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The physical properties of anisotropic superconductors such as the critical temperature and other important
properties depend sensitively on the electron mean free path. The sensitivity to impurity scattering and the
resulting anomalies are considered a characteristic feature of strongly anisotropic pairing. These anomalies are
usually analyzed in terms afwave impurity scattering which leads to universal pair-breaking effects depend-
ing on only two scattering parameters, the mean free path and the impurity cross section. We investigate here
corrections coming from anisotropies in the scattering cross section, and find not only quantitative but also
qualitative deviations from universaiwave isotropic pair breaking. The properties we study are the transition
temperature, quasiparticle bound states at impurities, and pinning of single- and double-flux lines by impuri-
ties.[S0163-182699)12341-5

I. INTRODUCTION d-wave pairing in HTS oxides.
One may raise the question whether this robustness also

Unconventional anisotropic pairing is evidently realizedholds far away fromT, and for a very strong scattering po-
in high-temperature superconductOrsTS’s) (see reviews in  tential, for instance in the unitarity limit. To answer this
Ref. 1), and probably in some heavy fermion superconductquestion we shall analyze in Sec. Il a class of models by
ors (HFS’s (see review in Ref. 2 There is good evidence calculating the scattering matrix, with an impurity potential
for d-wave pairing in optimally doped HTS oxidebut the  that depends on the scattering angles, and its effect on the
type of pairing in HFS's is still unclegrThe effect of im- Tc(pimp) dependence.
purities on unconventional pairing is an important tool in Many-band models belong to the special class of aniso-
analyzing the symmetry of the pairing amplitude, and is theropic superconductors. Recently, several models were sug-
subject of a number of experimentdl and theoretical gested for the pairing mechanism in HTS oxides based on
works>® Most theoretical considerations and calculationstwo-band and multiband models;*®where impurity effects
were done assuming aawave impurity scattering potential are studied in the Born approximatioh.® Magnetic and
Uimp(P,p")=const, and taking either the Born limit nonmagnetic interband scattering can lead in this model to a

[N(O)Ujmp<<1] or unitarity limit [N(O)ujm,p>1]. lowering of the critical temperature and also to a relative sign
Surprisingly, a number of experiments on the optimallychange of the order parameters in different bards. Sec.
HTS oxides* have shown that-wave pairing is quite ro- 1l we analyze the changes in the two-band model when go-

bust, i.e., not very sensitive to various kinds of impuritiesing beyond the Born limit. It is shown that in some range of
and defects. For instance, the decrease of the critical tenthe parameters and in the unitarity limit the thermodynamic
peratureT(pimp) With increasing residual resistivity,, is properties are unaffected by impurities; i.e., the Anderson
much smallef* than the theory with the-wave impurity ~theorem holds.

scattering predictd® A way out of this experimental and ~ While in Secs. Il and Il a homogeneous superconductor
theoretical discrepancy of pair-breaking effects by impuritiesvith homogeneously distributed impurities is studied, in Sec.
in HTS oxides was proposed by the authors of Refs. 6 and 8V selected inhomogeneous problems are studied, such as
who invoked a momentum-dependent impurity scattering pobound states at an impurity and the pinning energy at an
tential with an appreciable contribution in tdehannel. The  impurity (defecy of single- and double-quantized vortices.
microscopic theory in Ref. 8 accounts for the renormaliza-

tion of the impurity potential by strong correlations, which ||, ANISOTROPIC SCATTERING IN ANISOTROPIC

gives rise to a pronounced forward scattering peak, while AND HOMOGENEOUS SUPERCONDUCTORS

backward scattering is suppressed, as first proposed in Ref. ) )

10. Application of this theory to impurity scattering shows N the following we analyze the superconducting proper-
that in addition to the contribution in trechannel there is a ties of anisotropic superconductors in the presence of
significant contribution to the Born amplitude from the ~Momentum-dependent nonmagnetic impurity scattering by
channel of the same magnitutfein particular for low(hole)  the quasiclassical equations of Eilenbetbend Larkin and
doping concentratiod< 0.2. As a consequence, the decreasédVchinnikov” (ELO equations For a homogeneous distri-
of Te(pimp) With increasingp;m, is much slower than the lgutlon the quasiclassical Green’'s function matrix
theory with exclusivelys-wave impurity scattering predicts. g(pg,R,®,) is independent ofR, and the quasiclassical
This renormalization effect explains the robustness ofquations read
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[i0n73— A(PE ,@5) = Timp(Pe  01),0(Pe , @) =0, (1)

92(Pe,wp)=—1. (2)
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A. Anisotropic impurity scattering
and nodeless anisotropic pairing

First, we consider the nodeledsvave-like pairingA(s)
=A-Y(s) which is characterized b{¥(s))s=0 andY(s)=

The bracket$, ] mean the commutator. We assume weak-+ 1 1° This means that there is a finite gap everywhere on the

coupling superconductivity witi&(p;)[ =iA(pg) 7], where

A(pg) is real. The %2 matrices7o=1 and 7,,5 are
Nambu-Gor’kov matrices in the electron-hole space. The e

fect of nonmagnetic impurities is described by the self-

energy&imp, given in terms of the forward scattering part of
thet matrix t(pg ,pf , wp): 2618

3

(}imp(pF 1wn) = C’f(pF va !wn)v

wherec(<1) is the impurity concentration.

For simplicity we assume an isotropic Fermi surface but
pairing and impurity scattering are angle dependent, i.e.,

A(pe)=A(9), 9(Pr,wp)=g(sn) and t(pe.Pr,wn)
Ef(s,:é,n) wheres=pg/pe. The generalization to the an-
isotropic Fermi surface is straightforward. Theatrix is the
solution of the equation

i(s,¢,n)=u(s, ¢)1+N(0)

xfds”u(s,é’)é(s”,n)f(s”,s’,n), (4)

wherefds{---}=[{---}dQ/4m. SinceA(s) is real, one has
0=0,7,+0s73 and t is given by t=toro+t; 7 +1t,7p
+1373.

Because the unperturbed solution has the fdray,
=7T(2n+1)]

iwn;‘3— | Ao(s);'z

q(® - 5
N N
theng(s,n) is searched for in the form
. {wn(8) 73— 1A (S,00) 72
g(sn)=— = : (6)
Vad(s+52(s,ap)
where
©n(9)=wn(9) Ticits(s, sn), (7)
A(swn)=A(S) —ic;ts(s, sN). (8)
The self-consistency equation far(s) is given by
A(s)=N(0)T; J ds'V(s,s')g,(s',n), 9)

where the pairing potential,(s,s’) is assumed in the fac-
torized form, i.e.V,y(s,s)'=V,Y(9Y(s'), with (Y2(9))s

Fermi surface, i.e A(s) #0. It is interesting to mention that
besides the simplicity of this kind of pairing and its adequacy

f[n some qualitative understanding dfwave pairing it also

appears to be a solution of the spin-bag m&ter HTS
oxides. In this model the nodeledsvave-like pairing is due

to residual(longitudinal and transversapin fluctuations on
the antiferromagnetic background, where the antiferromag-
netic (AF) order is distorted locally by hole doping and the
spin bag is formed around doped holes. The impurity scat-
tering potential is assumed to have the form

V(S,8)=Vvpt+VyY(9)Y(s); (10

i.e., it contains an anisotropic contribution in the same chan-
nel as the unconventional pairing. The solution of &k.for
t; andt, is searched in the form

ta(s,8)=[Tag(N)+Ts(N)Y(9)Y(s)]gs, (1D

to(s,$)=To(N)[ga(SN) +ga(s',N)]. (12)

[Note that in this model one hag,(s,n)=0,(n)Y(s),
93(sn)=03(n), gs(sn)=gs(n), and due to Eq(2), one
hasg3(s,n)+g5(s,n)=—1.] The solution is given by

x - ) 1+v§ (13
n)=y,v ,
’ O (14 V2)(1+V2) + (vo—v2) ZgA(n)
,.f( ) 1+VOV2
n)=y,VoV ,
2T IO (1 V2 (14 v2) + (vo— V) 2G3(n) ”
14

while Ta(n)=ts¢(N,vo—V,). Several interesting results
comes out in this case.

1. Critical temperature |

In the limit T—T,, Egs.(9), (13), and(14) give the equa-
T 1 r
In—=v P

tion for T,
! R4
T, T\2) ¥ 27 247

where the pair-breaking paramet€y,, is given by ([
=Cvy)

(15

(Vo_Vz)2
YAtV (1+vE)

[pp= (16)

Note thatT, vanishes foil"[,~0.88T, and this pairing is in
some respects similar @wave pairing. It is apparent from

=1. The latter implies that the order parameter has the fornkgs.(15) and(16) that the pair-breaking effect of impurities
A(s)=AY(9). For convenience we define the scattering am-is weakened in the presence of momentum-dependent scat-
plitude (in the unitarity limiy T' ,(=cy,)=c[7N(0)] *and tering and it is even zero fory=v, in this specific example.
v(s,s)=mN(0)u(s,s). In what follows we consider the In the casevov,<0 the pair-breaking parametéy,, can be
effects of anisotropic impurity scattering on the anisotropiceven increased in the presence of anisotropic scattering. This
pairing where(Y(s))s=0. property is impossible to obtain in the approach of Refs. 6
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and 7 because it is assumed that the impurity scattering pdting casev,=v, one obtains a restoration of the gag,
tential in the Born approximation has the formv(k,k’)|? i.e.,N(w<wg)=0. Despite the strong scattering lini( w)
=|wo|?+|w,|2Y(K)Y(K") [see Eq.(6) Ref. 6], wherew,, is BCS-like.

=const. As a result they get in the Born approximation
'Y~ (lwo|?—|w,|?) instead of the correct result,,~ (v,
—V,)?. Note thatl“(“kv,) gives that it is unphysical thdfg’g) Let us study a two-dimensional superconductor with the
<0 for |w2|2>|w0|£and accordingly an increase of (see  Ppairing function A(s)=A(¢)[=AY,(¢)]~cos2p d-wave
Ref. 7. The correct expression fdr,, givesI',,=0 and  Pairing. Note that this case is more realistic for HTS oxides

decreases, in the presence of impurities. In fast, mustbe ~ than the previous one, because the “ce$ Jairing has
momentum dependent, i.dwo|2=|wg(k,k')|2, except in nodes at the simply connected Fermi surface. We assume

the case withy(s)=+1° where|W0|2=v(2)+v§ and |w, |2 that the isotropic impurity potential depends on the trans-

=2vyV, for vov,>0. The latter result has been previously ferred scattering angle
derived in the Born approximatich. V(g,@')=Vot2vicoge—¢')+2vc0sAo—¢'),

For v,~Vv, in the model withY(s)==+1° the slope (20)
dTc/dpimp can_be very small even for appreciable values ofynere v(e,¢') contains the pairing channel
pimp~Tw=Ty(0og+0,), because in that cade,,<I'y, as [ ~Y,(¢)Y,(¢')] too. (This problem but with/,=0 is stud-
indicated by the experimental results of Ref. 3. The paramied in Ref. 22 but there is an inappropriate sign in the

B. Isotropic impurity scattering and d-wave pairing

eterso; are given by matrix,_which in fact corresponds to a magnetic impL_Jrity
scattering. From Egs.(13) and (14) one obtains the pair-
2 breaking parametdr ,,
gi=——, i=012.... (17) (1- a)’+ a?(14v2)
1+v; Tpp=T, oo 5 oyl (21)

The resistivityp;,, and the reduction of ;. due to impu-
rity scattering, Tc(pimp) depend on the classical transition
rate W(s, §)=T|ty(s,$, n)|? in the normal staté This
transition rate comprises all the needed information on im i
purity scattering for either solving the normal state Boltz-Plasma frequency, we need to know the transport scattering
mann equation to determing,,, or the linearized gap equa- ratel’;, . In the case of the scattering potential given by Eq.
tion (9) to determineT.. For the latter purpose one needs a(20),

wherea=v,/v, anda; are given by Eq(17).
In order to analyze th&.(p;np) dependence, where the
residual impurity resistivit;pimp=4wl“trlwf,| andwy, is the

linear (integra) equation forg,(s,n) which reads I
rtrzru[EnginJrzEg—zao oql 1+
VoV1
Iwn|92(&n)—A(s)+f ds'W(s, s)[g2(s,n) —ga(s',n)] _
VoV2

=0, (18
) ) _ If one wants to interpret the depairing effects of impuri-
where the normal statematrix ty(s, s,n) is the solution of  ties and robustness of pairing in HTS oxides in terms of the

the equation above results, then the experiménimply that the ratio,
. I'pp/T' must be small, i.e.I{,,/T'y;)<1. In the case when
tn(s, s, n)=v(s,s)—imsgnw,) Vv,<<v; one obtaind",, /T, =2 in both the Born and unitar-

ity (vg,vi—0o°) limits. Forv,<<v,, the pair-breaking param-
Xf ds'v(s, )ty(s, s, n). (190  eter, 'y, is minimized for a=1/2 which givesI',, /Ty,
~1/3, in both limits. This means that the latter casg (
<V,) is a more appropriate candidate than the cgsev,,
for at least a qualitative explanation of the robustness of
€t-wave pairing in HTS oxide$*®

Hence, measurements of tie(pimp) curve do not carry

enough information on the microscopic scattering data, i.
on the scattering matrix. More such information is con-
tained in spectroscopic data on anisotropic superconductors IIl. TWO-BAND MODEL

at temperature$<T., such as tunneling data or optical data WITH NONMAGNETIC IMPURITIES

at about gap frequency.
Interest in two-bandmultiband models and in the impu-

2. Density of states rity effects was renewed after the discovery of HTS

_ , oxides!'** where various kinds of intraband and interband
‘The density of statedl(w)=N(0)Im/dSs gs(S,iwn—®  airing and impurity scattering are considered. Recently, a
—in) depends in the presence of pair-breaking impuritiesy,oqe| was proposed for the anisotropic superconductors,
significantly on the values of, andv,. Itis known® that in i heavy fermions, which is based on the Fermi surface

the case ofs-wa\zle scattering only\;=0) one hasN(» \yith multiple pocket<® In this model the pairing takes place
=0)#0 for I'yvo>A, and the highest value iBl(@=0)  op the pockets and the interpocket scattering of pairs is also

=N(0)/{0.5+0.5 1+ (2A/T)2]Y212 where I'=T",0, is  taken into account, while impurity scattering is omitted. This
reached in the unitarity limit. On the other hand, in the lim- model belongs to the class of multiband models which we
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analyze below by additionally taking into account nonmag- The t-matrix equation in the two-band model with only
netic impurity scattering. swave scattering potential has the fofmote that we con-

For simplicity we consider a two-band superconductor bysider the case of small impurity concentration and therefore
assuming the intraband pairirfy, (a=1,2) only the inter- neglect interband hybridization
band pairing is highly improbable, and various types of in-
traband and interband nonmagnetic impurity scattering. The
effect of the nonmagnetic impurities in the Born approxima-
tion is analyzed in Ref. 13 where the renormalized frequency . 3 A - . .
~ . = wheret(n)=2;_ti®7, g(N) =03® 73+ g,®7, and® is the
©qn and superconducting order parameti(s, are the solu- direct product of matrices in the band spabeld) and in the
tions of the following equationsn( enumerates Matsubara P P& X

. _ . Nambu spacécare}. g,, gs, andN(0) are diagonal matrices

frequencies, and, B,y=1,2): in the band space.

In the case of nonmagnetic impurities one ha%

t(n)=u+>, uN(0)g(n)i(n), (26)
Y

Z)an:wn+% ;g;n Yaps (29  —yNg%,, and sinceg; =0, one has

3 3 to(n) = u"+UN(O)[ ga(M)t5(n) + gs(Mt5'(m) ],

Bar=8at 3 50, Vet (24 () = UMN(O) [~ i oY) +iga()tS(n) ],
Teonten R t2(n) =u"N(O)[igs(m)ty(n) +go(mt5 () ],

A,=7T > A

—_—, 2
V. aﬁQBn ( 5)

t5(n) =u"N(O)[ga(Mt5 (n) ~igx(Mt(m].  (27)
whereQun= V%, + A%, v45=2mU%Ng(0) for the non-  |et us consider for simplicity the case whet},ub,=0, but
magnetic impurity scattering, anw,z=V%;N4(0) are the  the interband scattering is finital,= u},=u+0, and intro-
corresponding coupling constants. In Ref. 13 are considereguce three parameters

various possibilities for the suppression of the critical tem-

perature, as well as the relative sign ®f and A, in the m°N1(0)N,(0)u?

Born limit for nonzero values of ,; andy, ;. Before study-

ing the strong scattering limit let us quote some interesting
conclusionsii) the diagonal scattering ratg; and y,, dis-  and
appear from the linearized equati¢25) for T.; (ii) in the

casel 1170, Aoo=N1,=N\,;=0 the depression df. is given C .

by STo/T.=—myd8Tc: (iii) for Ayg=App#0 and Ay =N =12 (29)
=Np=A, <0 one has sgi{;/A,)=—1 and 6T,/T.= . ) ,

— 7(y15+ ¥,1)/8T., while the sign ofA; and A, is un- After some stralghtforvxard calculations one Sbtalns the
changed by the impurities. renormalized frequencies;, and order parameters;,, :

77 1+ 7N, (0)Ny(0)u? 29

~2 x2.\" -~ ~2 X2 ~2 X2
(o= (0t A7) won— O'wln\/wln+Aln\/w2n+A2n

:Uln: wn+ F]_O' det 1 y (30)
Z —A+T (U_1)(Z’in+zin)12n_0—zln\/Z’in'l'zin\/z’%n_l_zgn (31)
=2 det1 !
[
where P
~ 2 2n
w1n=w,+ 7TCNy(0)u (33

T2 A2 '
w2n+A2n

det1=2(o— 1)\ @2, + A2 (A1nAsn+ @1n@on)

- o~ — = - A,
—[2(c—-1)o+1](wf,+AL) Vi, +AS,. A1n=Aq+ mCNH(0) U2 e ; (34)

(32 Vs, + A%,

i.e., the interband scattering mixes both bands according to
The solution for the second band is obtained from E3@)— Egs.(25) and(24). In the unitarity limitc—1 (u—) the
(32) by replacing %=2. In the Born limit one gets bands are decoupled, i.e.,



13 066 MIODRAG L. KULIC AND OLEG V. DOLGOV PRB 60

- o 4n do(Pr R, ®,) are normalized according to E). Thet ma-
wan:wn+ra\/ﬁ, (35  trix entering Eq.(39) is the solution of Eq.(4) where
@WantAon 9(pe , wy) is replaced bygo(pg ,R=Rimp,@,). The change

~ of the superconducting free energy in the presence of a single
Agn impurity (defecj is given by>2*

o (36)
Vol +A%,

So in this unitarity for the interband scattering the Anderson

theorem is restored; i.e., the thermodynamic properties are ~ .

impurity independent. X[69(pr R, wn) Ap(Pr,R)], (40
The latter result can be generalized to the case when

N au u
u = .
u Uso

A=A +T

an

SF(Rimp) =N(0) T, fldxfd%f d*RT
( imp)_ ( ) ~ 0 A r

whereﬁb(pF ,R) and the vector potentigh,(R) are calcu-
lated in the absence of the impurity. The Green’s function
5§(pF,R,wn) must be evaluated for an order parameter
A(pr,R)=NAy(Pe,R).

In the following we study the consequences of anisotropic

equations and the bands are decoupled with and A, impurity scattering for three selected examples of inhomoge-
g|Ven by Eqs(35) and (36) At TC and fOI’(rSl one haS neous anisotropic Superconductors_

37)

For u—o but « and u,, finite, « and u,, drop out from

@1n= ont ol sgniey), A. Bound states due to the anisotropic impurity
Let us consider the local change of superconductivity in
(38)  the presence of a single anisotropic impurity with the poten-
tial v(s,s) given by Eq.(10) and analyze the impurity-
o ) o induced quasiparticle bound state and the change in the free
From EQq.(39) it is seen that in the unitarity limir— 1,

the renormalized order parameters are decoupledTand gnergy&F(_Rimp)z. By aszsummg thaF ?U&EF/AO’ where

unrenormalized by such impurities. Fer 1 it can be easily | = 0.2 @ndoy=v{/(1+v{), thet matrix is given by the same

shown thafT, is reduced with respect to the clean limit.  expression as Eql3) and(14), but withg,(n) replaced by
g)(n). The bound state energyg .nis<Ao, Which is due to

O'Zln (1_0')32n

|Z)ln| |Z)2n|

Zlﬂ:A1+ O'F1<

IV. SMALL ANISOTROPIC DEFECT the pair-breaking impurity effects, is obtained as a pole of
IN ANISOTROPIC SUPERCONDUCTORS the t matrix which gives
In the following wi nsider the eff f ingle impu- I
e following we consider the effect of a single impu g anis= Ao\ 1= Tpp. (41)

rity (small defeck with small scattering lengtla, which is
supposed to be much smaller than the superconducting c@shere
herence lengtha| < &,. The latter condition is with certainty

fulfilled in many clean low-temperature superconductors for — (Vo= Vy)?
small defects due to largg. However, in HTS materials due Tpp= 0002 35 (42)
to rather smalk,~20 A (in the ab plane only some spe- 0%2

cial defects fulfill this condition|@| < o). For instance oxy- | the unitarity limit for both channels, eve>1, vo>1,

gen vacancies could play a role of small defect. butv, /v, finite, one hasog 4nis— Ao contrary to the unitar-
~ So if [a] <&, the impurity can be considered as a local-jy jimit for the swave scattering\(o>1, v,=0) where
ized perturbation, but with negligible renormalization of wgiso—0. This example tells us that the bound state can

A(pF,R) which is of the order &/&,)? (see Refs. 23 and disappear(i.e., moves to the continuunin anisotropic sys-

24), giving rise to the quasiclassic equati tems even in the case of strong quasiparticle scattering on
R impurities. However, the zero-energy bound staig ;s
[(iwy+eve-AR)) T3~ A(Pe,R), 89(Pk R, @) ] —0 appears whemgv,=—1; i.e., if one channel is in the
~ unitarity limit, the other one must be in the Born limit.
+iVeVRg(pr,R, wp) Due to the bound state, there is a chafigerease of the

free energydF(Rin)=06Fm,. By solving Eq.(39) with
Jo(pe ,R, w,,) given by Eq.(5) andt given by Eqs(11)—(14)
one getsoF;n,, from Eq. (40):

=[t(Pr ,Pr ,@n),00(Pr R, 0)) I8(R—Ripp).  (39)

Here, 59(Pe R, @n) =9(Pr ,R, @n) — Go(Pr ,R, @) The ex-
tra term, which is proportional té(R—R;n,,), describes a

jump in @(pF,R,wn) at the siteR;,, of the impurity (de- 6Fimp:TE fld?\;pb
fect), while the intermediate Green’s functi@a(pp R, @) n Jo [
describes the quasiclassic motion in the absence of impurity

it i i i ight- cosh{Ay/2T
(defec} and it is the solution of Eq(39) with the right-hand —2TIn HAG/2T) 43

side equal to zero. The Green’s functiop@r ,R, »,) and costi (1— o) Y2A¢/2T]°

AAgwﬁ
2 2 2 2
wn+ )\2A0][wn+ wB,anis]
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whereo, is given in Eq.(42). It is seen that there is a loss - 1 - -

in the condensation energ§F;,,,>0, which is related to the 9v(Pr,R=Rimp, wn) = w_n[( —Apm+ A7) Y(6)
pair-breaking effect of the impurity. Farp=v, such an im- R

purity does not affect superconductivity aa#y,,=0. +(—ia,) 73] (45)

The obtained results tell us that for angle-dependent im-
purity scattering even a strong impurity potential may have &econd, the impurity matrix is the solution of Eq4) where
very weak effect o, the bound state, and the free energyqg(p. w,) is replaced byg, (pe R=Rimp, @) given by Eq.
of anisotropic and unconventional pairing. In that case thg4s) which gives
anisotropic pairing is robust in the presence of impurities.

B. Pinning of a single vortex by a small anisotropic defect t(pe ,pe, wp) :ts;sz —iyyanwn %
Because in HTS oxides strong correlations give rise to wntoolo
strong momentum-dependent charge scattering processes, p
such as, for instance, impurity scattering, it is interesting to + % . (46)
analyze the elementary flux-pinning potential of a small de- wn+ oA

fect by using the approach of Thunebegtjal,’>?* They

showed _that ir_srwave supercond_uctors _the pinning energy ofHere, a,= « /wn2+ AOZ_ Note thatt does not contait, andt,
a small(impurity) defect @<¢) is dominated by scattering pecauser; andA, are averaged to zero by integrating over
processes at the defect. Itis proportional to the product of thg i Eq. (4). Equation(39) can be solved by the Fouriéor

scattering cross section and coherence lengta*€o), in-  Laplace transform which gives the expression for the pin-
stead of(naively believedl a*, thus giving rise to a larger ning free energy:

pinning force by a factor§,/a)>1. The case of anisotropic
pairing but withs-wave impurities and neal, was recently

studied in Ref. 29. OF pin=0F in' (00,072) + OF ) (o), (47)
In the following we study the effect of anisotropic scat-

tering on the pinning energy of a small defect in amso- A [aA

tropic superconductoat any temperature beloW,. We use SFGH = —2TIn) cosh Z?I' % cosh (;I' %, (48

the model potential given in Eq10) and assume that the
vortex is placed at the defect. In order to calculate the el-

ementary flux-pinning energy one has to solve the quasiclas- cosh{Ao/2T)
sical equations for various ballistic trajectories which go 5F§)‘?§)=—5Fimp=—2Tln T .
through the vortex core and wifR-dependent vector poten- costi(1—opp)"“Ao/2T]
tial A(R) and order parametek,(pge,R). For trajectories (49)
going through the vortex core it can be parametrized in the ) ] (stiff)
following way: Equations(47)—(49) imply that oF ,;,<<0 (becausesF i,

_ <0 and 5ng’§)<0), and the vortex is attracté@inned by

Ap(pe,R)=|A(pe,R)|€'Y(6). (44)  the defect. A comparison of E¢47) with the corresponding

results forsswave superconductors with @&wave scattering
potential shows that in the former case two additional terms

are present. The first one, dependingo_og appears also in
swave superconductors with anisotropic scattering ac-

adopt a simplified vortex mod@i?* which neglects the sup- counted for. I.n facF&FffiE”). describes the reducFion of the
pression of the order parameter in the vortex core and Se&uperconductlng stifiness n the presence of an impurity. For
1Au(Pe,R)|=Ag(pe): ie., |Ay(pe,R)| is R independent, instance, neaf ., Eq. (48) is simplified:

but keeps its phase dependence. Hence, the order parameter

along a trajectory passing through the vortex center has con- (stif) - — AS(T)

stant magnitude but its phase changes abruptlyrbyhen 6Fpin ' = _(‘70+‘72)T

going through the vortex core. We stress that this zero-core ¢

model gives the right order of magnitude of the pinning en- ;O+;2

ergy oF pin(Rimp) and its temperature dependencesiwave ~—2. 72m §oEcond T), (50)
superconductors wite-wave impurity scattering, when com-

pared with the numerical calculatioffsin order to calculate

6Fpm(Rm_]p) 'Ewo guantities are needed. First, T[he inte_r_medi-:N(O)Aé(T)/Z. It is seen from Eq(50) that 6F§)Si;iff) is

ate ;olutlongo(pp ’R_R‘Tp’,w”) at the impurity F’OS'“‘?” proportional to the total scattering amplitudg+ o, and to
Rimp is the vortex solutiom, in the absence of the impurity, ¢ For 4 vortex far away from the impurity there is loss in

i.e.,do(Pr ,R=Rimp,0n) =9y(Pr ,R=Rimp,wn). In the case  the condensation energyF;,, due to the pair-breaking ef-
of the zero-core vortex model the solution fgy(ps,R  fect of the impurity. For a vortex sitting on the defect the
=Rimp, @) is straightforward’ and has the form{=A, latter part of the energy is gained, i.F$P =~ F
+iA),) < 0. Therefore this part enters into Ed.7) with a negative

In the gauge wheré@ is the angle with respect to theaxis,
A(R) has no radial component. The solution of E§9)
requires for a realistic vortex numerical calculations with
R-dependentA (pg,R)|. For a qualitative discussion we will

where E.,T) is the condensation energy, i.&q,,(T)
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sign, thus increasing the pinning energy when vortex is sitdouble-flux-vortex ¢ =2®d) by the small defect? The latter
tlng on the defect and StabIIIZIng it addltlonally Né:':krone is for s|mp||c|ty characterized by the parame& for the

has s-wave scattering only. We consider again the problem when
the vortex is sitting on the defect and assume the zero-core

(pb) _ O (stiff) model again. In that case the order parameter can be param-
OFpin (Tetr) ot o) OFpin - 5D etrized in the form
Note that 0> SF®D (o) > SF U™ for vov,>0 and for Ap(pr,R)=|A(Pe,R)[e*”. (52)
h , e (stiff) _ _ :
Vova<—1, while for —1<vgv,<0 one has G 6F, For particle(pair) motion across the double vortex core the

> SF (R (aefr) - Forv,=v, the pair breaking of the impurity  order parameter does not change its phase. The solution
ibS<’:1tr)]sentap"b§Czc anq5F_E)’i)r?_)|:0; i-ﬁ-, in this case the pir(;ning for the zero-core double-vortexgo(pr,R=Rimp,@n)
y the small defect is similar to that Bawave superconduct- _ ~ . o o
ors. We stress thaiF ,;,~a?&, contrary to the naive expec- 92v(Pr \R=Rimp, @n) Is given by
tation wheresF ;,~a>. . i R R R
The (qualitative physical picture of the vortex pinning by~ 92y(Pr,R=Rimp,0n) = —[A171+ Ay7p+ (—wp) 73].

small defect given above is based on the microscopic deri- Gn (53)
vation of the Ginzburg-Landau equatiofisear T;) in the

presence of impurities. For arbitrary temperatures the explarhe solution fo,{(pF P, @,) in Eq. (4) with @(PF ,wp,) re-

nation of the impurity pinning is based on the quasiclassic laced bva R=R. has again simple form
approach which is given in Refs. 23 and 24. We briefly disefb Y92v(Pr imp+@n) 9 P
cuss it in order to develop an intuition for the case of a —
. . . . . . ~ ~ X Op
double-vortex pinning, which is studied below. Because in t(Pr . Pr @) =t373= —ioqanyy—5 =
the presence of the vortex the order parameter changes its wntoAg
phase bys along the trajectories across the vortex core, it - —
leads to the phase change Ofév(pp R,wp) whereoy=og/vy. Note that thet; andt, terms are absent,

_ - R he di h . . like in the case of a single vortex, but the structure-pfs
[=90(Pr. ""”.)] on the distancey, thus causing a costin - yigerent from the single-vortex case. Then by solving Eq.
the condensation energy, i.e. the maximal increase of the fre n . ;

9) with t from Eq.(54) and by using Eq(40) one obtains

energy. N(_)te that_the funCt'.OgV(pF ’R'“’“) descr_lbes Fhe the pinning energy of the double vortex within the zero-core
guasiclassical motion of particlésr pair9 along trajectories model:

across the vortex core where the maximal phase chamye (

occurs. In the presence of a deféichpurity) the motion of 1 NA2020

particles is described by the functiay(pg,R,w,) Which OF oy pin=2T2, f d\ —5—; on Z >~>0. (55
contains scattering of particles to new directions where the n Jo  aplegtoohTAg]

phase changémismatch is less thanw and it costs less From Eq.(55) follows a surprising result, that due & ;,

condensation energy. Therefore the vortex is attracted to thg0 the double vortex is-wave superconductors is repelled

defect because ;cattering helps superconductivity to SUStafPom the defect. This means that the zero-core double vortex
abrupt changes in the order parameter. The latter analys :

S . . .
. o i . . ) (l:an not be pinned contrary to the single-vortex case. While
explains the contributiodF 1" . However, in anisotropic P y J

. . X in the case of a single vortex the defect scatters particles to
superconductors due to the pair-breaking effect of the iIMPUAaw directions where the phase change of the order param-
rity, part (6Finyp) of the condensation energy is lost. On the

! S o ; ) . eter is smaller, thus lowering the energy, in the case of a
other hand, if the vortex is sitting just on the impurity posi- 4, pje vortex the particles are scattered to directions where
tion, _there is no pair-breaking effect ar_1d_ therefore there is g,¢ phase change is larger, thus increasing the vortex energy.
gain in the energy{ 6Fin) for vortex sitting on the defect. o yever, it might be that the above-obtained results are an
artifact of the “zero-core model,” where there is no suppres-
C. Pinning of a double vortex by a small defect sion of the superconducting order due to the vortex core, and

We extend the method from Ref. 24 to the problem ofnumerical calcugations are required for a realistic double-
pinning of a multiply quantized vortex on a small defect. TheVortex structure’ _ _
doubly quantized(two-quanta vortex is theoretically pro- In the case of a double vortex in unconventional super-
posed in Ref. 25, and the latter can be realized in SOmgond.uct(.)rs, such as that in Sec. Il A, where the orQer param-
antiferromagnetic superconductors with metamagnetic ofter is given byAy(pe,R) =|A(pg,R)[exp(26)Y(6), it may
spin-flop transition, such as DyM8; (see Ref. 2 the bet ~ happen that the matrix contains the terms; and t;#0
modification of ErRhB, (Ref. 27, and in HTS which may reduce the jumd(pg,pg,®@n),90(Pr,R,w,) ] in
GdBaCu;0; (Ref. 28. If the lower critical fieldH., is of  EQ. (39), thus makingsF,, ,i, less positive. In the case of
the order of the field for the metamagnetic transitiap,, unconventional pairing the pinning energy contains an addi-
then there is a redistribution of magnetic induction inside andional term(gain in energydue to the pair-breaking effect of
outside the vortex core, leading to the magnetic doubly quarthe impurity, SF®)=—8Fi,, i.e., OFpin=0F2y pin
tized vortex?® — 8Fimp. SincesF,, yin is expected to be less repulsive for

In the following thes-wave superconductor is considered unconventional pairing than farwave pairing and because
and we put the following question: is it possible to pin the of — 6F;,,,<<0, it may happen thabF,;,<0 and even the

73, (54)




PRB 60 ANISOTROPIC IMPURITIES IN ANISOTRORT . . . 13 069

zero-core double vortex can be pinned by the defect. A realease the Anderson theorem is restored in the unitarity limit.
istic calculation of 6Fp;, for anisotropic superconductors Anisotropic impurity scattering in unconventional supercon-
with anisotropic scattering of single and double vortexes willductors gives additional pinning energy of single and double
be discussed elsewhei. vortexes due to the reduction of the impurity pair-breaking
In conclusion anisotropic impurity scattering gives rise toeffect for a vortex sitting on the impurity.
new qualitative effects in unconventional and anisotropic su-
perconductors, where, for instance, it “screens” the strength
of the scattering in some quantitigsuch asT., bound
states, pinning, etceven in the unitarity limit—robustness M.L.K. thanks Dierk Rainer and Martin Endres for valu-
of pairing. It seems that this situation is partly realized inable discussions, suggestions, and for a careful reading and
HTS oxides wheral-wave pairing is robust in the presence correcting of the manuscript. O.V.D. thanks Nils Schopohl
of even very strong impurity scattering. In two-band modelsfor valuable discussions and support. M.L.K. acknowledges
nonmagnetic impurities do not affect thermodynamic prop-gratefully the support of the Deutsche Forschungsgemein-
erties ofs-wave superconductors in the unitarity limit for the schaft through the Forschergruppe “Transportpraene in
interband scattering, contrary to the Born limit; i.e., in this Supraleitern und Suprafluiden.”
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