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Correlation between weak ferromagnetism and crystal symmetry in GdCuO,-type cuprates
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Correlation between copper weak ferromagneti$ifF) and crystal structural symmetry of the
Gd, 4M,CuQ, (M=Bi or Th; 0<x=<0.5 systems is reported. Detailed powder x-ray Rietveld refinement
analysis on Gg ,M,CuQ, shows a systematic variation of oxygen distortion angl€u-O-Cuy with ionic
size where the lattice layer mismatch lowers the crystal symmetry to an orthorh@tigibhase with pseudo-
tetragonal lattice parameter~b,~5.508 A. Weak ferromagnetic or canted antiferromagnetic order is the
direct result of this oxygen distortion which causes-&ransfer Cu(8l,2_2)-0(2p,,)-Cu(3d,2_,2) superex-
change interaction in the Cy@®lane with a non-180° coupling angle. The small WF saturation momgof
~2-6X10 2ug/CU¥" can be deduced from the copper momeriCl/?") canting angled=(7— a)/2
~2-7°. Magnetic data and internal exchange fjg estimation indicate that Gli WF saturation moment
my(Cl?") decreases with larger Bi doping and increases with smallerfodoping.
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. INTRODUCTION large plane oxygen mean-square displacerhggtof 2.5 A?
at room temperature indicates that stable oxygen position
For the highT, cuprate systems, superconductivity al- may not be in the ideal0,3,0) sites. Single-crystal neutron
ways occurs near the metal-insulator transition boundary dudiffraction of °%Gd,CuQ, based onT’-phase structure
to strong electron correlation. In the insulator side, coppeshows that Cu moments order beldw(Cu) to a basically

magnetic momentu(CUW?*) (d°, s=3) forms a three- AF structure with the propagation vector (%,%,0) and the
dimensional(3D) long-range magnetic ordering through the cu moments are oriented parallel to tHel0] direction of
quasi-2D o-transfer Cu(8ly2_,2)-O(2p,)-Cu(3d,2_y2) in-  the tetragonal basal plafi€. The inconsistency between
direct superexchange interaction in the Gul@yers. It is weak ferromagnetism and x-ray/neutron-diffraction data in-
observed that Cu spins in most cuprate insulators form adicates that a distorte@’ structure is necessary to account
antiparallel antiferromagneti®AF) arrangement below ¢  for the WF/CAF order. Recently, a neutron structural study
temperaturél \(Cu) with zero saturation momemhg(CU?™). at room temperature reports a long-range superstructure of
However, a peculiar Cu weak ferromagneigF) or canted the T’ phase in GgCuQ,. The oxygen squares surrounding
antiferromagneti¢CAF) order with nonzeran, is observed the Cu sites are found to rotate around ¢thexis by a small
below Ty(Cu)~260-285K for the tetragonall’-phase angle(~5°) which leads to a reduced orthorhombic symme-
Gd,CuO, 15 and a true AF order is recovered only at a fry (Space group Aca?r?z This structural deformation from
much lower temperature df.(Cu)~20 K through spin reori- T’ phase taO’ phase is bellgved to be crucial for the occur-
entation. At temperature around 7—8 K, a possible 3D td€nce of weak ferromagnetism.

guasi-2D crossover for Cu AF ordering is reported from neu- In orqler to study the correlation between Cu weak ferr_o-
tron study before the Gd sublattice AF ordering of magnetism and crystal symmetry, we report here a detailed

magnetic and powder x-ray Rietveld structural studies on
Tn(Gd)~6.5-7 K1 At even lower temperature, a heat ca- o
pacity broad shoulder followed with a peak nea K is Ga,CuQ, and related systems (Qd),Cu0, (M =Bi or Tb).

observed indicating complex magnetic phase diagram at
low temperature due to Gd-Cu interaction.

Extensive magnetic and structural studies on,@GuD,
(Refs. 1-1% and related compounds (Gd),CuQ, (M The G4 _,Bi,CuQy, 5 (0=x=<0.1) and
=R®" rare earths, C¥, SP*, or Bi**),**""1%and meta-  Gd,_,Th,CuQ,. s (0=x=<0.5) samples with nominal com-
stable systemsR,CuQ, (R=Y,Th-Tm) and related position were synthesized by solid-state reaction using high-
compound¥ 2! are reported. Since the occurrence of weakpurity Gd,0; (99.99%, Bi,O; (99.999%, Th,O, (99.9%
ferromagnetism requires an additional antisymmetricand CuO(99.9% powders. Samples were thoroughly mixed
Dzyaloshinsky-Moriya-type exchange interaction term inand carefully calcined between 900—950 °C in air for 1 day
otherwise symmetric Cu-O-Cu superexchange interaction, ivith several intermediate regrindings. The calcined powders
is speculated that a slight oxygen distortion in the Gl&9er  were then pressed into pellets and sintered in air at 1000 °C
is necessary for Cu WF/CAF order in the &diO,-type  for 2 days and air quenched to room temperature. Oxygen
cuprates:®* Although single-crystal x-ray diffraction on content parametef was determined from the standard iodo-
Gd,CuQ, gives a good fitting using the tetragonEl-phase  metric titration method to bec0.003.
space group 14tmmwith Cu(0,0,0 and oxygen @1)(0,3,0) Powder x-ray Rietveld analysis data were obtained with a
in CuQ, layer formed a perfect square-planar arrangerhent,Rigaku Rotaflex 18-kW rotating anode diffractometer using

II. EXPERIMENTS
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TABLE |. Structural parameters of orthorhoml@’ phase G¢CuQ;.

Formula
Temperature
Space group
Cell parameters
Radiation\ (A)
Diffractometer

GdCuQ,
300 K
Acam(Cmca No. 64 Z=4
a=5.5082(5) A,b=5.5084(5) A,c=11.8864(10) A,V=360.65(3) &
Cu-K,,; (1.54060, Cu-K,, (1.54443
Rigaku Rotaflex 18-kW rotating anode

Measurement range 62 20-100°

Step size, 2 0.02°
Atom Position X y z Occupancy Biso (A?)
Gd &d 0 0 0.3495 1 0.34
Cu 4a 0 0 0 1 0.54
0(1) 8f 0.2719 0.2240 0 1 0.77
0(2) 8e 1/4 0.2513 1/4 1 0.71

R factors: R,=6.99%, R,,="7.07%, Rg=7.00% (209 reflections

Selected interatomic distancé8) and angle(degreg

Cu-Cu 3.895 Cu-Q)-Cu 169.1°
Cu-O(1) 1.941 1.972

Cu-Q2) 3.550 3.556

Gd-Gd 3.578

Gd-Q(1) 2.510 2.639

Gd-02) 2.274 2.283

graphite monochromatized g, radiation with a scanning glected. Based on the previous reported orthorhombic space
step of 0.02°(10-second counting time per sjejp the 29 groupAcam(Cmca from neutron study with fully occupied
range of 20—100°. ARIQAS refinement prograff was used atomic positions? the scale factor, lattice parameters, atom
with inorganic crystal structure databa$€SD) and diffrac-  coordinates, and isotropic temperature factors were refined.
tion databas¢ICDD). The magnetization and magnetic sus-For the undoped GE€uQ, sample, the final step-patteR
ceptibility measurements were carried out with a QuantunfactorR, of 6.99% and weighted-patteR,,, of 7.07% were
Desigh MPMS or gu-metal shielded MPMSsuperconduct-  obtained with goodness-of-fit parameteof 2.82 for 4001
ing quantum interference devicéSQUID) magnetometer Steps. The Bragg reflectioR factor Rg was 7.00% for 209
down © 2 K in applied magnetic fields from 1 G-5 T. reflections. The structural parameters for the orthorhombic
O’-phase G¢CuQ, are listed in Table | and the refinement

IIl. RESULTS AND DISCUSSION patterns are shown in Fig. 1. Good fitting between the calcu-

In the R,CuQ, insulating system R=Pr, Nd, Sm, Eu, 8

Gd), GaCuOQ, compound with the smallest &d ionic
radiug® of 0.938 A is the only member which shows weak
ferromagnetism. If the oxygen distortion in the Cu@yer is
crucial for the formation of this peculiar WF/CAF order,
then the cause of oxygen distortion must be closely related
with the lattice layer mismatch between smalléd-0O), lay-
ers and Cu@layer. Since all otheR,CuQ, compounds with
larger rare eartlR®" ions show no sign of WF order, a
doping in the Gd sites with larger non-rare-eartti'Bions st
(0.96 A) should also reduce the degree of oxygen distortion o0 1
in the CuQ layer. -8 A L —
In order to study the correlation between weak ferromag- 20 40 60 80 100
netsim and oxygen distortion, powder x-ray Rietveld struc- 20 (degres)
tural refinement analysis was performed on thé&"Rioped
compounds Gd ,Bi,CuQ,, ;5 (x=0, 0.05, and 0.07at room FIG. 1. Experimentaidotted, calculatedcurve and difference
temperature. Very small oxygen content paramefeof  of the powder x-ray-diffraction patterns of orthorhomi@¢ phase
<0.003 determined from iodometric titration can be ne-Gd,CuQ, at room temperature.

Gd,CuO,
Orthorhombic O’-phase

'S
o

experimental
——— calculated
difference

Intensity (arb. units)
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TABLE Il. Structural parameters of undistorted tetragohalphase model for GELuO,.

Formula GdCuQ,

Space group I4/mmm(No. 139 Z=2

Cell parameters a=3.8953(3) A, ¢=11.8864(10) A
Atom Position X y z Occupancy Biso (A2?)
Gd de 0 0 0.3495 1 0.34
Cu 2a 0 0 0 1 0.54
0o(1) 4c 0 1/2 0 1 1.70
0(2) 4d 0 1/2 1/4 1 0.71

R factors: R,=8.13%,R,,=7.09%, Rg="7.60% (84 reflections
Selected interatomic distancés) and angledegre¢

Cu-Cu 3.895 Cu-@1)-Cu 180°
Cu-0(1) 1.948

lated and experimental patterns shows the success of thlweeak ferromagnetism. Similar results were obtained for the
orthorhombic model. Note that almost identical orthorhom-Bi-doped compounds.

bic lattice parametera,=5.5082 A~b,=5.5084 A indicate Figure 2 shows the schematic representation of ortho-
that this high-temperatur®’ phase (HD’) is highly = rhombicO’ phase of (GdW),CuQ, cuprates i =Bi, Tb).
pseudotetragonal. However, using the original tetragonalheO’ phase is very similar to the body-centered-tetragonal
T’-phase model with space groug/mmmand lattice pa- T’ phase except for slight oxygen distortion in the GuO
rametera,=3.8953 A~a,/,2, a very large isotropic tem- plane with no apical oxygen. The oxygen distortion is be-
perature factoB;, or mean-square displacement of 1.7 A lieved to be caused by the lattice layer mismatch between the
for plane oxygen @) in the ideal(0,3,0) sites is deduced smaller[(Gd,M)-0O], layers and Cu@plane.

(see Table Il, with largeR,=8.13%, R,,=7.09%, and The proposed correlation between weak ferromagnetic/
Rg=7.60%), indicates that oxygens in the Cy@lane are canted antiferromagneti€WF/CAF) order and structural
not likely to be located in this undistorted positions at roomsymmetry in the Cu@plane for temperature range,(Cu)
temperature. On the other hand, using the slightly distortee< T<Ty(Cu)<300K is shown in Fig. 3:'>The CuQ plane
0(1)(0.272,0.224,p sites of the orthorhombic space group of the HTO’ phase is no longer a perfect square plane. The
Acam B, reduces dramatically to 0.77?Ashows that even rotation/displacement of the (©® 8(f)(x,y,0) squares
with pseudotetragonal structure, an oxygen distortion fromaround the Cu sites leads to two unequal GdyCbond
the ideal tetragonal sites is necessary to obtain better strutengths ofd;=1.941 A andd,=1.972 A for GgCuQ, and a
tural refinement. This formation of high-temperatud Cu-Q(1)-Cu bond anglex of 169.1° instead of 180°. Since
phase is believed to be crucial for the occurrence of coppethe Cu-3l,2_,2 orbital is anisotropic, in order to achieve
maximum wave-function overlap with nonorthogonal AF
coupling between Cug2_,2 and O-2, orbitals, the Cu
orbital and thus its magnetic moment{CW?*) must cant a
small angled=(7— «a)/2 of 5.4° away from the orthorhom-
bic [100]/[010] direction or the pseudotetragorall 0] direc-

O(1) 8(f)(x.y.0)
o Q
R d__coS d, \ Cu 4(a)(0,0,0)
o. o '
8 bo g a° .

X
Orthorhombic O'-phase FIG. 3. The proposed CGii weak ferromagnetic/canted antifer-
FIG. 2. Crystal structure of orthorhombidO’ phase romagnetic(WF/CAF) structure in the Cu@plane atT4(Cu)<T
(Gd,M),CuQ, cuprates. <T\(Cu) for the orthorhombic GgLuO,-type cuprates.
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FIG. 4. Temperature dependence of magnetized magnetic mo- FIG. 6. Estimated WF internal exchange fiég(T) with esti-
ment per formula unim(T) with estimated magnetic canting angle Mated magnetic canting angieof the Gg_,Bi,CuQ, system(x
6 for larger B?*-doped Gd_,Bi,Cu0, (x=0, 0.05, 0.07, and 0)1 =0, 0.05, and 0.07from high-field B,>B;,) magnetic data.
polycrystalline bulk samples in a low applied fidij of 1 G.

doping can be clearly seen. The low field of 1 G is used in

tion observed from preliminary low-temperature neutronorder to minimize the interference from large Gdnoment
data® This creates an additional antisymmetric u(Gd®") of 7ug. With room-temperature paramagnetic
Dzyaloshinsky-Moriya-type exchange interaction term andmagnetizatiorm (300 K) of only ~2x 10 %ug per formula
the effective interaction between Cu spins in the @plane unit in 1 G large magnetized moment of-1-2
is still the 2D o-transfer type but with an angle X10 3ug/f.u. belowTy(Cu) is mostly from the magnetized
a(Cu-O(1)-Cu)#180°. Below 3D ordering temperature WF domain with nonzero copper saturation moment
Tn(Cu) of 282 K, the canted antiferromagnefi€AF) align-  my(CW?") in each domainT(Cu) decreases from 282 K for
ment will create a net WF saturation momemt(Cuw?")  x=0 to 270 K forx=0.05, 258 K forx=0.07, and 256 K for
=u(CUw?")-siné. If the usual neutron-derived copper mo- x=0.1. The sharp decrease of magnetized moment below
ment of u(Cl?")~0.3—0.545 is used?* then the saturation T (Cu) around 22—-24 Kri 1 G indicates a Cu moment spin
momentm; of ~3-5x 10" ?ug/CU?" is derived using room  reorientation to the true AF ground state with zero saturation
temperature canting angteof 5.45°. momentm,. The Gd&* moments eventually order antiferro-

If the WF saturation moment is closely related to the magnetically atTy(Gd) of 7 K for x=0 and 6.4 K forx
Cu-O(1)-Cu bonding angley, a systematic variation of WF =0.11*
order can then be deduced for the Bi-doped system through The copper WF/CAF saturation moment(Cw*") is dif-
the Rietveld refinement studies. The temperature dependentieult to be determined directly from high-field magnetization
of low-field magnetization with estimated magnetic momentmeasurements even with a well oriented single crystal due to
canting angled for the Bi-doped Ggl_,Bi,CuQ, (x=0, 0.05, the interference of large G momentu(Gd®") and the na-
0.07, and 0.1 (Ref. 14 polycrystalline bulk samples with ture of copper weak ferromagnetism, where the WF satura-
solubility limit of x<<0.1 is shown in Fig. 4. A monotonical tion momentms is always smaller than the copper moment
decrease of magnetized magnetic moment per formula unjk(Cu?*) of ~0.3—0.545 .2 However, one can estimate the
m(T) and canting angl@ with progressive larger Bi ion  WF internal exchange fielB;,, created by the saturation mo-

mentms. For this purpose, inverse molar magnetic suscep-

20 T T T

Gd, ¢Bi, ,sCUO,

7 T T T T T T T

—-
(3]

Gd,, Tb,CuO, ]

B,=16G

a
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& x=0(0 =55

50
T.{Cu)

100

Magnetic moment m (10° p / f.u.)
w

0
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FIG. 5. Inverse molar magnetic susceptibility,,}(T) for T (K)

Gd, gBigo=CuUQ, in various applied fields of 1 G, 100 G, 1 kG, 2 FIG. 7. Temperature dependence of magnetized magnetic mo-

kG, 1 T, and 5 T. The solid line is a Curie-Weiss fit with negative ment m(T) with estimated magnetic canting anglefor smaller

interceptd, . Tb**-doped Gd_, Th,CuQ, system(x=0, 0.1, and 0.5in 1 G.
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TABLE Ill. Magnetic and structural data of Bi-doped &4Bi,CuQ, cupates.Ty(Cu):
Cu spin-reorientation temperatures at 2 kG and Bg;
orthorhombic lattice parameters at room temperatare; Cu-O(1)-Cu bond angle;

order temperaturef . (Cu):
exchange fielday /by :
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Cu WF/CAF
maximum internal

6=(mw—a)/2: Cu spin canting anglens=x(CW?")-sing: WF saturation moment.

X TNCW (K)  TyCu (K) B (G  aA)  beR) a(®)  6() myus)

0 282 9.5, 22 720 5.5082 5.5084 169.1 55 0.048
0.05 270 8.5, 24 500 5.5090 5.5092 171.8 4.1 0.036
0.07 258 ~7,24 150 5.5096 5.5097 175.2 2.4 0.021

tibilities Xr:]l(T) for a typical Bi-doped GggBigo=CuG,
compound in various applied field3, from 1 G-5 T are
shown collectively in Fig. 5T (Cu) of 270 K andTy(Gd) of
6.5 K are nearly field independent,(Cu) decreases from
24Kin1Gto20Kin 100G, 12K in 1 kG, 8.5Kin 2 kG,
~7 Kin 1T, and merges witiy(Gd) in 5 T. Since the weak
internal field is only in the order of £6-10°G,® the para-
magnetic Gd" moment contribution increases its domina-

sive Bi doping as expected. The unit-cell volumé
=ayb,C, increases from 360.7 #or x=0 to 361.2 & for
x=0.07. The longer Cu-Q) bond lengthsl; andd, during

Bi doping decrease wave-function overlap angCu) from
282 K for x=0 to 258 K forx=0.07. However, with large
Bi doping, the lattice layer mismatch between the smaller
[(Gd, Bi)-O], layers and Cu@plane is reduced, which re-
sults a less oxygen distortion in the Cu@lane. Smaller
oxygen distortion restores the Cu4)-Cu bond anglea

tion such that the magnetic susceptibility, in higher field canrom 169.1° forx=0 to 175.2° forx=0.07. The resulting

be approximately fitted with in a Curie-Weiss form gf,
=C/(T+#6,). For B,=5T, the Curie constant of 15.9
cm®K/mol gives an effective Gt momentuqg of 7.99ug,
which is close to the free iopes(Gd®") of 7.94ug if the

smaller canting anglé=(7— «)/2 of 2.4° for x=0.07 as
compared with 5.5° fox=0 reduces the estimated copper
WF saturation momentmg from 4.8<10 ?ug to 2.1
X 10 2ug using u(CWW")~0.5u5,%* and the maximum in-

small C#* ordered moment is neglected. The negativeternal fieldB;,(max) from 720-150 G.

Curie-Weiss interceptd, of 17.8 K is larger than

Since GdCuQy, is the smallest stable compound in the

Tn(Gd)/Tg(Cu) of ~6.6 K. The temperature dependence of R,CuQ, system under ambient pressure sample preparation

the internal exchange fielB;,(T) for T>T¢(Cu) can then
be estimated using the formdla

Bint(T) ~[M(T,Ba)/ xm(T)]—Ba,

where magnetizatioM (T,B,) is measured in an applied
field B,~1-2 kG>B;,; and the Curie-Weiss susceptibility
xm=C/(T+ 6,) from higher field(~1-5 T) fitting is used.
The estimated WF internal field,, for the Gg_,Bi,CuQ,
system(x=0, 0.05, 0.07 with estimated magnetic moment
canting angled is shown in Fig. 6. The internal field is tem-
perature dependent where maximip, observed decreases
from around 720 G fox=0, to 500 G forx=0.05 and 150
G for x=0.07. ForT~T4(Cu~10K atB, of 1-2 kG, B
decreases sharply to zero due to the disappearance of cop
saturation moment in the true AF state. ResidBa| ob-
served abovd \(Cu) may be due to the simplified formula

condition, based on the similar ionic size consideration, a
doping in the Gd sites with smaller rare-eaf®i* ions
should increase the oxygen distortion in the Gu&yer. The
temperature dependence of magnetization for smaller
Tb**-doped system Gd,Th,CuQ, (x=0, 0.1, and 0.5is
shown in Fig. 7. A monotonical increase of magnetized mag-
netic moment per formula unib(T) as well as canting angle
6 with progressive smaller P9 ion (0.923 A doping con-
firms our speculation on the correlation between weak ferro-
magnetism and oxygen distortion. A low field of 1 G is again
used to minimize the Gd/Tb®" contribution. Large WF
contribution  of  magnetized moment of 1-7
X 10 3ug/CU?" is observed below (Cu) 282 K forx=0

276 K forx=0.1 and 0.5. Spin-reorientation temperature
T.(Cu) remains around 22 K for all compounds. The rare
earth R(Gd/Th) sublattice orders antiferromagnetically at

used or from the intrinsic 2D short-range quantum spin! N(R) of 6.2 K forx=0.1 and 0.5.

fluctuation’ The small internal field of 720 G observed for
Gd,CuQ, is consistent with this small saturation momen
mg. Since the structural-related canting angld) is tem-
perature dependent, the saturation mommag{T) in each
WF domain wall and the internal exchange fi@g,(T) will
also be temperature dependent.
T,(Cu), a WF/CAF to AF magnetic transition should be ac-
companied with an orthorhombic to tetragor@r high-
temperature HD' phase to low-temperature OT phase
structural transition withd=0 in the true AF state. A de-

In conclusion, detailed Rietveld refinement gives a direct

t correlation between the oxygen distortion ang(€u-O-Cu

and the ionic size in the (Gi),CuQ, cuprates. For smaller
(Gd,M) ions, tetragonal ' phase is no longer stable at room
temperature and lattice layer mismatch lowers the symmetry

For temperature belol@ an orthorhombi®©"’ phase. Weak ferromagnetic or canted

antiferromagnetiqWF/CAF) ordering belowTy(Cu) is the
direct result of this oxygen distortion angle that causes a
non-180° Cu-O-Cu coupling. True antiferromagnetic order-
ing was restored only at temperature beldy(Cu).

tailed low-temperature magnetic and structural study is nec-
essary to confirm this speculation. Table Il shows the cor-
relation between the magnetic and structural variation for the This work was supported by the National Science Council
Gd,_Bi,CuQ, system. With slightly larger Bi doping of R.O.C. under contract Nos. NSC88-2112-M007-003 and
(rgi3+=0.96 A>rgp+=0.938A), the orthorhombic lattice NSC88-2112-M007-033. We thank Professor H.-C. I. Kao of
parameteray and by increase monotonically with progres- the Tamkang University for titration measurements.
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