc2 /Jc150.5; the rest of the paramete
and the way of presentation are the same as in Fig. 1
velocities up to 0.98c̃1, the shape of the fluxon is well de
scribed by the double component solution, Eq.~10!. At
higher velocities the fluxon still has contracted and unc
tracted componentsF1,2. The existence of the two fluxon
components is clearly seen from Fig. 3~b!. As u→ c̃1 ,
sin(w1)/sin(w2)→k250.5 outside the center of the fluxon an
sin(w1)/sin(w2)→2k151 in the center, in agreement wit
Eqs.~12!, ~13!. However, transformation of the fluxon shap
with respect to Eq.~10! takes place. From Fig. 3~a! it is seen
that in the left half-space the phase shifts in JJ’s 1 an
approach zero andp, respectively, and belong to the unco
tracted F2 component, as seen from Fig. 3~b!. Therefore,
there is a singleF2 component fluxon placed in JJ 2~the
weaker junction!. The situation in the left half space is the
analogous to that in Fig. 2. Indeed, in the left half spa
w1,2(x/lJ2) from Fig. 3~a! merge withw2,1(x/lJ1) from Fig.
2~a!. Rescaling of thex axis tolJ2 is necessary because th

FIG. 3. The same as in Fig. 1 but forJc2 /Jc150.5. The fluxon

is placed in the stronger junction. Atu,0.98c̃1, the fluxon is well
described by the double component solution, Eq.~10!. At higher
velocities transformation to a more complicated two component
lution, Eq. ~14!, takes place.
e

t

-

2

e

F2 component is now situated in JJ 2. In the central region
steplike change of phase shift takes place in both junctio
In JJ 1 the phase jumps on12p, which means that there i
a singleF1 component fluxon and in JJ 2 the phase drops
22p, representing the singleF1 component antifluxon. The
overall fluxon shape atu5 c̃1 from Fig. 3 can be written as

w15F11 image~w2!,

w25F22F1 ~14!

so that in JJ 1 there is the contracted single componenF1
fluxon plus an image from JJ 2 in a form of a ripple and in
2 there is uncontracted fluxonF2 – contracted antifluxonF1
pair. The total phase shifts in JJ’s 1 and 2 are 2p and zero,
respectively. However,w1 increases nonmonotonously an
has two local maxima and minima, see Fig. 3~a!. From Fig.
3~c! it is seen that the dip inB2 in this case is even more
pronounced than that for identical SJJ’s, Fig. 1~c!. This is
due to the increase of the weight coefficient of the contrac
F1 component.

Figure 4 shows profiles of the fluxon moving with th
velocity very close to the lower Swihart velocity,u
50.9999c̃1, for different critical current densitiesJc2 /Jc1
from 10 to 0.1 increasing sequentially from the left to t
right curve. The rest of the stack parameters and the wa
presentation are the same as in Fig. 1. From Fig. 4 it is s
how the shape of the fluxon is changed withJc2 /Jc1. When
the fluxon is placed in the weaker junctionJc2 /Jc1.1, the
fluxon shape atu. c̃1 is described by the singleF2 compo-
nent. For the case of Figs. 1–4,C2 /C15L2 /L151, so that
k25Jc2 /Jc1. In Fig. 4~b! the dependence sin(w1)/sin(w2)
5Jc2 /Jc1 is clearly visible in the whole space region fo
Jc2 /Jc1.1. When the fluxon is placed in the stronger jun

o-

FIG. 4. Profiles of the fluxon moving withu50.9999c̃1, for
Jc2 /Jc1 from 10 to 0.1. From~b! it is seen that single and two
component solutions are observed for fluxon in weaker (Jc2 /Jc1

.1) and stronger (Jc2 /Jc1,1) junction, respectively.
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13 184 PRB 60V. M. KRASNOV AND D. WINKLER
tion, Jc2 /Jc1,1, it has two components,F1,2. From Fig.
4~b! it is seen that for the caseJc2 /Jc1,1, the fluxon shape
in the center is determined by theF1 component,
sin(w1)/sin(w2)52k151, while outside the center the shap
is given by theF2 component, sin(w1)/sin(w2)5k25Jc2 /Jc1,
in agreement with Eqs.~12!, ~13!.

From Fig. 4 it is seen that the transition from a double
a single component solution forJc2 /Jc1.1 is gradual. Out-
side the fluxon center this transition is well described b
gradual increase of the weight coefficient of theF2 compo-
nent, Eqs.~10!, ~13!. In the center the exact shape of th
fluxon can be obtained from the first integral, Eq.~5!. For the
caseC2L2 /C1L151, atu5 c̃1 the first integral reduces to

S

12S2 S 11
Jc1L1

Jc2L2

cos~w1!

cos~w2! D
2~w1j8 !2

2

512cos~w1!1
Jc2

Jc1
@12cos~w2!#, ~15!

for the F2 single component solution. From Eq.~15! it is
seen that at the fluxon center,x50, the effective Josephso
penetration depth is equal to

leff~F2!5lJ1S 12
Jc1L1

Jc2L2
DA S

12S2
, ~16!

so thatleff gradually increases from zero tolJ1AS/(12S)2,
asJc2L2 /Jc1L1 becomes larger than unity. The inequality

Jc2L2

Jc1L1
.1 ~17!

is then a necessary~but as we will show below not sufficient!
condition for the existence of the single componentF2 solu-
tion at u5 c̃1, for C2L2 /C1L151, since thenleff remains
finite at u5 c̃1.

On the other hand, the transition from the double com
nent solution, Eq.~10!, to the solution, Eq.~14!, for
Jc2 /Jc1,1 is sharp. However, the closerJc2 /Jc1 is to unity,
the closer the fluxon velocity toc̃1 must be in order to ob-
serve this transformation, as it can be seen from Figs. 3

D. Nonidentical electrodes: Bifurcations and more complicated
two component solutions

So far we have considered the case when only crit
current densities of SJJ’s were different. Another comm
type of nonuniformity in SJJ’s is the difference in electrod
Figure 5 shows fluxon shape for the case,L2.2.5L1. Physi-
cally this means that the third electrode has either lar
London penetration depth,lS352lJ1,2, or it is thinner than
the rest of the electrodes,d1,254d3, see definitions in Sec
II. The rest of the parameters areJc2 /Jc150.5, d1,25t i
50.01lJ1 , lS1,250.1lJ1 , S.0.31, C2L2 /C1L151. The
way of presentation is the same as in Fig. 1. At velocities
to 0.98c̃1, the fluxon is well described by the analytic doub
component solution, Eq.~10!. From Fig. 5~b! it is seen that
outside the fluxon center the phase distribution is determi
by the F2 component withk2.0.79, given by Eq.~13!.
a

-

.

l
n
.

r

p

d

However, atu;0.998c̃1 the system exhibits bifurcations an
a sudden switching to the solution given by Eq.~14! occurs.
At slightly larger velocity another bifurcation takes plac
resulting in switching to yet another solution. The switchi
between the solutions is hysteretic. If we start reducing
fluxon velocity, the switching back takes place at somew
lower velocity. Therefore, there is a certain region of flux
velocities for which those solutions coexist.

Looking at the fluxon shape atu50.9999c̃1 from Fig. 5
we see that it consists of three parts:~i! at the fluxon center,
x50, in JJ 1 there is a 2p step, which as we will show in a
moment, belongs to the pureF1 component and in JJ 2 ther
is a 4p drop belonging to two flux quantum22F1 anti-
fluxon. ~ii ! At x5x0.0.7lJ1 and~iii ! x52x0, in JJ 2 there
is a 2p increase and in JJ 1 there is a ripplelike phase sh
As it can be seen from Figs. 5~a!, 5~c!, the features atx5
6x0 contain both contracted and uncontracted parts and
in fact given by the double component solutions, Eq.~10!.
This is illustrated in Fig. 6~a! in which solid and dashed line
show phase distributionsw1 andw2, respectively, from Fig.
5~a! for u50.9999c̃1 and dashed-dotted and dotted curv
representw1 and w2, respectively, given by the analyti
double component solution, Eq.~10!, shifted by2x0 along
the x axis. Obviously, the features atx56x0 correspond to
the double component soliton placed in JJ 2. Due to spa
separation between the contracted centrum of the fluxon
the double component features atx56x0, we can analyze
the shape of the central contracted part. From Fig. 5~c! it is
seen thatB1(0) increases sharply as the velocity approac
c̃1. If the phase distribution in the central region is given

FIG. 5. Fluxon shape for the case of nonidentical electro
L2.2.5L1 and Jc2 /Jc150.5. The rest of the parameters and t

way of presentation is the same as in Fig. 1. Atu up to 0.98c̃1, the
fluxon is well described by the double component solution, E

~10!. However, atu.0.998c̃1 switching to two different types of
solutions, Eqs.~14!, ~18!, occur.
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the F1 component, then according to Eq.~2!, B1(0);l1
21

;(12u2/ c̃1
2)21/2. Figure 6~b! shows the inverse value o

B1(0) versus the Lorentz factor (12u2/ c̃1
2)1/2, for the high

velocity solution from Fig. 5. Dots represent the numerica
obtained values, solid line is the apparent linear fit. The L
entz contraction of the central region at the lowest Swih
velocity, c̃1, is clearly seen, therefore confirming that t
central region is given by the pureF1 component. The soli-
ton in this case can be described as

w15F11 image~w2!,

w25wdcs~x2x0!22F11wdcs~x1x0!, ~18!

wherewdcs is the double component solution, Eq.~10!. The
overall phase shift is 2p in JJ 1 and zero in JJ 2; howeve
the phase growth is nonmonotonous in JJ 1.

E. Conditions for the existence of single and two component
solutions

For practical applications of SJJ’s in flux-flow oscillator
the shape of the fluxon at the highest propagation velocit

FIG. 6. ~a! Soliton shape atu50.9999c̃1 from Fig. 5. Solid and
dashed lines representw1,2 obtained from numerical simulation
while dashed-dotted and dotted lines represent the analytic do
component solution in JJ 2, shifted byx52x0. ~b! Inverted values
of magnetic induction in the center of JJ 1 versus the Lorentz fac
Symbols represent numerical simulations and solid line is an ap
ent linear fit. Clear Lorentz contraction of the central region au

5 c̃1 is seen.
-
rt

is

crucial. It is then important to know how the shape of t
fluxon at u5 c̃1 depends on the parameters of the sta
Equation~17! formulates the necessary condition for the e
istence of uncontracted single componentF2 solution atu
5 c̃1, for C2L2 /C1L151, since thenleff remains finite at
u5 c̃1. However this condition is not sufficient. Indeed, fo
the case of Fig. 5,Jc2L2 /Jc1L1.1.25, i.e., Eq.~17! is sat-
isfied. However, we obviously do not observe the sin
componentF2 solution atu5 c̃1, but rather a switching to
more complicated two component solutions, Eqs.~14!, ~18!,
takes place. This happens when the maximum ofw2 ap-
proachesp/2. If the solution was to stay at the special sing
componentF2 solution, then according to Eq.~6!, the maxi-
mum value of sin(w2) would be equal to 1/k2. This gives us
an additional condition for the observation of the single co
ponentF2 solution:

k2.1. ~19!

In Fig. 7, regions of the existence of the two compone
~shaded area! and the single componentF2 solutions atu
5 c̃1 are shown forC2L2 /C1L151. The numbers in Fig. 7
show the number of components obtained numerically. S
and dashed lines represent the conditions Eq.~19! and Eq.
~17!, respectively. Arrows indicate the cases considered
Figs. 1,2,3,5. It is seen that the single component solu
exists when both conditions, Eqs.~17!, ~19!, are satisfied.

IV. IMPLEMENTATION FOR EXPERIMENTAL
SITUATION

In the previous section we have studied the unpertur
fluxon motion,a i50,Jb50. This is an idealized case. In re
experimental situationa iÞ0 and JbÞ0. To quantitatively
study the influence of damping and bias on the fluxon sh
and current-voltage characteristics~IVC’s!, we performed
numerical simulation of the coupled sine-Gordon equati
Eq. ~1!, with the dissipation and bias terms. Here we us

le

r.
r-

FIG. 7. Regions of existence of the two component~shaded

area! and the single component solutions atu5 c̃1 for
C2L2 /C1L151. Numbers indicate the number of components, o
tained numerically. Solid and dashed lines represent the condit
Eq. ~19! and Eq.~17!, respectively. It is seen that the single com
ponent solution exists when both conditions are satisfied.
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two approaches:~i! Considering solitonic-type fluxon mo
tion, w i5w i(j), we derived the ODE system, similar to E
~3!, but with dissipation and bias terms and used the sa
numerical procedure to solve it.~ii ! Alternatively, we di-
rectly integrated the system of partial differential equatio
~PDE!, Eq. ~1! using explicit finite difference method. Bot
approaches have certain advantages and disadvantage
ing ODE, it is possible to calculate fluxon shape for arbitra
small damping, while PDE require relatively large dampi
coefficient. In addition, ODE in comparison to PDE, do
not require a long relaxation and averaging times and d
not have problem with accumulation of the error. For soli
nic fluxon motion, both approaches give identical results.
the other hand, ODE are restricted to the study of the so
nic motion, while PDE allow more complicated solution
For simulation of PDE, periodic boundary conditions we
used, which correspond to fluxon motion in annular SJ
with L510–100lJ1.

A. Effect of damping and current-voltage characteristics

First of all, fluxon shape will affect the shape of IVC
caused by fluxon motion in the stack.14 The IVC is deter-
mined by a balance between the input power to the sys
from the current bias source and the power dissipated du
a finite damping, see, e.g., Ref. 15. In single JJ’s, Lore
contraction takes place as the fluxon velocity approaches
Swihart velocity and the fluxon energy increases shar
The fluxon velocity asymptotically approaches the Swih
velocity with increasing current. In the IVC this result
appearance of an almost vertical step at the velocity ma
ing condition.15 Since the existence of this step is close
related to the Lorentz contraction of the fluxon, we exp
that the step at the velocity matching conditionu5 c̃1 should
also exist in SJJ’s, whenever the fluxon contains the Lore
contracted partF1. On the other hand, when a pureF2 com-
ponent solution takes place, the fluxon will reachu5 c̃1 at a
finite current and flux-flow IVC should have a finite slope
u5 c̃1. For the case when the transformation of the flux
shape given by Eqs.~14!, ~18! takes place, this would resu
in a premature switching from the flux-flow branch and, po
sibly, in the existence of an extra metastable flux-flo
branch in the IVC with the same limiting velocity,u5 c̃1,
but with larger dissipation.

The average DC voltage in JJ 1 isV1 /V015u/c01, where
V015\pc01/2eL, and in JJ 2 is zero. Therefore, we now pl
current-velocity characteristics to represent IVC’s.

In Fig. 8, the single fluxon IVC’s are shown for doub
SJJ’s with equal damping coefficientsa1,250.05, and for
Jc2 /Jc151 ~solid diamonds!, Jc2 /Jc150.5 ~open circles!,
Jc2 /Jc152 ~open squares!. The rest of parameters are th
same as in Fig. 1. Symbols represent solutions obtained f
ODE and subsequent solid lines show solutions of PD
dashed gray line shows the IVC of an uncoupled single J
and dotted line indicates the position of the lower Swih
velocity, c̃1.0.817c01. The insets in Fig. 8 show spatia
distribution of sin(w1) ~solid lines! and sin(w2) ~dashed lines!,
for maximum propagation velocities, for which ODE bas
numerical procedure convergedumax(Jc2 /Jc151).0.999c̃1 ,
umax(Jc2 /Jc150.5).0.97c̃1 , umax(Jc2 /Jc152).0.99c̃1. The
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solid lines in Fig. 8 show that PDE allow solutions propag
ing with even larger velocities; however, those solutions
not of solitonic type, and will be discussed in the next se
tion. From Fig. 8 it is seen that the IVC’s forJc2 /Jc151 and
0.5, exhibit velocity matching behavior atu→ c̃1. On the
other hand, forJc2 /Jc152, no velocity matching behavior is
observed, and the velocity reachesc̃1 at a finite current. Such
behavior is in agreement with the absence of contractedF1
component, as discussed above. From the insets in Fig. 8
seen, that the fluxon shape for the case of small damp
does not differ much from the frictionless case, considere
the previous section. On the other hand, damping reduces
stability of the fluxon state at high propagation velocities,
that the maximum fluxon velocity for pure solitonic motio
becomes less thanc̃1. This is due to the finite bias current i
the stack, which results in an asymmetry of phase distri
tion in the stack. Such asymmetry is clearly seen from
inset in Fig. 8 forJc2 /Jc150.5. The reduction of stability in
the flux-flow state depends on parameters of the stack.
example, for the case of double stack with nonidentical ju
tions, flux-flow state is more stable for fluxon in the weak
junction Jc2 /Jc152 than for fluxon in the stronger junction
Jc2 /Jc150.5. For the caseJc2 /Jc150.5, switching of the
second junction to the quasiparticle branch occurs firs
I /I c1.0.22.

In real life, junctions in the stack are not prenumerat
and if they are not identical, the stable state will correspo
to a fluxon placed in the weaker JJ. Therefore, whene
properties of JJ’s in the stack are considerably different,
stable dynamic state atu5 c̃1 would correspond to the exis
tence of uncontractedF2 component soliton in the weaker J
Experimentally, steps at the velocity matching conditi
were observed for low-Tc SJJ’s;17,18 on the other hand, for

FIG. 8. Single fluxon IVC’s are shown for double stack wi
equal damping,a1,250.05, and forJc2 /Jc150.5, 1, and 2. The res
of parameters are the same as in Fig. 1. Symbols and solid
represent solutions of ODE and PDE, respectively. Dashed g

line shows the IVC of a single JJ 1 and dotted line indicatesc̃1.
Insets show spatial distribution of sin(w1,2), for maximum propa-
gation velocities.



’s
a
e

th
n

di
ic
w
i-

h
th
d
nu
ce
b

in

it
rre

e

o-
b

sm
-
ca
r
v
li-
or

re
s
ib

g
i-

is
-

,
se,

r-

de-

and

he
a

n-
cer-

the
er-

gle
de-
qs.
en

The

l

PRB 60 13 187SHAPE OF A MOVING FLUXON IN STACKED . . .
high-Tc intrinsic SJJ’s the flux-flow IVC’s have a finite
slope.19 We note that for stacks with large number of JJ
with thin electrodesd!ls , it is not necessary to have
variation in Jci to make the JJ’s different. In this case th
middle JJ’s have a lower critical fieldHc1, approximately
half of that compared to the outmost JJ’s due to the fact
fluxon in the outmost junctions carries only half a flux qua
tum. In a double stack, considered here, a correspon
thing happens when the JJ’s have different electrode th
nesses. The junction with thicker electrodes may have lo
Hc1 even if Jc is larger.3 In a sense, the criterion for trans
tion from ‘‘weak’’ to ‘‘strong’’ junction is given by Eqs.
~17!, ~19!.

Although the stable state corresponds to the case w
fluxon is placed in the weaker JJ, the situation when
fluxon is placed in the stronger JJ can also be achieve
experiment.18 Obviously such state can be achieved in an
lar SJJ’s. In this case the fluxon can eventually be introdu
in the stronger junction and if so it will stay there and can
accelerated by the bias current.

B. Velocity above c̃1: ‘‘Cherenkov’’ radiation

So far we have considered the caseu< c̃1. For u. c̃1,
coefficients before the second derivative of phase in Eq.~3!
become negative. The equation can still be written in a s
Gordon type form if we substitutew(j)5p1f(j). Indeed,
a 2p solitonlike solution forf(j), moving withu. c̃1, does
exist. However the energy of this state is decreasing w
increasing velocity and therefore such state would co
spond to unstable IVC branch with negative resistance.

In Ref. 3 it was suggested that foru. c̃1 the fluxon is a
combination of a soliton with Josephson plasma wav
From Eq. ~8! it is seen thatl1 becomes imaginary foru
. c̃1 and theF1 component transforms into a traveling J
sephson plasma wave. The fluxon solution is then given
theF2 component soliton accompanied by Josephson pla
waves from the degenerateF1 component. Recently, the ex
istence of such type of solution was shown by numeri
simulation in Ref. 20 and was interpreted as Cherenkov
diation in SJJ’s, when fluxon velocity exceeds the phase
locity of electromagnetic waves. This solution is not of so
ton type and cannot be obtained from ODE. Theref
solution of full PDE, Eq.~1!, is required. From Fig. 8 it is
seen that for the caseJc2 /Jc152, PDE allow solutions
propagating withu. c̃1.

In Fig. 9, results of numerical simulations of PDE a
shown forJc2 /Jc152, andu. c̃1. The parameters of SJJ’
are the same as in Fig. 8. The insets show spatial distr
tions of sin(w1) ~solid lines! and sin(w2) ~dashed lines! for ~a!

u/ c̃1.1.015, I /I c150.15 and~b! u/ c̃1.1.155, I /I c150.5.
Simulations were done for annular SJJ’s withL5100lJ1.
From our simulations we observe that fluxon shape chan
gradually asu exceedsc̃1. Therefore, there are no peculiar
ties at u5 c̃1 in the IVC, see solid line in Fig. 8 for
Jc2 /Jc152. Indeed, from inset~a! in Fig. 9 it is seen that for
u slightly above c̃1, fluxon shape in the left halfspace
similar to that atu, c̃1, see the bottom inset in Fig. 8. How
ever, small oscillations appear behind the fluxon~fluxon is
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propagating from right to left!. As the velocity increases
both amplitude and wavelength of the oscillations increa
as illustrated in inset~b! in Fig. 9. To clarify the physical
origin of the oscillations, in Fig. 9 we have plotted the ave
age wavelength of oscillations~circles! as a function of the

absolute value of the Lorentz factor,A(u/ c̃1)221. The solid
line in Fig. 9 shows the absolute value, 2pul1u, given by Eq.
~8!, describing small amplitude plasma waves from the
generateF1 component~the factor 2p is due to different
definition of the wavelength and the penetration depth!. Ex-
cellent agreement between the wavelength of oscillations
Josephson plasma wavelength from the degenerateF1 com-
ponent is observed without any fitting, thus confirming t
idea of Ref. 3 that ‘‘Cherenkov’’ radiation is due to plasm
wave generation from the degenerateF1 component. We
would like to note thatul1u is not linear as a function of the
Lorentz factor, although deviations from the linear depe
dence are small. For high propagation velocities, an un
tainty appears in determination ofl. This is caused by the
increase of the amplitude of oscillations; see inset~b! in Fig.
9. Here oscillations are not exactly monochromatic but
wavelength slightly increases with the amplitude. The unc
tainty in determination ofl at high velocities is shown by
error bars in Fig. 9.

V. CONCLUSIONS

In conclusion, we have shown that the shape of a sin
fluxon in double stacked Josephson junctions can be
scribed by the existence of two components given by E
~6!, ~7! and with characteristic lengths and velocities giv

FIG. 9. The wavelength of Cherenkov oscillations~circles! is
shown as a function of the absolute value of the Lorentz factor.
solid line represents wavelength 2pul1u, for plasma waves from the
degenerateF1 component, given by Eq.~8!. Insets show spatia
distributions of sin(w1) ~solid lines! and sin(w2) ~dashed lines! for

~a! u/ c̃1.1.015, I /I c150.15 and~b! u/ c̃1.1.155, I /I c150.5, re-
spectively.
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by Eqs.~8!, ~9!. At velocities up tou;0.98c̃1, the fluxon is
well described by the approximate double component s
tion, Eq.~10!, for all studied junction parameters. In the ve
vicinity of the lower Swihart velocity, the fluxon shape ma
undergo radical transformations. The final shape of
fluxon atu5 c̃1 strongly depends on parameters of the sta
From our numerical simulations we have found that
fluxon may remain double component, as shown in Fig
transform to a pureF2 component solution~see Fig. 2! or be
a more complicated combination ofF1 andF2 components;
see Eqs.~14!, ~18! and Figs. 3,5. Those more complicate
solutions do not, strictly speaking, represent the single flu
state, but are combinations with fluxon-antifluxon pai
However, even in this case these are always the compon
F1,2 described by Eqs.~6!, ~7! that constitute the solution
This implies that the componentsF1,2 are real and may live
their own life and appear in different combinations. Con
tions for observing the single and the two-component so
tions atu5 c̃1 were formulated and verified. We have show
that as the velocity approachesc̃1, the phase shift may be
come nonmonotonous.

A prominent feature of a soliton moving at the veloci
close toc̃1 in SJJ’s is the possible inversion of magnetic fie
B2(0). Such a behavior was predicted analytically in Ref.
Here we confirmed the existence of this phenomenon by
merical simulation. The inversion of magnetic field in JJ
may lead to attractive fluxon interaction for fluxons in d
ferent junctions. Then the so-called ‘‘in-phase’’ o
ai
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‘‘bunched’’ state10 with fluxons one on the top of the other i
adjacent junctions may become favorable at high eno
fluxon velocity. In experiment, this would result in appea
ance of an extra flux-flow branch in the current-voltage ch
acteristics with higher voltage, as shown by numeri
simulations16 and observed in experiment on low-Tc SJJ’s.17

In Ref. 13 it was shown that the bunched state can be st
at u. c̃1; however, no mechanism for overcoming the m
tual fluxon repulsion and transformation into the bunch
state was suggested. The existence of the field inver
might be a criterion for the appearance of the bunched s
in SJJ’s. As we have shown, the sign inversion and a dip
B2(0) disappears when JJ 2 becomes considerably stro
than JJ 1 and transformation of the fluxon shape to a sin
F2 component solution takes place; see Fig. 2~c!.

The shape of the flux-flow IVC’s was analyzed for va
ous parameters of SJJ’s and it was shown that velo
matching behavior atu5 c̃1 is observed when fluxon con
tains the contractedF1 component. Finally, oscillations a
u. c̃1 were shown to be due to generation of plasma wa
from the degenerateF1 component in agreement with th
prediction of Ref. 3. An analytic expression for the wav
length of such ‘‘Cherenkov’’ radiation is derived.
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