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Thin superconducting disk with B-dependentJ,: Flux and current distributions
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The critical state in a superconducting thin circular disk with an arbitrary magnetic field dependence of the
critical sheet current)¢(B), is analyzed. With an applied fieB, perpendicular to the disk, a set of coupled
integral equations for the flux and current distributions is derived. The equations are solved numerically, and
flux and current profiles are presented graphically for several commonlyJy&Byl dependences. It is shown
that for smallB, the flux penetration depth can be described by an effective Bean model with a renormalized
J. entering the leading term. We argue that these results are qualitatively corréuinfsuperconductors of
any shape The results contrast the parallel geometry behavior, where at &ydlie B dependence of the
critical current can be ignorefiS0163-18209)12541-4

[. INTRODUCTION tion is paid to the low-field asymptotic behavior.
The paper is organized as follows. In Sec. Il the basic

The critical state mod€lCSM) is widely accepted to be a equations for the disk problem are derived. We consider here
powerful tool in the analysis of magnetic properties ofall states during a complete cycle of the applied field, includ-
type-ll superconductors. For decades there have been numéng the virgin branch. Section Il contains our numerical re-
ous theoretical works devoted to CSM calculations in thesults for flux and current distributions as well as for the flux
parallel geometry, i.e., a long sample placed in parallel apfront position. A discussion of the results is presented. Fi-
plied magnetic fieldB,. More recently, much attention has nally, Sec. IV presents the conclusions.
also been paid to the CSM analysis of thin samples in per-
pendicular magnetic fields. For this so-called perpendicular IIl. BASIC EQUATIONS
geometry explicit analytical expressions for flux and current
distributions have been obtained for a long thin $tfipnd Consider a thin superconducting disk of radi@sand
thin circular disR® assuming a constant critical currdittie  thicknessd, whered<R, see Fig. 1. We assume either that
Bean model d=\, where\ is the London penetration depth, or, df

From experiments, however, it is well known that the <\, thatA?/d<R. In the latter case the quantit?/d plays
critical current densityj. usually depends strongly on the a role of two-dimensional penetration depthwe put the
local flux densityB. This dependence often hinders a preciseorigin of the reference frame at the disk center and direct the
interpretation of various measured quantities such as magné&-axis perpendicularly to the disk plane. The external mag-
tization, complex ac susceptibilify? and surface netic fieldB, is applied along the axis, thez component of
impedancé. It is therefore essential to extend the CSM the field in the plang=0 being denoted aB. The current
analysis to account for B dependence of. flows in the azimuthal direction, with a sheet current denoted

In the parallel geometry extensive work has already beeasJ(r)=f‘i/ﬁ,2j(r,z)dz, wherej is the current density.
carried out, and exact results for the flux density profiles and To obtain expressions for the current and flux distribution
magnetizatiort® 13 as well as ac loss&' have been ob- we follow a procedure originally suggested in Ref. 3 and
tained for differentj.(B) dependences. In the perpendicularthen generalized in Ref. 14 for the caseBaflependend, in
geometry the magnetic behavior is known to be qualitativelya thin strip. The procedure makes use of the Meissner state
different. In particular, due to a strong demagnetization, thealistributions forB andJ.
field tends to diverge at the sample edges, and the flux pen- In the Meissner state, whei®=0 inside the disk, the
etration depth and ac losses follow different power laws infield outside the disk is given By
B, for small B, .2 Unfortunately, the theoretical treatment
of the perpendicular geometry is very complicated, and we B,
are not aware of any explicit expressions obtained for the Bm(r.R)=Ba+ —
CSM with aB-dependenf.. However, it is possible to de-
rive integral equations relating the flux and current
distributions® Such equations have so far been obtained and
solved numerically only for the case of a long thin stfd®

In this paper, we derive a CSM solution for a thin circular B
disk characterized by aarbitrary j.(B). The solution is
presented as a set of integral equations which we solve nu-
merically. In this way we obtain the field and current density
distributions in various magnetized states. We present results FIG. 1. Schematic of a thin circular disk in a perpendicular
for several commonly used functiong B). A special atten-  applied field. The current flows in the azimuthal direction.
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and the current is distributed according to Here  F(r,r")=K(K)/(r+r")—E(K)/(r—r"), where

k(r,r'y=2+rr’/(r+r"), while K andE are complete ellip-

4By tic integrals defined a&(z)= /g 1—2z?cog(x)]*?dx and
W= e R @ K@)=57%1- 2 cod(x)] Vadx.

The relation between the flux front locatiarand applied
A. Increasing field :‘:%d B, is obtained by substituting Eq7) into Eq. (6), giv-
We begin with a situation where the external fi#ég is
applied to a zero-field-cooled disk. The disk then consists of R dr’ ,
an inner flux-free regionf<a, and of an outer regiora B.—B r Jo[B(r )]_ (12)
<r<R, penetrated by magnetic flux. According to the criti- @ 7)arzma? Jeo
cal state model, the penetrated part will carry the critical
sheet currend. corresponding to thtecal value of magnetic  For a givenB, and for a specified.(B) we need to solve the
field, set of three coupled equatior(®—(11). In the case of
J(r)=—J[B(r)], a<r<R. 3 B-independend.., the Eq.(11) acquires the simple form

Now following Refs. 3 and 14, we express the field and a/R=1/cosliB,/B,), (12)
current as superpositions of the Meissner-state distributions,

Egs.(1) and(2), i.e. and Eqs(9) and(10) lead to the Bean-model results derived

min(r,R) in Refs. 4 and 5.
B(r)=f dr'By(r,r')G(r’,B,). 4 Note that the equations can be significantly simplified at
a large external field wherea—0 proportionally to

5 exp(—B,/B.). ThenB(r) is determined by the single equa-

n= dr'du(r,r)G(r' By, (5 tion
max(,r)
where G(r,B,) is a weight function. SinceB(r) and Mo (R , , ,
Bum(r,R)—B, atr —= we have the normalization condition B(r)=Ba— 27 ), F(r.r)Jc[B(rr)]dr’, (13
R
f drG(r,By)=1. (6)  following from Eq. (10).
a
Substituting Eq(3) and Eq.(2) into Eq.(5) yields an integral B. Subsequent field descent
equation for the functiots(r,B,), which can be inverted to ) i i ,
obtain Consider now the behavior of the disk Bg is reduced
after being first raised to some maximal vaBg,,. Let us
d (R dr'  JJB(r")] denote the flux front position, the current density, and the
G(r,By)=— _< - — c , (7) field distribution at the maximum field aa,,, J,(r), and
Badr)e 72—y Jeo Bn(r), respectively. ObviouslyJ(r), By(r), anda,, sat-
where isfy Egs.(9)—(11).

During the field descent fromB,,, the flux density be-
Be=r0deo2, Jeo=Jo(B=0). (8) comes reduced in the outer annular regiear <R, see Fig.
2. The central part of the disk<a remains frozen in the
Note that due to the similar form of the functidg(r,R) in  state withB,=B,,,. Let us specify the field and current
Eq. (2) and the Meissner-state current in the strip cafseyr  distributions in this remagnetized state as
weight functionG(r,B,) is also similar to that for a strip, see
Ref. 14, ~ ~
From Egs.(5) and (7) it then follows that the current B(r)=Bm(r)+B(r), J(N)=Jn(r)+J(r), (14
distribution in a disk is given by
and derive the relation betwe®&{r) andJ(r). For that one
a’-r? [B(r )] can use a procedure similar to the one described in Sec. Il A.
f r<a The only difference is that in the regiaan<r <R we now
have to usel(r)=+J[B(r)]. In this way we obtain

J(r)=

—J[B(r)], a<r<Rég)

This equation is supplemented by the Biot-Savart law, which
for a disk reads,

J(r)=J.(r), a<r<R,

where we define

Ko
BN =Bt 2n fF(”m . (0 Ju) =3B +BI)]+IBy(D)]. (15
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one immediately arrives at the set of equations valid for a
thin long strip. In that case some of the integrals can be done
analytically to yield the expressions obtained in Ref. 14.

A difference between the derivation in Ref. 14 and the
present one is that for decreasing fields we calculate only the
additional fieldB(r) rather than the total fiel®(r). This
allows us to use only one weight functi¢n to calculate the
flux distributions both for increasing and decreasing fields.
This simplifies the numerical calculations significantly.

C. Numerical procedure

Given the J.(B) dependence, the magnetic behavior is
found by solving the derived integral equatidi®—(11) nu-
merically using the following iteration procedure. WiB)

FIG. 2. Flux density profile during the applied field descentincreasing a flux front positiom is first specified, and an

from a maximum valueB .

initial approximation forB(r), e.g., the Bean-model solu-
tion, is chosen. At each step théh approximationB(™(r),

Note that the functiod(r) depends on the coordinate only is used to calculaté™(r) from Eq. (9) andB{" from Eq.

through the field distribution8,,(r) and B(r). Instead of
Eq. (9), the additional current satisfies

ZrJRd . |at-r?
— r'\/
ar a r!2_a2

Je(n),

Jer")
r72_r2'

r<a

J(r)=
a<r<R,
(16)

with the complementary equation

Mo

E(r):Ba_ Bam™ om

fRF(r,r’)j(r’)dr’. 17)
0

Furthermore, similarly to Eq.11), we have

R dr  Jr)

a \/I‘z—a2 \]cO 7

Ba_ Bam _
Bc

(18)

which completes the set of equations describing the remag-

netized state. Again, foB-independent, the equations re-
produce the Bean-model resuft3.
If the field is decreased below B,,, the memory of the

state atB,=B,,, is completely erased, and the solution be-
comes equivalent to the virgin penetration case. If the differ:

enceB,,,— B, is sufficiently large thera—0 rapidly, and

the critical statel(r)=J.(r) is established throughout the

disk. In this case the field descent is described by (E8)
with the opposite sign in front of the integral.

We emphasize that the expressions derived tieee. || A
and B are readily converted to the long thin strip case. Th
is due to the similarity of Eq(2) and the expression for the
Meissner-current in a strip,

2B, X
o W2’

wherex is the coordinate across the strip. Thus, making
this paper the substitutions

J(X)=— —W<X<w, (29

!

Hodco
— —i
a

r—x, R—w, F(r,r')— , B¢
XrZ_XZ

(12). They are then substituted into E40) yielding the next
approximation,B(""1)(r). The iterations are stopped when
(R™fdr[BMD(r)—BM(r)]%)¥?<10 °B,. With B, de-
creasing, the same procedure is used to find first
Jn(r), Bm(r), Ban for a givena,. Then, Egs.(16)—
(18) are solved for a fixed yielding the function®(r) and
J(r) and also the applied fielB, .

I1l. FLUX AND CURRENT DISTRIBUTION
A. General features

In the numerical calculations we used the following de-
pendences.(B),
‘]C:‘]CO/(1+|B|/BO)

(Kim model), (20

Jc=Jcoexp—|B|/By) (exponential model  (21)
Shown in Figs. 8) and 3b) are the field and current
distributions for increasing field wita/R=0.2 for the Kim
model with different parametets, andB,. They are chosen
in a way to keep the positioa fixed for all the curves for a
given value ofB,. This allows us to follow the variations in
the profile shape as thB dependence of. changes. The
chosen parameteds, andB, correspond to the set df(B)
curves shown in Fig. 8). The Bean-model results are also
plotted in Fig. 3.
Several major deviations between the Kim and the Bean
iSmodel can be noticed. In the Kim model we see ftlpathe
currentJ(r) is not uniform ata<r <R, it is minimal at the
disk edge wheré¢B| is maximal;(ii) the current has a cusp-
like maximum atr =a since the magnetic field vanishes at
this point with infinite derivative(iii) compared to the Bean
model, theB(r) profiles are steeper near the flux front,
whereas the peaks at the edges are less sharp. Qualitatively

insimilar results are obtained for the exponential model, see
Fig. 4. Also here, by changing the model parameters one can
produce a variety of flux and current profiles which are quite
different from the Bean-model predictions. When comparing
the Kim and exponential model, however, it turns out to be
very difficult to find clear distinctions.



PRB 60 THIN SUPERCONDUCTING DISK WITHB-DEPENDENT . . . 13115

1.5 1.54
« 1.0 m” 1.0
o o
s m
0.5 054
0.0 0.0
2.0
154
154
g
§ 1.0 &
o -
_)o - 1.0
~ -
3
0.5
0.5
0.0 T T T T T T d T g T 1 0.0 v T T T T T v T v v 1
0.0 0.2 0.4 06 0.8 1.0 1.2 0.0 0.2 0.4 06 0.8 1.0 1.2
r/R r/R
I\ -‘\
4 (© Bean model ad N (c) Bean model
3 \
14 Kim model: K Exponential model:
A B,/ B,=2.57 F T 2" / ga = 2.12
< LS i B0 / Ba=0‘85 o, \\ ........ ,/B, =26
g, NN s B,/ B,=0.34 = s ~ e B,/B, = 0.96
- N = DN e B,/ B, = 0.49
B N . )
- 1
0 T T T T T | 00 o 015 1|0 1|5
0.0 05 1.0 15 : :
B/B, B/B,
FIG. 3. Flux densitya) and currentb) profiles for flux penetra- FIG. 4. Graphs similar to Fig. 3, but here for the exponential

tion into a virgin state. Solid lines are calculated for the Beanmodel, Eq.(21).
model, while other ones represent the Kim model, &), with _
differentJ.o andB,. These parameters are chosen so that the flux B. Flux penetration depth

front positiona=0.2R and applied fieldB, are the same for all the To analyze quantitatively the role ofBxdependend, let

profiles. The corresponding.(B) dependences are shown in the ;5 onsider the position of the flux front during increasing

:):r:lilég)ah.The current is normalized to the Bean-model critical cur- field. A cirCI_e with radiusa th_en limits the Meissne_r region

¢ B=0, and is also the location of maximum gradientBn
These features can be measured directly in experiments on
visualization of magnetic flux distribution, e.g., magneto-
During field descent th& and J profiles become more optical imaging?®

complicated. For brevity we show only profiles for the Kim  Let us first recall the CSM expression for the flux front

model withB,/B.=3 and for the Bean model at different location in a long circular cylinder in a parallel fietd,

values ofB,, see Fig. 5. Again, the Kim model gives a

nonuniform current density ar>a. Contrary to the . 1 (BadB

—=1-— - . 22
increasing-field states, the current density can now either de- R #oRJo jc(B) @2

crease, or increase towards the edge dependir,on e :

Figure 6 shows profiles for fully-penetrated decreasing-At small applied fieldsB,, it can be expanded as
field state. In the Bean model the current remains constant, a B, woR B,
while the profile of the flux distribution is fixed, although §~1— B—+ 2jé(0)<B
shifted according to the applied field. In contrast, the Kim- ¢ ¢
model profiles are strongly dependent®y. There is a peak where for a cylindeB.= u,joR. Note that theB depen-
in the current profile and an enhanced gradienB@f) near  dence ofj. enters the expansion first in the second-order
the point whereB=0. term. Consequently, for a long cylinder the low-field behav-

2
: (23
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FIG. 6. Flux and current density profiles during field descent
after first increasing®, to a very largeB,,,. It is assumed that
critical state is established throughout the disk. Solid lines show
results for the Kim model wittBy=B, andB,/B.=—1.4 (curve
1), B,/B,=—0.7 (curve 2, andB,=0 (curve 3. The dotted lines
show the Bean model profiles, their shape being independdy.of
In contrast, the shape of the Kim model profiles depends strongly
onB,.

a/lR~1—(1/2)(B,/B,)>. (24)

For an arbitrary B dependence of. the expressior(11)
relatinga andB, cannot easily be expanded in powers of the
ratio B,/B.. The physical reason for this is the singular
behavior of the magnetic field near the disk edge. There, the
local field diverges atny finite B,, and an expansion of
J.(B) in powers ofB is not everywhere convergent. To
clarify the behavior of the flux front we have therefore per-
formed numerical calculations of the dependences
a(B,,Bgy). Shown in Fig. 7 are the results for the Kifp-

per panel and the exponentiallower panel models. Note
that the limit of largeB, represents the Bean model.

For small B, all the models seem to yield a parabolic
relation between the penetration depth and the applied field.
This is illustrated in more detail in Fig. 8, where all the
graphs in the log-log plot have a slope of 2 in the low-field
region. We therefore conjecture traaty Bdependence ai.

ior of a is well described by the Bean model, where theleads to thesamequadratic law(24) as for the Bean model,
penetration depth increases linearly with the applied field. although withdifferentcoefficients in front of B,/B)>.

For a thin disk, the penetration of flux proceeds differ-

The overall behavior of the penetration depth can be fitted

ently. In the Bean model the location of the flux front, Eqg. well by the full form Eq.(12), provided one makes the sub-

(12), is for smallB, given by

effie

stitutionB.—B;", i.e.,
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FIG. 8. Reduced flux penetration depth;-&/R, in the virgin
flux-penetrated state versus the applied fiBlg, For all three mod-
els the dependences have quadratic asymptotic behavior at low
fields.

IV. CONCLUSION

A set of integral equations for the magnetic flux and cur-
rent distributions in a thin disk placed in a perpendicular
applied field is derived within the critical-state model. The

FIG. 7. Flux front locatiora as a function of increasing applied splution is valid for any field-dependent critical current,
field, B,, and the chgracteristic fieldy. The calculated results are J.(B). By solving these equations numerically it is demon-
presented for the Kim modelpper pane| Eq. (20), and for the  qiraiad that both the flux density and current profiles are sen-
exponential modeflower pane), Eq. (21). sitive to theJ.(B) dependence. In particular, compared to
the Bean model, th&(r) profiles are steeper near the flux

a/R= 1/COSmBa/B§ﬁ)' (25 front, whereas the peaks at the edges are less sharp.
We find that the effectivd, satisfies the relation Since the local magnetic field at the disk edge is divergent
off for any value of the applied field,, a field dependence of
Be B g Jo affects the flux distributioreven in the limit of low B.
B. aBO’ (26) Our numerical calculations show that the flux penetration

depth at small fields has the same quadratic dependence on
B, as for the Bean model, however with different coefficient.
The overall behavior of the flux penetration depth is well
described by the Bean-model expression with an effective
ponential and the Kim model, respectively. value of the critical current. These results are believed to be

We believe that for many purposes a Bean-model descripqualitatively correct forthin superconductors odiny shape .
tion with an effective critical current is appropriate for thin 1he behavior differs strongly from the case of a long cylin-
samples of any shape, both in applied field and under trangler in a parallel field, where the front position at I&®y is
port current. Indeed, strong demagnetization effects alway20t affected by th@ dependence of the critical current den-
lead to a divergence of magnetic field at the sample edge:

This implies that in the sample there is always present a wide

range ofB values up to infinity. As a result, the sample

behavior is determined by the whale(B) dependence. In ACKNOWLEDGMENTS

particular, the valuel.(0) is not governing the magnetic
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if the ratio By/B; is of the order 1, or larger. Here
=0.42 for the exponential model, and=0.36 for the Kim
model. The same relation®5) and (26) are found to hold
true for a long thin strip withw=0.60 and 0.51 for the ex-
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