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Matching fields of a long superconducting film
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We obtain the vortex configurations, the matching fields, and the magnetization of a superconducting film
with a finite cross section. The applied magnetic field is normal to this cross section, and we use the London
theory to calculate many of its properties, such as the local magnetic field, the free energy, and the induction
for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film,
are recovered here, in the special limit of a very long cross section.@S0163-1829~99!00242-8#
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I. INTRODUCTION

The superconducting properties of an infinite type-II fi
have been studied for more than three decades. As long
as 1964, it was shown by Abrikosov1 that when an infinitely
long film is placed in an external magnetic field, parallel
its surfaces, vortices penetrate collectively into the sampl
the form of linear chains. He also calculated the lower cr
cal field Hc1(b) as a function of the film thicknessb and
shown that for smallb, it becomes increasingly more diffi
cult for a linear chain of vortices to penetrate the film. Aft
the work of Abrikosov, many theoretical1–5 and experimenta
works6–10 have been carried out to study the mixed state o
type-II superconducting film. As the external magnetic fie
exceeds the value ofHc1(b), the linear chains of vortices
start to penetrate into the sample, one at the time. This
flects into the magnetization, which exhibits a successio
peaks related to the penetration of each linear chain.
transition between two vortex states, differing by a line
chain, occurs at a well-defined critical magnetic field, kno
as thematching field.

In this paper we determine the matching fields and
magnetization of a film of finite cross section, namely, with
finite width a and also with a finite thicknessb. The applied
field is always normal to this cross section, so that the th
dimension is also taken very long here. Forb very large we
recover the results obtained by the previous authors in
limit of an infinitely long film. Interestingly there are two
kinds of matching fields in this geometry, because vorti
penetrate individually here. The first kind corresponds to
critical field for the penetration of an individual vortex. Thu
there are many of this critical field, each delimiting the tra
sition from aN2 to a (N11)2 vortex state. The secon
kind is associated to a transition between different ch
states, like in the case of an infinitely long film. As vortic
enter the finite film, they align themselves and form a line
chain, parallel to the longer side of the film. As the numb
of vortices increase inside the sample, the linear chain s
rates and undergoes a transition, splitting into two n
PRB 600163-1829/99/60~18!/13158~6!/$15.00
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chains. This process continues from two to three chains
so on. The critical fields associated with these transitio
correspond to that required to enter a new linear chain in
case of the infinitely long film.

In summary we show here several new properties of
finite film, such as in the formation of the equilibrium vorte
state. The source of these new effects lays in the strong
very important border effects that do not exist in case of
infinitely long film. For instance, a vortex state made of p
allel chains is substantially affected near the edges of
longer side of the film. In order to allow for any possib
configuration, we let the positions of the vortices entire
free and minimize the Gibbs free energy with respect to th
using a numerical procedure. To this end, we use the Mo
Carlo simulated annealing minimization method. Th
method allows us to search for the global minimum
the Gibbs free-energy~or at least very close to the globa
minimum! of the vortex system, which corresponds to t
most stable configuration. We also solve here for the ma
ing fields, which requires previous knowledge of the Gib
free-energy minimum for a fixed number of vortices. Noti
that this program is much simpler for an infinite film, b
cause there one can suppose some type of symmetry fo
vortex state, and minimization can be reduced to a small
of parameters, such as the lattice spacing and the numb
chains.5

Our analysis is restricted to the low-magnetic-field regim
and to the very strong type-II superconductors, where
vortex cores do not overlap and the distance over which
magnetic field penetrates into the sample is much larger t
the size of the cores. Within this regime, the mixed state m
be well described by the London theory accompanied
some regularization procedure to cure some divergencies
appear at short length scales. To the best knowledge of
present authors this study has not been done before.

II. MIXED STATE

The description of the mixed state of a type-II superco
ductor involves two fundamental lengths. One is the dista
13 158 ©1999 The American Physical Society
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over which the magnetic field penetrates into the sample,
penetration lengthl. The other one is the coherence leng
the size of the vortex core. Our treatment will be limited
the case of a strong type-II superconductor where
Ginzburg-Landau parameterk5l/j@1. Vortices interact
strongly since the distance between them can be m
smaller thanl. Their repulsive interaction forbids overlap
ping, namely the onset of vortices with multiple vorticity.
this context, the distribution of the local magnetic field m
be well described by the London equation. In rectangu
coordinates (x,y) the London equation for the local mag
netic fieldh5hz is given by

2l2¹2h1h5F0(
i

d~r2r i !, ~1!

whereF0 is the quantum flux andr i5(xi ,yi) is the position
of the i th vortex. We have assumed that the vortices
straight lines. Therefore, a three-dimensional~3D! problem
is reduced to a 2D one.

The geometry of the problem is illustrated in Fig. 1. Lea
andb be the sides of the superconducting film. We will sol
this equation subject to the following boundary condition

h~6a/2,y!5h~x,0!5h~x,b!5H,

S ]h

]xD
y50,b

5S ]h

]yD
y56a/2

50, ~2!

whereH is the magnitude of the external magnetic field
the interface vacuum superconductor and is pointing al
thez direction. The second condition imposes that the sup
currents are confined into the sample.

Other authors have used the image method to solve
London equation~see, for instance, Refs. 3 and 4!. We prefer
to solve this equation directly, by using the Green’s funct
method. The equation for this function associated with
London equation is given by

2l2¹2G1G5d~x2x8!d~y2y8!, ~3!

whereG must satisfy the following boundary conditions o
the film borders

FIG. 1. Cross section of the superconducting film. The exter
magnetic field is along thez axis and its value isH for uxu.a/2, and
y,0 andy.b.
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G~6a/2,y!5G~x,0!5G~x,b!50. ~4!

We can find an expression for the local magnetic field
terms of the Green’s function by multiplying Eq.~1! by
G(x,y,x8,y8) and Eq.~3! by h(x,y), subtract the results, an
then integrate what is left. One obtains

h~x8,y8!5f0(
i

G~xi ,yi ,x8,y8!

2HF12E
2a/2

a/2

dxE
0

b

dyG~x,y,x8,y8!G , ~5!

where we have made use of the boundary conditions~2! and
~4!.

Then, the solution for the local magnetic field is tran
ferred to the determination of the Green’s function. The a
proach used to find the solution for this function is sketch
in full detail in Ref. 11, except for the fact that there th
boundary conditions are taken at infinite. Here we only sh
the main steps of how to calculate this function. First of a
we expandG in a Fourier series

G~x,y,x8,y8!5
2

b (
m51

`

sinS mpy8

b D sinS mpy

b Dgm~x,x8!,

~6!

which satisfies the boundary conditions of Eq.~4! at y
50,b.

Inserting this equation into Eq.~3! we find for gm ,

2l2
]2gm

]x2
1am

2 gm5d~x2x8!, ~7!

where we have used the fact that the sequence

HA2

b
sinS mpy

b Dm51,2,3 . . .J
is a complete set of orthonormal functions, that is,

2

b (
m51

`

sinS mpy8

b D sinS mpy

b D5d~y2y8!. ~8!

Here

am5F11l2S mp

b D 2G1/2

. ~9!

The functiongm(x,x8) must satisfy the same bounda
conditions asG(x,y,x8,y8), that is,gm(6a/2,x8)50. In ad-
dition, the derivative ofgm(x,x8) is discontinuous atx5x8,
which results from thed function on the right-hand side o
Eq. ~7!.

Under these conditions, the solution forgm(x,x8) is given
by

gm~x,x8!5
1

2lam sinh~ama/l!
$cosh@am~ ux2x8u2a!/l#

2 cosh@am~x1x8!/l#%. ~10!

l
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This completes the solution for the Green’s function.
proceed, we still have to find the integral of the Gree
function that appears in Eq.~5!. This involves a tedious, bu
straightforward algebra. One has

E
2a/2

a/2

dxE
0

b

dyG~x,y,x8,y8!

5
4

b (
m51

`
~21!m

a2m11
2

b

~2m11!p

3sinS mpy8

b D F12
cosh~a2m11x8/l!

cosh~a2m11a/2l!G .
~11!

Notice that this vanishes atx856a/2 or y850,b, so that
the second term of Eq.~5! is justH as required by the bound
ary conditions of Eq.~2!.

Next we can simplify Eq.~11! by noticing that

4

b (
m51

`
~21!m

a2m11
2

b

~2m11!p
sinS mpy8

b D
5E

0

b

dyg~y,y8!512
cosh@~y82b/2!/l#

cosh~b/2l!
, ~12!

where

g~y,y8!5
2

b (
m51

`
1

am
2

sinS mpy8

b D sinS mpy

b D
5

1

2l sinh~b/l!
$cosh@~ uy2y8u2b!/l#

2 cosh@~y1y8!/l#%. ~13!

By combining Eqs.~5!, ~11!, and ~12! we finally obtain
for the local magnetic field

h~x,y!5F0(
i

G~x,y,xi ,yi !1HH cosh@~y2b/2!/l#

cosh~b/2l!

1
4

b (
m50

`
~21!m

a2m11
2

b

~2m11!p

3sinF ~2m11!py

b G cosh~a2m11x/l!

cosh~a2m11a/2l!J , ~14!

where we have made use of the following symmetry prope
of the Green’s function,G(x,y,x8,y8)5G(x8,y8,x,y). We
can see that the local magnetic field is composed essen
of three contributions. The last two terms, proportional toH
in Eq. ~14!, represent the penetration of the external m
netic field near the surface when the vortices are still abs
Once the vortices start penetrating the sample they will
trapped by the shielding currents associated with the last
terms of Eq.~14!. The Green’s function in Eq.~14! contains
two terms@see Eqs.~6! and ~10!#. The first one, which de-
pends onux2xi u, represents the local magnetic field of th
vortices located inside the sample, and the second one, w
s

y

lly

-
t.
e
o

ich

depends onx1xi , is the local magnetic field of the imag
vortices located outside the sample.

The free energy per unit volume of the superconduct
film is given by

F5
1

8pAE d2r H h21l2F S ]h

]xD 2

1S ]h

]yD 2G J
5

F0

8pA (
i

h~xi ,yi !1
Hl2

8pA H E
0

b

dyF S ]h

]xD
x5a/2

2S ]h

]xD
x52a/2

G1E
2a/2

a/2

dxF S ]h

]yD
y5b

2S ]h

]yD
y50

G J ,

~15!

whereA5ab.
Now notice that by integrating the kinetic term of th

London equation of Eq.~1! we obtain precisely the secon
term of ~15!. Then, this equation can be simplified to

F5
F0

8pA (
i

h~xi ,yi !1
HB

8p
2N

F0H

8pA
, ~16!

whereN is the number of vortices,B is the spatial average o
the local magnetic field. The induction is obtained by in
grating Eq.~14! over the cross section of the supercondu
ing film. One has

AB5NF02F0(
i

cosh@~yi2b/2!/l#

cosh~b/2l!

2
4F0

p (
i

(
m50

`
~21!m

a2m11
2

1

~2m11!

3sinF ~2m11!pyi

b G cosh~a2m11xi /l!

cosh~a2m11a/2l!

1HAH tanh~b/2l!

~b/2l!
2

8

p2 (
m50

`

3F 1

~2m11!a2m11
G2 tanh~a2m11a/2l!

~a2m11a/2l! J . ~17!

Upon substituting Eq.~17! into Eq. ~16! we are left with

F5
F0

2

8pA (
i , j

G~xi ,yi ,xj ,yj !1
H2

8p H tanh~b/2l!

~b/2l!

2
8

p2 (
m50

` F 1

~2m11!a2m11
G2 tanh~a2m11a/2l!

~a2m11a/2l! J .

~18!

In order to study the most stable configuration of the v
tex lattice, it is more convenient to take the Gibbs free e
ergy. The Gibbs free energy per unit volume is given byG
5F2BH/4p. From Eqs.~17! and ~18!, it follows that
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G5
F0

2

8pA (
i , j

G~xi ,yi ,xj ,yj !1
F0H

4pA (
i

cosh@~yi2b/2!/l#

cosh~b/2l!
1

F0H

pA

3(
i

(
m50

`

~21!ma2m11
2 1

~2m11!
sinF ~2m11!pyi

b G cosh~a2m11xi /l!

cosh~a2m11a/2l!

2
H2

8p H tanh~b/2l!

~b/2l!
2

8

p2 (
m50

` F 1

~2m11!a2m11
G2 tanh~a2m11a/2l!

~a2m11a/2l! J 2N
F0H

4pA
. ~19!

The last two terms are the energy of the Meissner state as if no vortices were present. The second and third con
are the potential barrier that pin the vortices inside the sample. The Green’s function in the first term gives rise
contributions. One is the repulsive interaction between the vortices and the other one is the attractive interaction bet
vortices and the images that are virtually placed outside the sample.

We shall work in the limit of thin film in which (pl/b)2@1. Within this limit, the sum inm can be evaluated exactly. W
proceed as in Ref. 4. One has,

G~xi ,yi ,xj ,yj !5
1

4pl2 H lnFcosh@puxi2xj u/b#2 cos@p~yi1yj !/b#

cosh@puxi2xj u/b#2 cos@p~yi2yj !/b#G2 lnFcosh@p~a2xi2xj !/b#2 cos@p~yi1yj !/b#

cosh@p~a2xi2xj !/b#2 cos@p~yi2yj !/b#G
2 lnFcosh@p~a1xi1xj !/b#2 cos@p~yi1yj !/b#

cosh@p~a1xi1xj !/b#2 cos@p~yi2yj !/b#G J . ~20!

The first term in Eq.~20! is the same as the one found in Ref. 4. The other two terms are due to the presence of the
border of the film. The London theory is not regular for vortex self-interaction. In fact, one can notice that the contributioi 5 j
to the Gibbs free energy~19! gives rise to a logarithmic divergence. We remediate this divergence by using a sharp cu
which uxi2xj u is replaced byj for i 5 j . In the limit (b/pj)@1 we obtain

G~xi ,yi !5
1

4pl2 H lnF ~pj/b!214 sin2~pyi /b!

~pj/b!2 G2 lnFcosh@p~a22xi !/b#2 cos~2pyi /b!

cosh@p~a22xi !/b#2 cos~pj/b! G
2 lnFcosh@p~a12xi !/b#2 cos~2pyi /b!

cosh@p~a12xi !/b#2 cos~pj/b! G J . ~21!

The sum overm in the third term on the right-hand side of Eq.~19! cannot be evaluated exactly in the limit (pl/b)2

@1. So it will be kept as it stands.
In the next section we use Eq.~19! combined with Eqs.~20! and~21! to investigate the vortex state in a finite film. This w

be carried out via minimization of the Gibbs free energy with respect to the vortex positions upon using the Monte
simulated annealing minimization method.

III. RESULTS AND DISCUSSION

The lower critical field, the magnitude of the external field sufficient to create a vortex inside the sample, may be o
by neglecting the quadratic term in Eq.~19! and equating the remaining terms to zero. We find

Hc1~a,b!5
F0

2l2H 1

2p
lnS 2b

pj D2 ln@$cosh~pa/b!11%/$cosh~pa/b!21%#

12@1/cosh~b/2l!#24 (
m50

`

@~21!m/~2m11!pa2m11
2 #@1/cosh~a2m11a/2l!#

J , ~22!
n

tr
e

du

r

e
ur
d

-

where we have assumed that a single vortex is at the ce
of the film. It can be easily seen that fora→` we obtain the
same result as in Ref. 5. A quick inspection of Eq.~22!
shows us that asa and/orb decreases,Hc1(a,b) increases. In
other words, size effects provoke a delay in the first pene
tion of flux, assuming the external field increasing with tim
These finite-size effects have been observed in supercon
ter

a-
.
ct-

ors of different geometry.12 The determination of the othe
critical fields will be discussed below.

Now we turn our discussion to the minimization of th
Gibbs free energy with respect to the vortex positions. O
investigation will be guided by the Monte Carlo simulate
annealing minimization method. We have done this fromN
51 up toN530. We start from an arbitrary initial configu
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FIG. 2. The double chains forN524,25,26,27, in the clockwise sense. The parameters used are quoted in the text. Notice that t
vortices make a ‘‘zig-zag’’ as in a triangular lattice. However, at the edges of the film, both chains end up at the same vortex.
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ration of the vortex positions at a certain ‘‘temperature.’’ B
adiabatically lowering this fictitious temperature, simulat
annealing will concentrate on the region where it is m
likely to succeed.

The parameters we use here arek5100, a57l, and b
50.75l. We find that, as the penetration of flux is initiate
the vortices will be symmetrically located with respect to t
center of the film in form of a linear chain aligned parallel
the x axis ~the longer side of the film!. As H is increased, at
a certain critical value of the external magnetic field, th
linear chain breaks into a double chain. At the interior of t
film, the vortices arrange in form of a ‘‘zig-zag.’’ Howeve
at the edges of the film both linear chains are distorted
joined together~see Fig. 2!. For the parameters quote
above, we have found that the change in the symmetry of
lattice occurs atN524. This critical value ofN is expected
to grow in case the value of the widtha of the film becomes
larger.

In Fig. 2 we also have shown some other configuratio
for higher values ofN. Notice that the vortex state develop
some unusual patterns in which the linear chains entang
the interior of the film. On each step of our numerical calc
lation, to search the minimumG we lowered the temperatur
as slowly as possible. However, we cannot assure that
minimum G found corresponds to the global optimum. S
those entangled chain configurations may be metastable
lutions.

The penetration of each additional vortex corresponds
well-defined value of external magnetic field, which we d
note byHsN ; Hs1[Hc1(a,b). We find these matching field
by assuming that at the transition fromN to N11 vortices,
the Gibbs free energy is continuous, that is,GN5GN11. Be-
cause the vortex positions depend on the external magn
field, this is a transcendental equation. Full details of how
solve this transcendental equation can be found in Ref.
We have determined the sequence of matching fields for
t

e

d

e

s
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-

he
,
o-

a
-

tic
o
2.
e

parameters quoted above. We then used these values to
culate the magnetization, which is defined byM5(B
2H)/4p.

The magnetization as a function ofH is depicted in Fig. 3.
At the transitions, the creation of another vortex will force
rearrangement in the chain. This in turn will provoke a d
continuity of the magnetization atH5HsN . We can see tha
the magnetization changes in small steps. So, the magne
tion can be used to measure the number of individual vor
penetrations in the sample. Each peak indicates that a
vortex entered the film.

Notice that24pM has a maximum forH>Hc1(a,b),

FIG. 3. The magnetization as a function of the external magn
field H. The parameters used are quoted in the text.
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signaling a transition from a single to a double chain state
contrast to superconducting systems with no edges that
show a monotonic behavior. In each phase betweenHsN and
Hs,N11, for each value ofH we should calculate the corre
sponding equilibrium configuration of the vortices and use
to evaluate the inductionB. For the parameters used in Fi
3, the differencesDH5Hs,N112HsN are not too large.

FIG. 4. The magnetization as a function of the external magn
field H. The parameters used are quoted in the text.
R

a

in
st

it

Then, the vortex positions should not vary significantly w
H within each phase. So, to calculateB, we held the vortex
positions fixed atH5HsN . As a consequence, the magne
zation varies linearly withH within each phase.

We can also observe that the intensities of the peak of
magnetization at the transition from a single to a dou
chain lattice, and atH5Hc1(a,b) have approximately the
same intensity. In Fig. 4 we repeated the same calcula
with a57l andb50.5l. ForN up to 30 vortices we did no
find any break in the linear chain~see Fig. 4!. However, the
magnetization curve shows a tendency to reach the sec
peak of lower magnitude than atH5Hc1. On the other hand
for an infinite film, as shown in Ref. 5, the intensity of th
magnetization at the phase transitions tends to grow aH
increases. We then suspect that this behavior of the ma
tization may be a result of size effects.

Finally, we would like to point out that the successiv
discontinuities of the magnetization discussed here sho
be experimentally observed. To see this, we note that
order of magnitude ofDH5Hs,N112HsN in Fig. 3 can be
as high asF0/2l2. For zero temperature,l is typically of
order 105 Å which givesDH;1025 T. On the other hand
the jump in the magnetization can achieve the magnitude
order 1027 T. This is well inside the resolution of a magne
tometer.
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