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We construct a class of projected @Pmodels where the Gutzwiller constraint of no-double-occupancy is
implemented exactly. We introduce the concept of projected558ymmetry where all static correlation
functions are exactly SG) symmetric and discuss the signature of the projectebS&gmmetry in dynamical
correlation functions. We show that this class of projectedS3@odels can give a realistic description of the
global phase diagram of the hidgh- superconductors and account for many of their physical properties.
[S0163-18299)12241-0

[. INTRODUCTION cancel each other to arrive at a qualitatively correct picture.

Recently, a unified theory of antiferromagnetiéii) and  However, this type of cancellation is very delicate, and ap-
superconductivity(SC) has been proposed for the high- proximate calculations could easily lead to erroneous conclu-
cuprates. This theory is based on the $& symmetry be- sions. In particular, one is interested in which physical prop-
tween AF and SC, and offers a unified description of theerties could exhibit S&) symmetric properties in the limit
global phase diagram for this class of materials. While thevhen the Coulomb gap is taken to infinity. For example, one
theory was originally proposed as a effective field theorycould ask the following questions.
description, it was soon realized that the (SOsymmetry (1) One of the hallmarks of the §6) symmetry is not
could be implemented exactly at a microscopic |év8land  only the degeneracy between the AF and SC states at a given
it can also be checked numerically in common strongly corchemical potential, but the approximate degeneracy among
related models such as thiel model/~° While the phase all mix states interpolating between AF and SC, i.e., the
diagrant®~*?2and collective excitatiod!4in the SC state independence of the ground-state energy on the superspin
derived from these S() models bear strong resemblance toangle. What is the potential barrier separating the AF and SC
the highT, cuprates, and a number of experimental predic-States at their degeneracy point in the litdit>? If there is
tions have been made;'° the Mott insulating behavior at a large energy barrier in this limit, one would argue that the
half-filling is a puzzling aspect which challenges the funda-concept of S@) symmetry is not a useful one, at least not
mental validity of the S) models?®~?* To be more pre- for quantitative calculations. On the other hand, if the poten-
cise, the exact S(B) symmetry requires collective charge tial barrier is finite and small in th&l — oo limit, the concept
two excitation at half-filling to have the same mass as thedf @ approximate S®) symmetry would be a useful one.
collective spin-wave excitations. This condition is clearly (2) Exact S@5) symmetry predicts four massless collec-
violated in a Mott insulating system where all charge excita-tive modes. In the half-filled AF state, besides the two con-
tions measured with respect to a particle-hole symmetrigzentional massless spin-wave modes, the exa¢6B&ym-
point have a large energy gap of few eV, while the spin-wavemetry predicts a massless doubletzof modes, with charge
excitations are massless. In the original (5Oproposal, it ~=2. However, a Mott insulator has a large gap to all charge
was pointed out that this situation is analogous to a easy-axigxcitations. Therefore, it is clear that one of the has to be
antiferromagnet in a external uniform field, and a (50 projected out of the spectrum in the lintit— o, say, therr™*
symmetry breaking term at half-filling was introduced in or- mode carrying charge-2. What happens to the rest of the
der to describe this asymmetric behavior between spin antoldstone modes, the™ mode carrying charge-2 and the
charge. The chemical potential also introduces #536ym- = triplet mode of the SC state? In thke— < limit, can they
metry breaking term, however, it was shown that these twall be simultaneously massless at the transition point be-
terms could compensate each offfeso that thestatic po- tween AF and SC? Since the pure SC state can only be
tential governing the S@) superspin could still be SG)  reached with a finite doping concentration, is it possible that
symmetric. the Gutzwiller projection does not affect the® triplet mode

Since the asymmetry between the charge and spin excitaf the SC state?
tions at half-filling is of the order of the Coulomb energy In order to address these questions, it is desirable to con-
scaleU, the S@5) symmetry breaking terms must also be of struct a low-energy effective theory without any parameters
that order. Since there are various types of symmetry brealof the order of the Coulomb scalé. In this work, we con-
ing terms, one might hope that their effects could partiallystruct a class of projected $8) models which treat the
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Gutzwiller constraint exactly and locally on every site. We Q 4 L H
| | . R >
use this model to answer the physical questions posed above (s N
and show that the answers are affirmative. In the>o o > >+ 11>
limit, when the Gutzwiller constraint is implemented exactly, Lhl2>: |=>
the ground-state energy can still be §Dsymmetric and tplQ> | #>

independent of the superspin direction. After projecting out
the 7+ mode, all other Goldstone modes remain massless at FIG. 1. Schematic representation of the singlet state, the triplet
the symmetric point. The dispersion relation of the collective™agnon states and the hole and particle pair states.
modes bear the unique signature of the projectetb5&ym- _
metry. Furthermore, ther® triplet modes of the pure SC their antiholomorphic combinatiogz=n;+ins. This way,
states are unaffected by the Gutzwiller projection. Thes&ve arrive at a natural projection of the £ model where
properties define the concept of a projected 3@ymmetry  the local Gutzwiller constraint is taken into account exactly,
[pSO(5)], whose properties and consequences we shall exand the resulting model is free of the large Coulobhipa-
plore in this paper. rameter. Because the functional form of the symmetri¢530O
The fundamental quantity in the $8) theory is the lo- model remain the same and only the quantization condition
Ca||y defined five_component superspin vectmra(x) is modified upon projection, many important properties asso-
:(nl,nz’n3'n4’n5) describing the local AF and SC order ciated with the S@) Symmetry remain. The central hypoth-
parameters, respectively. In the nonlineamodel formal- ~ esis of the S@) theory is that this projected model is quan-
ism, these are treated as mutually commuting coordinateléatively accurate in describing both the static and dynamic
and their dynamics is given by their conjugate momentaProperties of the high-; cuprates, and we shall compare the
Pa(X)=(p1.,P2,P3.P4.Ps). The charge operator is the angu- properties of this model with the phenomenology of the

lar momentum in then, — ng plane: high-T; systems.
Q(x)=L15=N1ps—nNsp;. 1.9 Il. CONSTRUCTION OF PROJECTED SO (5) MODELS
Implementing the Gutzwiller constraint corresponds to re-  \ye pegin with the symmetric S6) Hamiltonian defined
quiring on a lattice,
Q(x)=<0 (1.2

— 2 _ ’
for every local S@) rotor. From Eqgs(1.1) and (1.2) and H AE Lan(X) J<§> Na(X)Na(x’)
subsequent discussions, we shall see that the Gutzwiller pro-
jection in the S@) formalism corresponds to going from a ,
fully symmetric S@5) rotor model to achiral SQ(5) rotor +V<§> Lap(X)Lap(X"), 2.9
model, where both the static potential of the individual rotors ] )
and the coupling between the rotors are still(Symmet- whgrena(?() denotes thg five-component superspin vector on
ric, but the rotors are constrained to rotate only in one sens@ given site, and.,,(x) is the S@5) symmetry generator,
in the n{-ng plane, consistent with Eq1.2). This observa- _
; ; ; Lab_ NaPp—NpPa (2-2)
tion reveals a deep connection between the Gutzwiller pro-
jection and the lowest-Landau-lev@lLL ) projection in the  expressed here in terms of the superspin veofoand its
fractional quantum Hall effe® To be more precise, the canonically conjugate momenfs,,

Gutzwiller projection represented by Ed4.1) and (1.2 is

analogous to the LLL projection, where all states in the LLL [Na,Pb]=10ap- (2.3
have a definite sign of aﬂgu'af momentum. The L.LL PrOJEC This lattice guantum nonlinear model can be rigorously
tion can be analytically implemented by §eparat|ng the Y derived as the low-energy limit of a microscopic GDlad-
clotron degrees of freedom from the guiding center degreeaer modeP On the ladder, the rung S6) singlet state is

of freedom, which amounts to changing the com_mutingthe vacuum|Q), from which the lowest S®) multiplet
property between th&X andY coordinates to a canonically |a>=t;|Q> is created by a quintet of Bose creation operators,

conjugate commutation relation: which satisfy
[X,Y]=ilo, (1.3

wherel, is the Landau length. Exploiting this analogy, we )

find that the original SG) model can be fully Gutzwiller Here, a=2,3,4 denote the tripletmagnon states, anda
projected without changing its form, if one imposes the=1,5 are the hole and particle pair statese Fig. 1 The
simple quantization condition between the superconducting§UPerspin coordinates are microscopically constructed using

[ta,th]=8ap, ta|Q)=0. (2.4

components of the superspin vector: ese lattice bosons,
[nl,n5]=i/2. (14) 1 1
, , Na=—=(ta+td), pa=—=(ta—th. (25
In the symmetric S&) model, the wave function of the \/E l\/E
SO(5) rotors are functions of the local coordinatgsandns, Due to their microscopic origin, these bosonic states are

while the projected SB) model only depends on their ho- hard-core bosons, in the sense that one cannot define two of
lomorphic combinationz=n;—ins and is independent of them on the same rung. Theterm in Eq.(2.1) describes the
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gap energy of the magnon and the pair states,Jtherm

stands for the hopping and the spontaneous creation/ H,=n> [thte(X) — thtn(X)] (2.8
destruction process of these states, andvtherm describes X

their neares_t-ne_igh_bor interaction. _This quantum n_onlim:e_ar to describe the effects of doping.
model can in principle also be derived in higher dimension
from a microscopic S() symmetric modef;* by introduc-
ing a superspin vector as a Hubbard-Stratonovich decouplin
field, and integrate out the fermionic degrees of freedom in
gradient expansion. However, we shall proceed more heuris;
tically here®® For a two-dimensional system, one can imag-
ine that the quanture model Hamiltonian is obtained from ~
a “block spin” type of coarse graining of the microscopic Ac=Ac—n (2.9

electron Hamiltonian, and is defined on a lattice with twice ) i
the lattice constant compared to the microscopic electroffa" b€ comparable to the spin gap, while the gap towards

model.(This doubled unit cell is the minimal size needed to@ Particle pair excitation is of the order of twice the charge
define the local AF and-wave SC order parameter3here- ~ 92P. and needs to be projected out of the spectrum in the
fore, each sitex in the effective model corresponds to a lOW-énergy limit. - _ . .
plaquette of the microscopic electron modé@n a ladder, Therefore, within this formalism, the Gutzwiller projec-

this corresponds to going from the lattice sites to laddefion is equivalent to restricting ourselves to the projected

rungs) The SA5) singlet statd()) corresponds to a resonat- Hilbert space where

ing valence bond (RVB)” type of singlet state, while the

fivefold statestllﬂ} describe the triplet magnon states, and tp(x)|\If>=O (2.10

the d-wave hole and particle pair states on a plaquette. Un- . N . .

like the ladder case, the magnon and theave pair states _at every 5|t_ex. W|th|n this projected Hilbert space, the pro-

could condense in the ground state to form AF and SC broLec'[ed Hamiltonian takes the form

ken symmetry states. In fact, E4&has recently shown that

properties of the AF states can be described by a coherenf _ t A . ) ,

state of magnon condensation on top of a uniform spin quuidl-i AS; taa(X) AC; mOom () Js<§> Me(X)Na(X")

state. Our model therefore describes competition among the

“RVB” type of singlet vacuum and the two forms of broken _ _ !

symmetry order. J°<§> M OO (X")- 219
While it is reasonable to takkandV to be approximately

equal for magnons and pairs, the gap enekgfor the neu-  This Hamiltonian has no parameters of the ordetdpénd it

tral magnons and the charged pairs are very different in thgs reasonable to expeAts~Zc andJs~J.. We see that the

insulating state at half-filling. In fact, their difference is of form of the Hamiltonian hardly changes from the un-

the order of the insulating gap at half-filling. Taking into  projected model, but the definition of, andns is changed
account the hard-core condition and neglecting the nearesfrom

neighbor interactiotv for now (it has higher powers of time
and space derivatives in the continuum limive can ex-

press the general anisotropic &Pmodel as nl:%(tlﬂi):%(tthHgH;),

In the presence of this
Shemical potential term, the gap energy of the hole and par-
ticle pairs areA.—u and A + u, respectively. A chemical
otential of the order of the charge gayn. is needed to
duce a metal-insulator transition in this system. Near such
transition point, the gap energy of the hole pair

H=8:2 00+ () =3s 2 na()na(x') . .
bocy nsz\—E(tSHg)=E(th—tp—t;+tg) (2.12

—J3. 2 n)ni(x'). (2.6)

(xx") to

In this paper we shall use the convention wherb, . .. 1 1

=1,2,3,4,5 denote the superspin indicess,...=2,3,4 ne==(tw+tH Ne=—(t.—tf 21
denote the spin indices, and =1,5 denote the charge indi- 175t nh Ms 27 (th n)- 213
ces, and repeated indices are summed over. The main focus _

of our paper is to consider the limit whefe.>A,. From Eq.(2.12, we see thah; andns commute with each

Let us define the charge eigenoperatigrandt,, as other before the projection. However, after the projection,
they acquire a nontrivial commutation relation, as can be

seen from Eq(2.13:

1 1
t1=—=(ty+t,), tg=——==(t,—1,). 2.
TRt T @7 [ny.ng]=i/2. (2.14

From this definition, it is clear thaf, is the creation operator Therefore, the Gutzwiller projection can be analytically
for a hole pair andg is the creation operator for a particle implemented in the S@) theory by retaining the form of the
pair. We can introduce a chemical potential term Hamiltonian and change only the quantization condition.
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ll. ANALOGY WITH LOWEST-LANDAU-LEVEL wheref(z) is a holomorphic function of only. This holo-
PROJECTION morphic condition also places strong constraints in many-

body systems and led to the celebrated Laughlin’s wave

%nction. our no-double-occupancy constraif®.10 is

ism and the projection onto the lowest Landau lewéll ) in analogous to the LLL constrai8.4). In fact from Eqs(2.7)

the context of the fractional quantum Hall effect. Considerand (212, we obtain

the problem of a charged particle in a strong magnetic feld _1

and a rotationally symmetric potenti®(X,Y). In the ab- tpy=2(2+27y), (3.6
sence of a magnetic field, all eigenstates form irreduciblgyherez=n,—ins andz=n,+ins. For a single unprojected
representations of the two-dimensional rotation grod@)O  sQO(5) rotor, the wave function?(n,) is a function of the
characterized by integral eigenvalues of the angular momensperspin coordinates. However, the Gutzwiller projection
tum operator (2.10 restricts the wave function to be

The discussions outlined above reveal a deep connecti
between the Gutzwiller projection within the 8&) formal-

Lz=XPy=YPx. @D \If(nl,nz,ns,n4,n5)=f(z:nl—in5,n2,n3,n4)e’292,
However, in the presence of a strong magnetic field and pro- 3.7

jected into the LLL, only negative eigenvalues bf are  \heref(z,n,,ns,n,) is a holomorphic function o For a
realized. This is analogous to the situation encountered hergg|iection of S@5) rotors, the superspin coordinates are
The local charge operator in the f8Dtheory takes the form  hemselves functions of the lattice sitesand¥[n,(x)] is a

of the angular momentum in thg-ns plane as given by Eq. fynctional of the superspin coordinates at each site. For the

(1.1). When doubly occupied sites are locally projected outrgjected S@6) models, this functional is restricted to take
the local charge operator, or the angular momentum in thgne form

n.-ng plane, takes only negative values. Since the chemical

potential couples directly the angular momentum in the —

n;-ng plane, it plays the role of a fictitious magnetic field Wna(x)1="f(z(x),n, NI e722972, (3.8
threading every S(®) rotor in then;-ng plane. The Landau X

level spacingi w, is analogous to the charge gAp encoun-  where f(z(x),n,(x)) is a holomorphic functional of(x)
tered here, and both are taken to be infinity in the projected=n,(x) —ing(x).

models. After the projection, the Hamiltonian in the Landau  The formal but precise analogy between the two types of

level problem retains its @) symmetric form, projection allows us to introduce the concept of a chiral
SQ(5) rotor. This is a system of rotors with $8) invariant
H=V(X,Y) (32 potential and coupling, however, the rotation within the

n.-ns plane is chiral, i.e., only one sense of the rotation is
allowed. Such a system of chiral 88)rotors is described by
Jhe wave functional in Eq3.8).

although a new quantization condition is imposed betwéen
andY, as given by Eq(1.3). This is analogous to the obser-
vation we made here that the Hamiltonian formally retains
SQ(5) symmetric form after the projectiof2.10), but the
guantum dynamics is changed due to the nontrivial commu- V. SO(5) SYMMETRY OF THE GROUND-STATE
tator betweem; andns. In both cases only a part of the full ENERGY

symmetry multiplets remain after the projection. However,

the formal symmetry of the Hamiltonian has direct physmalSO(S) model, we are now in a position to explore the phase

manifestations despite the projection. For example, in th%iagram of this model. As we commented earlier, the pro-

LLL problems, semiclassical orbits of the guiding center co-. . . T
ordinF;tes are still @) symmetric. In our czgse w% <hall see jected S@5) model describes the competition and unification

-, of the spin liquid, AF and the SC states. In the original
%nprojected S®) symmetric model, not only are the AF

SQ) invariant despite the projection. and SC states degenerate in energy, but they are also degen-

P_erhaps the most explicit way to ESI"?‘bI'Sh the PrECISE COMs ate with all the intermediate coexistence states. This points
nections between these two problems is to consider the COM 1t A route from AF to SC with no potential barrier, and
straints on the wave function. In the symmetric gauge of theil y
LLL problem, the annihilation operator for the cyclotron co-

ordinates takes the forth

Having discussed the general notions of the projected

ntroduces the concept that the metal-insulator transition in
the highT, systems can be viewed as a smooth rotation of
the SQ@5) superspin. One of the key questions to be an-

a= a7+ 204, 3.3 swereq in this work is what happens to the picture in the case
of projected S@b) symmetry.
where z=X+iY and z=X—iY. Projection onto LLL re- In anticipation of the competition of the states discussed

above, we construct a class of variational wave functions in

quires _
the coherent state representation:

av(z,z)=0, (3.4

- ; T
which determines the form of the LLL wave function to be |\P>_1:I {€0s8(x) +sin 6(X)[Mq(x)ta(X)

W(z,2)=f(z2)e 7%, (3.5 +AOLOTHQ). 4.1
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Here |Q(x)) denotes a local singlet state defined by 2

()] QX)) =tn(x)|Q(x))=0 and|Q) is a product state of <‘I’|Sz|‘1’>:<‘1’|<2 S(X)> V)

these local singletdQ)=11,|Q(x)). 6(x) is a local varia- X

tional parameter describing the competition between long- =N2 sir? 6+ N sin* 9(1—mi), (4.9

range order and quantum disorder. F{x) =0 our varia-

tional wave function describe a spin singlet ground statewhereN is the number of lattice sites. EquatigA.4) de-
while a nonzero value of describes a coherent state formedscribes a half-filled state with a macroscopiceNeagneti-

by the local singlet, the magnon, or the hole pair state. Thigation, and vanishing uniform magnetization. Furthermore,
wave function is a generalization of the coherent state dethis state is composed as a linear superposition of eigenstates
scription of a AF state in terms of a magnon conden&ate. With different values of the total spin, and the fluctuation of
As we shall see from Ed4.2), sin 29 stands for the length of  the total spin scales likg(S”) o\, just as one expects from
the SQ@5) superspin vectorm,(x) and A(x) are general a standard N& state.

complex variational parameters describing the local ampli- On the other hand, fom,=0 and sin2+0, |¥) de-
tude for magnons and hole pairs. We notice that this wavécribes a pure SC state with the following properties:
function satisfies both the Gutzwiller constrai@ 10 and

the hard-core constraint for magnons and hole pairs exactly. _ + N

It is easy to see that P <\I’|Q|\P>_<\P|§ tata()| W) =N'sirf 6,

([N (x)| W)= 2 sin 20(x)REM,(X)], <‘I’|N1+iN5I‘I’>=<‘I’|§ (n1+ins) ()| ¥)

V2

1 =N%sin20(m1+im5),
(¥[ny(x)| W)= §Sin 20(x)Re A(X)],

(P|Q?|¥)—(¥|Q|¥)2=Nsirf #cog 6. (4.5

Equation(4.5) describes a state with a finite doping density
and a finite SC order parameter. Just as in the standard BCS
case, this state is composed as a linear superposition of
where Re and Im denote the real and imaginary parts of &igenstates with different values of the total charge, and the
complex number. The coupling terms in the projected0O fluctuation of the total charge scales lik&(Q?) —(Q)?
Hamiltonian depend only om,(x), n.(x), and ng(x). « /N, just as one expects from a standard SC state.
Therefore, the coupling energy depends only on the real part However, besides these tvpoire states, there is a class of

of m,(x) while it depends on both the real and imaginary mixedstates which interpolates between the pure AF and SC
parts of A(x). Therefore, for discussing the ground-statestates. Takingm;=sina and m,=cosa, we see that the
wave functions, we can assume without loss of generalitynixed states have the following property:

thatm,(x) is real andA(x)=m;(X)+ims(x). The normal-

ization condition{ | W) =1 can be implemented by the con- (¥|Q|¥)=Nsir? §sir? a,

straint that

1
(WIns(0)|¥) =5 sin 2600 1m[A(X)], (4.2)

1
(\If|N1+iN5|‘lf>=N§sin2ﬁsina,

m2(x)=(mi+mé+m2)(x)=1. (4.3
Therefore, we see that although we have completely pro- 1
jected out the particle pair states, the local degrees of free- (¥|N,|¥)=N—sin 26 cosa. (4.6
dom can still be represented by a vector on a five- V2

dimensional sphere.

Uniform states are obtained by taking all parameters to b
constant. ForA=0 and sin 2#0, our wave function¥)
describes a pure AF state with the following properties:

Therefore, we see that there is a continuous family of inter-
fhediate mixed states interpolating between the pure AF state
at half-filling and the pure SC state with finite doping den-
sity. As the S@5) angle « rotates continuously from a pure
AF state witha=0 to a pure SC state with= 77/2, the hole
density of the mixed state interpolates continuously between
these two limits. Therefore, our wave function gives a uni-
fied description of AF and SC and points out a precise route
from AF to SC as the doping level is varied. In order for this
route, or small deviations from this route, to be physically
realized in the highF, superconductors, we have to demon-
strate that there is no large energy barrier for the intermediate
mixed states, or that the ground-state energy is approxi-
<‘I’|Sa|‘1’>=<‘1’|z ie“ﬁyt};ty(x)hlf)zo, mately independent of the $8& mixing angleq. .In particu-

X lar, we have to show that the energy barrier is independent of

<‘1’|Q|‘I’>=<‘1’|§X: thtn(x)| V) =0,

(WIN ) = (W[ 1,(0] W)= N—sin 26m,,

2
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the Hubbard energy, in the limit of largeU. In the follow-  systematically investigated as asléxpansion. Assuming

ing, we shall investigate this question. uniform ground states, we have studied the effect of zero
The energy functiona{W'|H|¥') describes the coupling point fluctuations in Sec. VII and found that at= u., the

between these five-dimensional vectars,(x), and it is intermediate mixed states have slightly higher energy than

given by the AF and SC state. Therefore, quantum fluctuation leads to
a slight breaking of the projected $&) symmetry. The im-
(P|H|¥)=E(8(X),my(x)) portant point here is that this symmetry breaking effect can

be systematically controlled in the semiclassica éxpan-

sion, and certainly is independent of the Coulomb energy
scaleU. This fluctuation would induce a first-order transition
and predict phase separation of AF and SC stateg at

= u.. However, there are also other competing interactions
such as nearest-neighbor and next-nearest-neighbor interac-
tions which tend to reduce the barrier, and could also lead to
nonuniform states like stripes. Due to the complexity of the
calculations, we shall defer the detailed studies of these com-
peting effects to future works.

Js . .
=5 > sin20(x)sin 20(x’ )M, (X)m,(x")

Je . .
-7 > sin20(x)sin 20(x”)m;(x)m;(x")

xx'

+AsY, sir? 6(x)m2(x)

+Z°§ sirt 00 mi(x). 4.0 V. PHASE DIAGRAM

This ground-state energy functional describes a systems of N this section we investigate the phase diagram of the
coupled rotors satisfying the constraif#.3). At the point  Projected S@) model within the framework of the varia-

~ . . ._tional wave function(4.1). Taking uniform values of the
Jc.=2J5 andA.=Aq in parameter space, this rotor model is

X i X variational parameter®), my,=cosa, m;=sina, and m
tehﬁzcxgrEQS) symmetric. This is a central observation of —m,=mg=0, the variational energy in E¢4.7) reduces yto

From this consideration we learn a very important lesson E(6,a)
about the compatibility of the Mott insulating gap and the N
idea of a smooth S@®) rotation from AF to SC. As we have
seen, the_ large asymmetry between the charge and spin gap +A.si? 6cof a+ K, si gsifa. (5.0
at half-filling necessitates the removal of {@éx) >0 part of
the S@5) multiplets; therefore, the dynamics close to half- In the following, we shall mainly study the &) symmetric
filling has to be modified. But the static potential governingcase, and takel.=2J;=2J. Defining x=sin*6 and y
the transition from AF to SC can remain &Dsymmetric, =coSa, and the dimensionless coupling constants
and in particular, the energy barrier separating these twe=g(x,y)/4JN, s;=A44J and 5,=A /4], we obtain
states can remain small in the limit where the Mott insulating
gap tends to infinity. €(X,Y) =X2— X+ B X+ (85— B)Xy. (5.2)

We also observe a crucial difference between the pro- o ) )
jected and the unprojected 8) models. In the unprojected We shall minimize Eq(5.2) with respect tax a_ndy, subject
SO(5) model with the full S@5) symmetry, AF and SC to the condition that &x,y<1. The phase dlagram can be
states are degenerate at half-filling, and the rotation betwegplotted in the two-dimensional parameter spacé gindd.
these two states can be continuously performed withoutVe notice thate(x,y) depends linearly ory: therefore, for
changing the density to going away from half-filling. This s.>'5, we obtainy,,;,=0 and
case is similar to the well-known degeneracy between the
charge-density wave state and thgave SC state for the 1_'3C ~
negativeU Hubbard model at half-filling. In the projected 0<Xmin=—7%—<1 for —1<éd.<1,

SQ(5) model, where all particle pair states have been locally
removed, the S®) rotation from the AF to SC states are
accompanied by the continuous change of the hole density,
and a pure SC state can only be reached at a finite critical ~

hole doping density.= sir? 6. While the unprojected S©) Xmin=1 for &c<—1. 5.3
symmetry is only valid at half-filling, the projected $8) s
symmetry can be valid for a range of doping concentration
0<p<p., since all these doping concentrations correspond 1- 5,

to the same value of the chemical potenjiak w. at which O<Xmi”:T<l for —1<65<1,
the ground-state enerdy.7) is SQO(5) symmetric.

However, it should be pointed out that the projected
SO(5) symmetry atu=u. has only been demonstrated
within the variation_al me_an-fi_elq approximation. This corre- Xmin=1 for d;<—1. (5.9
sponds to the semiclassical limit, and becomes exact only in
the largeslimit, wheres labels the representation of the local From these equation, we can determine the phase diagram as
SQ(5) group at a given site. Quantum fluctuations can beshown in Fig. 2.

J
=—Jgsif26cos a— zcsin2 20sir? a

Xmin=0 for 8.>1,

imilarly, for 5,<'8, we obtainy,i,=1 and

Xmin=0 for &,>1,
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FIG. 3. Density versus chemical potential relation in the pro-
= Ion;’:;;ag:y“ jected S@5) model. Unlike the case of a generic first-order transi-

tion, the ground state in the density range @<p. is uniform,
rather than phase separated.

i As we see, for densities in the rangeep<p., the sys-
tem is infinitely compressible sinc#p/du=0o. For u> u,
s or /;>pc, the system has a finite compressibility @f/ du
=1/8J.
It is interesting to plot both the AF and the SC order
parametergn,) and(n,) as a function of the density for the
whole range of 8p<1. We will restrict ourselves to the

FIG. 2. Phase diagram of the projected(SOmodel in thes, .
~ g . prol ( S case of 6<6,<1 where the undoped state is an AF state. We
versusd, plane. Phase boundaries are depicted by the solid lines

Variation of the chemical potential traces out a one-dimensionaf;)é]aé?etrhe following doping dependence of the SC order pa-
trajectory as shown on the dotted line. ’

, , , [\/P(l_l)c) for p<pe,
There are seven different phases on this phase diagram. (ny)y= (5.7
Xmin=0 corresponds to a quantum disordered singlet state Vp(1=p) for p>p.
with no condensed bosons,;,=1 andy,,;,=0 correspond and the doping dependence of the AF order parameter:
to a quantum disordered state with completely filled hole
pairs. X,i,=1 andy,,=1 correspond to a quantum disor- _[N2(A=po)(pe—p)  for p<pe, 59
dered state with completely filled magnons<®,,;,<1 and (n2)= 0 for p>p,.. :

Ymin=1 describe a pure AF phase, whileBmin=1 and o o\ opaviors are depicted in Fig. 4.

Ymin=0 describe a pure SC phase. Whed < 6;=J.<1 a We note several interesting features of the phase diagram.
continuous family of mixed AF/SC states labeled byNa freeqi st of all, we can use the energy functioitdl?) as a start-
superspin angle @a<w/2 is realized, while forés=4. ing point for a finite-temperature classical fluctuation analy-
<—1 a continuous family of quantum disordered states lasis, and estimate the transition temperature due to the classi-
beled by a free superspin anglec@<7/2 is obtained. cal fluctuations. Within such a framework, the three-
The system traces out a one-dimensional trajectory in thigimensional AF Ty) and SC {.) transition temperatures
two-dimensional phase diagram as the chemical potential igre proportional to the stiffness of the spin and the phase
increased, as depicted in Fig. 2. Increasing the chemical pgtuctuations, which are in turn proportional tm,)?> and
tential decreases tﬁé\c parameter while holdings constant. (n,)?, respectively. Therefore, Fig. 4 gives an approximate
85 describes the degree of quantum spin fluctuations in thestimate of the transition temperatures. For smallwe see
system, since in the AF phase, the size of thelNeoment  that there is a sharp drop @} and a maximum off; at p
=1/2. The system is an AF insulator at dopipg0 and a
1 2. pure SC state fop> p.. The reason for a maximum af; at
Mar=V2(1=55) (5.9 p=1/2 is due to the strong correlation of the charged bosons.

o i The charge bosons have a hard-core interaction, therefore,
decreases with increasing,. For §,<1, the system goes they are insulating at both="0 andp=1 and have maximal
through a phase transition from AF to SC at u.=A;

—A;. At this critical value of the chemical potential, tite Order Parameter
parameter remains fixed, but tlae parameter changes con- <ny>
tinuously from 0 tow/2, and correspondingly, the density i
changes from 0 to
1-6.
pc=Sirf 0=xmin=Ts. (5.6)
Pe 0.5 1 p

This behavior gives a density versus chemical potential dia- FIG. 4. AF ((n,)) and SC (n,)) order parameters versus den-
gram as shown in Fig. 3. sity in the projected SG) model.
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charge stiffness gh=1/2. We can perform a rough transla- infinite compressibility can be ensured by symmetry. Both of
tion of this optimal doping value in our effective model to these properties are also shared by the projecte¢5)SO
the microscopic model. Since our effective model is definednodel. These models are on the verge of phase separation
on a unit cell with twice the lattice spacing of the micro- into AF and SC phases, and the infinite compressibility is a
scopic model,p=1/2 therefore describes one hole pair perresult of the projected SB) symmetry. It indicates that
four sites in the microscopic model, or a doping>xef1/4  small perturbations, such as next-nearest-neighbor interac-
=25% in the conventional language. This crude argumenfions, quantum fluctuations, and quenched disorder, will be
tends to overestimate the value for optimal doping, since iyery important to determine the true ground state. With such
neglects the effects of unpaired electrons. However, consigsertyrhations, the ground state is expected to be unstable
ering the qrudenes; of the estimate, it |s.st|ll reasonably closg)yard the experimentally reported textures such as the spin
to the optimal doping«=15% observed in the La-Sr-Cu-O 555 stripes, and incommensurate spin-density waves.
family of high-T; superconductors. . . Next let us investigate the phenomenological consequence
In the regime of 6<p<<p., the system is a coherent mix-  this remarkable property. One of the most puzzling prop-
ture of AF and SC order. For this entire range of densitieSgties of the highF, superconductors is the constant chemi-
the system has a projected GDsymmetry within the varia- .5 notential in the underdoped samples. For La-Sr-Cu-O
tional approximation discussed above. The projectedS50 gystems, where the doping level can be varied continuously
symmetry me}nlfests itself in terms of a infinite cpmpressmll-by the Sr concentration, this effect has been dramatically
ity in the region 6<p<p. and, as we shall see n next sec- phserved in the angle-resolved photoemission spectroscopy
tion, a charge mode with a dispersion relatior-k®. Since  (ARPES experiments and the constant chemical potential
such a state is rather unusual, and maybe highly susceptibifysists from the weakly doped insulator to the optimally
to density fluctuations, we would like to discuss more de-goped superconductdt.In fact numerical calculations on
tailed physical properties in this region. _ the Hubbard model also reveal similar divergent behavior of
First let us comment on the fact that there are familiarne compressibility as the metal-insulator transition is ap-
physical systems whose uniform ground states are '”f'”'te%roached from the metallic sidé.
compressible. The fre_e boson model is certalnly such_ an ex- The simplest explanation of the small chemical potential
ample, and the density mode also has»ak? dispersion  ghift is a two-phase mixture with different densities at a first-
relation. But the infinite compressibility is due to the absence, qer phase transition. If the system globally phase separates
of the interaction, which is not characteristic of the stronglyjnto two different spatial regions with different charge den-
interaction system considered here. A less trivial example igjties but the same free energy densities, the added charges
the spin-1/2XXZ ferromagnetic Heisenberg model, given by only change the proportion of mixture of the two phases and

the Hamiltonian, do not change the energy, therefoge,/dp=0. However,
this situation of global phase separation can certainly not
_ occur in a system with long-ranged Coulomb interaction and
H—J%‘, (S'S+9/S/+AS'S), (5.9

is ruled out in the real high-, system.
A phenomenon possibly related to the tendency of phase

whereJ<0 and the sum extends over nearest-neighbor siteseparation is the formation of strip&3° A stripe state can
of a square lattice. This model can be interpreted as quantuige viewed as microscopic phase separation of AF and SC
hard-core boson model, where the fully polarized spin-dowrinto alternating regions, where each region has different
state could be identified with the vacuum of the bosons, theharge density and the same free energy density. However, a
XY part of the Hamiltonian describes the hopping of thecrucial difference between the global phase separation and
bosons, and the last term describes the nearest-neighbor @tis picture of microscopic phase separation is that the stripe
traction between the bosons4f>0. WhenA>1, the sys- state has infinitely many surfaces between AF and SC, and
tem is in the Ising limit, and the spontaneous breaking of thehe surface energy makes a finite contribution to the total
Z, symmetry implies phase separation of the bosons. On thenergy in the thermodynamic limit. In this picture, doping
other hand, when @A <1, the system is in th&XY limit, can be accomplished by converting AF stripes into SC
and the ground state is a superfluid. Therefore, the anisotropstripes, thereby creating more surfaces separating AF and SC
parameter describe the competition between superfluidityegions. Finite doping density therefore leads to a finite den-
and phase separation. At=1, the system has a $2) sym-  sity of surfaces and the accumulated surface energy would in
metry and the dispersion relation becomes quadratic. Differgeneral lead to a shift of the chemical potentiader a ge-
ent directions of the ferromagnetic polarizations are degenreric situation Additional physical conditions are needed to
erate and can be changed without any energy cost. Since tle@sure the constant chemical potential in the stripe phase.
z component of the ferromagnetic polarization is identified Therefore, the absence of the chemical potential shift
with the total density of the hard-core bosons, the(BU places a very strong constraint on possible theoretical expla-
vacuum degeneracy implies infinite compressibility of thenations. The projected 8 model proposed in this work
corresponding boson system for the entire range of bosooffers a possible explanation for the absence of chemical
densities B<p<1. potential shift. At a critical value of the chemical potential

These two examples illustrate that there is nothing intrinawhere the AF and SC states have degenerate energy density,
sically pathological about having a system with infinite com-we can have three situations, where the intermediate mixed
pressibility. The second example is more generic, and showstates have higher, lower, or degenerate energy compared to
that uniform states with infinite compressibility can be ob-the AF and SC states. When the intermediate states have
tained in systems on the verge of phase separation, and tigher energy, the system will go through a first-order phase
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transition atu= w. and this will lead to global phase sepa- which is implicitly dependent oV, but there is no explicit
ration into AF and SC regions. On the other hand, if thedependence ollV. We have verified that all three methods
intermediate states have lower energy, there exists a range give the same long-wavelength spectra for the collective
chemical potentiak.; < u< uq, where the mixed phase has modes in the limit of low boson density. In the next section,
a uniform and continuously varying density. In this case,we shall present another calculation based on the continuum
duldp#0 is obtained. When the regiom<u<ue,  effective Lagrangian method, which also reproduces the
shrinks to zero, we obtain the limiting $& symmetric case same spectra.

where the system is on the boundary between a first-order To simplify presentation, we shall concentrate on the case
transition and two second-order phase transitions. In thigvhere the ground-state energy functiot@l) is SQ5) sym-
case,duldp=0 for a range of densitiesOp<p.. There-  metric, i.e., for coupling constantd,=2J.=2J and A,
fore, if we restrict ourselves to ground states where the den=A =A. We choose the direction of spontaneously broken
sity is not globally inhomogeneous, the absence of theyymmetry to be(t,)=(tI)=x and (t,)=(t})=y. The ex-

chemical shift directly implies S@G) symmetry. _ tremal condition can be easily determined to be
Within this model, we can therefore define a experimental
procedure to measure one of the most crucial parameters of s o s 4J—A
the theory, namely. . Using the experimental ARPES data XHY=ri=—w (6.9

for La-Sr-Cu-O system we would identify, to be approxi-
mately the same as the optimal doping density. We recallhe combinatiorx®+y? expresses the fact that the classical
that p.. is also a measure of the degree of the quantum spiminimum is S@5) symmetric. We can therefore write
fluctuation in the system. For the bilayer materials such as=r cosa andy=r sin«. Expanding the boson operators as
Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors, the quan-

tum spin fluctuation are stronger due to the interlayer spin t=x+a,, ty=a,, t,=a,, ty=yta,, (64
exchange, and we would predict that should be less than

. ) we obtain the following quadratic Hamiltonian
the optimal doping value.

VI. COLLECTIVE MODES H=(A+2Wr2)§ (aiax+aﬁah)+WX2§ (ay+ay)?
Having discussed the ground-state properties and the 3
phase diagram of the model, we are now in a position to WY, (aﬁ+ah)2—§ > [al(x)+ay(x)]
study the collective excitations of the model. We have ar- X (x,x")

gued that the ground-state energy can remaitbBs&/mmet-

ric despite the projection. However, the projection does af- X[al(x")+a(x)]-J X [af(x)an(x’)+H.c]
fect the collective excitation spectrum near half-filling. (x,x")

Nonetheless, as we shall see, there remains a unique signa-

ture of the projected S@) symmetry in the collective exci- +2Wxy>, [af(x)+an(x)][af(x)+ax(x)]
tation spectra. X

In principle, the collective excitation spectra can be ob-
tained straightforwardly by studying the quadratic fluctua- — i E [al(x)+a,(x)][al(x’)+ay(x')]
tions around the mean-field minima. The resulting quadratic 2 (x.x") Y Y Y Y
boson Hamiltonian can be simply diagonalized. The main

L . J
complication in the procedure is the hard-core boson con- _ - a0 +a.00tral(x ) +al(x’
straint, which requires 2<§,>[ 200+ 200 L2z () + 2]
tata(X) +titn(x) <1 (6.3) +(A+2Wr?) Y (aja,+ala,). (6.5
X

for every site. There are several ways to implement this con-

straint rigorously. One is to follow the mapping from the We are in particular interested in the collective mode spectra
one-component hard-core boson model toXhemodel and  for the AF insulating state witlx=0, the mixed states with
generalize it to a multicomponent hard-core boson model0<a< /2, and the SC state withk==/2 and how they
One could also convert the above inequality constraint to alonnect to each other.

equality constraint by introducing a boson creation and an- From this quadratic Hamiltonian we can learn a number
nihilation operator for the singlet state. This approach will beof important features. First we notice that the and a,
implemented in the Appendix. For simplicity of presentation, modes are decoupled for all ranges &f 8= 7/2, but most
here we shall adopt a less rigorous approach and introduce amportantly, their dispersion relations are independent of
on-site boson repulsion term and given by

k)=vk, vg=2J, 6.6
WY (tht,+tlt,)? 6.2 o(k)=vsk s €9
* wherek=a|k| anda is the lattice constant. This is indeed a
to our Hamiltonian(2.11) and convert the hard-core con- very remarkable property. A#=0, a, and a, modes are
straint to a soft-core constraint. We shall show later that alhothing but the transverse AF spin wave modes. AF spin
results can be expressed in terms of the order parametevaves are usually viewed as Goldstone modes and their ex-
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istence is due to the AF long-range order. Howeveraas 41— A

changes continuously from 0 /2, the AF long-range or- 5, (1+mp)k?/4+mg, mg= 3 cog a,
der continuously diminishes until it vanishesaat 7/2. The 5= 47-A

reason that the properties of tkeg and a, modes do not (4J) 2, 214 2 TR
change at all is due to the $8&) symmetry of this model, (1 mi/m)k°/16, Mh="23 Sirr a.
since the diminishing AF order is compensated by the in- (6.10

creasing SC order as the superspin angie varied. AS We 15 \\hher massive mode has predominantly spin amplitude

shall see, the, mode is the AF spin amplitude mode @t cparacter, and we see that the gap diminishes continuously
=0, butit beci)mes massless and degenerate withyta@d il it reaches zero ar= /2 to become the massless
a, modes ala=/2. These three modes form a massless yrinjet mode. The lower mode has predominantly SC fluctua-
triplet mode whose existence is purely a consequence of tht?on character, and has a gaplessk? dispersion. In the
SC order. Therefore, as |s.cont|nu0usly varied from 0 t0  ivaq region where both the AF and the SC order param-
m/2, the transverse AF spin-wave modes gradually changgiers are nonzero, one would naturally expect a gapless phase
their character to become the triplet resonance of the SC  q4e corresponding to the SC order. However, in a interact-
state. As we shall see, fqe>u., the 7 triplet mode be- g hoson system, the phase mode is expected to have linear
comes massive. _ _ _ dispersion on general ground. Therefore, what is interesting
At the AF point @=0, the spin amplitude mode, i pere s not the gapless nature of the SC mode, bujtits
decoupled from the SC mod&, and can be diagonalized gyatic dispersion In order to locate the origin of the qua-
separately. The dispersion for the spin amplitude mode hagatic dispersion, we have perturbed the model away from

the conventional massive relativistic form for smiall the projected SG) symmetric point so that a uniform mixed
state is stabilized as a classical minimum. SC fluctuation
W ~4J-A around such a non-§6) symmetric point is gapless and has

2 — 2012 2 2__
(k) =160°(k“/4+my), m,= ] 23 ¢ (6.7 linear dispersion. A quadratic dispersion is only realized at

the S@5) symmetric point. Therefore, the quadratic disper-
On the other hand, we have a massless SC Goldstone mo8i®n is a unique signature of the projected(Ssymmetry

an, with the following dispersion: in the entire range of densities<p.. To understand the
physical origin of this remarkable phenomenon, we notice
w(k)=JK2. (6.9 that a boson system with gapless quadratic dispersion gener-

ally has infinite compressibility. This can be directly seen

This mode is an important prediction of the GDtheory. It~ from the compressibility sum rule
is the counterpart of ther resonance in the AF state. In the )
unprojected S) model, there are two such modes, with =‘7_P_ EI' : T k
, K= =—lim lim y(k,w)~ lim

charge* 2, and they represent gapless fluctuations from AF I 2 0 w0 k-0 @3(K)
to SC at half-filing. In the projected S6) model, the . ] . ) )
charge+2 mode is projected out of the spectrum, however,WhereX(kv“’) is the dyn_aml_cal de_n3|ty cor_relatlon function.
the charge-2 mode remain massless @t u.. It is also a ngause of the quadratic dispersion relatlon,-w.e can see ex-
manifestation of the gapless fluctuation from AF to SC atPlicitly that x(k)=1/k? for smallk; therefore, a infinite com-
half-filling, but the SC fluctuation is holelike, rather than Pressibility is obtained. On the other hand, a infinite com-
both holelike and particlelike as in the unprojected case. wéressibility implies that du/dp=0, i.e., the chemical
see again that a large Mott-Hubbard gap is fully compatiblg®otential is independent of doping. But this is exactly the
with gapless SC fluctuation at half-filing. Experimental de-Prediction of the projected S6) model. For 6<p<pc, the
tection of this mode could provide a important test of thechemical potential is pinned at the 8D symmetric point
projected S(m) Symmetry_ /..L:/.Lc, Whel’e the Supel’spln vector can pOInt n any dII’eC-

The a, and thea, modes also decouple in the pure Sction. To accommodate a long-wavelength fluctuation of the
state with a=m/2. However, their physical interpretation hole density, the system rotates into another degenerate mini-
changes. Tha, mode becomes gapless at this point with theMUm with a different superspin angieand a different hole
same dispersion as in E¢.6). Therefore, the three modes density. For this reason, the chemical potential does not
a,, a,, anda, form a gaplessr triplet mode of the pure SC change and the system is infinitely compressible.
state, and represent the gapless fluctuation from SC to AF at
= ¢, but with a finite hole density. given in Eq.(5.6). VII. QUANTUM CORRECTIONS TO THE MEAN-FIELD

The dispersion for the,, mode is given by SOLUTION

. (6.11

At the mean-field level, the ground-state energy of the
Hamiltonian(2.11) with Eq. (6.2) depends on the AF and SC
order parameters andy only via their combinatior ?=x?2
+y? reflecting the S(®) invariance of the mean-field result.
and has the natural interpretation of a linearly dispersingHowever, the zero-point energy of the bosons in the qua-
phase Goldstone mode of the SC state. dratic Hamiltonian gives a correction to the ground-state en-

In the intermediate mixed state withQv<w/2, thea,  ergy due to quantum fluctuatiori€Calculations of the quan-
and thea;, modes are coupled. Diagonalization of thesetum fluctuation effects at the $8) spin-flop transition have
modes gives been studied in Ref. 3LAs we will show below, this cor-

Wy2 4J—-A
w(k)=2Jmk, mﬁz—yzz

3 2 89
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rection turns out to depend off andy? separately.
For the soft-constraint casg; can be expressed as

E1:%§k: Z wi(K)—2(A+2Wr?), (7.2

wherew;(k) are the four collective modes described in Sec.

VI (although extended to all values &fin the Brillouin
zong. In a systematic ¥ expansion, this correction to the
ground-state energy scales likes,1and is therefore small in
the semiclassical limit. Alternativelyk; can be seen as a
small correction to the mean-field energy for small values
of the parametee=r2W/2J=1— A/4J. However, contrary
to Ey, E; also depends on the superspin angl@nd thus
produces a small SG)-symmetry breaking.

We now evaluate the-dependent part of Eq7.1) in the
small- limit. We thus parametrizg=1—-2sirfa (—1<y
<1), differentiate the expressidi.1) with respect toy, and
expand it up to second order in By further transforming
(cosk,+cosk,)/2=1—q with 0<q=2, the derivative oE;
can be expressed as the sum of two terms

aElegAJrEia, (7.2
where
EiA_ 2 Ga
EiB_ZJJod q D(q)GB, (7.3
with
[(1-Va) €]
Gp==—T-—=——+0(€?), 7.4
A 2\/& + (6) ( )
_ T 2
GBE_NH 1) (x Va—1-x—a) e Lo,
4(1+aq) g*
(7.9

and the density of stateB(q) is defined as

1
D(q)= FJ dk, dky o[ q— 1+ (cosk,+cosky)/2].
o
(7.6

Unfortunately, the terms of the expansion inGg diverge
when integrated ovay. It is thus convenient to carry out the
transformatiorg= ez in Gg andthenexpand in powers of.
We obtain

ol ow  an
T ey W

For smalle, the integral inz can be extended t® and we
obtain from Eq.(7.3

Eijg=2J EJ dzD(ze) Gg
0

(T
a

+0(€%lne). (7.9
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While in evaluating Eq(7.8) we only need the density of
states aj=0, D(0)= "1, for the first termE], one needs
D(q) in the whole domain &qg<2 However,E;, is inde-
pendent ofy and thus it merely fixes the value of the critical
chemical potential. A numerical integration yields
Ejo=0.28J€. (7.9

By integrating overy Egs.(7.9) and(7.8), we finally obtain
the total contribution to the ground-state energy correction:

5 =0.14ye— i[e(1+)()]3’2+ O(€?In €)+ const.
2J 37
(7.10

E, thus lifts the degeneracy as a functionyofand initially
favors the pure superconducting phage=(—1). A small
chemical potential term—pu'y?=—u'r?(1—x)/2 with
w'r2123=plr?2/2)=—0.28+ (2/3m)(2€)%? restores the
degeneracy between the pure superconducting 1) and

the pure antiferromagneticyE& +1) phases. However, due
to the convexity ofE; as a function ofy there is always a
barrier (xJe*?) between the two phases since the mixed
phase always has a higher energy. This means that' at
=pu. and for intermediate densities the system prefers to
phase separate between the two pure phases rather than
choosing the mixed phase. However, the important point is
that this barrier remains small in the limit—oco.

In view of the symmetry breaking effects of the quantum
fluctuations, it would be interesting to see whether there is a
limit when the wave functiori4.1) and the projected SO)
symmetry become exact. Rokhsar and Kotfidrave shown
that these types of wave function are actually exact in the
limit of infinite dimensions. Therefore, besides the &k-
pansion, we could also use adléxpansion(whered is the
space dimensignto systematically control the S8 sym-
metry breaking quantum effects. Besides quantum fluctua-
tions, there are also other symmetry breaking terms. Nearest-
neighbor and next-nearest-neighbor Coulomb interactions
also break the SB) symmetry, however, their corrections to
the ground state are concave, i.e., the energy of the interme-
diate states are lowered. Therefore, they can also lead to
uniform mixed states in some region of the phase diagram.
The detailed study of all these competing effects will be
carried out in subsequent works.

VIIl. LOW-ENERGY EFFECTIVE LAGRANGIAN

While the projected S®) model defined on a lattice en-
ables us to make some connection to the underlying micro-
scopic physics, for most discussions concerning the long-
wavelength and low-energy degrees of freedom, it is
desirable to have a effective continuum Lagrangian. Such a
formulation can be directly obtained by taking the long-
wavelength limit of the projected bosonic model discussed
previously. However, in order to make the connection to the
unprojected S() model clearer, we shall motivate our dis-
cussion from the original S@) effective model.

The effective Lagrangian for a fully S6) symmetric
model takes the form of
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(A2~ S(ana2=V(N), (8D L= 20N> (Nsny—Nydkng)— 5 (dna) 2= V(n).
(8.6

This is exactly the Lagrangian counterpart of the(S@ro-

andV(n) is a scalar function of the superspin magnitunie jection procedure_ discussed previously_ in the _Hamiltonian
language. Dropping the second-order time derivative terms

only. There are three important symmetry breaking effeCt?emoves half of thehigh-energy degrees of freedom, and

connected with the presence of a large Mott-Hubbard 98 adefines the canonical conjugacy of the dynamical vari-

First is an asymmetry in the scalar potential, which can be . . . : .
described by a additional term ables. In particular, the conjugate variablergfis nothing

but ng itself, sincep,= 6L/ 5d;n;=2ng. Standard quantiza-
tion procedure requires the canonical commutation relation
Vy(n)=+ 9(n§+ n), (8.2) [nl,pl]z i, which in this case just repr_oduces Efy.4). This
2 confirms the fact that the S8 projection does not change
_ N . ) the form of the interaction potential, only the commutation
which for positiveg favors AF at half-filling. Second is the g|ation betweem, andns.
asymmetry between the spinyd) and the charge)() sus- It is easy to see that the low-energy effective Lagrangian
ceptibilities, which modifies the kinetic energy to (8.6) produces exactly the same long-wavelength collective
mode spectrum as the projected (SOHamiltonian (2.11)

X
£=3

where y measures the superspin susceptibiljgymeasures
the superspin stiffnesk=x,y denotes the spatial directions,

Xs 2, Xc 5 defined on a lattice. To facilitate the comparison, we take the
2 (diNa)"+ 2 (dn;)*. (8.3 SQ(5) potential to be

The last symmetry breaking effect is due to the chemical _ f 2 V_V 4

potentialw, which enters the Lagrangian as a gauge coupling Vin)= 2 Ea: Ma 4 Na, 6>0. @7

in the time direction, and modifies the charge part of the ) ) o
kinetic energy to Assuming broken symmetry in the, andn, directions, we

find that then; and n, modes always decouple, and they
Ye have a linear spin-wave dispersion relation with= /p/ xs.
?[(atnﬁ wNs)2+ (dns— ung)?]. (8.4  The Euler-Lagrangian equations of motion gives the follow-
ing dispersion relation for the; andn, modes:

Combining these three symmetry breaking terms, we obtain 1
- 214
X X 2 4p ‘
£=Z2(an,) >+ 2Ly + ung) >+ (dNs— puny)?] S By ©8
2 2 _k2_|_ -
p g Xs Xs
—E(akna)z—V(n)— §”i2 for the AF state with(n;)=0,(n,)#0,
Xs Xc 1 2
:?(3t”a)2+ ?(3t”i)2+ﬂ)(c(n5€7tn1_nlﬁtns) Epgk
w’= (8.9
2. _ P2
MXc—9 p —k
+ 7= S (0na) = V(). (8.5 Xs

for the SC state witlin,)#0,(n,)=0, and
In the presence of a large Mott-Hubbard gap, all these three

symmetry breaking terms are of the order Wf i.e., . * 1 . o4

~g~puc~U. Therefore, this Lagrangian contains Chigh- Z(1+Sm2aC°§ @)pk

energy degrees of freedom of the orderlbf However, as w?= oscola (1 (8.10
already observed in Ref. 1, at=u.=9/x., their effects + (_5p Sir? a+ ﬁ) k2

cancel completely in the time-independent part of the La- Xs 2 Xs

grangian, and the static potential is &Dsymmetric just as  for the mixed state with(n?)=(8/W)sirfa and (n3)
in the original unprojected model. We also observe that near. (8/W)co€ «. These dispersion relations agree exactly with

the AF/SC transition point wherg~ u, the first-order time  he |attice model results at the projected (SOsymmetric
derivative term is of the order of 1. Furthermore, in the spiritpoint if we make the following identification:

of the low-frequency and wave-vector expansion, we only

need to retain the first-order time derivative term in the 1

charge sector and can drop the second term in the above p=2J, Xs=53, 0=2(4J-4). (8.11)
Lagrangian. Combining all these considerations, we obtain

the following low-energy effective Lagrangian near the The effective Lagrangian can be easily used to discuss ef-
AF/SC transition region, which is free of any parameters offects of S@5) symmetry breaking. The simplest form of
the order ofU: symmetry breaking is increasing the chemical potential be-



13082 ZHANG, HU, ARRIGONI, HANKE, AND AUERBACH PRB 60

W (k=0) W(k=0)

W~k ? W~k

(@ p, P (b) P p

FIG. 5. Evolution of the collective mode spectra as a function of
density in the projected S6) model. (a) shows the gap towards
spin excitations. Charge excitations are gapless for the entire region
of density, however, the dispersion relation changes faork? to
o~k at p., as indicated inb).

. . . FIG. 6. Pictorial representation of a chiral @Dsphere.
yond the critical valuge., so that a pure SC state is realized.

The chemical potential enters the effective Lagrangiarjection. Dynamics of a vector pointing anywhere between the
through the gauge coupling in the time direction via the fol-north pole and the equator is also partially affected by the
lowing substitution: projection, but the symmetry of the static potential bears a
unique signature.
dny=diN1+ ouNs, dNs=dins—ouns,  (8.12
IX. CONCLUSION
wheredu= u— u. is the deviation of the chemical potential

away from the critical value. In this case, the spin-triplet The main purpose of this paper is to introduce the concept

excitations acquire a finite mass gap, with the following dis-Of Projected S@) models and discuss the properties of this
persion relation: model in connection with higf~ superconductivity. The

projected S@) model describes the low-energy and long-
pk?  A(pu— e distance bosonic degrees of the freedom near the AF/SC
=—t— (8.13  transition. We showed that the Gutzwiller projection can be
Xs Xs implemented analytically on every site in the GDtheory.
and the mass gap increases with increasing doping in the SI@ the presence of a infinite Mott-Hubbard gap, we show that
state. static properties of the model can remain(50symmetric,

We summarize the behavior of the collective modes obwhile the modification of the dynamics can be completely
tained in the previous two sections in Fig. 5. We see thatast into a nontrivial commutation relation between the two
while there are significant modifications of the collective SC components of the 38 superspin. Unlike the un-
mode spectra in the density regime<p<p. from the un-  projected S@) models which can only have the full dy-
projected S@) symmetry, the spectra beyond is essen- namic S@5) symmetry at half-filling, the projected $8
tially identical to the behavior expected from the unprojectedmodel can have static 8 symmetry at a critical value of
SQ(5) symmetry. This should be expected from our generathe chemical potential.. and for a finite range of doping
considerations about the Gutzwiller projection without muchO<p<p.. At p=0, the system has an AF ground state and
detailed calculations. We argued that the only effect of thezero compressibility. In the intermediate regime p<p.,
Gutzwiller projection is to change the quantum commutationthe system has mixed AF and SC order and infinite com-
relation between the SC components of the supenspend  pressibility. Forp>p., the system has a pure SC ground
ns. However, forp>p., the system is in a pure SC phase state; the SC order parameter rises to a maximal value before
where these components acquire classical expectation valuésdecreases with doping. At the projected (§0symmetric
In this case, the modification of the quantum commutatiorpoint, we can understand precisely the evolution of the col-
relation does not have any significant effect. This argumenkective modes. On the AF side, we have two gapless spin-
can also be illustrated by a simple picture oftdral SO5)  wave modes and a gapless charge mode describing the gap-
sphere, as depicted in Fig. 6. less fluctuation from AF to SC. In the intermediate density

In this picture, the north and south poles represent theegime 0<p<p., the physical properties of the spin waves
three AF directions, and the equatorial plane represents themain unchanged, while the massive spin amplitude mode
SC directions. The sphere is perfectly (8D symmetric. gradually decreases its energy and merges with the two spin-
However, the chemical potential along the pole direction actsvave modes ap=p.. The charge mode in the intermediate
like a fictitious magnetic field which restricts the sense of thedensity regime is gapless, but has a quadratic dispersion re-
rotation in the SC plane. Small oscillations of a vector point-lation, which is a unique signature of the projected(®H0
ing close to the north pole enclose the fictitious magnetisymmetry. Forp>p., the charge mode is gapless with a
flux, and can only execute chiral rotations. This amounts tdinear dispersion relation, and the triplet spin mode be-
the projection of the particle-pair states at half-filling. On thecomes massive, and gradually increases its energy with in-
other hand, small oscillations of a vector pointing anywherecreasing doping. In this regime, the behavior of the collective
along the equator does not enclose the fictitious magnetimodes are identical to the unprojected(SQOmodel.
flux, and their dynamics is therefore unaffected by the pro- This very simple model can form the basis for under-

w?(k)
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standing many puzzling properties of the hi§hsupercon- metry at finite temperature, and see if the projected550
ductors in a unified framework. It points out a route from AF symmetry can give a universal explanation of the pseudogap
to SC through a gradual rotation of the superspin angle. Aphysics.

the projected S(®) symmetry point the mean-field energy is ~ Note added in proofAfter completing this work, we re-
independent of the superspin angle, and therefore it offers afeived a very interesting paper by Coen van Diim which
explanation of the absence of the chemical potential shift ifl€ also observed the remnant SDbehavior in the large)

the underdoped regime without global phase separation. [pmit.

predicts a phase diagram which is qualitatively consistent

with the observed phase diagram in the highmaterials. In ACKNOWLEDGMENTS

the underdoped regime of the phase diagram, the systems
have large AF and SC fluctuations, and these fluctuations cap.
be responsible for the pseudogap physics observed in the%
materials.

We would like to acknowledge useful discussions with D.
ovas, J. Berlinsky, E. Demler, R. Eder, C. Kallin, S. Kiv-
son, and D. Scalapino. S.C.Z. and J.P.H. were supported by

. S o he NSF under Grant No. DMR-9814289. W.H. and E.A.
There are many possible directions to carry out this line o

: ; ) : ere supported by FORSUPRA 1l, BMBB5 605 WWA 6,
research in the future. The most important issue is to unde&he Deutsche Forschungsgemeinscha@R 324/1-) and
stand the precise nature of the intermediate state in the "RHA 1537/17-1, and A.A by the Israel Science Foundation
gime 0<p<p,.. Since the system has infinite compressibil- ' . :

20 . 3 ) ) A.A., E.A., and W.H. would lik knowl h r
ity in this regime, different small perturbation may select ' , and ould like to acknowledge the support
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clude quantum fluctuations and longer ranged interactions. In
particular, we would like to investigate the possibility that

these perturbations might lead to the formation of incom-
mensurate order or stripes. Alternatively, one can enforce the hard-core constraint

In this work, we have discussed extensively the collectivgg 1) by introducing an additional “slave” boson for each
fluctuations in the long-wavelength limit. Due to the defini- |attice site. The presence of this boga@(x)] indicates that
tions of our effective lattice model, the—0 limit corre-  the lattice sitex is in the singlet state. The “less or equal”
sponds to th&— 0 limit in the SC correlation functions and hard-core conditior(6.1) is replaced with the equality con-
the k— (7r,7) limit of the AF spin correlation functions. straint
Within the S@5) theory, thew resonance in the SC state is
viewed as the S®) symmetry partner of th&&—0 Gold-
stone mode of the SC phase fluctuation. While the commen- Q(X):; t 0000 +EO0t(X) + €T (x)e(x) ~q=0,
surate neutron resonance mode is observed in both Y-Ba- (A1)
Cu-O and Bi-Sr-Ca-Cu-O superconductors, all high- . . . _
systems also have incommensurate spin fluctuations. HoWith 4=1. Since in physical states one always has one and
can these features be explained within the current theoreticQY one 2050” per lattice sites, destructieneation of a
model? bosont, (t;) must always be accompanied by creatide-

The fact that La-Sr-Cu-O and Y-Ba-Cu-O have very dif- Struction of the empty bosoe' (€). In this way, thephysi-
ferent Fermi surface shapes and yet have similar incommer§al operators for creatingdestroying a triplet (@=x,y,z) or
surate magnetic peaks strongly suggests that the incommed-hole pair @=h) acquire the fornt]e (t,e’). The advan-
surate peaks are not sensitive to Fermi surface effects aridge of this method is that the constraint can be enforced
should be explainable within an effective bosonic model. Leexactly (at least in principlg by introducing an additional
us recall that the collective mode of a superfluid boson systime-independent field (x) at each lattice site, by adding to
tem consists of a linearly dispersing phonon branch and arthe Hamiltonian a term- X (x)Q(x) and by integrating over
other roton branch with a minimum located at the inversethe A(x) on the imaginary axis. The whole Hamiltonian
interparticle spacing. So far, we have only studied the pho¢2.11) thus takes the fornfapart from a constant
non branch of the charged bosons. By analogy, the roton
branch should also exist, with a wave vector determined by — t
the density of the charged bosons or doping. Within the Hsn= 2 MX)Q(XHAS% ta(X)ta()

SQ(5) theory, while the commensurate neutron resonance
can be viewed as the $8) partner of the SC phase mode, It t _ T
the incommensurate magnetic peaks can be viewed as the +A°§ R0 =352 2, [t(x)e()+H.e]

APPENDIX: SLAVE BOSON RESULTS

x,x"),a

SQO(5) partner of the roton minimum of the charged bosons. . G
A detailed quantitative analysis of this picture will be carried X[ta(x")e(x’)+H.c]
out in the future.

However, while the ground state in the doping range O 32 2, [thoex)ef(x)t(x)e(x’)+H.cl.
<p<p. may depend sensitively on small perturbation ef- x")
fects, at finite temperature, these perturbation effects should (A2)
be small and the system should display more universal prop-
erties. We have shown that the projected(®CGymmetry In practice, one starts with a mean-field approximation

should be valid for the entire doping range<p<p., and and expands the boson operators around their mean-field val-
we shall quantitatively study the manifestation of this sym-ues as in Sec. VI. This expansion can be rigorously con-
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trolled by generalizing the constraifAl) to large values of w(k)?>=(1632—A?)cog a+0(k?), (A4)
g, whereby one scaled,—J./s (cf. Refs. 33 and 34
Physically, this corresponds to allowing for a large number@nd a quadratic mode
of bosons to be present at each site and thus to have a large
value for the total spin, or more precisely for the(SOguan- w(k) 4J+A K (A5)
tum numbers, at each site. The mean-field result thus corre- ‘
sponds to the— oo limit, while the quadratic expansion cor-
responds to the first @/correction. ! )
At the mean-field level, the constraint is fulfilled exactly dispersion
and indeed one obtains the same result and the same phase
diagram as the variational ansd#z1) discussed in Sec. V. w(k)= 4+A
By expanding the bosons quadratically around the mean field 4
one obtains the same modes as for the soft-core Hamiltonian o .
with a similar dispersion[Here, we restrict ourselves again and the SC Goldstone mode with dispersion

In the pure superconducting phase, one hastaplet with

k (AB)

to the S@5)-symmetric case. Specifically, in the mixed 1672— A2
phase one obtains two spin-wave modes with dispersion w(k)zzT k2. (A7)
4J+A o ) ]
w(k)= 7 K, (A3) These results coincide with the ones of the soft-constraint
approximation Eqs(6.6)—(6.10 in the limit of small 4
one massive spin-amplitude mode —A, i.e., for low boson density.
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