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Matching fields of a long superconducting film
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We obtain the vortex configurations, the matching fields, and the magnetization of a superconducting film
with a finite cross section. The applied magnetic field is normal to this cross section, and we use the London
theory to calculate many of its properties, such as the local magnetic field, the free energy, and the induction
for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film,
are recovered here, in the special limit of a very long cross sedt®@1.63-18209)00242-9

[. INTRODUCTION chains. This process continues from two to three chains and
so on. The critical fields associated with these transitions
The superconducting properties of an infinite type-Il film correspond to that required to enter a new linear chain in the
have been studied for more than three decades. As long ag&Se Of the infinitely long film. .
as 1964, it was shown by Abrikosbthat when an infinitely " Summary we show here several new properties of the
long film is placed in an external magnetic field, parallel tofinite film, such as in the formation of the equilibrium vortex

its surfaces, vortices penetrate collectively into the sample iftate: The source of these new effects lays in the strong and

the form of linear chains. He also calculated the lower criti-/€MY important border effects that do not exist in case of the

cal field H;(b) as a function of the film thickness and infinitely long film. For instance, a vortex state made of par-
shown that for smalb, it becomes increasingly more diffi- allel chains is substantially affected near the edges of the

cult for a linear chain of vortices to penetrate the film. After Iong_er S'd_e of the film. In oro_le_r to allow for any poss_lble
the work of Abrikosov, many theoreticaP and experimental conf|gurat|(_)r!, we let thg positions of the. vortices entirely
work~1%have been carried out to study the mixed state of gree and minimize the Gibbs free energy with respect to them
type-ll superconducting film. As the external magnetic fieldgsmlg a r.1um|e:|cgl procedlgre. TO. th|§ er;_d, we ustﬁ tge '\_f_ﬁ.me
exceeds the value dfi;;(b), the linear chains of vortices arlo - simulated annealing minimization - metnod. IS

start to penetrate into the sample, one at the time. This remethod allows us to search for the global minimum of

flects into the magnetization, which exhibits a succession g}_e Gibbs free-energjor at least very close to the global

peaks related to the penetration of each linear chain. Thgunlmum) of the vortex system, which corresponds to the

transition between two vortex states, differing by a linear™OSt stable configuration. We also solve here for the match-

chain, occurs at a well-defined critical magnetic field, known!"9 fields, Whi.Ch. requires prgvious knowledge C.)f the Gipbs
as thematching field free-energy minimum for a fixed number of vortices. Notice

In this paper we determine the matching fields and théhat this program is much simpler for an infinite film, be-
magnetization of a film of finite cross section, namely, with gtause there one can suppose some type of symmetry for the
finite width a and also with a finite thickneds The applied vortex state, and minimization can be reduced to a small set

field is always normal to this cross section, so that the thiroOf parameters, such as the lattice spacing and the number of

D

dimension is also taken very long here. Fovery large we chains. . . - .
recover the results obtained by the previous authors in the Our analysis is restricted to the low-magnetic-field regime
limit of an infinitely long film. Interestingly there are two anc: 1o the vzry sttrong }ype-lIds;Jhpe:jqopductors, Whﬁ_ri ttf;]e
kinds of matching fields in this geometry, because vorticed OTt€X COres do not overiap and the distance over wnich the

penetrate individually here. The first kind corresponds to th hagr)etlc ]I',S]ld penetr?/t/(?;]_mttoh_the sgmpk:hls mgck:jlatrgter than
critical field for the penetration of an individual vortex. Thus € Size ot e cores. Within this regime, the mixed state may

there are many of this critical field, each delimiting the tran-be well desc_nbe_d by the London theory ac_companl_ed by
sition from aN— to a (N+1)— vortex state. The second some regularization procedure to cure some divergencies that

kind is associated to a transition between different Chair?ppeartat ?rt]wort It(:]r_lgtr: s(,jcalr(]as. Tottge bejt knot;/vlfedge of the
states, like in the case of an infinitely long film. As vortices present authors this study has not been done betore.

enter the finite film, they align themselves and form a linear
chain, parallel to the longer side of the film. As the number
of vortices increase inside the sample, the linear chain satu- The description of the mixed state of a type-Il supercon-
rates and undergoes a transition, splitting into two newductor involves two fundamental lengths. One is the distance

Il. MIXED STATE
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z G(*xal2y)=G(x,00=G(x,b)=0. (4)
¥
/ We can find an expression for the local magnetic field in
terms of the Green’s function by multiplying Eql) by
b G(x,y,x’,y") and Eq.(3) by h(x,y), subtract the results, and
then integrate what is left. One obtains

h(x',y'>=¢02 G(x,yi.x",y")

—H

al2 b
1—j dxf dyG(x,y,X’,y’)} (5
—al2 0

where we have made use of the boundary conditi@hand
(4).

FIG. 1. Cross section of the superconducting film. The external Then, the solution for the local magnetic field is trans-
magnetic field is along theaxis and its value i8l for |x|>a/2, and  ferred to the determination of the Green’s function. The ap-
y<0 andy>b. proach used to find the solution for this function is sketched

in full detail in Ref. 11, except for the fact that there the
over which the magnetic field penetrates into the sample, theoundary conditions are taken at infinite. Here we only show
penetration lengtin. The other one is the coherence length,the main steps of how to calculate this function. First of all,
the size of the vortex core. Our treatment will be limited towe expandG in a Fourier series
the case of a strong type-ll superconductor where the
Ginzburg-Landau parametet=A/&>1. Vortices interact 2 S [mm [mmy
strongly since the distance between them can be much G(X,y,x".y")= b Z SIH(T) SIH(T gm(X,X"),
smaller than\. Their repulsive interaction forbids overlap- m=t (6)
ping, namely the onset of vortices with multiple vorticity. In
this context, the distribution of the local magnetic field maywhich satisfies the boundary conditions of Ed) at y
be well described by the London equation. In rectangular=0,b.
coordinates X,y) the London equation for the local mag-  Inserting this equation into E43) we find forg,,,
netic fieldh=hz is given by

_)\zazgm

+ a2 gm=8(x—x"), 7
—)\2V2h+h=<D02 S(r—ry), (1) P and ( ) (7)

) ] - where we have used the fact that the sequence
where® is the quantum flux and, = (x; ,y;) is the position

of the ith vortex. We have assumed that the vortices are 2 mary
straight lines. Therefore, a three-dimensiof&D) problem Bsin<T)m:1,2,3 .
is reduced to a 2D one.

The geometry of the problem is illustrated in Fig. 1. Bet js a complete set of orthonormal functions, that is,
andb be the sides of the superconducting film. We will solve

this equation subject to the following boundary conditions: E i o mry’ o mmy sy ©
R 0= hix.b) = b =1 b b |V
h(*=a/2)y)=h(x,00=h(x,b)=H,
(ah) ~[ah L o Here
X _op Y yian i mar 21112 o
whereH is the magnitude of the external magnetic field at " b

the interface vacuum superconductor and is pointing along ) , )
the z direction. The second condition imposes that the super- | 1€ functiongn,(x,x") must satisfy the same boundary
currents are confined into the sample. conditions ag5(x,y,x",y’), that is,gm(=a/2x’)=0. In ad-
Other authors have used the image method to solve th@ition, the derivative ofy,(x,x") is discontinuous at=x",
London equatiorisee, for instance, Refs. 3 angl We prefer which results from the’ function on the right-hand side of
to solve this equation directly, by using the Green’s functionEd: (7). - ] e
method. The equation for this function associated with the Under these conditions, the solution fgf(x,x") is given
London equation is given by by

—N2V2G+G=68(x—x")8(y—Yy'), ©)

gm(X1X,)= ){Cosrﬁam(|x_x,|_a)/)\]

. . . 2\ ay, Sinh( a,al\
where G must satisfy the following boundary conditions on

the film borders — cosh apy(x+x")IN]}. (10



13160 EDSON SARDELLA, M. M. DORIA, AND P. R. S. NETTO PRB 60

This completes the solution for the Green’s function. Todepends orx+X;, is the local magnetic field of the image
proceed, we still have to find the integral of the Green’svortices located outside the sample.
function that appears in E@5). This involves a tedious, but The free energy per unit volume of the superconducting

straightforward algebra. One has film is given by
2
J' dxf dyG(x,y,x",y") _ f 2| pan o [N oh
_ap ]—“— d“r{h=+\ X + 7y
4 S (=)™ b @, HAZ( (b [[dh
b Q2 2m+1)m = gA 2 N0 87TA[ jo dy (&)Xa&
s mwy’)[ cosh a1 /\) (ah) +Ja/z ] (ah) (ah)
— . _(an o [ 22 (s ,
b cosi aymi1@/2\) X _ap ay y=b ay y=0

(17 (15)

Notice that this vanishes at =*+a/2 ory’=0,, so that
the second term of E@5) is justH as required by the bound-
ary conditions of Eq(2).

Next we can simplify Eq(11) by noticing that

whereA=ab.

Now notice that by integrating the kinetic term of the
London equation of Eq(1) we obtain precisely the second
term of (15). Then, this equation can be simplified to

4 i —1)m b (mwy’)
= sin ) HB DoH
b = (2m+1)7 b _ 0 )4 —— N
L @G F=gap 2 Nxiy)+g--Ng . (19
b , coshi(y’—b/2)/\]
= J'O dygly.y')=1- coshbi2n) (12)  \whereN is the number of vortices3 is the spatial average of
the local magnetic field. The induction is obtained by inte-
where grating Eq.(14) over the cross section of the superconduct-
. ing film. One has
2 > 1 (mwy’) _ (mwy)
9yYI=p & 2SN T ) s costi(y;— b/2)/\]

m

AB=NCI)0_(DOZ coshb/2\)

1

— costi(y+y")/\];. (13) ™ T @0 a3, (2m+1)
By combining Eqgs(5), (11), and (12) we finally obtain < sin (2m+1)my;| coslazm 1% /N)
for the local magnetic field b cosi aypm1@/2N)
cosh (y—b/2)/\] tanh(b/2\) 8 ”
hxy)=®o2s GOy 'yi”H[ cosHbi2\) I b0 i

Z (=M 1 2 tan al2n
+f S (=1 b X{ — r(azm+1/2)\ )] (17

b =0 a3, ,, 2m+1)m (2m+1)aomer]  (azmi18/2))
si (2m+1)my| coslazm+1X/N) (14 Upon substituting Eq(17) into Eq. (16) we are left with

b cosiaymy1@/2N) |’

tanh(b/2\)

where we have made use of the following symmetry property f_ ° E G(X;,Yi X, Yj)+ e [ TN
A

of the Green’s functionG(x,y,x",y')=G(x’,y’,x,y). We

can see that the local magnetic field is composed essentially "

of three contributions. The last two terms, proportionaHto B E > [ 1

in Eqg. (14), represent the penetration of the external mag- a2 mzo | (2m+1) aomis
netic field near the surface when the vortices are still absent.

2 tanH aymy 1a/2\)
(aom+18/2N)

Once the vortices start penetrating the sample they will be (18
trapped by the shielding currents associated with the last two
terms of Eq.(14). The Green'’s function in Eq14) contains In order to study the most stable configuration of the vor-

two terms[see Eqgs(6) and (10)]. The first one, which de- tex lattice, it is more convenient to take the Gibbs free en-
pends onx—Xx;|, represents the local magnetic field of the ergy. The Gibbs free energy per unit volume is givendy
vortices located inside the sample, and the second one, which F—BH/4+. From Eqs.(17) and(18), it follows that
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3 dH

3 cosh(y;—b/2)/IN]  DH
g—m;j G(Xi,Yi Xj,Yj)+ >

A7A 5 coshb/2\) A

cosiazm+1X/N)
cosiaopys18@/2N)

- s 1 [(2m+1)my;
in mZ:O(—l) a2m+1(2m+1)sm{ -

©

1
(2m+1)amis

2 tanH apmy 1a/2\)
(@om+18/2N)

N Do 19
47A° (19

8

(b/2x) 72 @0

Hz[tank(b/2)\) 8

The last two terms are the energy of the Meissner state as if no vortices were present. The second and third contributions
are the potential barrier that pin the vortices inside the sample. The Green’s function in the first term gives rise to two
contributions. One is the repulsive interaction between the vortices and the other one is the attractive interaction between the
vortices and the images that are virtually placed outside the sample.

We shall work in the limit of thin film in which ¢\/b)?> 1. Within this limit, the sum irm can be evaluated exactly. We
proceed as in Ref. 4. One has,

cosh m(a—x;—X;)/b]— cog w(y; +y;)/b]
cosh m(a—x;—x;)/b]— cog w(y;—y;)/b]

cosh 7| x; — x;|/b]— cog 7 (y; +y;)/b]
cosh m[x;—x;|/b]— cog m(y;—y;)/b]|

1
G(Xi 1yi 1Xj 1yj): 477)\2(“1

—In

coshi w(a+x;+x;)/b]— cog 7(y; +yj)/b]“

cosh m(a+x;+x;)/b]— co§ w(y;—y;)/b] (20

The first term in Eq(20) is the same as the one found in Ref. 4. The other two terms are due to the presence of the lateral
border of the film. The London theory is not regular for vortex self-interaction. In fact, one can notice that the contribytion
to the Gibbs free energil9) gives rise to a logarithmic divergence. We remediate this divergence by using a sharp cutoff in
which |x;—x;]| is replaced by¢ for i=j. In the limit (b/7£)>1 we obtain

cosh m(a—2x;)/b]— cog2wy;/b)
cosh m(a—2x;)/b]— cog 7é&/b)

(m&lD)2+ 4 sirf(my,; /b)l -
(mélb)2

1
G(xj,yi)= Amn2 { In

(21)

cosh m(a+2x;)/b]— cog2xy;/b)
coshm(a+2x;)/b]— cogwé&lb) ||

The sum ovem in the third term on the right-hand side of E@.9) cannot be evaluated exactly in the limitrX/b)?2
>1. So it will be kept as it stands.

In the next section we use E{.9) combined with Eqs(20) and(21) to investigate the vortex state in a finite film. This will
be carried out via minimization of the Gibbs free energy with respect to the vortex positions upon using the Monte Carlo
simulated annealing minimization method.

Ill. RESULTS AND DISCUSSION

The lower critical field, the magnitude of the external field sufficient to create a vortex inside the sample, may be obtained
by neglecting the quadratic term in Ed.9) and equating the remaining terms to zero. We find

1 2b
o, ﬂln(w_g — In[{cosK 7a/b) + 1}/{cosH wa/b)—1}]
Hei(a,b)= n? = , (22)
1—[1/costib/2\)]—4 20 [(—1)™(2m+ 1)wa%m1][1/cosma2m+1a/2)\)]

where we have assumed that a single vortex is at the centers of different geometry? The determination of the other
of the film. It can be easily seen that far-o we obtain the critical fields will be discussed below.

same result as in Ref. 5. A quick inspection of Eg2) Now we turn our discussion to the minimization of the
shows us that as and/orb decreased.;(a,b) increases. In  Gibbs free energy with respect to the vortex positions. Our
other words, size effects provoke a delay in the first penetrainvestigation will be guided by the Monte Carlo simulated
tion of flux, assuming the external field increasing with time.annealing minimization method. We have done this fidm
These finite-size effects have been observed in superconduct-1 up toN=230. We start from an arbitrary initial configu-
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FIG. 2. The double chains fad=24,25,26,27, in the clockwise sense. The parameters used are quoted in the text. Notice that the inner
vortices make a “zig-zag” as in a triangular lattice. However, at the edges of the film, both chains end up at the same vortex.

ration of the vortex positions at a certain “temperature.” By parameters quoted above. We then used these values to cal-
adiabatically lowering this fictitious temperature, simulatedculate the magnetization, which is defined Iy =(B
annealing will concentrate on the region where it is most—H)/4.
likely to succeed. The magnetization as a function ldfis depicted in Fig. 3.

The parameters we use here are 100, a=7\, andb At the transitions, the creation of another vortex will force a

=0.75\.. We find that, as the penetration of flux is initiated, rearrangement in the chain. This in turn will provoke a dis-

the vortices will be symmetrically located with respect to thecontinuity of the magnetization &t =Hy. We can see that
center of the film in form of a linear chain aligned parallel to th€ magnetization changes in small steps. So, the magnetiza-
the x axis (the longer side of the filijn As H is increased, at tion can be used to measure the number of individual vortex
a certain critical value of the external magnetic field, thisP€netrations in the sample. Each peak indicates that a new

linear chain breaks into a double chain. At the interior of theVOrtex entered the film. _

film, the vortices arrange in form of a “zig-zag.” However, ~ Notice that—47M has a maximum foH=H,(a,b),
at the edges of the film both linear chains are distorted and
joined together(see Fig. 2. For the parameters quoted
above, we have found that the change in the symmetry of the L
lattice occurs alN=24. This critical value ol is expected

to grow in case the value of the widéhof the film becomes
larger.

In Fig. 2 we also have shown some other configurations
for higher values of. Notice that the vortex state develops __
some unusual patterns in which the linear chains entangle i
the interior of the film. On each step of our numerical calcu- QO s
lation, to search the minimui@ we lowered the temperature g
as slowly as possible. However, we cannot assure that th&
minimum G found corresponds to the global optimum. So, vtli
those entangled chain configurations may be metastable sc
lutions.

The penetration of each additional vortex corresponds to €
well-defined value of external magnetic field, which we de- -
note byHgy; Hsi=Hc1(a,b). We find these matching fields
by assuming that at the transition frashto N+ 1 vortices,
the Gibbs free energy is continuous, thatgg=Gy . 1. Be-
cause the vortex positions depend on the external magneti
field, this is a transcendental equation. Full details of how to
solve this transcendental equation can be found in Ref. 12. FIG. 3. The magnetization as a function of the external magnetic
We have determined the sequence of matching fields for thiteld H. The parameters used are quoted in the text.
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T " T ' T ' Then, the vortex positions should not vary significantly with
H within each phase. So, to calculdewe held the vortex

04T positions fixed aH=Hgy. As a consequence, the magneti-
zation varies linearly witH within each phase.
I We can also observe that the intensities of the peak of the
0a L magnetization at the transition from a single to a double

chain lattice, and aH=H.;(a,b) have approximately the

g\l: | same intensity. In Fig. 4 we repeated the same calculation
Qo with a=7\ andb=0.5\. ForN up to 30 vortices we did not
9 o2t find any break in the linear chaisee Fig. 4 However, the
s magnetization curve shows a tendency to reach the second
& L peak of lower magnitude than Et=H_;. On the other hand,

for an infinite film, as shown in Ref. 5, the intensity of the
0.1} magnetization at the phase transitions tends to grov as
increases. We then suspect that this behavior of the magne-
L tization may be a result of size effects.

Finally, we would like to point out that the successive

0.0 . L . L . L . discontinuities of the magnetization discussed here should
0 10 20 30 40 pe experimentally observed. To see this, we note that the
H/(CDO/27»2) order of magnitude oAH=Hg . ;—Hgy in Fig. 3 can be

as high asby/2\2. For zero temperature, is typically of
i ; -5
FIG. 4. The magnetization as a function of the external magneti€der 16 _A which givesAH~10"> T. On the other hand,
field H. The parameters used are quoted in the text. the jump in the magnetization can achieve the magnitude of

order 107 T. This is well inside the resolution of a magne-
signaling a transition from a single to a double chain state, inometer.

contrast to superconducting systems with no edges that just

show a monotonic behavior. In each phase betwégpand ACKNOWLEDGMENTS
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