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Projected SO„5… models
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We construct a class of projected SO~5! models where the Gutzwiller constraint of no-double-occupancy is
implemented exactly. We introduce the concept of projected SO~5! symmetry where all static correlation
functions are exactly SO~5! symmetric and discuss the signature of the projected SO~5! symmetry in dynamical
correlation functions. We show that this class of projected SO~5! models can give a realistic description of the
global phase diagram of the high-Tc superconductors and account for many of their physical properties.
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I. INTRODUCTION

Recently, a unified theory of antiferromagnetism~AF! and
superconductivity~SC! has been proposed for the high-Tc

cuprates.1 This theory is based on the SO~5! symmetry be-
tween AF and SC, and offers a unified description of
global phase diagram for this class of materials. While
theory was originally proposed as a effective field theo
description, it was soon realized that the SO~5! symmetry
could be implemented exactly at a microscopic level,2–6 and
it can also be checked numerically in common strongly c
related models such as thet-J model.7–9 While the phase
diagram1,10–12 and collective excitations13,14 in the SC state
derived from these SO~5! models bear strong resemblance
the high-Tc cuprates, and a number of experimental pred
tions have been made,15–19 the Mott insulating behavior a
half-filling is a puzzling aspect which challenges the fund
mental validity of the SO~5! models.20–23 To be more pre-
cise, the exact SO~5! symmetry requires collective charg
two excitation at half-filling to have the same mass as
collective spin-wave excitations. This condition is clea
violated in a Mott insulating system where all charge exc
tions measured with respect to a particle-hole symme
point have a large energy gap of few eV, while the spin-wa
excitations are massless. In the original SO~5! proposal, it
was pointed out that this situation is analogous to a easy-
antiferromagnet in a external uniform field, and a SO~5!
symmetry breaking term at half-filling was introduced in o
der to describe this asymmetric behavior between spin
charge. The chemical potential also introduces a SO~5! sym-
metry breaking term, however, it was shown that these
terms could compensate each other1,8 so that thestatic po-
tential governing the SO~5! superspin could still be SO~5!
symmetric.

Since the asymmetry between the charge and spin ex
tions at half-filling is of the order of the Coulomb energ
scaleU, the SO~5! symmetry breaking terms must also be
that order. Since there are various types of symmetry bre
ing terms, one might hope that their effects could partia
PRB 600163-1829/99/60~18!/13070~15!/$15.00
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cancel each other to arrive at a qualitatively correct pictu
However, this type of cancellation is very delicate, and a
proximate calculations could easily lead to erroneous con
sions. In particular, one is interested in which physical pro
erties could exhibit SO~5! symmetric properties in the limi
when the Coulomb gap is taken to infinity. For example, o
could ask the following questions.

~1! One of the hallmarks of the SO~5! symmetry is not
only the degeneracy between the AF and SC states at a g
chemical potential, but the approximate degeneracy am
all mix states interpolating between AF and SC, i.e.,
independence of the ground-state energy on the super
angle. What is the potential barrier separating the AF and
states at their degeneracy point in the limitU→`? If there is
a large energy barrier in this limit, one would argue that t
concept of SO~5! symmetry is not a useful one, at least n
for quantitative calculations. On the other hand, if the pot
tial barrier is finite and small in theU→` limit, the concept
of a approximate SO~5! symmetry would be a useful one.

~2! Exact SO~5! symmetry predicts four massless colle
tive modes. In the half-filled AF state, besides the two co
ventional massless spin-wave modes, the exact SO~5! sym-
metry predicts a massless doublet ofp6 modes, with charge
62. However, a Mott insulator has a large gap to all cha
excitations. Therefore, it is clear that one of thep6 has to be
projected out of the spectrum in the limitU→`, say, thep1

mode carrying charge12. What happens to the rest of th
Goldstone modes, thep2 mode carrying charge22 and the
pa triplet mode of the SC state? In theU→` limit, can they
all be simultaneously massless at the transition point
tween AF and SC? Since the pure SC state can only
reached with a finite doping concentration, is it possible t
the Gutzwiller projection does not affect thepa triplet mode
of the SC state?

In order to address these questions, it is desirable to c
struct a low-energy effective theory without any paramet
of the order of the Coulomb scaleU. In this work, we con-
struct a class of projected SO~5! models which treat the
13 070 ©1999 The American Physical Society
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PRB 60 13 071PROJECTED SO~5! MODELS
Gutzwiller constraint exactly and locally on every site. W
use this model to answer the physical questions posed a
and show that the answers are affirmative. In theU→`
limit, when the Gutzwiller constraint is implemented exact
the ground-state energy can still be SO~5! symmetric and
independent of the superspin direction. After projecting
thep1 mode, all other Goldstone modes remain massles
the symmetric point. The dispersion relation of the collect
modes bear the unique signature of the projected SO~5! sym-
metry. Furthermore, thepa triplet modes of the pure SC
states are unaffected by the Gutzwiller projection. Th
properties define the concept of a projected SO~5! symmetry
@pSO(5)#, whose properties and consequences we shall
plore in this paper.

The fundamental quantity in the SO~5! theory is the lo-
cally defined five-component superspin vectorna(x)
5(n1 ,n2 ,n3 ,n4 ,n5) describing the local AF and SC orde
parameters, respectively. In the nonlinears model formal-
ism, these are treated as mutually commuting coordin
and their dynamics is given by their conjugate mome
pa(x)5(p1 ,p2 ,p3 ,p4 ,p5). The charge operator is the ang
lar momentum in then12n5 plane:

Q~x!5L155n1p52n5p1 . ~1.1!

Implementing the Gutzwiller constraint corresponds to
quiring

Q~x!<0 ~1.2!

for every local SO~5! rotor. From Eqs.~1.1! and ~1.2! and
subsequent discussions, we shall see that the Gutzwiller
jection in the SO~5! formalism corresponds to going from
fully symmetric SO~5! rotor model to achiral SO~5! rotor
model, where both the static potential of the individual roto
and the coupling between the rotors are still SO~5! symmet-
ric, but the rotors are constrained to rotate only in one se
in the n1-n5 plane, consistent with Eq.~1.2!. This observa-
tion reveals a deep connection between the Gutzwiller p
jection and the lowest-Landau-level~LLL ! projection in the
fractional quantum Hall effect.24 To be more precise, the
Gutzwiller projection represented by Eqs.~1.1! and ~1.2! is
analogous to the LLL projection, where all states in the L
have a definite sign of angular momentum. The LLL proje
tion can be analytically implemented by separating the
clotron degrees of freedom from the guiding center degr
of freedom, which amounts to changing the commut
property between theX and Y coordinates to a canonicall
conjugate commutation relation:

@X,Y#5 i l 0 , ~1.3!

where l 0 is the Landau length. Exploiting this analogy, w
find that the original SO~5! model can be fully Gutzwiller
projected without changing its form, if one imposes t
simple quantization condition between the superconduc
components of the superspin vector:

@n1 ,n5#5 i /2. ~1.4!

In the symmetric SO~5! model, the wave function of the
SO~5! rotors are functions of the local coordinatesn1 andn5,
while the projected SO~5! model only depends on their ho
lomorphic combinationz5n12 in5 and is independent o
ve
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their antiholomorphic combinationz̄5n11 in5. This way,
we arrive at a natural projection of the SO~5! model where
the local Gutzwiller constraint is taken into account exact
and the resulting model is free of the large CoulombU pa-
rameter. Because the functional form of the symmetric SO~5!
model remain the same and only the quantization condi
is modified upon projection, many important properties as
ciated with the SO~5! symmetry remain. The central hypoth
esis of the SO~5! theory is that this projected model is qua
titatively accurate in describing both the static and dynam
properties of the high-Tc cuprates, and we shall compare th
properties of this model with the phenomenology of t
high-Tc systems.

II. CONSTRUCTION OF PROJECTED SO „5… MODELS

We begin with the symmetric SO~5! Hamiltonian defined
on a lattice,

H5D(
x

Lab
2 ~x!2J (

^xx8&

na~x!na~x8!

1V (
^xx8&

Lab~x!Lab~x8!, ~2.1!

wherena(x) denotes the five-component superspin vector
a given site, andLab(x) is the SO~5! symmetry generator,

Lab5napb2nbpa ~2.2!

expressed here in terms of the superspin vectorna and its
canonically conjugate momentapa ,

@na ,pb#5 idab . ~2.3!

This lattice quantum nonlinears model can be rigorously
derived as the low-energy limit of a microscopic SO~5! lad-
der model.5,6 On the ladder, the rung SO~5! singlet state is
the vacuumuV&, from which the lowest SO~5! multiplet
ua&5ta

†uV& is created by a quintet of Bose creation operato
which satisfy

@ ta ,tb
†#5dab , tauV&50. ~2.4!

Here, a52,3,4 denote the triplet~magnon! states, anda
51,5 are the hole and particle pair states~see Fig. 1!. The
superspin coordinates are microscopically constructed u
these lattice bosons,

na5
1

A2
~ ta1ta

†!, pa5
1

iA2
~ ta2ta

†!. ~2.5!

Due to their microscopic origin, these bosonic states
hard-core bosons, in the sense that one cannot define tw
them on the same rung. TheD term in Eq.~2.1! describes the

FIG. 1. Schematic representation of the singlet state, the tri
magnon states and the hole and particle pair states.
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gap energy of the magnon and the pair states, theJ term
stands for the hopping and the spontaneous crea
destruction process of these states, and theV term describes
their nearest-neighbor interaction. This quantum nonlineas
model can in principle also be derived in higher dimensio
from a microscopic SO~5! symmetric model,2–4 by introduc-
ing a superspin vector as a Hubbard-Stratonovich decoup
field, and integrate out the fermionic degrees of freedom
gradient expansion. However, we shall proceed more heu
tically here.25 For a two-dimensional system, one can ima
ine that the quantums model Hamiltonian is obtained from
a ‘‘block spin’’ type of coarse graining of the microscop
electron Hamiltonian, and is defined on a lattice with twi
the lattice constant compared to the microscopic elec
model.~This doubled unit cell is the minimal size needed
define the local AF andd-wave SC order parameters.! There-
fore, each sitex in the effective model corresponds to
plaquette of the microscopic electron model.~On a ladder,
this corresponds to going from the lattice sites to lad
rungs.! The SO~5! singlet stateuV& corresponds to a resona
ing valence bond ‘‘~RVB!’’ type of singlet state, while the
fivefold statesta

†uV& describe the triplet magnon states, a
the d-wave hole and particle pair states on a plaquette.
like the ladder case, the magnon and thed-wave pair states
could condense in the ground state to form AF and SC b
ken symmetry states. In fact, Eder25 has recently shown tha
properties of the AF states can be described by a cohe
state of magnon condensation on top of a uniform spin liq
state. Our model therefore describes competition among
‘‘RVB’’ type of singlet vacuum and the two forms of broke
symmetry order.

While it is reasonable to takeJ andV to be approximately
equal for magnons and pairs, the gap energyD for the neu-
tral magnons and the charged pairs are very different in
insulating state at half-filling. In fact, their difference is
the order of the insulating gapU at half-filling. Taking into
account the hard-core condition and neglecting the nea
neighbor interactionV for now ~it has higher powers of time
and space derivatives in the continuum limit!, we can ex-
press the general anisotropic SO~5! model as

H5Ds(
x

ta
† ta~x!1Dc(

x
t i
†t i~x!2Js (

^xx8&

na~x!na~x8!

2Jc (
^xx8&

ni~x!ni~x8!. ~2.6!

In this paper we shall use the convention wherea,b, . . .
51,2,3,4,5 denote the superspin indices,a,b, . . .52,3,4
denote the spin indices, andi , j 51,5 denote the charge ind
ces, and repeated indices are summed over. The main f
of our paper is to consider the limit whereDc@Ds .

Let us define the charge eigenoperatorsth and tp as

t15
1

A2
~ th1tp!, t55

1

iA2
~ th2tp!. ~2.7!

From this definition, it is clear thatth
† is the creation operato

for a hole pair andtp
† is the creation operator for a partic

pair. We can introduce a chemical potential term
n/
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Hm5m(
x

@ tp
†tp~x!2th

†th~x!# ~2.8!

to describe the effects of doping. In the presence of t
chemical potential term, the gap energy of the hole and p
ticle pairs areDc2m and Dc1m, respectively. A chemica
potential of the order of the charge gapDc is needed to
induce a metal-insulator transition in this system. Near s
a transition point, the gap energy of the hole pair

D̃c5Dc2m ~2.9!

can be comparable to the spin gapDs , while the gap towards
a particle pair excitation is of the order of twice the char
gap, and needs to be projected out of the spectrum in
low-energy limit.

Therefore, within this formalism, the Gutzwiller projec
tion is equivalent to restricting ourselves to the projec
Hilbert space where

tp~x!uC&50 ~2.10!

at every sitex. Within this projected Hilbert space, the pro
jected Hamiltonian takes the form

H5Ds(
x

ta
† ta~x!1D̃c(

x
ni~x!ni~x!2Js (

^xx8&

na~x!na~x8!

2Jc (
^xx8&

ni~x!ni~x8!. ~2.11!

This Hamiltonian has no parameters of the order ofU, and it
is reasonable to expectDs;D̃c andJs;Jc . We see that the
form of the Hamiltonian hardly changes from the u
projected model, but the definition ofn1 andn5 is changed
from

n15
1

A2
~ t11t1

†!5
1

2
~ th1tp1th

†1tp
†!,

n55
1

A2
~ t51t5

†!5
1

2i
~ th2tp2th

†1tp
†! ~2.12!

to

n15
1

2
~ th1th

†!, n55
1

2i
~ th2th

†!. ~2.13!

From Eq.~2.12!, we see thatn1 andn5 commute with each
other before the projection. However, after the projectio
they acquire a nontrivial commutation relation, as can
seen from Eq.~2.13!:

@n1 ,n5#5 i /2. ~2.14!

Therefore, the Gutzwiller projection can be analytica
implemented in the SO~5! theory by retaining the form of the
Hamiltonian and change only the quantization condition.
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III. ANALOGY WITH LOWEST-LANDAU-LEVEL
PROJECTION

The discussions outlined above reveal a deep connec
between the Gutzwiller projection within the SO~5! formal-
ism and the projection onto the lowest Landau level~LLL ! in
the context of the fractional quantum Hall effect. Consid
the problem of a charged particle in a strong magnetic fielB
and a rotationally symmetric potentialV(X,Y). In the ab-
sence of a magnetic field, all eigenstates form irreduc
representations of the two-dimensional rotation group O~2!,
characterized by integral eigenvalues of the angular mom
tum operator

LZ5XPY2Y PX . ~3.1!

However, in the presence of a strong magnetic field and p
jected into the LLL, only negative eigenvalues ofLZ are
realized. This is analogous to the situation encountered h
The local charge operator in the SO~5! theory takes the form
of the angular momentum in then1-n5 plane as given by Eq
~1.1!. When doubly occupied sites are locally projected o
the local charge operator, or the angular momentum in
n1-n5 plane, takes only negative values. Since the chem
potential couples directly the angular momentum in
n1-n5 plane, it plays the role of a fictitious magnetic fie
threading every SO~5! rotor in then1-n5 plane. The Landau
level spacing\vc is analogous to the charge gapDc encoun-
tered here, and both are taken to be infinity in the projec
models. After the projection, the Hamiltonian in the Land
level problem retains its O~2! symmetric form,

H5V~X,Y! ~3.2!

although a new quantization condition is imposed betweeX
andY, as given by Eq.~1.3!. This is analogous to the obse
vation we made here that the Hamiltonian formally retain
SO~5! symmetric form after the projection~2.10!, but the
quantum dynamics is changed due to the nontrivial comm
tator betweenn1 andn5. In both cases only a part of the fu
symmetry multiplets remain after the projection. Howev
the formal symmetry of the Hamiltonian has direct physi
manifestations despite the projection. For example, in
LLL problems, semiclassical orbits of the guiding center c
ordinates are still O~2! symmetric. In our case, we shall se
that the static potential for the superspin vector can still
SO~5! invariant despite the projection.

Perhaps the most explicit way to establish the precise c
nections between these two problems is to consider the
straints on the wave function. In the symmetric gauge of
LLL problem, the annihilation operator for the cyclotron c
ordinates takes the form24

a5] z̄1z/4, ~3.3!

where z5X1 iY and z̄5X2 iY. Projection onto LLL re-
quires

aC~z,z̄!50, ~3.4!

which determines the form of the LLL wave function to b

C~z,z̄!5 f ~z!e2zz̄/4, ~3.5!
on
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where f (z) is a holomorphic function ofz only. This holo-
morphic condition also places strong constraints in ma
body systems and led to the celebrated Laughlin’s w
function. Our no-double-occupancy constraint~2.10! is
analogous to the LLL constraint~3.4!. In fact from Eqs.~2.7!
and ~2.12!, we obtain

tp5 1
2 ~z12] z̄!, ~3.6!

wherez5n12 in5 and z̄5n11 in5. For a single unprojected
SO~5! rotor, the wave functionC(na) is a function of the
superspin coordinates. However, the Gutzwiller project
~2.10! restricts the wave function to be

C~n1 ,n2 ,n3 ,n4 ,n5!5 f ~z5n12 in5 ,n2 ,n3 ,n4!e2zz̄/2,
~3.7!

where f (z,n2 ,n3 ,n4) is a holomorphic function ofz. For a
collection of SO~5! rotors, the superspin coordinates a
themselves functions of the lattice sitesx, andC@na(x)# is a
functional of the superspin coordinates at each site. For
projected SO~5! models, this functional is restricted to tak
the form

C@na~x!#5 f „z~x!,na~x!…)
x

e2zz̄(x)/2, ~3.8!

where f „z(x),na(x)… is a holomorphic functional ofz(x)
5n1(x)2 in5(x).

The formal but precise analogy between the two types
projection allows us to introduce the concept of a chi
SO~5! rotor. This is a system of rotors with SO~5! invariant
potential and coupling, however, the rotation within t
n1-n5 plane is chiral, i.e., only one sense of the rotation
allowed. Such a system of chiral SO~5! rotors is described by
the wave functional in Eq.~3.8!.

IV. SO„5… SYMMETRY OF THE GROUND-STATE
ENERGY

Having discussed the general notions of the projec
SO~5! model, we are now in a position to explore the pha
diagram of this model. As we commented earlier, the p
jected SO~5! model describes the competition and unificati
of the spin liquid, AF and the SC states. In the origin
unprojected SO~5! symmetric model, not only are the AF
and SC states degenerate in energy, but they are also de
erate with all the intermediate coexistence states. This po
out a route from AF to SC with no potential barrier, an
introduces the concept that the metal-insulator transition
the high-Tc systems can be viewed as a smooth rotation
the SO~5! superspin. One of the key questions to be a
swered in this work is what happens to the picture in the c
of projected SO~5! symmetry.

In anticipation of the competition of the states discuss
above, we construct a class of variational wave functions
the coherent state representation:

uC&5)
x

$cosu~x!1sinu~x!@ma~x!ta
†~x!

1D~x!th
†~x!#%uV&. ~4.1!
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Here uV(x)& denotes a local singlet state defined
ta(x)uV(x)&5th(x)uV(x)&50 anduV& is a product state o
these local singlets,uV&5)xuV(x)&. u(x) is a local varia-
tional parameter describing the competition between lo
range order and quantum disorder. Foru(x)50 our varia-
tional wave function describe a spin singlet ground sta
while a nonzero value ofu describes a coherent state form
by the local singlet, the magnon, or the hole pair state. T
wave function is a generalization of the coherent state
scription of a AF state in terms of a magnon condensate6,25

As we shall see from Eq.~4.2!, sin 2u stands for the length o
the SO~5! superspin vector.ma(x) and D(x) are general
complex variational parameters describing the local am
tude for magnons and hole pairs. We notice that this w
function satisfies both the Gutzwiller constraint~2.10! and
the hard-core constraint for magnons and hole pairs exa
It is easy to see that

^Cuna~x!uC&5
1

A2
sin 2u~x!Re@ma~x!#,

^Cun1~x!uC&5
1

2
sin 2u~x!Re@D~x!#,

^Cun5~x!uC&5
1

2
sin 2u~x!Im@D~x!#, ~4.2!

where Re and Im denote the real and imaginary parts
complex number. The coupling terms in the projected SO~5!
Hamiltonian depend only onna(x), n1(x), and n5(x).
Therefore, the coupling energy depends only on the real
of ma(x) while it depends on both the real and imagina
parts of D(x). Therefore, for discussing the ground-sta
wave functions, we can assume without loss of genera
that ma(x) is real andD(x)5m1(x)1 im5(x). The normal-
ization condition̂ CuC&51 can be implemented by the con
straint that

ma
2~x!5~m1

21m5
21ma

2 !~x!51. ~4.3!

Therefore, we see that although we have completely p
jected out the particle pair states, the local degrees of f
dom can still be represented by a vector on a fi
dimensional sphere.

Uniform states are obtained by taking all parameters to
constant. ForD50 and sin 2uÞ0, our wave functionuC&
describes a pure AF state with the following properties:

^CuQuC&5^Cu(
x

th
†th~x!uC&50,

^CuNauC&5^Cu(
x

na~x!uC&5N
1

A2
sin 2uma ,

^CuSauC&5^Cu(
x

i eabgtb
† tg~x!uC&50,
-

,

is
e-

i-
e

ly.
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rt
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o-
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^CuS2uC&5^CuS (
x

S~x! D 2

uC&

5N2 sin2 u1N sin4 u~12ma
4 !, ~4.4!

where N is the number of lattice sites. Equation~4.4! de-
scribes a half-filled state with a macroscopic Ne´el magneti-
zation, and vanishing uniform magnetization. Furthermo
this state is composed as a linear superposition of eigens
with different values of the total spin, and the fluctuation
the total spin scales likeA^S2&}AN, just as one expects from
a standard Ne´el state.

On the other hand, forma50 and sin2uÞ0, uC& de-
scribes a pure SC state with the following properties:

^CuQuC&5^Cu(
x

th
†th~x!uC&5N sin2 u,

^CuN11 iN5uC&5^Cu(
x

~n11 in5!~x!uC&

5N
1

2
sin 2u~m11 im5!,

^CuQ2uC&2^CuQuC&25N sin2 u cos2 u. ~4.5!

Equation~4.5! describes a state with a finite doping dens
and a finite SC order parameter. Just as in the standard
case, this state is composed as a linear superpositio
eigenstates with different values of the total charge, and
fluctuation of the total charge scales likeA^Q2&2^Q&2

}AN, just as one expects from a standard SC state.
However, besides these twopurestates, there is a class o

mixedstates which interpolates between the pure AF and
states. Takingm15sina and m25cosa, we see that the
mixed states have the following property:

^CuQuC&5N sin2 u sin2 a,

^CuN11 iN5uC&5N
1

2
sin 2u sina,

^CuN2uC&5N
1

A2
sin 2u cosa. ~4.6!

Therefore, we see that there is a continuous family of int
mediate mixed states interpolating between the pure AF s
at half-filling and the pure SC state with finite doping de
sity. As the SO~5! anglea rotates continuously from a pur
AF state witha50 to a pure SC state witha5p/2, the hole
density of the mixed state interpolates continuously betw
these two limits. Therefore, our wave function gives a u
fied description of AF and SC and points out a precise ro
from AF to SC as the doping level is varied. In order for th
route, or small deviations from this route, to be physica
realized in the high-Tc superconductors, we have to demo
strate that there is no large energy barrier for the intermed
mixed states, or that the ground-state energy is appr
mately independent of the SO~5! mixing anglea. In particu-
lar, we have to show that the energy barrier is independen
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PRB 60 13 075PROJECTED SO~5! MODELS
the Hubbard energyU, in the limit of largeU. In the follow-
ing, we shall investigate this question.

The energy functional̂CuHuC& describes the coupling
between these five-dimensional vectorsma(x), and it is
given by

^CuHuC&5E„u~x!,ma~x!…

52
Js

2 (
xx8

sin 2u~x!sin 2u~x8!ma~x!ma~x8!

2
Jc

4 (
xx8

sin 2u~x!sin 2u~x8!mi~x!mi~x8!

1Ds(
x

sin2 u~x!ma
2~x!

1D̃c(
x

sin2 u~x!mi
2~x!. ~4.7!

This ground-state energy functional describes a system
coupled rotors satisfying the constraint~4.3!. At the point
Jc52Js and D̃c5Ds in parameter space, this rotor model
exactly SO~5! symmetric. This is a central observation
this work.

From this consideration we learn a very important less
about the compatibility of the Mott insulating gap and t
idea of a smooth SO~5! rotation from AF to SC. As we have
seen, the large asymmetry between the charge and spin
at half-filling necessitates the removal of theQ(x).0 part of
the SO~5! multiplets; therefore, the dynamics close to ha
filling has to be modified. But the static potential governi
the transition from AF to SC can remain SO~5! symmetric,
and in particular, the energy barrier separating these
states can remain small in the limit where the Mott insulat
gap tends to infinity.

We also observe a crucial difference between the p
jected and the unprojected SO~5! models. In the unprojected
SO~5! model with the full SO~5! symmetry, AF and SC
states are degenerate at half-filling, and the rotation betw
these two states can be continuously performed with
changing the density to going away from half-filling. Th
case is similar to the well-known degeneracy between
charge-density wave state and thes-wave SC state for the
negativeU Hubbard model at half-filling. In the projecte
SO~5! model, where all particle pair states have been loca
removed, the SO~5! rotation from the AF to SC states ar
accompanied by the continuous change of the hole den
and a pure SC state can only be reached at a finite cri
hole doping densityrc5sin2 u. While the unprojected SO~5!
symmetry is only valid at half-filling, the projected SO~5!
symmetry can be valid for a range of doping concentrat
0,r,rc , since all these doping concentrations correspo
to the same value of the chemical potentialm5mc at which
the ground-state energy~4.7! is SO~5! symmetric.

However, it should be pointed out that the project
SO~5! symmetry at m5mc has only been demonstrate
within the variational mean-field approximation. This corr
sponds to the semiclassical limit, and becomes exact on
the larges limit, wheres labels the representation of the loc
SO~5! group at a given site. Quantum fluctuations can
of
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systematically investigated as a 1/s expansion. Assuming
uniform ground states, we have studied the effect of z
point fluctuations in Sec. VII and found that atm5mc , the
intermediate mixed states have slightly higher energy t
the AF and SC state. Therefore, quantum fluctuation lead
a slight breaking of the projected SO~5! symmetry. The im-
portant point here is that this symmetry breaking effect c
be systematically controlled in the semiclassical 1/s expan-
sion, and certainly is independent of the Coulomb ene
scaleU. This fluctuation would induce a first-order transitio
and predict phase separation of AF and SC states am
5mc . However, there are also other competing interactio
such as nearest-neighbor and next-nearest-neighbor int
tions which tend to reduce the barrier, and could also lea
nonuniform states like stripes. Due to the complexity of t
calculations, we shall defer the detailed studies of these c
peting effects to future works.

V. PHASE DIAGRAM

In this section we investigate the phase diagram of
projected SO~5! model within the framework of the varia
tional wave function~4.1!. Taking uniform values of the
variational parametersu, mx5cosa, m15sina, and my
5mz5m550, the variational energy in Eq.~4.7! reduces to

E~u,a!

N
52Js sin2 2u cos2 a2

Jc

2
sin2 2u sin2 a

1Ds sin2 u cos2 a1D̃c sin2 u sin2 a. ~5.1!

In the following, we shall mainly study the SO~5! symmetric
case, and takeJc52Js52J. Defining x5sin2 u and y
5cos2 a, and the dimensionless coupling constantse

[E(x,y)/4JN, ds[Ds/4J and d̃c[Dc/4J, we obtain

e~x,y!5x22x1 d̃cx1~ds2 d̃c!xy. ~5.2!

We shall minimize Eq.~5.2! with respect tox andy, subject
to the condition that 0<x,y<1. The phase diagram can b
plotted in the two-dimensional parameter space ofd̃c andds .
We notice thate(x,y) depends linearly ony: therefore, for
ds. d̃c we obtainymin50 and

0,xmin5
12 d̃c

2
,1 for 21, d̃c,1,

xmin50 for d̃c.1,

xmin51 for d̃c,21. ~5.3!

Similarly, for ds, d̃c we obtainymin51 and

0,xmin5
12ds

2
,1 for 21,ds,1,

xmin50 for ds.1,

xmin51 for ds,21. ~5.4!

From these equation, we can determine the phase diagra
shown in Fig. 2.
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There are seven different phases on this phase diag
xmin50 corresponds to a quantum disordered singlet s
with no condensed bosons.xmin51 andymin50 correspond
to a quantum disordered state with completely filled h
pairs.xmin51 andymin51 correspond to a quantum diso
dered state with completely filled magnons. 0,xmin,1 and
ymin51 describe a pure AF phase, while 0,xmin,1 and
ymin50 describe a pure SC phase. When21,ds5 d̃c,1 a
continuous family of mixed AF/SC states labeled by a fr
superspin angle 0,a,p/2 is realized, while fords5 d̃c
,21 a continuous family of quantum disordered states
beled by a free superspin angle 0,a,p/2 is obtained.

The system traces out a one-dimensional trajectory in
two-dimensional phase diagram as the chemical potentia
increased, as depicted in Fig. 2. Increasing the chemical
tential decreases thed̃c parameter while holdingds constant.
ds describes the degree of quantum spin fluctuations in
system, since in the AF phase, the size of the Ne´el moment

mAF5A 1
2 ~12ds

2! ~5.5!

decreases with increasingds . For ds,1, the system goes
through a phase transition from AF to SC atm5mc5Dc
2Ds . At this critical value of the chemical potential, theu
parameter remains fixed, but thea parameter changes con
tinuously from 0 top/2, and correspondingly, the densi
changes from 0 to

rc[sin2 u5xmin5
12ds

2
. ~5.6!

This behavior gives a density versus chemical potential
gram as shown in Fig. 3.

FIG. 2. Phase diagram of the projected SO~5! model in theds

versusd̃c plane. Phase boundaries are depicted by the solid li
Variation of the chemical potential traces out a one-dimensio
trajectory as shown on the dotted line.
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As we see, for densities in the range 0,r,rc , the sys-
tem is infinitely compressible since]r/]m5`. For m.mc
or r.rc , the system has a finite compressibility of]r/]m
51/8J.

It is interesting to plot both the AF and the SC ord
parameterŝn1& and^n2& as a function of the density for th
whole range of 0,r,1. We will restrict ourselves to the
case of 0,ds,1 where the undoped state is an AF state. W
obtain the following doping dependence of the SC order
rameter:

^n1&5HAr~12rc! for r,rc ,

Ar~12r! for r.rc

~5.7!

and the doping dependence of the AF order parameter:

^n2&5HA2~12rc!~rc2r! for r,rc ,

0 for r.rc .
~5.8!

These behaviors are depicted in Fig. 4.
We note several interesting features of the phase diagr

First of all, we can use the energy functional~4.7! as a start-
ing point for a finite-temperature classical fluctuation ana
sis, and estimate the transition temperature due to the cla
cal fluctuations. Within such a framework, the thre
dimensional AF (TN) and SC (Tc) transition temperatures
are proportional to the stiffness of the spin and the ph
fluctuations, which are in turn proportional tôn2&

2 and
^n1&

2, respectively. Therefore, Fig. 4 gives an approxim
estimate of the transition temperatures. For smallrc , we see
that there is a sharp drop ofTN and a maximum ofTc at r
51/2. The system is an AF insulator at dopingr50 and a
pure SC state forr.rc . The reason for a maximum ofTc at
r51/2 is due to the strong correlation of the charged boso
The charge bosons have a hard-core interaction, there
they are insulating at bothr50 andr51 and have maxima

s.
al

FIG. 3. Density versus chemical potential relation in the p
jected SO~5! model. Unlike the case of a generic first-order tran
tion, the ground state in the density range 0,r,rc is uniform,
rather than phase separated.

FIG. 4. AF (̂ n2&) and SC (̂n1&) order parameters versus de
sity in the projected SO~5! model.
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charge stiffness atr51/2. We can perform a rough transla
tion of this optimal doping value in our effective model
the microscopic model. Since our effective model is defin
on a unit cell with twice the lattice spacing of the micr
scopic model,r51/2 therefore describes one hole pair p
four sites in the microscopic model, or a doping ofx51/4
525% in the conventional language. This crude argum
tends to overestimate the value for optimal doping, sinc
neglects the effects of unpaired electrons. However, con
ering the crudeness of the estimate, it is still reasonably c
to the optimal dopingx515% observed in the La-Sr-Cu-O
family of high-Tc superconductors.

In the regime of 0,r,rc , the system is a coherent mix
ture of AF and SC order. For this entire range of densit
the system has a projected SO~5! symmetry within the varia-
tional approximation discussed above. The projected SO~5!
symmetry manifests itself in terms of a infinite compressib
ity in the region 0,r,rc and, as we shall see in next se
tion, a charge mode with a dispersion relationv;k2. Since
such a state is rather unusual, and maybe highly suscep
to density fluctuations, we would like to discuss more d
tailed physical properties in this region.

First let us comment on the fact that there are fami
physical systems whose uniform ground states are infini
compressible. The free boson model is certainly such an
ample, and the density mode also has av;k2 dispersion
relation. But the infinite compressibility is due to the absen
of the interaction, which is not characteristic of the strong
interaction system considered here. A less trivial exampl
the spin-1/2XXZ ferromagnetic Heisenberg model, given b
the Hamiltonian,

H5J(
i , j

~Si
xSj

x1Si
ySj

y1DSi
zSj

z!, ~5.9!

whereJ,0 and the sum extends over nearest-neighbor s
of a square lattice. This model can be interpreted as quan
hard-core boson model, where the fully polarized spin-do
state could be identified with the vacuum of the bosons,
XY part of the Hamiltonian describes the hopping of t
bosons, and the last term describes the nearest-neighbo
traction between the bosons ifD.0. WhenD.1, the sys-
tem is in the Ising limit, and the spontaneous breaking of
Z2 symmetry implies phase separation of the bosons. On
other hand, when 0,D,1, the system is in theXY limit,
and the ground state is a superfluid. Therefore, the anisot
parameter describe the competition between superflui
and phase separation. AtD51, the system has a SU~2! sym-
metry and the dispersion relation becomes quadratic. Dif
ent directions of the ferromagnetic polarizations are deg
erate and can be changed without any energy cost. Sinc
z component of the ferromagnetic polarization is identifi
with the total density of the hard-core bosons, the SU~2!
vacuum degeneracy implies infinite compressibility of t
corresponding boson system for the entire range of bo
densities 0,r,1.

These two examples illustrate that there is nothing intr
sically pathological about having a system with infinite co
pressibility. The second example is more generic, and sh
that uniform states with infinite compressibility can be o
tained in systems on the verge of phase separation, and
d
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infinite compressibility can be ensured by symmetry. Both
these properties are also shared by the projected S~5!
model. These models are on the verge of phase separ
into AF and SC phases, and the infinite compressibility i
result of the projected SO~5! symmetry. It indicates tha
small perturbations, such as next-nearest-neighbor inte
tions, quantum fluctuations, and quenched disorder, will
very important to determine the true ground state. With su
perturbations, the ground state is expected to be unst
toward the experimentally reported textures such as the
glass, stripes, and incommensurate spin-density waves.

Next let us investigate the phenomenological conseque
of this remarkable property. One of the most puzzling pro
erties of the high-Tc superconductors is the constant chem
cal potential in the underdoped samples. For La-Sr-Cu
systems, where the doping level can be varied continuou
by the Sr concentration, this effect has been dramatic
observed in the angle-resolved photoemission spectrosc
~ARPES! experiments and the constant chemical poten
persists from the weakly doped insulator to the optima
doped superconductor.26 In fact numerical calculations on
the Hubbard model also reveal similar divergent behavior
the compressibility as the metal-insulator transition is a
proached from the metallic side.27

The simplest explanation of the small chemical poten
shift is a two-phase mixture with different densities at a fir
order phase transition. If the system globally phase separ
into two different spatial regions with different charge de
sities but the same free energy densities, the added cha
only change the proportion of mixture of the two phases a
do not change the energy, therefore,]m/]r50. However,
this situation of global phase separation can certainly
occur in a system with long-ranged Coulomb interaction a
is ruled out in the real high-Tc system.

A phenomenon possibly related to the tendency of ph
separation is the formation of stripes.28–30 A stripe state can
be viewed as microscopic phase separation of AF and
into alternating regions, where each region has differ
charge density and the same free energy density. Howev
crucial difference between the global phase separation
this picture of microscopic phase separation is that the st
state has infinitely many surfaces between AF and SC,
the surface energy makes a finite contribution to the to
energy in the thermodynamic limit. In this picture, dopin
can be accomplished by converting AF stripes into
stripes, thereby creating more surfaces separating AF and
regions. Finite doping density therefore leads to a finite d
sity of surfaces and the accumulated surface energy wou
general lead to a shift of the chemical potentialunder a ge-
neric situation. Additional physical conditions are needed
ensure the constant chemical potential in the stripe phas

Therefore, the absence of the chemical potential s
places a very strong constraint on possible theoretical ex
nations. The projected SO~5! model proposed in this work
offers a possible explanation for the absence of chem
potential shift. At a critical value of the chemical potenti
where the AF and SC states have degenerate energy de
we can have three situations, where the intermediate m
states have higher, lower, or degenerate energy compare
the AF and SC states. When the intermediate states h
higher energy, the system will go through a first-order ph
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transition atm5mc and this will lead to global phase sep
ration into AF and SC regions. On the other hand, if t
intermediate states have lower energy, there exists a rang
chemical potentialmc1,m,mc2 where the mixed phase ha
a uniform and continuously varying density. In this ca
]m/]rÞ0 is obtained. When the regionmc1,m,mc2
shrinks to zero, we obtain the limiting SO~5! symmetric case
where the system is on the boundary between a first-o
transition and two second-order phase transitions. In
case,]m/]r50 for a range of densities 0,r,rc . There-
fore, if we restrict ourselves to ground states where the d
sity is not globally inhomogeneous, the absence of
chemical shift directly implies SO~5! symmetry.

Within this model, we can therefore define a experimen
procedure to measure one of the most crucial paramete
the theory, namelyrc . Using the experimental ARPES da
for La-Sr-Cu-O system we would identifyrc to be approxi-
mately the same as the optimal doping density. We re
that rc is also a measure of the degree of the quantum s
fluctuation in the system. For the bilayer materials such
Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors, the qu
tum spin fluctuation are stronger due to the interlayer s
exchange, and we would predict thatrc should be less than
the optimal doping value.

VI. COLLECTIVE MODES

Having discussed the ground-state properties and
phase diagram of the model, we are now in a position
study the collective excitations of the model. We have
gued that the ground-state energy can remain SO~5! symmet-
ric despite the projection. However, the projection does
fect the collective excitation spectrum near half-fillin
Nonetheless, as we shall see, there remains a unique s
ture of the projected SO~5! symmetry in the collective exci
tation spectra.

In principle, the collective excitation spectra can be o
tained straightforwardly by studying the quadratic fluctu
tions around the mean-field minima. The resulting quadr
boson Hamiltonian can be simply diagonalized. The m
complication in the procedure is the hard-core boson c
straint, which requires

ta
† ta~x!1th

†th~x!<1 ~6.1!

for every site. There are several ways to implement this c
straint rigorously. One is to follow the mapping from th
one-component hard-core boson model to theXY model and
generalize it to a multicomponent hard-core boson mo
One could also convert the above inequality constraint to
equality constraint by introducing a boson creation and
nihilation operator for the singlet state. This approach will
implemented in the Appendix. For simplicity of presentatio
here we shall adopt a less rigorous approach and introduc
on-site boson repulsion term

W(
x

~ ta
† ta1th

†th!2 ~6.2!

to our Hamiltonian~2.11! and convert the hard-core con
straint to a soft-core constraint. We shall show later that
results can be expressed in terms of the order param
of
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which is implicitly dependent onW, but there is no explicit
dependence onW. We have verified that all three method
give the same long-wavelength spectra for the collect
modes in the limit of low boson density. In the next sectio
we shall present another calculation based on the contin
effective Lagrangian method, which also reproduces
same spectra.

To simplify presentation, we shall concentrate on the c
where the ground-state energy functional~4.7! is SO~5! sym-
metric, i.e., for coupling constantsJc52Js[2J and D̃c
5Ds[D. We choose the direction of spontaneously brok
symmetry to bê tx&5^tx

†&5x and ^th&5^th
†&5y. The ex-

tremal condition can be easily determined to be

x21y2[r 25
4J2D

2W
. ~6.3!

The combinationx21y2 expresses the fact that the classic
minimum is SO~5! symmetric. We can therefore writex
5r cosa andy5r sina. Expanding the boson operators a

tx5x1ax , ty5ay , tz5az , th5y1ah , ~6.4!

we obtain the following quadratic Hamiltonian

H5~D12Wr2!(
x

~ax
†ax1ah

†ah!1Wx2(
x

~ax
†1ax!

2

1Wy2(
x

~ah
†1ah!22

J

2 (
^x,x8&

@ax
†~x!1ax~x!#

3@ax
†~x8!1ax~x8!#2J (

^x,x8&
@ah

†~x!ah~x8!1H.c.#

12Wxy(
x

@ah
†~x!1ah~x!#@ax

†~x!1ax~x!#

2
J

2 (
^x,x8&

@ay
†~x!1ay~x!#@ay

†~x8!1ay~x8!#

2
J

2 (
^x,x8&

@az
†~x!1az~x!#@az

†~x8!1az~x8!#

1~D12Wr2!(
x

~ay
†ay1az

†az!. ~6.5!

We are in particular interested in the collective mode spe
for the AF insulating state witha50, the mixed states with
0,a,p/2, and the SC state witha5p/2 and how they
connect to each other.

From this quadratic Hamiltonian we can learn a numb
of important features. First we notice that theay and az
modes are decoupled for all ranges of 0<a<p/2, but most
importantly, their dispersion relations are independent oa
and given by

v~k!5vsk, vs52J, ~6.6!

wherek[aukW u anda is the lattice constant. This is indeed
very remarkable property. Ata50, ay and az modes are
nothing but the transverse AF spin wave modes. AF s
waves are usually viewed as Goldstone modes and their
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PRB 60 13 079PROJECTED SO~5! MODELS
istence is due to the AF long-range order. However, aa
changes continuously from 0 top/2, the AF long-range or-
der continuously diminishes until it vanishes ata5p/2. The
reason that the properties of theay and az modes do not
change at all is due to the SO~5! symmetry of this model,
since the diminishing AF order is compensated by the
creasing SC order as the superspin anglea is varied. As we
shall see, theax mode is the AF spin amplitude mode ata
50, but it becomes massless and degenerate with theay and
az modes ata5p/2. These three modes form a masslessp
triplet mode whose existence is purely a consequence o
SC order. Therefore, asa is continuously varied from 0 to
p/2, the transverse AF spin-wave modes gradually cha
their character to become thep triplet resonance of the SC
state. As we shall see, form.mc , the p triplet mode be-
comes massive.

At the AF point a50, the spin amplitude modeax is
decoupled from the SC modeah and can be diagonalize
separately. The dispersion for the spin amplitude mode
the conventional massive relativistic form for smallk

v2~k!516J2~k2/41mx
2!, mx

25
Wx2

J
5

4J2D

2J
. ~6.7!

On the other hand, we have a massless SC Goldstone m
ah with the following dispersion:

v~k!5Jk2. ~6.8!

This mode is an important prediction of the SO~5! theory. It
is the counterpart of thep resonance in the AF state. In th
unprojected SO~5! model, there are two such modes, wi
charge62, and they represent gapless fluctuations from
to SC at half-filling. In the projected SO~5! model, the
charge12 mode is projected out of the spectrum, howev
the charge22 mode remain massless atm5mc . It is also a
manifestation of the gapless fluctuation from AF to SC
half-filling, but the SC fluctuation is holelike, rather tha
both holelike and particlelike as in the unprojected case.
see again that a large Mott-Hubbard gap is fully compati
with gapless SC fluctuation at half-filling. Experimental d
tection of this mode could provide a important test of t
projected SO~5! symmetry.

The ax and theah modes also decouple in the pure S
state with a5p/2. However, their physical interpretatio
changes. Theax mode becomes gapless at this point with t
same dispersion as in Eq.~6.6!. Therefore, the three mode
ax , ay , andaz form a gaplessp triplet mode of the pure SC
state, and represent the gapless fluctuation from SC to A
m5mc , but with a finite hole densityrc given in Eq.~5.6!.
The dispersion for theah mode is given by

v~k!52Jmhk, mh
25

Wy2

J
5

4J2D

2J
~6.9!

and has the natural interpretation of a linearly dispers
phase Goldstone mode of the SC state.

In the intermediate mixed state with 0,a,p/2, the ax
and the ah modes are coupled. Diagonalization of the
modes gives
-
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v2~k!

~4J!2
5H ~11mh

2!k2/41mx
2 ,

~11mh
2/mx

2!k4/16,
H mx

25
4J2D

2J
cos2 a,

mh
25

4J2D

2J
sin2 a.

~6.10!

The upper massive mode has predominantly spin amplit
character, and we see that the gap diminishes continuo
until it reaches zero ata5p/2 to become the masslessp
triplet mode. The lower mode has predominantly SC fluct
tion character, and has a gaplessv}k2 dispersion. In the
mixed region where both the AF and the SC order para
eters are nonzero, one would naturally expect a gapless p
mode corresponding to the SC order. However, in a inter
ing boson system, the phase mode is expected to have li
dispersion on general ground. Therefore, what is interes
here is not the gapless nature of the SC mode, but itsqua-
dratic dispersion. In order to locate the origin of the qua
dratic dispersion, we have perturbed the model away fr
the projected SO~5! symmetric point so that a uniform mixe
state is stabilized as a classical minimum. SC fluctuat
around such a non-SO~5! symmetric point is gapless and ha
linear dispersion. A quadratic dispersion is only realized
the SO~5! symmetric point. Therefore, the quadratic dispe
sion is a unique signature of the projected SO~5! symmetry
in the entire range of densities 0,r,rc . To understand the
physical origin of this remarkable phenomenon, we not
that a boson system with gapless quadratic dispersion ge
ally has infinite compressibility. This can be directly se
from the compressibility sum rule

k[
]r

]m
5

1

2
lim
k→0

lim
v→0

x~k,v!; lim
k→0

k2

v2~k!
, ~6.11!

wherex(k,v) is the dynamical density correlation function
Because of the quadratic dispersion relation, we can see
plicitly that x(k)}1/k2 for smallk; therefore, a infinite com-
pressibility is obtained. On the other hand, a infinite co
pressibility implies that ]m/]r50, i.e., the chemical
potential is independent of doping. But this is exactly t
prediction of the projected SO~5! model. For 0,r,rc , the
chemical potential is pinned at the SO~5! symmetric point
m5mc , where the superspin vector can point in any dire
tion. To accommodate a long-wavelength fluctuation of
hole density, the system rotates into another degenerate m
mum with a different superspin anglea and a different hole
density. For this reason, the chemical potential does
change and the system is infinitely compressible.

VII. QUANTUM CORRECTIONS TO THE MEAN-FIELD
SOLUTION

At the mean-field level, the ground-state energy of t
Hamiltonian~2.11! with Eq. ~6.2! depends on the AF and SC
order parametersx andy only via their combinationr 25x2

1y2 reflecting the SO~5! invariance of the mean-field resul
However, the zero-point energy of the bosons in the q
dratic Hamiltonian gives a correction to the ground-state
ergy due to quantum fluctuations.@Calculations of the quan
tum fluctuation effects at the SO~3! spin-flop transition have
been studied in Ref. 31.# As we will show below, this cor-
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rection turns out to depend onx2 andy2 separately.
For the soft-constraint case,E1 can be expressed as

E15
1

2 (
k

(
i

v i~k!22~D12Wr2!, ~7.1!

wherev i(k) are the four collective modes described in S
VI ~although extended to all values ofk in the Brillouin
zone!. In a systematic 1/s expansion, this correction to th
ground-state energy scales like 1/s, and is therefore small in
the semiclassical limit. Alternatively,E1 can be seen as
small correction to the mean-field energyE0 for small values
of the parametere[r 2W/2J512D/4J. However, contrary
to E0 , E1 also depends on the superspin anglea and thus
produces a small SO~5!-symmetry breaking.

We now evaluate thea-dependent part of Eq.~7.1! in the
small-e limit. We thus parametrizex5122 sin2 a (21<x
<1), differentiate the expression~7.1! with respect tox, and
expand it up to second order ine. By further transforming
(coskx1cosky)/2512q with 0<q<2, the derivative ofE1
can be expressed as the sum of two terms

d

dx
E15E1A8 1E1B8 , ~7.2!

where

E1A8

E1B8
52JE

0

2

d q D~q!
GA

GB
, ~7.3!

with

GA[5
@~12Aq! e#

2 Aq
1O~e2!, ~7.4!

GB[2
~Aq21! ~x Aq212x2Aq! e2

4 ~11Aq! q3/2
1O~e3!,

~7.5!

and the density of statesD(q) is defined as

D~q!5
1

4p2E dkx dky d@q211~coskx1cosky!/2#.

~7.6!

Unfortunately, the terms of thee expansion inGB diverge
when integrated overq. It is thus convenient to carry out th
transformationq5ez in GB andthenexpand in powers ofe.
We obtain

GB5
Ae

2 S 1

Az111x
2

1

Az
D 1O~e!. ~7.7!

For smalle, the integral inz can be extended tò and we
obtain from Eq.~7.3!

E1B8 52J eE
0

`

dzD~ze! GB

5
2~A11x e3/2!

p
1O~e2 ln e!. ~7.8!
.

While in evaluating Eq.~7.8! we only need the density o
states atq50, D(0)5p21, for the first termE1A8 one needs
D(q) in the whole domain 0<q<2 However,E1A8 is inde-
pendent ofx and thus it merely fixes the value of the critic
chemical potential. A numerical integration yields

E1A8 50.28Je. ~7.9!

By integrating overx Eqs.~7.9! and~7.8!, we finally obtain
the total contribution to the ground-state energy correctio

E1

2J
50.14xe2

2

3p
@e~11x!#3/21O~e2 ln e!1const.

~7.10!

E1 thus lifts the degeneracy as a function ofx and initially
favors the pure superconducting phase (x521). A small
chemical potential term2m8y252m8r 2(12x)/2 with
m8r 2/2J5mc8r

2/2J520.28e1(2/3p)(2e)3/2 restores the
degeneracy between the pure superconducting (x521) and
the pure antiferromagnetic (x511) phases. However, du
to the convexity ofE1 as a function ofx there is always a
barrier (}Je3/2) between the two phases since the mix
phase always has a higher energy. This means that am8
5mc8 and for intermediate densities the system prefers
phase separate between the two pure phases rather
choosing the mixed phase. However, the important poin
that this barrier remains small in the limitU→`.

In view of the symmetry breaking effects of the quantu
fluctuations, it would be interesting to see whether there
limit when the wave function~4.1! and the projected SO~5!
symmetry become exact. Rokhsar and Kotliar32 have shown
that these types of wave function are actually exact in
limit of infinite dimensions. Therefore, besides the 1/s ex-
pansion, we could also use a 1/d expansion~whered is the
space dimension! to systematically control the SO~5! sym-
metry breaking quantum effects. Besides quantum fluct
tions, there are also other symmetry breaking terms. Nea
neighbor and next-nearest-neighbor Coulomb interacti
also break the SO~5! symmetry, however, their corrections t
the ground state are concave, i.e., the energy of the inter
diate states are lowered. Therefore, they can also lea
uniform mixed states in some region of the phase diagr
The detailed study of all these competing effects will
carried out in subsequent works.

VIII. LOW-ENERGY EFFECTIVE LAGRANGIAN

While the projected SO~5! model defined on a lattice en
ables us to make some connection to the underlying mic
scopic physics, for most discussions concerning the lo
wavelength and low-energy degrees of freedom, it
desirable to have a effective continuum Lagrangian. Suc
formulation can be directly obtained by taking the lon
wavelength limit of the projected bosonic model discuss
previously. However, in order to make the connection to
unprojected SO~5! model clearer, we shall motivate our dis
cussion from the original SO~5! effective model.

The effective Lagrangian for a fully SO~5! symmetric
model takes the form of
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L5
x

2
~] tna!22

r

2
~]kna!22V~n!, ~8.1!

wherex measures the superspin susceptibility,r measures
the superspin stiffness,k5x,y denotes the spatial direction
andV(n) is a scalar function of the superspin magnitudena

2

only. There are three important symmetry breaking effe
connected with the presence of a large Mott-Hubbard g
First is an asymmetry in the scalar potential, which can
described by a additional term

Vg~n!51
g

2
~n1

21n5
2!, ~8.2!

which for positiveg favors AF at half-filling. Second is the
asymmetry between the spin (xs) and the charge (xc) sus-
ceptibilities, which modifies the kinetic energy to

xs

2
~] tna!21

xc

2
~] tni !

2. ~8.3!

The last symmetry breaking effect is due to the chem
potentialm, which enters the Lagrangian as a gauge coup
in the time direction, and modifies the charge part of
kinetic energy to

xc

2
@~] tn11mn5!21~] tn52mn1!2#. ~8.4!

Combining these three symmetry breaking terms, we ob

L5
xs

2
~] tna!21

xc

2
@~] tn11mn5!21~] tn52mn1!2#

2
r

2
~]kna!22V~n!2

g

2
ni

2

5
xs

2
~] tna!21

xc

2
~] tni !

21mxc~n5] tn12n1] tn5!

1
m2xc2g

2
ni

22
r

2
~]kna!22V~n!. ~8.5!

In the presence of a large Mott-Hubbard gap, all these th
symmetry breaking terms are of the order ofU, i.e., xc

21

;g;mc;U. Therefore, this Lagrangian contains hig
energy degrees of freedom of the order ofU. However, as
already observed in Ref. 1, atm5mc5Ag/xc, their effects
cancel completely in the time-independent part of the
grangian, and the static potential is SO~5! symmetric just as
in the original unprojected model. We also observe that n
the AF/SC transition point wherem;mc , the first-order time
derivative term is of the order of 1. Furthermore, in the sp
of the low-frequency and wave-vector expansion, we o
need to retain the first-order time derivative term in t
charge sector and can drop the second term in the ab
Lagrangian. Combining all these considerations, we ob
the following low-energy effective Lagrangian near t
AF/SC transition region, which is free of any parameters
the order ofU:
ts
p.
e

l
g
e

in

e

-

ar

t
y

ve
in

f

L5
xs

2
~] tna!21~n5] tn12n1] tn5!2

r

2
~]kna!22V~n!.

~8.6!

This is exactly the Lagrangian counterpart of the SO~5! pro-
jection procedure discussed previously in the Hamilton
language. Dropping the second-order time derivative te
removes half of the~high-energy! degrees of freedom, an
redefines the canonical conjugacy of the dynamical v
ables. In particular, the conjugate variable ofn1 is nothing
but n5 itself, sincep15dL/d] tn152n5. Standard quantiza
tion procedure requires the canonical commutation rela
@n1 ,p1#5 i , which in this case just reproduces Eq.~1.4!. This
confirms the fact that the SO~5! projection does not chang
the form of the interaction potential, only the commutati
relation betweenn1 andn5.

It is easy to see that the low-energy effective Lagrang
~8.6! produces exactly the same long-wavelength collect
mode spectrum as the projected SO~5! Hamiltonian ~2.11!
defined on a lattice. To facilitate the comparison, we take
SO~5! potential to be

V~n!52
d

2 (
a

na
21

W

4
na

4 , d.0. ~8.7!

Assuming broken symmetry in then1 andn2 directions, we
find that then3 and n4 modes always decouple, and the
have a linear spin-wave dispersion relation withvs5Ar/xs.
The Euler-Lagrangian equations of motion gives the follo
ing dispersion relation for then1 andn2 modes:

v25H 1

4
r2k4

r

xs
k21

2d

xs

~8.8!

for the AF state witĥ n1&50,̂ n2&Þ0,

v25H 1

2
rdk2

r

xs
k2

~8.9!

for the SC state witĥn1&Þ0,̂ n2&50, and

v25H 1

4
~11sin2 a cos2 a!r2k4

2d cos2 a

xs
1S 1

2
dr sin2 a1

r

xs
D k2

~8.10!

for the mixed state with^n1
2&5(d/W)sin2 a and ^n2

2&
5(d/W)cos2 a. These dispersion relations agree exactly w
the lattice model results at the projected SO~5! symmetric
point if we make the following identification:

r52J, xs5
1

2J
, d52~4J2D!. ~8.11!

The effective Lagrangian can be easily used to discuss
fects of SO~5! symmetry breaking. The simplest form o
symmetry breaking is increasing the chemical potential
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yond the critical valuemc , so that a pure SC state is realize
The chemical potential enters the effective Lagrang
through the gauge coupling in the time direction via the f
lowing substitution:

] tn1⇒] tn11dmn5 , ] tn5⇒] tn52dmn5 , ~8.12!

wheredm[m2mc is the deviation of the chemical potenti
away from the critical value. In this case, the spin-trip
excitations acquire a finite mass gap, with the following d
persion relation:

v2~k!5
rk2

xs
1

4~m2mc!

xs
~8.13!

and the mass gap increases with increasing doping in the
state.

We summarize the behavior of the collective modes
tained in the previous two sections in Fig. 5. We see t
while there are significant modifications of the collecti
mode spectra in the density regime 0,r,rc from the un-
projected SO~5! symmetry, the spectra beyondrc is essen-
tially identical to the behavior expected from the unprojec
SO~5! symmetry. This should be expected from our gene
considerations about the Gutzwiller projection without mu
detailed calculations. We argued that the only effect of
Gutzwiller projection is to change the quantum commutat
relation between the SC components of the superspinn1 and
n5. However, forr.rc , the system is in a pure SC pha
where these components acquire classical expectation va
In this case, the modification of the quantum commutat
relation does not have any significant effect. This argum
can also be illustrated by a simple picture of achiral SO~5!
sphere, as depicted in Fig. 6.

In this picture, the north and south poles represent
three AF directions, and the equatorial plane represents
SC directions. The sphere is perfectly SO~5! symmetric.
However, the chemical potential along the pole direction a
like a fictitious magnetic field which restricts the sense of
rotation in the SC plane. Small oscillations of a vector poi
ing close to the north pole enclose the fictitious magne
flux, and can only execute chiral rotations. This amounts
the projection of the particle-pair states at half-filling. On t
other hand, small oscillations of a vector pointing anywh
along the equator does not enclose the fictitious magn
flux, and their dynamics is therefore unaffected by the p

FIG. 5. Evolution of the collective mode spectra as a function
density in the projected SO~5! model. ~a! shows the gap toward
spin excitations. Charge excitations are gapless for the entire re
of density, however, the dispersion relation changes fromv;k2 to
v;k at rc , as indicated in~b!.
.
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jection. Dynamics of a vector pointing anywhere between
north pole and the equator is also partially affected by
projection, but the symmetry of the static potential bear
unique signature.

IX. CONCLUSION

The main purpose of this paper is to introduce the conc
of projected SO~5! models and discuss the properties of th
model in connection with high-Tc superconductivity. The
projected SO~5! model describes the low-energy and lon
distance bosonic degrees of the freedom near the AF
transition. We showed that the Gutzwiller projection can
implemented analytically on every site in the SO~5! theory.
In the presence of a infinite Mott-Hubbard gap, we show t
static properties of the model can remain SO~5! symmetric,
while the modification of the dynamics can be complete
cast into a nontrivial commutation relation between the t
SC components of the SO~5! superspin. Unlike the un-
projected SO~5! models which can only have the full dy
namic SO~5! symmetry at half-filling, the projected SO~5!
model can have static SO~5! symmetry at a critical value o
the chemical potentialmc and for a finite range of doping
0<r<rc . At r50, the system has an AF ground state a
zero compressibility. In the intermediate regime 0,r,rc ,
the system has mixed AF and SC order and infinite co
pressibility. Forr.rc , the system has a pure SC groun
state; the SC order parameter rises to a maximal value be
it decreases with doping. At the projected SO~5! symmetric
point, we can understand precisely the evolution of the c
lective modes. On the AF side, we have two gapless s
wave modes and a gapless charge mode describing the
less fluctuation from AF to SC. In the intermediate dens
regime 0,r,rc , the physical properties of the spin wave
remain unchanged, while the massive spin amplitude m
gradually decreases its energy and merges with the two s
wave modes atr5rc . The charge mode in the intermedia
density regime is gapless, but has a quadratic dispersion
lation, which is a unique signature of the projected SO~5!
symmetry. Forr.rc , the charge mode is gapless with
linear dispersion relation, and thep triplet spin mode be-
comes massive, and gradually increases its energy with
creasing doping. In this regime, the behavior of the collect
modes are identical to the unprojected SO~5! model.

This very simple model can form the basis for unde

f

on

FIG. 6. Pictorial representation of a chiral SO~5! sphere.
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standing many puzzling properties of the high-Tc supercon-
ductors in a unified framework. It points out a route from A
to SC through a gradual rotation of the superspin angle
the projected SO~5! symmetry point the mean-field energy
independent of the superspin angle, and therefore it offer
explanation of the absence of the chemical potential shif
the underdoped regime without global phase separatio
predicts a phase diagram which is qualitatively consist
with the observed phase diagram in the high-Tc materials. In
the underdoped regime of the phase diagram, the sys
have large AF and SC fluctuations, and these fluctuations
be responsible for the pseudogap physics observed in t
materials.

There are many possible directions to carry out this line
research in the future. The most important issue is to un
stand the precise nature of the intermediate state in the
gime 0,r,rc . Since the system has infinite compressib
ity in this regime, different small perturbation may sele
different ground states. Such perturbing effects might
clude quantum fluctuations and longer ranged interactions
particular, we would like to investigate the possibility th
these perturbations might lead to the formation of inco
mensurate order or stripes.

In this work, we have discussed extensively the collect
fluctuations in the long-wavelength limit. Due to the defin
tions of our effective lattice model, thek→0 limit corre-
sponds to thek→0 limit in the SC correlation functions an
the k→(p,p) limit of the AF spin correlation functions
Within the SO~5! theory, thep resonance in the SC state
viewed as the SO~5! symmetry partner of thek→0 Gold-
stone mode of the SC phase fluctuation. While the comm
surate neutron resonance mode is observed in both Y
Cu-O and Bi-Sr-Ca-Cu-O superconductors, all high-Tc
systems also have incommensurate spin fluctuations. H
can these features be explained within the current theore
model?

The fact that La-Sr-Cu-O and Y-Ba-Cu-O have very d
ferent Fermi surface shapes and yet have similar incomm
surate magnetic peaks strongly suggests that the incomm
surate peaks are not sensitive to Fermi surface effects
should be explainable within an effective bosonic model.
us recall that the collective mode of a superfluid boson s
tem consists of a linearly dispersing phonon branch and
other roton branch with a minimum located at the inve
interparticle spacing. So far, we have only studied the p
non branch of the charged bosons. By analogy, the ro
branch should also exist, with a wave vector determined
the density of the charged bosons or doping. Within
SO~5! theory, while the commensurate neutron resona
can be viewed as the SO~5! partner of the SC phase mod
the incommensurate magnetic peaks can be viewed as
SO~5! partner of the roton minimum of the charged boso
A detailed quantitative analysis of this picture will be carri
out in the future.

However, while the ground state in the doping range
,r,rc may depend sensitively on small perturbation
fects, at finite temperature, these perturbation effects sh
be small and the system should display more universal p
erties. We have shown that the projected SO~5! symmetry
should be valid for the entire doping range 0,r,rc , and
we shall quantitatively study the manifestation of this sy
t
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metry at finite temperature, and see if the projected SO~5!
symmetry can give a universal explanation of the pseudo
physics.

Note added in proof. After completing this work, we re-
ceived a very interesting paper by Coen van Duin,35 in which
he also observed the remnant SO~5! behavior in the largeU
limit.
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APPENDIX: SLAVE BOSON RESULTS

Alternatively, one can enforce the hard-core constra
~6.1! by introducing an additional ‘‘slave’’ boson for eac
lattice site. The presence of this boson@e(x)# indicates that
the lattice sitex is in the singlet state. The ‘‘less or equal
hard-core condition~6.1! is replaced with the equality con
straint

Q~x!5(
a

ta
†~x!ta~x!1th

†~x!th~x!1e†~x!e~x!2q50,

~A1!

with q51. Since in physical states one always has one
only one boson per lattice sites, destruction~creation! of a
bosonta (ta

†) must always be accompanied by creation~de-
struction! of the empty bosone† (e). In this way, thephysi-
cal operators for creating~destroying! a triplet (a5x,y,z) or
a hole pair (a5h) acquire the formta

†e (tae†). The advan-
tage of this method is that the constraint can be enfor
exactly ~at least in principle! by introducing an additiona
time-independent fieldl(x) at each lattice site, by adding t
the Hamiltonian a term2l(x)Q(x) and by integrating over
the l(x) on the imaginary axis. The whole Hamiltonia
~2.11! thus takes the form~apart from a constant!

Hsb52(
x

l~x!Q~x!1Ds(
x,a

ta
†~x!ta~x!

1D̃c(
x

th
†~x!th~x!2Js/2 (

^x,x8&,a
@ ta

†~x!e~x!1H.c.#

3@ ta
†~x8!e~x8!1H.c.#

2Jc/2 (
^x,x8&

@ th
†~x!e~x!e†~x8!ta~x8!e~x8!1H.c.#.

~A2!

In practice, one starts with a mean-field approximati
and expands the boson operators around their mean-field
ues as in Sec. VI. This expansion can be rigorously c
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trolled by generalizing the constraint~A1! to large values of
q, whereby one scalesJc/s→Jc/s /s ~cf. Refs. 33 and 34!.
Physically, this corresponds to allowing for a large numb
of bosons to be present at each site and thus to have a
value for the total spin, or more precisely for the SO~5! quan-
tum numbers, at each site. The mean-field result thus cor
sponds to theq→` limit, while the quadratic expansion cor
responds to the first 1/q correction.

At the mean-field level, the constraint is fulfilled exact
and indeed one obtains the same result and the same p
diagram as the variational ansatz~4.1! discussed in Sec. V
By expanding the bosons quadratically around the mean
one obtains the same modes as for the soft-core Hamilto
with a similar dispersion.@Here, we restrict ourselves aga
to the SO~5!-symmetric case.# Specifically, in the mixed
phase one obtains two spin-wave modes with dispersion

v~k!5
4J1D

4
k, ~A3!

one massive spin-amplitude mode
e

e

tt

ev
r
rge

-

ase

ld
an

v~k!25~16J22D2!cos2 a1O~k2!, ~A4!

and a quadratic mode

v~k!5
4J1D

8 cosa
k4. ~A5!

In the pure superconducting phase, one has ap-triplet with
dispersion

v~k!5
4J1D

4
k ~A6!

and the SC Goldstone mode with dispersion

v~k!25
16J22D2

4
k2. ~A7!

These results coincide with the ones of the soft-constr
approximation Eqs.~6.6!–~6.10! in the limit of small 4J
2D, i.e., for low boson density.
y,

ev.
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