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Shape of a moving fluxon in stacked Josephson junctions
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We study numerically and analytically the shape of a single fluxon moving in double stacked Josephson
junctions (SJJ'g for various junction parameters. We show that the fluxon in a double SJJ consists of two
components, which are characterized by different Swihart velocities and Josephson penetration depths. The
weight coefficients of the two components depend on the parameters of the junctions and the velocity of the
fluxon. It is shown that the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the
second junction when the velocity of the fluxon is approaching the lower Swihart velocity. Finally, we study
the influence of fluxon shape on flux-flow current-voltage characteristics and analyze the spectrum of Cher-
enkov radiation for fluxon velocity above the lower Swihart velocity. An analytic expression for the wave-
length of Cherenkov radiation is derive$0163-182@9)03642-5

[. INTRODUCTION fined by external conditions. Rather it can be described only
statistically with a certain probability of being in any of the
guasiequilibrium states. Experimental evidences for the exis-
jence of such modes were obtained both for HTSC intrinsic
SJJ's(Refs. 4—6 and lowT, multilayers’ The existence of
fluxon modes and submodes dramatically changes the behav-
ior of long strongly coupled SJJ's with respect to that of

Properties of stacked Josephson juncti¢®3J’'s are of
considerable interest both for applications in cryoelectronic
and for fundamental physics. A particular interest in SJJ’
was stimulated by the discovery of high-superconductors
(HTSC'’s). Highly anisotropic HTSC compounds, such as

BiZSrZ(_:a(,:lé,OSH’ may be 'cons.igjr?red as stacks of atomicsingle long JJ’s. An example of this is the critical current
scale intrinsic Josephson junctiondhe layered structure | hich becomes multiple valudd® the fluctuations of . be-

determines many of the unusual properties of _l—ITSC. Th&ome anomalously larde® and the magnetic field depen-
behavior of model lowF. SJJ's and HTSC’s exhibit many gence ofl . becomes very complicated without periodicity in
similarities? Due to mutual coupling of junctions in the H.4
stack, the physical properties of SJJ's can be qualitatively For understanding both the static and dynamic properties
different from those of single Josephson junctidds’s.  of SJJ's, the shape of the fluxon in SJJ's is important, and
Therefore, a one-to-one comparison between single anshould be determined. In the static case, the shape of the
stacked Josephson junctions is difficult to do. Hence, thaingle fluxon was studied for layered superconductors con-
basic properties of SJJ’s have to be studied in order to desisting of an infinite number of thin identiéalor
scribe correctly the Josephson behavior of layered supercomonidentical layers and for SJJ%°In our previous work,
ductors. we have shown that in double SJJ's, two special single com-
Perpendicular ¢-axis) transport measurements in mag- ponent fluxon solutions exist, which are characterized by dif-
netic fieldH parallel to layers &b plane is an explicit way ferent Swihart velocities and Josephson penetration depths.
of studying Josephson phenomena in SJJ's. In this casén approximate analytic fluxon solution was suggested as a
magnetic field penetrates the stack in the form of Josephsotiinear combination of the single component solutidhsFor
type vortices(fluxons, and thec-axis voltage is caused by the static case, the approximate solution was shown to be in
motion of such fluxons along the layers. The fluxon in SJJ’'sa quantitative agreement with numerically obtained solu-
is different both from Abrikosov vortex in bulk supercon- tions. Extending the approximate analytic solution to the dy-
ductor, since it does not have a normal core, and from Joramic case, it was predicted that drastic changes in the
sephson vortex in single JJ, since the circulating currents arffuxon shape could occur with increasing the fluxon velocity,
not confined within one junction. The behavior of SJJ's be-resulting, e.g., in possible inversion of the sign of the mag-
comes particularly complicated when the length of the stacketic field in the second junction and appearance of attractive
in one directiorL is much larger than the Josephson penetrafluxon interactior® On the other hand, the choice between
tion depth\ ;. One of the unusual properties of long SJJ's isthe special single component solutions and the approximate
the existence of multiple quasiequilibrium fluxon modes, analytic fluxon solution was not addressed and the depen-
and submode$which are characterized by different fluxon dence of the fluxon shape on the junction parameters was not
configurations in the stack. Due to the existence of suclstudied. Using the perturbation approach, the second order
modes and submodes, the state of the stack is not well deorrection to the approximate analytic solution was derived
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and the accuracy of the solution was recently analy?ed. =./®,c/872),A, and inverted Josephson plasma fre-
To our knowledge, no comprehensive analysis of thequencyw;llzJq;ocl/zwcjcl, respectively, of the single JJ

single fluxon shape in SJJ's exists for the dynamic case. The, Here®, is the flux quantumg is the velocity of light in

scope of the current paper is to study quantitatively the shapgacuum and

of the moving fluxon in double SJJ's for various junction

parameters. Our analysis is based on numerical simulations d d

and analytical treatment of the coupled sine-Gordon equa- Ai=ti+\g; cotk( —') +Nsis1 cotl—( e )

tion, which describes physical properties of S39'ave Asi Asi+1

show that the single moving fluxon in double SJJ's may be

described by both a single component solution and a double i

component solution, depending on the parameters of the Si=Asi cosec}ﬁ)\—s_).

stack and the fluxon velocity. Moreover, the shape of the '

fluxon may be quite anomalous, with inverted magnetic field

Ipnhg;ee second junction and with nonmonotonous change 0tfotal currents in the JJ's, which consist of superconducting,

The paper is oraanized as follows. In Sec. Il we revWitedisplacement, and quasiparticle contributions, dpdepre-
hap 9 X . -sents the bias current density. Viscous damping due to qua-

]EEJ?(;?umpgﬁor?'gi_(??éggveglet '%2 fsc::] tree fﬁi(soen osfoslstli'gc;]ns'%iparticle current is characterized by the damping coefficient
Y g i=,6‘c_il/2, where B is the McCumber parameter of the

obtained in Refs. 3,11. In Sec. lll, we present numerical” i . ) L
simulations for frictionless fluxon motion for different pa- single JJi. The coupling strength in the double SJJ's is de-

rameters of SJJ's and compare those with analytical prediicriPed by a coupling paramet€=S,/yA;A,. The mag-

tions. We also formulate and verify conditions for observa-N€tic induction in the stack is equalto
tion of different fluxon solutions. In Sec. IV, we discuss

implementations of the fluxon shape in experimental situa- Hg ., S,
tion. In Sec. IV A, we study the influence of a finite damping Bﬁm P17t A_l¢2 ,
and simulate current-voltage characteristics. Finally, in Sec.

IV B we consider the case of nonsolitonic fluxon motion

The last terms in the right hand side of Ed) represent

with the propagation velocity larger than the lower Swihart Ho S , A,

velocity. We have shown that such fluxon motion is accom- Bo=——- A_(’D1+ AL %2 2
. N . . 2(1-S7) L2 2

panied by plasma wave excitations and derive the expression

for the wavelength of such “Cherenkov” radiation. whereHo=do/m\ 53 A ;.

For the solitonlike fluxon motion, the phase differences in
Il. GENERAL RELATIONS the stack remain unchanged in the coordinate frame moving
along with the fluxon. Introducing the self-coordinate of the
fluxon é=x—ut, and neglecting damping coefficient, we
simplify Eq. (1) and rewrite it as a system of coupled ordi-
nary differential equationODE’s):

We consider a double stack with the overlap geometry
consisting of junctions 1 and 2 with the following param-
eters: the critical current densitl;, the capacitanc€;, the
thickness of the tunnel barrier between the laygrsthe
thickness and London penetration depth of superconducting

layersd; and\g;, and the length of the stadk Hereafter, , ab—S? . JooS |

the subscript on a quantity represents its number. The ele- 20 ey =asin(¢;) - JA, sin(¢y),
ments of the stack are numerated from the bottom to the top,

so that junction consists of superconducting layers+ 1,

and the tunnel barrieir The fluxon will be placed in JJ 1, if ab—S? JeoA,

. S .
not stated otherwise. Poge =b3 A, sin(@,) — A sin(eq),  (3)
C

2
The physical properties of SJJ's are described by the 1-S
coupled sine-Gordon equatidhwhich for the double stack where
with overlap geometry can be written as
o1 | 1 —S,/A4 azl_u_zczAz( ¢
®3 —S /AL AplAy cgl CiAy ’
i . : Jp
Sin(¢q) + @1+ a1p1 3 u2 ,
X <l W b=1-—(1-59, 4
Jeo Jp Co1

C,. .
3. sin(¢y) + C_2<P2+ P2~ 3
el ! el and cp;=\jy @y is the Swihart velocity of the single JJ 1.
where ¢, , are gauge invariant phase differences in JJ's IComparing Eqs(1) and(3), it is seen that the task is now
and 2, the prime and overdots on the quantity represent pareduced to solution of the static problem, but with param-
tial derivatives in space and time, respectively. Space andters depending on the fluxon velocity.
time are normalized to Josephson penetration depth Equation(3) has a first integral
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1 (¢1§)z Ay ((Pég)z S, For identical junctions the contraction of ea}ch component is
— of the Lorentz type; however, the contraction of the fluxon
itself is different from Lorentz contraction. This is a conse-
3 guence of the absence of Lorentz invariance for the coupled
42 cog ¢,)=C, (5)  sine-Gordon equation. For nonidentical junctions, the param-
Je1 etersk, ,, depend on the fluxon velocity and thus contrac-
which reduces to that from Ref. 3 for the static case,0.  tion of the components is somewhat different from Lorentz
HereC is a constant of the first integral. contraction. In this case the maximum characteristic velocity
should be obtained from the equatiar-c, , and Eqs.(7),
(9). By analogy with single JJ's we will refer to the maxi-

mum characteristic velocities as Swihart velocit®gs. In
the general case, Swihart velocities are equH to

1—82b 2 +aA2 > +A_2<P15‘P2§ +cog ¢1)

A. Special single component solutions

In Ref. 3 it was shown that E@1), linearized with respect
to ¢,, allows two special single component solutions of the

type
P -~ \/5001002

@1(€)=F 1 ,=4 arctafiexp(é/\ 1 )], (6) C10= , (1Y
\/Cgﬁ ngi \/(Cgl_ 0(2)2)2+ 4320(%1032

Sin( @) = k1 2 sin @),

where, , are solutions of the quadratic equation. V‘{helre‘\:]?]zz Co1VC1A1/CoA; is the Swihart velocity of the
single .
S, , Johs, U2 A,[(J, C, , The most crucial changes in the fluxon shape occur as the
ALK +K 1‘@ 2 A\, G (1-59) velocity approaches the lowest Swihart velocity—c;.
01 Then the first component is totally squeeagé-0 while the
JeoS, contraction of_ the second component remains marginal; see
- JclAlzo' (7)  Eq. (8). In this case the two components become clearly

distinguishable: th&; component transforms into a steplike
Therefore, for a double SJJ’s there exist two characteristifunction which changes from zero tor2within the distance

Josephson penetration depths N\, at the fluxon center, while outside the central region the
shape of the fluxon is defined by tle component. From
) N u? Eq. (10) it follows that
Ny | 1 — (8)
’ 1+ K2Y1$2/A1 Ciz )
d two ch istic velociti siney) _ [ <> (U—%y) (12
" = — .
and two characteristic velocities SNy | — Ky x—0 1
Cor
) ~
Ci = . 9 For C,A,/CiA;=1, andu=c4, the parametersc, , are
12714 16, {Co3u S Cleghs) O B el 1 the p 12
B. Doubl t soluti
ouble component soluton B \/A\l \/A\Z‘]CZ
Taking the single component solutions as eigenfunctions Ki2=— A_2 A_lJ_cl (13

of the linearized coupled sine-Gordon equation, an approxi-
mate analytic single fluxon solution in JJ 1 was obtained inThe parameters; , determine the weight coefficients of the

Ref. 3: components. From Eqsl10), (13) it follows that F; compo-
nent dominates forJ.,/J.;<<1, and F, dominates for
o = aF1 K2F2 Jeolde>1.
K1~ K3 From the analysis above, it is seen that the linearized
coupled sine-Gordon equation allows both the single compo-
_Fi—F; nent solutionsg=, ,, Eq. (6) and the double component solu-
$2= Ki— Ky (10 tion, Eqg.(10). At this stage it is not clear which of the solu-

tions, Egs.(6), (10), should be realized in SJJ's, since all

Here F, , are the single component solutions, E§). three solutions have roughly the same accuracy with respect
Recently this solution was rederived more rigorously in Refto Eq. (1). In Refs. 3,11 it was shown that it is the double
11. It was shown, that for the static case Ef§0) gives component solution Eq.10) which is realized in the static
perfect approximation fop, in the whole space region and case. However, it was suggested that a single component
for arbitrary parameters of the statk® Using the perturba- solution could be achieved at high fluxon velocities. Indeed,
tion approach the second order correction to Bd) was as we will show below, in the dynamic case both single and
obtained in Ref. 11. As it is seen from E@.0), the single double component solutions can exist and even coexist, de-
fluxon in double SJJ’s consists of two components. From Egpending on parameters of the stack and the fluxon velocity.
(8) it is seen that both components contract with increasingVhat is important, however, is that these are always the
velocity, but the characteristic velocities for the contractioncomponents=, , described by Eqg6), (7) which constitute
are different for each component and are given by @y. the fluxon.
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u/51=0; 0.61; 0.92; 0.98,; 0.998, 0.9999

¢, analyt, —— ¢, num, i

b w6,=0; 0.61;0.92; 0.98; 0.998; 0.9999

sin(e,)
sin(e,)
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FIG. 1. Profiles of(a) phase differences;,, (b) the ratio - _ .
sin(ey)/sin(e,), and(c) magnetic induction®; , of a single fluxon FIG. 2. The same as in Fig. 1 but i, /Je; = 2. The fluxon is

are shown for double SJJ's consisting of identical strongly couplecplacefj in the weaker junction. Al<0'98:1_' the fluxon 1S well
. . . - ~ described by the double component solution, Ed). At higher
junctions and for different fluxon velocities u/c,

. velocities transformation to the sin component solution, Eq.
=0,0.61,0.92,0.98,0.998,0.999f0om left to right curve. In (a) gfe, comp q

- - i . 6), with x,=2, tak lace.
dotted lines show profiles obtained from the analytic double com-( ), With rcz aKes place

ponent solution Eq(10). The rest of the curves were obtained nu- . . L
merically. It is seen that the fluxon shape in this case is well defion Eq. (10). Solid and dashed lines in Figsial, 1(c) rep-
scribed by Eq.(10) and consist of contracted and uncontracted "€Sent results of numerical simulations for JJ’s 1 and 2, re-

spectively. The data in Figs. (), 1(c) are obtained
numerically. The magnetic induction is normalized Hig
=dg/ TN A

As the velocity approaches the lower Swihart velocity

In this section we will consider unperturbed;=0, J, the existence of the two fluxon components becomes clearly
=0, frictionless fluxon motion. We analyze the pure solito-seen. For identical junctions, as it follows from Eq&0),
nic fluxon motion for various junction parameters, make gen<{13), exactly one half of the fluxon belongs to each compo-
eral conclusions about transformation of the fluxon shape iment. TheF; contribution transforms to a one-step. Out-
dynamics, and compare it with analytical predictions. Weside the fluxon center the fluxon is defined entirely byfhe
also derive and verify conditions for observation of singlecomponent, which is only marginally contracted. Moreover,

and double component fluxon at-c,. The effect of finite  from Fig. 1(a) it is seen that ati~c, the phase differences in

damping and bias will be considered in Sec. IV. The numeriboth junctions are equal outside the fluxon center in agree-

cal procedure was based on a finite difference method witiment with analytical prediction, Eq12). This is illustrated

successive iterations of ODE, E@). The boundary condi- in Fig. 1(b), from which it is seen that the ratio

.tions.were suc.h _that the total phase shi_ft is equalitar2the sin(gy)/sin(e,) approaches unity as—¢,. From Fig.1a) it

junction _contalnmg a.fluxon gnd zero in the oth_er one. Thes seen that the approximate analytic solution is in good

fluxon will be placed in JJ 1 if not stated otherwise. agreement with the numerical solutions for all fluxon veloci-

ties. Another unusual feature of the moving fluxon in SJJ's is

seen from Fig. c). A dip in B, is developed with increasing

fluxon velocity, leading to inversion of the sign at high
In Fig. 1, profiles of(a) phase differences, ,, (b) the  velocities® From Egs.(2), (10) it follows that for identical

ratio sinfp;)/sin(e,), and (c) magnetic induction®, , of a SJJ'sB,(0)= —B,(0) atu="c.

single fluxon in JJ 1 are shown for a double stack consisting

of identical strongly coupled JJ's and for different fluxon . . . .

velocities u/c; =0,0.61,0.92,0.98,0.998,0.99980om left to B. Fluxon in a weaker junction: Uncontracted single

right curve. The curves were shifted for clarity along tke component solution

axis. Parameters of the stack atg=t;=0.0I\;;, A\g; Figure 2 shows the case when the fluxon is placed in the

=0.1\3;, S=0.5, C;=C,. In Fig. 1(a) dotted lines show weaker junction).,/J;;=2; the rest of the parameters and

profiles obtained from the analytic double component soluthe way of presentation are the same as in Fig. 1. At veloci-

components. The sign inversion B{(0) atu=c; is clearly seen.

Ill. FRICTIONLESS CASE

A. Identical junctions: Double component solution
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FIG. 3. The same as in Fig. 1 but fag,/J.;=0.5. The fluxon FIG. 4. Profiles of the fluxon moving Witlﬂl=0_-999§1, for
is placed in the stronger junction. At<0.9&,, the fluxon is well ~ Je2/Jc1 from 10 to 0.1. From(b) it is seen that single and two
described by the double component solution, Ed). At higher ~ component solutions are observed for fluxon in weakikp AJc,
velocities transformation to a more complicated two component so=~ 1) and strongerJc;/Je;<1) junction, respectively.

lution, Eq.(14), takes place. ) ) ) )
F, component is now situated in JJ 2. In the central region, a

. ~ ) ) steplike change of phase shift takes place in both junctions.
ties up to 0.98, the shape of the fluxon is well described by |, JJ 1 the phase jumps on2, which means that there is

t_he double component solqtion, EQ0). At higher yeloci- a singleF; component fluxon and in JJ 2 the phase drops on
ties, transformation to the singke, component solution, Eq. — 2, representing the single; component antifluxon. The

(6), takes place. Indeed, from Fig(8 it is seen that asl ~ . .

~ . . . . overall fluxon shape ai=c, from Fig. 3 can be written as
—Cy, Sin(py)/sin(ey)—k,=2 in the whole space region.
From Fig. 3c) it is seen that a dip iB, atu=c, is reduced p1=F,+imagd ¢,),
with respect to that in Fig. (t), due to absence of the con- @,=Fy—Fy (14)

tractedF, component.
so that in JJ 1 there is the contracted single compoRent

fluxon plus an image from JJ 2 in a form of a ripple and in JJ
2 there is uncontracted fluxdm, — contracted antifluxofr

Figure 3 shows the case when the fluxon is placed in th@air. The total phase shifts in JJ's 1 and 2 are &xd zero,
stronger junctiond;,/J;;=0.5; the rest of the parameters respectively. Howeverg,; increases nonmonotonously and
and the way of presentation are the same as in Fig. 1. Atas two local maxima and minima, see Figa)3From Fig.
velocities up to 0.98;, the shape of the fluxon is well de- 3(C) it is seen that the dip ifB, in this case is even more
scribed by the double component solution, qu) At pronounced than that for identical SJJ’s, FI@C)lThIS IS
higher velocities the fluxon still has contracted and uncon.due to the increase of the Welght coefficient of the contracted
tracted componentg, ,. The existence of the two fluxon F1 component. _ _ _
components is clearly seen from Fig(bB As u—¢y, Figure 4 shows profiles of the fluxon moving with the

sin(eq)/sin(¢,)— k,=0.5 outside the center of the fluxon and velocity _very close to the lower Swihart velocity
sin(gy)/sin(e,)——k;=1 in the center, in agreement with =0.999%,, for different critical current densitied.,/J¢q
Egs.(12), (13). However, transformation of the fluxon shape from 10 to 0.1 increasing sequentially from the left to the
with respect to Eq(10) takes place. From Fig.(8) itis seen  right curve. The rest of the stack parameters and the way of
that in the left half-space the phase shifts in JJ's 1 and Presentation are the same as in Fig. 1. From Fig. 4 it is seen
approach zero and, respectively, and belong to the uncon- how the shape of the fluxon is changed with/J.;. When
tracted F, component, as seen from Fig(b3 Therefore, ~the fluxon is placed in the weaker junctidg,/Jc,>1, the
there is a singld=, component fluxon placed in JJ (ghe  fluxon shape ati=c, is described by the single, compo-
weaker junctiop The situation in the left half space is then nent. For the case of Figs. 1-@,/C,=A,/A;=1, so that
analogous to that in Fig. 2. Indeed, in the left half spacex,=J.,/J.;. In Fig. 4b) the dependence sig{)/sin(¢,)

@1 AX/I\ 3,) from Fig. 3a@) merge withe, 1(X/N ;) from Fig.  =J,/Jy is clearly visible in the whole space region for
2(a). Rescaling of thex axis toA 3, is necessary because the J.,/J;;>1. When the fluxon is placed in the stronger junc-

C. Fluxon in a stronger junction: Two component solution
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tion, Js/Jc1<1, it has two components;; ,. From Fig.
4(b) it is seen that for the cask,/J.;<1, the fluxon shape
in the center is determined by thé&; component,
sin(ey)/sin(¢,)=—k,=1, while outside the center the shape
is given by theF, component, sirg;)/sin(e)=ky=Jc2/Jc1,
in agreement with Eqg12), (13).

From Fig. 4 it is seen that the transition from a double to 2l ]
a single component solution fdg,/J.;>1 is gradual. Out- I ,ana,”yt’, M, e, UM
side the fluxon center this transition is well described by a - u/c,=0; 0.61; 0.92; 0.98; 0.998; 0.9999
gradual increase of the weight coefficient of the compo-
nent, Egs.(10), (13). In the center the exact shape of the
fluxon can be obtained from the first integral, E5).. For the

caseC,A,/C;A;=1, atu=c, the first integral reduces to

(P1,2/7C

?,)

sin(g,)
sin(

S Je1A1 cogey) Z(SDig)z
1-5° JeaAA, cog @) 2

I
=1—c01¢1>+ﬁ[1—cos¢2>], (15)

for the F, single component solution. From E(L5) it is ) /A
seen that at the fluxon centers=0, the effective Josephson J1

penetration depth is equal to FIG. 5. Fluxon shape for the case of nonidentical electrodes

A,=2.5A, andJ.,/J.1=0.5. The rest of the parameters and the
Net(F) =gl 1— JaA / S (16) way of presentation is the same as in Fig. 1UAtp to 0.9&,, the
eft™2 1 JooAs 1-2 fluxon is well described by the double component solution, Eq.

_ (10). However, atu>0.99&, switching to two different types of
so thath ¢ gradually increases from zero xg,vS/(1— S)z, solutions, Eqs(14), (18), occur.
asJ.oA,/J.1 A1 becomes larger than unity. The inequality

Jeol s However, atui~0.99&; the system exhibits bifurcations and
A >1 a7 a sudden switching to the solution given by Etd) occurs.
et At slightly larger velocity another bifurcation takes place
is then a necessaffput as we will show below not sufficient  resulting in switching to yet another solution. The switching
condition for the existence of the single componggtsolu- ~ between the_ solutions_is hysteretic. If we start reducing the
tion atu=2¢,, for C,A,/CyA,=1, since them: remains fluxon veloglty, the switching ba_ck takes place at somewhat
finite atu=El. lower velocity. Therefore, there is a certain region of fluxon

On the other hand, the transition from the double com ovelocities for which those solutions coexist.
' P Looking at the fluxon shape at=0.999&, from Fig. 5

nent solution, Eq.(10), to the solution, Eq.(14), for we see that it consists of three pai(is:at the fluxon center
J.o13:.1<1 is sharp. However, the closér,/J.; is to unity, ) ) S ; S
c2ivcl P t2/ c1 Y: x=0, in JJ 1 there is a step, which as we will show in a

the clos_er the fluxon \_/elocity .tol must be in order _to ob- moment, belongs to the puFg component and in JJ 2 there
serve this transformation, as it can be seen from Figs. 3, 4, - 4 drop belonging to two flux quantum 2F; anti-
fluxon. (i) At x=Xp=0.7\31 and(iii) x=—Xg, in JJ 2 there
D. Nonidentical electrodes: Bifurcations and more complicated is a 2 increase and in JJ 1 there is a r|pp|e||ke phase shift.
two component solutions As it can be seen from Figs(&, 5(c), the features ax=

So far we have considered the case when only criticaf=Xo contain both contracted and uncontracted parts and are
current densities of SJJ's were different. Another commorin fact given by the double component solutions, ELp).
type of nonuniformity in SJJ's is the difference in electrodes.This is illustrated in Fig. @) in which solid and dashed lines
Figure 5 shows fluxon shape for the casg~=2.5A ;. Physi- ~ Show phase distributions; and ¢, respectively, from Fig.
cally this means that the third electrode has either largeb(a) for u=0.999%, and dashed-dotted and dotted curves
London penetration depth,s3=2\;; », or it is thinner than  represente; and ¢,, respectively, given by the analytic
the rest of the electroded; ,=4d;, see definitions in Sec. double component solution, E(LO), shifted by —x, along
[l. The rest of the parameters adg,/J.;=0.5, d;,=t; the x axis. Obviously, the features at= £ x, correspond to
=0.01\j;, Ng1=0.INy;, S=0.31, C,A,/CiA;=1. The the double component soliton placed in JJ 2. Due to spatial
way of presentation is the same as in Fig. 1. At velocities ugeparation between the contracted centrum of the fluxon and
to 0.9&;, the fluxon is well described by the analytic double the double component featuresxat = x,, we can analyze
component solution, Eq10). From Fig. §b) it is seen that the shape of the central contracted part. From Fig) & is
outside the fluxon center the phase distribution is determinegeen thaB,(0) increases sharply as the velocity approaches
by the F, component withk,=0.79, given by Eq.(13). c,. If the phase distribution in the central region is given by




PRB 60 SHAPE OF A MOVING FLUXON IN STACKED.. .. 13185

| T T T | T T T | T S-é é

~ s
2 - U/C =O.9999 JUBRE Sy [ \\ (Jc1 / ch) 1
- ! ~ § A W Jc1 / ch
®.2
= ," - S Single
g { . ; N component
Ay R J < Fig. 5 N p
(o ' ~ 1k 2 1 -
i T S JEEEE < : FigS/( Fig. 2
5 1 - E + 8 . )
S o } num ! ! 05k Fig. 1 N
-1+ ! ', — L TWo 2 2 2\1\
" ...} analyt o’ T | component N
ob v vy i | 2 2
-3 -2 1 0 1 2 3 05 1 5
X\, s s
— T T T T T T T 7 FIG. 7. Regions of existence of the two componéstiaded
015 . area and the single component solutions at=c, for
J /J =05 C,A,/C1A1=1. Numbers indicate the number of components, ob-
8 - c2 °21 . tained numerically. Solid and dashed lines represent the conditions
~ o010 L Az =25 A1 B Eq. (19) and Eq.(17), respectively. It is seen that the single com-
N b) ponent solution exists when both conditions are satisfied.
S~ - -
IO 0.05 crucial. It is then important to know how the shape of the
' fluxon atu=?:1 depends on the parameters of the stack.
- . Equation(17) formulates the necessary condition for the ex-
0.00 T T T istence of uncontracted single componé&nt solution atu
0.00 0.02 0.04 0.06 0.08 0.10 ='¢;, for C,A,/C;A;=1, since them ¢ remains finite at
~ . 21/2 u=<c,. However this condition is not sufficient. Indeed, for
[1 -(U/C1) ] the case of Fig. 5JepA,/JeA1=1.25, i.e., Eq(17) is sat-

isfied. However, we obviously do not observe the single

FIG. 6. (a) Soliton shape an=0.999&, from Fig. 5. Solid and ~COMponent~, solution atu=c,, but rather a switching to
dashed lines represent, , obtained from numerical simulation, More complicated two component solutions, Edgl), (18),
while dashed-dotted and dotted lines represent the analytic doubl@kes place. This happens when the maximumegfap-
component solution in JJ 2, shifted By —x,. (b) Inverted values ~proachesr/2. If the solution was to stay at the special single
of magnetic induction in the center of JJ 1 versus the Lorentz factocomponent, solution, then according to E¢), the maxi-
Symbols represent numerical simulations and solid line is an appamum value of sing,) would be equal to X,. This gives us
ent linear fit. Clear Lorentz contraction of the central regionat an additional condition for the observation of the single com-

=, is seen. ponentF, solution:

the F4 component, then according to E@), B1(0)~\;*! ko> 1. (19)
~(1-u?/c3)~2 Figure @b) shows the inverse value of

B,(0) versus the Lorentz factor (u/c2)2 for the high In Fig. 7, regions of the existence of the two component

velocity solution from Fig. 5. Dots represent the numerically(Shaded argaand the single componerit, solutions atu
obtained values, solid line is the apparent linear fit. The Lor—=c, are shown foIC,A,/C;A;=1. The numbers in Fig. 7
entz contraction of the central region at the lowest Swiharshow the number of components obtained numerically. Solid
velocity, ¢;, is clearly seen, therefore confirming that the @nd dashed lines represent the conditions &@) and Eq.
central region is given by the pufe, component. The soli- (17), respectively. Arrows indicate the cases considered in
ton in this case can be described as Figs. 1,2,3,5. It is seen that the single component solution
_ exists when both conditions, Eqd.7), (19), are satisfied.
¢1=F+imagd ¢,),
©2=@ged X—X0) — 2F 1+ @ged X+ X0), (18 IV. IMPLEMENTATION FOR EXPERIMENTAL

where ¢4 is the double component solution, E40). The SITUATION

overall phase shift is 2 in JJ 1 and zero in JJ 2; however,  |n the previous section we have studied the unperturbed
the phase growth is nonmonotonous in JJ 1. fluxon motion,e;=0,J,=0. This is an idealized case. In real
experimental situationy;#0 andJ,#0. To quantitatively
study the influence of damping and bias on the fluxon shape
and current-voltage characteristi¢B/C’s), we performed
For practical applications of SJJ's in flux-flow oscillators, numerical simulation of the coupled sine-Gordon equation,
the shape of the fluxon at the highest propagation velocity i€qg. (1), with the dissipation and bias terms. Here we used

E. Conditions for the existence of single and two component
solutions
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two approaches(i) Considering solitonic-type fluxon mo- 0.40
tion, ¢;= ¢;(&), we derived the ODE system, similar to Eq.
(3), but with dissipation and bias terms and used the same 0.35
numerical procedure to solve ifii) Alternatively, we di-
rectly integrated the system of partial differential equations 0.30
(PDE), Eq. (1) using explicit finite difference method. Both
approaches have certain advantages and disadvantages. Us 0.25
ing ODE, it is possible to calculate fluxon shape for arbitrary ey 0.20
small damping, while PDE require relatively large damping ~ ’
coefficient. In addition, ODE in comparison to PDE, does 0.15
not require a long relaxation and averaging times and does M
not have problem with accumulation of the error. For solito- 0.10
nic fluxon motion, both approaches give identical results. On s
the other hand, ODE are restricted to the study of the solito- 0.05 |-
nic motion, while PDE allow more complicated solutions. -
For simulation of PDE, periodic boundary conditions were 0.00 b
used, which correspond to fluxon motion in annular SJJ's 0.0
with L=10-100\;;.
A. Effect of damping and current-voltage characteristics FIG. 8. Single fluxon IVC's are shown for double stack with

First of all, fluxon shape will affect the shape of IVC's equal dampinge,; ,=0.05, and fod;/J¢;=0.5, 1, and 2. The rest
caused by fluxon motion in the statkThe IVC is deter- ©f parameters are the same as in Fig. 1. Symbols and solid lines
mined by a balance between the input power to the systerfgPresent solutions of ODE and PDE, respectively. Dash~ed gray
from the current bias source and the power dissipated due fife shows the IVC of a single JJ 1 and dotted line indicates
a finite damping, see, e.g., Ref. 15. In single JJ’s, Lorent2nsets show spatial distribution of sil(,2), for maximum propa-
contraction takes place as the fluxon velocity approaches thgation velocities.

Swihart velocity and the fluxon energy increases sharply. L .
The fluxon velocity asymptotically approaches the SwihartS0lid lines in Fig. 8 show that PDE allow solutions propagat-
velocity with increasing current. In the IVC this result in N9 with even larger velocities; however, those solutions are

appearance of an almost vertical step at the velocity matcH2°t Of solitonic type, and will be discu’ssed in the next sec-
ing condition’® Since the existence of this step is closely 1ON- From Fig. 8 itis seen that the IVC’s fdg,/J, =1 and

related to the Lorentz contraction of the fluxon, we expect0.5, exhibit velocity matching behavior at—c,. On the

that the step at the velocity matching condition ¢, should ~ Other hand, fodc;/Jc; =2, no velocity matching behavior is
also exist in SJJ's, whenever the fluxon contains the Lorentgbserved, and the velocity reachigsat a finite current. Such
contracted parE,. On the other hand, when a pufg com-  behavior is in agreement with the absence of contragted
ponent solution takes place, the fluxon will reachT, ata  component, as discussed above. From the insets in Fig. 8 it is

finite current and flux-flow IVC should have a finite slope atS€€n. that the fluxon shape for the case of small damping
~ . does not differ much from the frictionless case, considered in
u=c,. For the case when the transformation of the fluxon

. . the previous section. On the other hand, damping reduces the
;hape given by Eq$14), (18) takes place, this would result stability of the fluxon state at high propagation velocities, so
in a premature switching from the flux-flow branch and, pos- ) ; o ;
. ; . that the maximum fluxon velocity for pure solitonic motion
sibly, in the existence of an extra metastable flux-flow

. . - Lo~ becomes less thany. This is due to the finite bias current in
branch in the IVC with the same limiting velocity=c;, . . L
. T the stack, which results in an asymmetry of phase distribu-
but with larger dissipation.

The average DC voltage in 33 1N /Vg,= u/Coy, Where tion in the stack. Such asymmetry is clearly seen from the

_ ) . inset in Fig. 8 ford;,/J.;=0.5. The reduction of stability in
Vor=hmCo/2eL, and in JJ 2 is zero. Therefore, we now plot the flux-flow state depends on parameters of the stack. For
current-velocity characteristics to represent IVC's.

In Fia. 8. the sinale fluxon IVC's are shown for double example, for the case of double stack with nonidentical junc-
, 9. © ge ! g tions, flux-flow state is more stable for fluxon in the weaker
SJJ's with equal damping coefficients, ,=0.05, and for

I,1dg=1 (solid diamonds J.,/Je.=0.5 (open circley junctionJ;,/J., =2 than for fluxon in the stronger junction,

B Je213c1=0.5. For the casd;,/J;;=0.5, switching of the
‘JCZ/JCl_.Z (qpen squargs The rest of parameters are the second junction to the quasiparticle branch occurs first at
same as in Fig. 1. Symbols represent solutions obtained frorl‘r}I ~0.22

. . . Cl_ . .
ODE and subsequent solid lines show solutions of PDE, In real life, junctions in the stack are not prenumerated

dashed gray line shows the IVC of an uncoupled single JJ Jémd if they are not identical, the stable state will correspond

and dotted line indicates the position of the lower SW|hartt0 a fluxon placed in the weaker JJ. Therefore, whenever

velocity, ¢;=0.81%o,. The insets in Fig. 8 show spatial properties of JJ's in the stack are considerably different, the
?(;ft::]t;lit;%zronf S|rno(01; (Zgl(')?] Ii?e?(s)c?tri]edSSI?O(ﬁZ)W(fﬂiﬁhg%:éng):lse dstable dynamic state at=c, would correspond to the exis-

; propag ’ ~ tence of uncontracteld, component soliton in the weaker JJ.
numerical procedure convergagha(J/Ja=1)=0.99%1,  Experimentally, steps at the velocity matching condition
UnafJe2Jer=0.5)=0.97C1, Upaddeo/dea=2)=0.9C;. The  were observed for lowF, SJJ'st”8on the other hand, for
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high-T. intrinsic SJJ’'s the flux-flow IVC's have a finite 3r——T—T— T T 7177
slope!® We note that for stacks with large number of JJ's y U
with thin electrodesd<<\g, it is not necessary to have a
variation inJ;; to make the JJ's different. In this case the
middle JJ's have a lower critical fielHl.;, approximately
half of that compared to the outmost JJ's due to the factthat A o
fluxon in the outmost junctions carries only half a flux quan- g
tum. In a double stack, considered here, a corresponding
thing happens when the JJ's have different electrode thick- ™~
nesses. The junction with thicker electrodes may have lower
H., evenifJ; is Iarger In a sense, the criterion for transi- V
tion from Weak to “strong” junction is given by Egs.
(17), (29).

Although the stable state corresponds to the case when
fluxon is placed in the weaker JJ, the situation when the
fluxon is placed in the stronger JJ can also be achieved in

1

experiment® Obviously such state can be achieved in annu- 0
lar SJJ’s. In this case the fluxon can eventually be introduced 00 01 02 03 04 05 06 0.7
in the stronger junction and if so it will stay there and can be ~ 9 1/2
accelerated by the bias current. [(u /01) -1 ]

B. Velocity above¢,: “Cherenkov” radiation FIG. 9. The wavelength of Cherenkov oscillatioftsrcles is

- ~ shown as a function of the absolute value of the Lorentz factor. The
So far we have considered the casec,. For u>cy, solid line represents wavelengthrf 4|, for plasma waves from the
coefficients before the second derivative of phase in(Bg. degeneraté=; component, given by Eq8). Insets show spatial
become negative. The equation can still be written in a sinedistributions of sing;) (solid lines and sinf,) (dashed linesfor
Gordon type form if we substitute(¢) =7+ ¢(¢). Indeed,  (a) u/c;=1.015,1/1,,=0.15 and(b) u/c;=1.155,1/1,,=0.5, re-

a 2 solitonlike solution forg(£), moving withu>¢,, does ~ Spectively.

exist. However the energy of this state is decreasing with

increasing velocity and therefore such state would correpropagating from right to left As the velocity increases,

spond to unstable IVC branch with negative resistance.  both amplitude and wavelength of the oscillations increase,
In Ref. 3 it was suggested that far>c, the fluxon is a  as illustrated in insetb) in Fig. 9. To clarify the physical

combination of a soliton with Josephson plasma wavesorigin of the oscillations, in Fig. 9 we have plotted the aver-

From Eq.(8) it is seen that\; becomes imaginary fou age wavelength of oscillationgircles as a function of the

>, and theF; component transforms into a traveling Jo- absolute value of the Lorentz factoy(u/c,)>— 1. The solid
sephson plasma wave. The fluxon solution is then given bjine in Fig. 9 shows the absolute valuer[d 4|, given by Eq.
the F, component soliton accompanied by Josephson plasm@), describing small amplitude plasma waves from the de-
waves from the degeneralfg component. Recently, the ex- generateF; component(the factor 2r is due to different
istence of such type of solution was shown by numericadefinition of the wavelength and the penetration dgpEx-
simulation in Ref. 20 and was interpreted as Cherenkov racellent agreement between the wavelength of oscillations and
diation in SJJ's, when fluxon velocity exceeds the phase veJosephson plasma wavelength from the degené&ratom-
locity of electromagnetic waves. This solution is not of soli- ponent is observed without any fitting, thus confirming the
ton type and cannot be obtained from ODE. Thereforédea of Ref. 3 that “Cherenkov” radiation is due to plasma
solution of full PDE, Eq.(1), is required. From Fig. 8 it is wave generation from the degenerde component. We
seen that for the cas@.,/J;;=2, PDE allow solutions would like to note thaf\,| is not linear as a function of the
propagating WIthJ>Cl Lorentz factor, although deviations from the linear depen-
In Fig. 9, results of numerical simulations of PDE are dence are small. For high propagation velocities, an uncer-
shown forde, /=2, andu>%,. The parameters of SJJ's tamty appears in determination af This is caused by the
are the same as in Fig. 8. The insets show spatial distrib jncrease of the amplitude of oscillations; see iriggin Fig.

. : o : ; . Here oscillations are not exactly monochromatic but the
t|o~ns of sing,) (solid lines and Sm(DE) (dashed linefor () wavelength slightly increases with the amplitude. The uncer-
u/cy=1.015,1/14,4=0.15 and(b) u/c;=1.155,1/1;,=0.5

: ; tainty in determination ol at high velocities is shown by
Simulations were done for annular SJJ's witl= 100\ ;5.

error bars in Fig. 9.
From our simulations we observe that fluxon shape changes

gradually asu exceed<;. Therefore, there are no peculiari-
ties atu=c, in the IVC, see solid line in Fig. 8 for V. CONCLUSIONS

Jez/Jc1=2. Indeed, from inse) in Fig. 9 itis seenthatfor o conclusion, we have shown that the shape of a single
u slightly abOVeCly fluxon shape in the left halfspace is fluxon in double stacked Josephson junctions can be de-

similar to that ati<c,, see the bottom inset in Fig. 8. How- scribed by the existence of two components given by Egs.
ever, small oscillations appear behind the fluXfioxon is  (6), (7) and with characteristic lengths and velocities given
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by Egs.(8), (9). At velocities up tou~0.9&;, the fluxon is  “bunched” staté® with fluxons one on the top of the other in

well described by the approximate double component soluadjacent junctions may become favorable at high enough
tion, Eq.(10), for all studied junction parameters. In the very fluxon velocity. In experiment, this would result in appear-

vicinity of the lower Swihart velocity, the fluxon shape may ance of an extra flux-flow branch in the current-voltage char-
undergo radical transformations. The final shape of thecteristics with higher voltage, as shown by numerical

_ . . 6 . . _ , 17
fluxon atu="c, strongly depends on parameters of the stackSimulations® and observed in experiment on IGl-SJJ's.

From our numerical simulations we have found that theIn Ref~. 13 it was shown that the bunched state can be stable

fluxon may remain double component, as shown in Fig. 18t U>cy; however, no mechanism for overcoming the mu-
transform to a pur§2 component So|uti0|(]see F|g 20[‘ be tual fluxon repulSion and transformation into the bunched
a more Complicated combination E'E and F2 Components; St?.te was Su.gg(.asted. The existence of the field inversion
see Eqgs(14), (18) and Figs. 3,5. Those more complicated Might be a criterion for the appearance of the bunched state
solutions do not, strictly speaking, represent the single fluxoi SJJ's. As we have shown, the sign inversion and a dip in
state, but are combinations with fluxon-antifluxon pairs.B2(0) disappears when JJ 2 becomes considerably stronger
However, even in this case these are always the componerifzan JJ 1 and transformation of the fluxon shape to a single
F., described by Eqs(6), (7) that constitute the solution. F2 component solution takes place; see Fig)2

This implies that the componenks, , are real and may live ~ The shape of the flux-flow IVC's was analyzed for vari-
their own life and appear in different combinations. Condi-0us parameters of SJJ's and it was shown that velocity
tions for observing the single and the two-component solumatching behavior ati=c, is observed when fluxon con-

tions atu="c, were formulated and verified. We have showntains the contracte&, component. Finally, oscillations at

that as the velocity approaches, the phase shift may be- U>C; were shown to be due to generation of plasma waves
come nonmonotonous. from the degeneraté&, component in agreement with the

A prominent feature of a soliton moving at the velocity prediction of Ref. 3. An analytic expression for the wave-

close toc, in SJJ's is the possible inversion of magnetic field€N9th of such “Cherenkov” radiation is derived.

B,(0). Such a behavior was predicted analytically in Ref. 3. ACKNOWLEDGMENTS
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