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Thin superconducting disk with B-dependentJc : Flux and current distributions

D. V. Shantsev,* Y. M. Galperin,* and T. H. Johansen†

Department of Physics, University of Oslo, Blindern, 0316 Oslo, Norway
~Received 18 June 1999!

The critical state in a superconducting thin circular disk with an arbitrary magnetic field dependence of the
critical sheet current,Jc(B), is analyzed. With an applied fieldBa perpendicular to the disk, a set of coupled
integral equations for the flux and current distributions is derived. The equations are solved numerically, and
flux and current profiles are presented graphically for several commonly usedJc(B) dependences. It is shown
that for smallBa the flux penetration depth can be described by an effective Bean model with a renormalized
Jc entering the leading term. We argue that these results are qualitatively correct forthin superconductors of
any shape. The results contrast the parallel geometry behavior, where at smallBa the B dependence of the
critical current can be ignored.@S0163-1829~99!12541-4#
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I. INTRODUCTION

The critical state model~CSM! is widely accepted to be a
powerful tool in the analysis of magnetic properties
type-II superconductors. For decades there have been nu
ous theoretical works devoted to CSM calculations in
parallel geometry, i.e., a long sample placed in parallel
plied magnetic field,Ba . More recently, much attention ha
also been paid to the CSM analysis of thin samples in p
pendicular magnetic fields. For this so-called perpendicu
geometry explicit analytical expressions for flux and curr
distributions have been obtained for a long thin strip1,2 and
thin circular disk3–6 assuming a constant critical current~the
Bean model!.

From experiments, however, it is well known that t
critical current densityj c usually depends strongly on th
local flux densityB. This dependence often hinders a prec
interpretation of various measured quantities such as ma
tization, complex ac susceptibility,7,8 and surface
impedance.9 It is therefore essential to extend the CS
analysis to account for aB dependence ofj c .

In the parallel geometry extensive work has already b
carried out, and exact results for the flux density profiles a
magnetization,10–13 as well as ac losses10,11 have been ob-
tained for differentj c(B) dependences. In the perpendicu
geometry the magnetic behavior is known to be qualitativ
different. In particular, due to a strong demagnetization,
field tends to diverge at the sample edges, and the flux p
etration depth and ac losses follow different power laws
Ba for small Ba .1,2 Unfortunately, the theoretical treatme
of the perpendicular geometry is very complicated, and
are not aware of any explicit expressions obtained for
CSM with aB-dependentj c . However, it is possible to de
rive integral equations relating the flux and curre
distributions.3 Such equations have so far been obtained
solved numerically only for the case of a long thin strip.14,15

In this paper, we derive a CSM solution for a thin circul
disk characterized by anarbitrary j c(B). The solution is
presented as a set of integral equations which we solve
merically. In this way we obtain the field and current dens
distributions in various magnetized states. We present res
for several commonly used functionsj c(B). A special atten-
PRB 600163-1829/99/60~18!/13112~7!/$15.00
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tion is paid to the low-field asymptotic behavior.
The paper is organized as follows. In Sec. II the ba

equations for the disk problem are derived. We consider h
all states during a complete cycle of the applied field, inclu
ing the virgin branch. Section III contains our numerical r
sults for flux and current distributions as well as for the fl
front position. A discussion of the results is presented.
nally, Sec. IV presents the conclusions.

II. BASIC EQUATIONS

Consider a thin superconducting disk of radiusR and
thicknessd, whered!R, see Fig. 1. We assume either th
d>l, where l is the London penetration depth, or, ifd
,l, thatl2/d!R. In the latter case the quantityl2/d plays
a role of two-dimensional penetration depth.19 We put the
origin of the reference frame at the disk center and direct
z axis perpendicularly to the disk plane. The external m
netic fieldBa is applied along thez axis, thez component of
the field in the planez50 being denoted asB. The current
flows in the azimuthal direction, with a sheet current deno
asJ(r )5*2d/2

d/2 j (r ,z)dz, wherej is the current density.
To obtain expressions for the current and flux distributi

we follow a procedure originally suggested in Ref. 3 a
then generalized in Ref. 14 for the case ofB-dependentJc in
a thin strip. The procedure makes use of the Meissner s
distributions forB andJ.

In the Meissner state, whereB50 inside the disk, the
field outside the disk is given by3,4

BM~r ,R!5Ba1
2Ba

p F R

Ar 22R2
2arcsinS R

r D G , ~1!

FIG. 1. Schematic of a thin circular disk in a perpendicu
applied field. The current flows in the azimuthal direction.
13 112 ©1999 The American Physical Society
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and the current is distributed according to

JM~r ,R!52
4Ba

pm0

r

AR22r 2
, r ,R. ~2!

A. Increasing field

We begin with a situation where the external fieldBa is
applied to a zero-field-cooled disk. The disk then consists
an inner flux-free region,r<a, and of an outer region,a
,r<R, penetrated by magnetic flux. According to the cri
cal state model, the penetrated part will carry the criti
sheet currentJc corresponding to thelocal value of magnetic
field,

J~r !52Jc@B~r !#, a,r ,R. ~3!

Now following Refs. 3 and 14, we express the field a
current as superpositions of the Meissner-state distributi
Eqs.~1! and ~2!, i.e.:

B~r !5E
a

min(r ,R)

dr8BM~r ,r 8!G~r 8,Ba!. ~4!

J~r !5E
max(a,r )

R

dr8JM~r ,r 8!G~r 8,Ba!, ~5!

where G(r ,Ba) is a weight function. SinceB(r ) and
BM(r ,R)→Ba at r→` we have the normalization conditio

E
a

R

dr G~r ,Ba!51. ~6!

Substituting Eq.~3! and Eq.~2! into Eq.~5! yields an integral
equation for the functionG(r ,Ba), which can be inverted to
obtain

G~r ,Ba!52
Bc

Ba

d

drEr

R dr8

Ar 822r 2

Jc@B~r 8!#

Jc0
, ~7!

where

Bc5m0Jc0/2, Jc0[Jc~B50!. ~8!

Note that due to the similar form of the functionJM(r ,R) in
Eq. ~2! and the Meissner-state current in the strip case,1,2 our
weight functionG(r ,Ba) is also similar to that for a strip, se
Ref. 14.

From Eqs.~5! and ~7! it then follows that the curren
distribution in a disk is given by

J~r !5H 2
2r

p E
a

R

dr8A a22r 2

r 822a2

Jc@B~r 8!#

r 822r 2
, r ,a

2Jc@B~r !#, a,r ,R.
~9!

This equation is supplemented by the Biot-Savart law, wh
for a disk reads,3

B~r !5Ba1
m0

2pE0

R

F~r ,r 8!J~r 8!dr8. ~10!
f

l

s,

h

Here F(r ,r 8)5K(k)/(r 1r 8)2E(k)/(r 2r 8), where
k(r ,r 8)52Arr 8/(r 1r 8), while K andE are complete ellip-
tic integrals defined asE(z)5*0

p/2@12z2 cos2(x)#1/2dx and
K(z)5*0

p/2@12z2 cos2(x)#21/2dx.
The relation between the flux front locationa and applied

field Ba is obtained by substituting Eq.~7! into Eq. ~6!, giv-
ing

Ba5BcE
a

R dr8

Ar 822a2

Jc@B~r 8!#

Jc0
. ~11!

For a givenBa and for a specifiedJc(B) we need to solve the
set of three coupled equations~9!–~11!. In the case of
B-independentJc , the Eq.~11! acquires the simple form

a/R51/cosh~Ba /Bc!, ~12!

and Eqs.~9! and~10! lead to the Bean-model results derive
in Refs. 4 and 5.

Note that the equations can be significantly simplified
large external field where a→0 proportionally to
exp(2Ba /Bc). ThenB(r ) is determined by the single equa
tion

B~r !5Ba2
m0

2pE0

R

F~r ,r 8!Jc@B~r 8!#dr8, ~13!

following from Eq. ~10!.

B. Subsequent field descent

Consider now the behavior of the disk asBa is reduced
after being first raised to some maximal valueBam . Let us
denote the flux front position, the current density, and
field distribution at the maximum field asam , Jm(r ), and
Bm(r ), respectively. Obviously,Jm(r ), Bm(r ), andam sat-
isfy Eqs.~9!–~11!.

During the field descent fromBam the flux density be-
comes reduced in the outer annular regiona,r ,R, see Fig.
2. The central part of the diskr ,a remains frozen in the
state with Ba5Bam . Let us specify the field and curren
distributions in this remagnetized state as

B~r !5Bm~r !1B̃~r !, J~r !5Jm~r !1 J̃~r !, ~14!

and derive the relation betweenB̃(r ) and J̃(r ). For that one
can use a procedure similar to the one described in Sec.
The only difference is that in the regiona,r ,R we now
have to useJ(r )51Jc@B(r )#. In this way we obtain

J̃~r !5 J̃c~r !, a,r ,R,

where we define

J̃c~r !5Jc@Bm~r !1B̃~r !#1Jc@Bm~r !#. ~15!
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Note that the functionJ̃c(r ) depends on the coordinate on
through the field distributionsBm(r ) and B̃(r ). Instead of
Eq. ~9!, the additional current satisfies

J̃~r !5H 2r

p E
a

R

dr8A a22r 2

r 822a2

J̃c~r 8!

r 822r 2
, r ,a

J̃c~r !, a,r ,R,
~16!

with the complementary equation

B̃~r !5Ba2Bam1
m0

2pE0

R

F~r ,r 8!J̃~r 8!dr8. ~17!

Furthermore, similarly to Eq.~11!, we have

Ba2Bam

Bc
52E

a

R dr

Ar 22a2

J̃c~r !

Jc0
, ~18!

which completes the set of equations describing the rem
netized state. Again, forB-independentJc the equations re-
produce the Bean-model results.4,5

If the field is decreased below2Bam the memory of the
state atBa5Bam is completely erased, and the solution b
comes equivalent to the virgin penetration case. If the diff
enceBam2Ba is sufficiently large thena→0 rapidly, and
the critical stateJ(r )5Jc(r ) is established throughout th
disk. In this case the field descent is described by Eq.~13!
with the opposite sign in front of the integral.

We emphasize that the expressions derived here~Sec. II A
and B! are readily converted to the long thin strip case. T
is due to the similarity of Eq.~2! and the expression for th
Meissner-current in a strip,

J~x!52
2Ba

m0

x

Aw22x2
, 2w,x,w, ~19!

wherex is the coordinate across the strip. Thus, making
this paper the substitutions

r→x, R→w, F~r ,r 8!→ 2x8

x822x2
, Bc→

m0Jc0

p
,

FIG. 2. Flux density profile during the applied field desce
from a maximum valueBam .
g-

-
r-

s

n

one immediately arrives at the set of equations valid fo
thin long strip. In that case some of the integrals can be d
analytically to yield the expressions obtained in Ref. 14.

A difference between the derivation in Ref. 14 and t
present one is that for decreasing fields we calculate only
additional fieldB̃(r ) rather than the total fieldB(r ). This
allows us to use only one weight function~7! to calculate the
flux distributions both for increasing and decreasing fiel
This simplifies the numerical calculations significantly.

C. Numerical procedure

Given theJc(B) dependence, the magnetic behavior
found by solving the derived integral equations~9!–~11! nu-
merically using the following iteration procedure. WithBa
increasing a flux front positiona is first specified, and an
initial approximation forB(r ), e.g., the Bean-model solu
tion, is chosen. At each step thenth approximation,B(n)(r ),
is used to calculateJ(n)(r ) from Eq. ~9! and Ba

(n) from Eq.
~11!. They are then substituted into Eq.~10! yielding the next
approximation,B(n11)(r ). The iterations are stopped whe
(R21*dr@B(n11)(r )2B(n)(r )#2)1/2<1026Bc . With Ba de-
creasing, the same procedure is used to find fi
Jm(r ), Bm(r ), Bam for a given am . Then, Eqs.~16!–
~18! are solved for a fixeda yielding the functionsB̃(r ) and
J̃(r ) and also the applied fieldBa .

III. FLUX AND CURRENT DISTRIBUTION

A. General features

In the numerical calculations we used the following d
pendencesJc(B),

Jc5Jc0 /~11uBu/B0! ~Kim model!, ~20!

Jc5Jc0 exp~2uBu/B0! ~exponential model!. ~21!

Shown in Figs. 3~a! and 3~b! are the field and curren
distributions for increasing field witha/R50.2 for the Kim
model with different parametersJc0 andB0. They are chosen
in a way to keep the positiona fixed for all the curves for a
given value ofBa . This allows us to follow the variations in
the profile shape as theB dependence ofJc changes. The
chosen parametersJc0 andB0 correspond to the set ofJc(B)
curves shown in Fig. 3~c!. The Bean-model results are als
plotted in Fig. 3.

Several major deviations between the Kim and the Be
model can be noticed. In the Kim model we see that~i! the
currentJ(r ) is not uniform ata,r ,R, it is minimal at the
disk edge whereuBu is maximal;~ii ! the current has a cusp
like maximum atr 5a since the magnetic field vanishes
this point with infinite derivative;~iii ! compared to the Bean
model, theB(r ) profiles are steeper near the flux fron
whereas the peaks at the edges are less sharp. Qualita
similar results are obtained for the exponential model,
Fig. 4. Also here, by changing the model parameters one
produce a variety of flux and current profiles which are qu
different from the Bean-model predictions. When compar
the Kim and exponential model, however, it turns out to
very difficult to find clear distinctions.

t
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During field descent theB and J profiles become more
complicated. For brevity we show only profiles for the Ki
model with B0 /Bc53 and for the Bean model at differen
values of Ba , see Fig. 5. Again, the Kim model gives
nonuniform current density atr .a. Contrary to the
increasing-field states, the current density can now either
crease, or increase towards the edge depending onBa .

Figure 6 shows profiles for fully-penetrated decreasi
field state. In the Bean model the current remains const
while the profile of the flux distribution is fixed, althoug
shifted according to the applied field. In contrast, the Ki
model profiles are strongly dependent onBa . There is a peak
in the current profile and an enhanced gradient ofB(r ) near
the point whereB50.

FIG. 3. Flux density~a! and current~b! profiles for flux penetra-
tion into a virgin state. Solid lines are calculated for the Be
model, while other ones represent the Kim model, Eq.~20!, with
different Jc0 andB0. These parameters are chosen so that the
front positiona50.2R and applied fieldBa are the same for all the
profiles. The correspondingJc(B) dependences are shown in th
panel~c!. The current is normalized to the Bean-model critical c
rent Jc

Bean.
e-

-
t,

-

B. Flux penetration depth

To analyze quantitatively the role of aB-dependentJc let
us consider the position of the flux front during increasi
field. A circle with radiusa then limits the Meissner region
B50, and is also the location of maximum gradient inB.
These features can be measured directly in experiment
visualization of magnetic flux distribution, e.g., magnet
optical imaging.20

Let us first recall the CSM expression for the flux fro
location in a long circular cylinder in a parallel field,13

a

R
512

1

m0RE0

Ba dB

j c~B!
. ~22!

At small applied fields,Ba , it can be expanded as

a

R
'12

Ba

Bc
1

m0R

2
j c8~0!S Ba

Bc
D 2

, ~23!

where for a cylinderBc[m0 j c0R. Note that theB depen-
dence of j c enters the expansion first in the second-ord
term. Consequently, for a long cylinder the low-field beha

x

-

FIG. 4. Graphs similar to Fig. 3, but here for the exponen
model, Eq.~21!.
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13 116 PRB 60D. V. SHANTSEV, Y. M. GALPERIN, AND T. H. JOHANSEN
ior of a is well described by the Bean model, where t
penetration depth increases linearly with the applied field

For a thin disk, the penetration of flux proceeds diffe
ently. In the Bean model the location of the flux front, E
~12!, is for smallBa given by

FIG. 5. Flux density and current profiles for decreasingBa . The
graphs show the Kim model withB0 /Bc53 and the Bean mode
for Ba5Bam52.4Bc ~solid!, Ba51.3Bc ~dashed!, Ba51.3Bc ~dot-
ted!, andBa522.4Bc ~dash-dotted!.
-
.

a/R'12~1/2!~Ba /Bc!
2. ~24!

For an arbitrary B dependence ofJc the expression~11!
relatinga andBa cannot easily be expanded in powers of t
ratio Ba /Bc . The physical reason for this is the singul
behavior of the magnetic field near the disk edge. There,
local field diverges atany finite Ba , and an expansion o
Jc(B) in powers of B is not everywhere convergent. T
clarify the behavior of the flux front we have therefore pe
formed numerical calculations of the dependenc
a(Ba ,B0). Shown in Fig. 7 are the results for the Kim~up-
per panel! and the exponential~lower panel! models. Note
that the limit of largeB0 represents the Bean model.

For small Ba all the models seem to yield a parabol
relation between the penetration depth and the applied fi
This is illustrated in more detail in Fig. 8, where all th
graphs in the log-log plot have a slope of 2 in the low-fie
region. We therefore conjecture thatany Bdependence ofJc
leads to thesamequadratic law~24! as for the Bean model
although withdifferentcoefficients in front of (Ba /Bc)

2.
The overall behavior of the penetration depth can be fit

well by the full form Eq.~12!, provided one makes the sub
stitution Bc→Bc

eff , i.e.,

FIG. 6. Flux and current density profiles during field desce
after first increasingBa to a very largeBam . It is assumed that
critical state is established throughout the disk. Solid lines sh
results for the Kim model withB05Bc and Ba /Bc521.4 ~curve
1!, Ba /Bc520.7 ~curve 2!, andBa50 ~curve 3!. The dotted lines
show the Bean model profiles, their shape being independent ofBa .
In contrast, the shape of the Kim model profiles depends stron
on Ba .
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PRB 60 13 117THIN SUPERCONDUCTING DISK WITHB-DEPENDENT . . .
a/R51/cosh~Ba /Bc
eff!. ~25!

We find that the effectiveBc satisfies the relation

Bc
eff

Bc
512a

Bc

B0
, ~26!

if the ratio B0 /Bc is of the order 1, or larger. Herea
50.42 for the exponential model, anda50.36 for the Kim
model. The same relations~25! and ~26! are found to hold
true for a long thin strip witha50.60 and 0.51 for the ex
ponential and the Kim model, respectively.

We believe that for many purposes a Bean-model desc
tion with an effective critical current is appropriate for th
samples of any shape, both in applied field and under tra
port current. Indeed, strong demagnetization effects alw
lead to a divergence of magnetic field at the sample ed
This implies that in the sample there is always present a w
range of B values up to infinity. As a result, the samp
behavior is determined by the wholeJc(B) dependence. In
particular, the valueJc(0) is not governing the magneti
behavior of thin samples, even when the applied field is v
small.16

FIG. 7. Flux front locationa as a function of increasing applie
field, Ba , and the characteristic field,B0. The calculated results ar
presented for the Kim model~upper panel!, Eq. ~20!, and for the
exponential model~lower panel!, Eq. ~21!.
p-

s-
ys
e.
e

y

IV. CONCLUSION

A set of integral equations for the magnetic flux and c
rent distributions in a thin disk placed in a perpendicu
applied field is derived within the critical-state model. Th
solution is valid for any field-dependent critical curren
Jc(B). By solving these equations numerically it is demo
strated that both the flux density and current profiles are s
sitive to theJc(B) dependence. In particular, compared
the Bean model, theB(r ) profiles are steeper near the flu
front, whereas the peaks at the edges are less sharp.

Since the local magnetic field at the disk edge is diverg
for any value of the applied field,Ba , a field dependence o
Jc affects the flux distributioneven in the limit of low Ba .
Our numerical calculations show that the flux penetrat
depth at small fields has the same quadratic dependenc
Ba as for the Bean model, however with different coefficie
The overall behavior of the flux penetration depth is w
described by the Bean-model expression with an effec
value of the critical current. These results are believed to
qualitatively correct forthin superconductors ofany shape.
The behavior differs strongly from the case of a long cyl
der in a parallel field, where the front position at lowBa is
not affected by theB dependence of the critical current de
sity.

ACKNOWLEDGMENTS

The financial support from the Research Council of N
way ~NFR! and NATO via NFR is gratefully acknowledged

FIG. 8. Reduced flux penetration depth, 12a/R, in the virgin
flux-penetrated state versus the applied field,Ba . For all three mod-
els the dependences have quadratic asymptotic behavior at
fields.
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