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Anisotropic impurities in anisotropic superconductors
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The physical properties of anisotropic superconductors such as the critical temperature and other important
properties depend sensitively on the electron mean free path. The sensitivity to impurity scattering and the
resulting anomalies are considered a characteristic feature of strongly anisotropic pairing. These anomalies are
usually analyzed in terms ofs-wave impurity scattering which leads to universal pair-breaking effects depend-
ing on only two scattering parameters, the mean free path and the impurity cross section. We investigate here
corrections coming from anisotropies in the scattering cross section, and find not only quantitative but also
qualitative deviations from universals-wave isotropic pair breaking. The properties we study are the transition
temperature, quasiparticle bound states at impurities, and pinning of single- and double-flux lines by impuri-
ties. @S0163-1829~99!12341-5#
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I. INTRODUCTION

Unconventional anisotropic pairing is evidently realiz
in high-temperature superconductors~HTS’s! ~see reviews in
Ref. 1!, and probably in some heavy fermion supercondu
ors ~HFS’s! ~see review in Ref. 2!. There is good evidence
for d-wave pairing in optimally doped HTS oxides1 but the
type of pairing in HFS’s is still unclear.2 The effect of im-
purities on unconventional pairing is an important tool
analyzing the symmetry of the pairing amplitude, and is
subject of a number of experimental3,4 and theoretical
works.5,9 Most theoretical considerations and calculatio
were done assuming ans-wave impurity scattering potentia
uimp(p,p8)5const, and taking either the Born lim
@N(0)uimp!1# or unitarity limit @N(0)uimp@1#.

Surprisingly, a number of experiments on the optima
HTS oxides3,4 have shown thatd-wave pairing is quite ro-
bust, i.e., not very sensitive to various kinds of impuriti
and defects. For instance, the decrease of the critical t
peratureTc(r imp) with increasing residual resistivityr imp is
much smaller,3,4 than the theory with thes-wave impurity
scattering predicts.5,9 A way out of this experimental and
theoretical discrepancy of pair-breaking effects by impurit
in HTS oxides was proposed by the authors of Refs. 6 an
who invoked a momentum-dependent impurity scattering
tential with an appreciable contribution in thed channel. The
microscopic theory in Ref. 8 accounts for the renormali
tion of the impurity potential by strong correlations, whic
gives rise to a pronounced forward scattering peak, w
backward scattering is suppressed, as first proposed in
10. Application of this theory to impurity scattering show
that in addition to the contribution in thes channel there is a
significant contribution to the Born amplitude from thed
channel of the same magnitude,10 in particular for low~hole!
doping concentrationd,0.2. As a consequence, the decrea
of Tc(r imp) with increasingr imp is much slower than the
theory with exclusivelys-wave impurity scattering predicts.9

This renormalization effect explains the robustness
PRB 600163-1829/99/60~18!/13062~8!/$15.00
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d-wave pairing in HTS oxides.
One may raise the question whether this robustness

holds far away fromTc and for a very strong scattering po
tential, for instance in the unitarity limit. To answer th
question we shall analyze in Sec. II a class of models
calculating the scatteringT matrix, with an impurity potential
that depends on the scattering angles, and its effect on
Tc(r imp) dependence.

Many-band models belong to the special class of an
tropic superconductors. Recently, several models were
gested for the pairing mechanism in HTS oxides based
two-band and multiband models,11–15where impurity effects
are studied in the Born approximation.11–13 Magnetic and
nonmagnetic interband scattering can lead in this model
lowering of the critical temperature and also to a relative s
change of the order parameters in different bands.13 In Sec.
III we analyze the changes in the two-band model when
ing beyond the Born limit. It is shown that in some range
the parameters and in the unitarity limit the thermodynam
properties are unaffected by impurities; i.e., the Anders
theorem holds.

While in Secs. II and III a homogeneous superconduc
with homogeneously distributed impurities is studied, in S
IV selected inhomogeneous problems are studied, suc
bound states at an impurity and the pinning energy at
impurity ~defect! of single- and double-quantized vortices.

II. ANISOTROPIC SCATTERING IN ANISOTROPIC
AND HOMOGENEOUS SUPERCONDUCTORS

In the following we analyze the superconducting prop
ties of anisotropic superconductors in the presence
momentum-dependent nonmagnetic impurity scattering
the quasiclassical equations of Eilenberger16 and Larkin and
Ovchinnikov17 ~ELO equations!. For a homogeneous distri
bution the quasiclassical Green’s function mat
ĝ(pF ,R,vn) is independent ofR, and the quasiclassica
equations read
13 062 ©1999 The American Physical Society
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@ ivnt̂32D̂~pF ,vn!2ŝ imp~pF ,vn!,ĝ~pF ,vn!#50, ~1!

ĝ2~pF ,vn!521̂. ~2!

The brackets@ ,# mean the commutator. We assume wea

coupling superconductivity withD̂(pF)@5 iD(pF) t̂2#, where

D(pF) is real. The 232 matrices t̂0[1̂ and t̂1,2,3 are
Nambu-Gor’kov matrices in the electron-hole space. The
fect of nonmagnetic impurities is described by the se
energyŝ imp , given in terms of the forward scattering part
the t matrix t̂ (pF ,pF8 ,vn):16–18

ŝ imp~pF ,vn!5c t̂~pF ,pF ,vn!, ~3!

wherec(!1) is the impurity concentration.
For simplicity we assume an isotropic Fermi surface

pairing and impurity scattering are angle dependent,
D(pF)[D(s), ĝ(pF ,vn)[ĝ(s,n) and t̂ (pF ,pF8 ,vn)

[ t̂ (s, s8, n) wheres5pF /pF . The generalization to the an
isotropic Fermi surface is straightforward. Thet matrix is the
solution of the equation

t̂~s, s8, n!5u~s, s8!1̂1N~0!

3E ds9u~s, s9!ĝ~s9,n! t̂~s9, s8, n!, ~4!

where*ds$•••%[*$•••%dV/4p. SinceD(s) is real, one has
ĝ5g2t̂21g3t̂3 and t̂ is given by t̂5t0t̂01t1t̂11t2t̂2

1t3t̂3.
Because the unperturbed solution has the form@vn

5pT(2n11)#

ĝ(0)~s,n!52
ivnt̂32 iD0~s!t̂2

Avn
21D0

2~s!
, ~5!

then ĝ(s,n) is searched for in the form

ĝ~s,n!52
i ṽn~s!t̂32 i D̃~s,vn!t̂2

Aṽn
2~s!1D̃2~s,vn!

, ~6!

where

ṽn~s!5vn~s!1 ic i t3~s, s,n!, ~7!

D̃~s,vn!5D~s!2 ic i t2~s, s,n!. ~8!

The self-consistency equation forD(s) is given by

D~s!5N~0!T(
n
E ds8V~s,s8!g2~s8,n!, ~9!

where the pairing potentialVp(s,s8) is assumed in the fac
torized form, i.e. Vp(s,s)85VpY(s)Y(s8), with ^Y2(s)&s
51. The latter implies that the order parameter has the fo
D(s)5DY(s). For convenience we define the scattering a
plitude ~in the unitarity limit! Gu([cgu)5c@pN(0)#21 and
v(s, s8)[pN(0)u(s, s8). In what follows we consider the
effects of anisotropic impurity scattering on the anisotro
pairing wherê Y(s)&s50.
-

f-
-

t
.,

m
-

c

A. Anisotropic impurity scattering
and nodeless anisotropic pairing

First, we consider the nodelessd-wave-like pairingD(s)
5D•Y(s) which is characterized bŷY(s)&s50 andY(s)5
61.19 This means that there is a finite gap everywhere on
Fermi surface, i.e.,D(s)Þ0. It is interesting to mention tha
besides the simplicity of this kind of pairing and its adequa
in some qualitative understanding ofd-wave pairing it also
appears to be a solution of the spin-bag model20 for HTS
oxides. In this model the nodelessd-wave-like pairing is due
to residual~longitudinal and transverse! spin fluctuations on
the antiferromagnetic background, where the antiferrom
netic ~AF! order is distorted locally by hole doping and th
spin bag is formed around doped holes. The impurity sc
tering potential is assumed to have the form

v~s, s8!5v01v2Y~s!Y~s8!; ~10!

i.e., it contains an anisotropic contribution in the same ch
nel as the unconventional pairing. The solution of Eq.~4! for
t3 and t2 is searched in the form

t3~s, s8!5@ t̃ 30~n!1 t̃ 32~n!Y~s!Y~s8!#g3 , ~11!

t2~s, s8!5 t̃ 2~n!@g2~s,n!1g2~s8,n!#. ~12!

@Note that in this model one hasg2(s,n)5g̃2(n)Y(s),
g2

2(s,n)5g̃2
2(n), g3(s,n)5g3(n), and due to Eq.~2!, one

hasg3
2(s,n)1g̃2

2(s,n)521.] The solution is given by

t̃ 30~n!5guv0
2

11v2
2

~11v0
2!~11v2

2!1~v02v2!2g̃2
2~n!

, ~13!

t̃ 2~n!5guv0v2

11v0v2

~11v0
2!~11v2

2!1~v02v2!2g̃2
2~n!

,

~14!

while t̃ 32(n)5 t̃ 30(n,v0↔v2). Several interesting result
comes out in this case.

1. Critical temperature Tc

In the limit T→Tc , Eqs.~9!, ~13!, and~14! give the equa-
tion for Tc ,

ln
Tc

Tc0
5CS 1

2D2CS 1

2
1

Gpb

2pTc
D , ~15!

where the pair-breaking parameterGpb is given by (Gu
5cgu)

Gpb5Gu

~v02v2!2

~11v0
2!~11v2

2!
. ~16!

Note thatTc vanishes forGpb
c '0.88Tc0 and this pairing is in

some respects similar tod-wave pairing. It is apparent from
Eqs.~15! and~16! that the pair-breaking effect of impuritie
is weakened in the presence of momentum-dependent
tering and it is even zero forv05v2 in this specific example.
In the casev0v2,0 the pair-breaking parameterGpb can be
even increased in the presence of anisotropic scattering.
property is impossible to obtain in the approach of Refs
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and 7 because it is assumed that the impurity scattering
tential in the Born approximation has the formuw(k,k8)u2

5uw0u21uw2u2Y(k)Y(k8) @see Eq.~6! Ref. 6#, wherew0,2
5const. As a result they get in the Born approximati
Gpb

(w);(uw0u22uw2u2) instead of the correct resultGpb;(v0

2v2)2. Note thatGpb
(w) gives that it is unphysical thatGpb

(w)

,0 for uw2u2.uw0u2 and accordingly an increase ofTc ~see
Ref. 7!. The correct expression forGpb gives Gpb>0 and
decreasesTc in the presence of impurities. In factw0 must be
momentum dependent, i.e.,uw0u25uw0(k,k8)u2, except in
the case withY(s)561,19 where uw0u25v0

21v2
2 and uw1u2

52v0v2 for v0v2.0. The latter result has been previous
derived in the Born approximation.8

For v2'v0 in the model withY(s)561,19 the slope
dTc /dr imp can be very small even for appreciable values
r imp;G tr5Gu(s̄01s̄2), because in that caseGpb!G tr as
indicated by the experimental results of Ref. 3. The para
eterss̄ i are given by

s̄ i5
v i

2

11v i
2

, i 50,1,2. . . . ~17!

The resistivityr imp and the reduction ofTc due to impu-
rity scattering,Tc(r imp) depend on the classical transitio
rate W(s, s8)5GuutN(s, s8, n)u2 in the normal state.21 This
transition rate comprises all the needed information on
purity scattering for either solving the normal state Bol
mann equation to determiner imp or the linearized gap equa
tion ~9! to determineTc . For the latter purpose one needs
linear ~integral! equation forg2(s,n) which reads

uvnug2~s,n!2D~s!1E ds8W~s, s8!@g2~s,n!2g2~s8,n!#

50, ~18!

where the normal statet matrix tN(s, s8,n) is the solution of
the equation

tN~s, s8, n!5v~s, s8!2 ip sgn~vn!

3E ds9v~s, s9!tN~s9, s8, n!. ~19!

Hence, measurements of theTc(r imp) curve do not carry
enough information on the microscopic scattering data,
on the scatteringt matrix. More such information is con
tained in spectroscopic data on anisotropic superconduc
at temperaturesT!Tc , such as tunneling data or optical da
at about gap frequency.

2. Density of states

The density of statesN(v)5N(0)Im*ds g3(s,ivn→v
2 ih) depends in the presence of pair-breaking impurit
significantly on the values ofv0 andv2. It is known19 that in
the case ofs-wave scattering only (v250) one hasN(v
50)Þ0 for Guv0

2.D, and the highest value isN(v50)

5N(0)/$0.510.5@11(2D/G)2#1/2%1/2, where G[Gus̄0, is
reached in the unitarity limit. On the other hand, in the lim
o-

f

-

-
-

e.

rs

s

iting casev05v2 one obtains a restoration of the gapvg ,
i.e.,N(v,vg)50. Despite the strong scattering limit,N(v)
is BCS-like.

B. Isotropic impurity scattering and d-wave pairing

Let us study a two-dimensional superconductor with
pairing function D(s)[D(w)@5DY2(w)#;cos 2w d-wave
pairing. Note that this case is more realistic for HTS oxid
than the previous one, because the ‘‘cos 2w’’ pairing has
nodes at the simply connected Fermi surface. We ass
that the isotropic impurity potential depends on the tra
ferred scattering angle

v~w,w8!5v012v1cos~w2w8!12v2cos 2~w2w8!,
~20!

where v(w,w8) contains the pairing channe
@;Y2(w)Y2(w8)# too. ~This problem but withv250 is stud-
ied in Ref. 22 but there is an inappropriate sign in thet2
matrix, which in fact corresponds to a magnetic impur
scattering.! From Eqs.~13! and ~14! one obtains the pair-
breaking parameterGpb

Gpb5GuF s̄0

~12a!21a2~11v0
2!

11a2v0
2

1s̄1G , ~21!

wherea5v2 /v0 and s̄ i are given by Eq.~17!.
In order to analyze theTc(r imp) dependence, where th

residual impurity resistivityr imp54pG tr /vpl
2 andvpl is the

plasma frequency, we need to know the transport scatte
rateG tr . In the case of the scattering potential given by E
~20!,

G tr5GuH s̄0
212s̄1

212s̄2
222s̄0F s̄1S 11

1

v0v1
D

1s̄2S 11
1

v0v2
D G J . ~22!

If one wants to interpret the depairing effects of impu
ties and robustness of pairing in HTS oxides in terms of
above results, then the experiments3 imply that the ratio,
Gpb /G tr must be small, i.e. (Gpb /G tr)!1. In the case when
v2!v1 one obtainsGpb /G tr52 in both the Born and unitar
ity (v0 ,v1→`) limits. For v1!v2, the pair-breaking param
eter, Gpb , is minimized for a51/2 which givesGpb /G tr
'1/3, in both limits. This means that the latter case (v1
!v2) is a more appropriate candidate than the casev2!v1,
for at least a qualitative explanation of the robustness
d-wave pairing in HTS oxides.3,4,8

III. TWO-BAND MODEL
WITH NONMAGNETIC IMPURITIES

Interest in two-band~multiband! models and in the impu-
rity effects was renewed after the discovery of HT
oxides,11,14 where various kinds of intraband and interba
pairing and impurity scattering are considered. Recently
model was proposed for the anisotropic superconduct
like heavy fermions, which is based on the Fermi surfa
with multiple pockets.15 In this model the pairing takes plac
on the pockets and the interpocket scattering of pairs is
taken into account, while impurity scattering is omitted. Th
model belongs to the class of multiband models which
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analyze below by additionally taking into account nonma
netic impurity scattering.

For simplicity we consider a two-band superconductor
assuming the intraband pairingDa (a51,2) only the inter-
band pairing is highly improbable, and various types of
traband and interband nonmagnetic impurity scattering.
effect of the nonmagnetic impurities in the Born approxim
tion is analyzed in Ref. 13 where the renormalized freque

ṽan and superconducting order parametersD̃an are the solu-
tions of the following equations (n enumerates Matsubar
frequencies, anda,b,g51,2):

ṽan5vn1(
b

ṽbn

2Qbn
gab , ~23!

D̃an5Da1(
b

D̃bn

2Qbn
gab , ~24!

Da5pT (
b,n

2vD,vn,vD

lab

D̃bn

Qbn
, ~25!

whereQan5Aṽan
2 1D̃an

2 , gab52puab
2 Nb(0) for the non-

magnetic impurity scattering, andlab5Vab
p Nb(0) are the

corresponding coupling constants. In Ref. 13 are conside
various possibilities for the suppression of the critical te
perature, as well as the relative sign ofD1 and D2, in the
Born limit for nonzero values oflab andgab . Before study-
ing the strong scattering limit let us quote some interest
conclusions:~i! the diagonal scattering rateg11 andg22 dis-
appear from the linearized equation~25! for Tc ; ~ii ! in the
casel11Þ0, l225l125l2150 the depression ofTc is given
by dTc /Tc52pg12/8Tc ; ~iii ! for l115l22Þ0 and l12
5l215l',0 one has sgn(D1 /D2)521 and dTc /Tc5
2p(g121g21)/8Tc , while the sign ofD1 and D2 is un-
changed by the impurities.
-

y

-
e
-
y

ed
-

g

The t-matrix equation in the two-band model with on
s-wave scattering potential has the form~note that we con-
sider the case of small impurity concentration and theref
neglect interband hybridization!

t̂~n!5û1(
g

ûN~0!ĝ~n! t̂~n!, ~26!

wheret̂(n)5( i 50
3 t i ^t̂ i , ĝ(n)5g3^t̂31g2^t̂2 and ^ is the

direct product of matrices in the band space~bold! and in the
Nambu space~caret!. g2 , g3, andN(0) are diagonal matrices
in the band space.

In the case of nonmagnetic impurities one hasûN

5uN
^t̂0, and sinceg150, one has

t0
N~n!5uN1uNN~0!@g3~n!t3

N~n!1g3~n!t3
N~n!#,

t1
N~n!5uNN~0!@2 ig3~n!t2

N~n!1 ig2~n!t3
N~n!#,

t2
N~n!5uNN~0!@ ig3~n!t1

N~n!1g2~n!t0
N~n!#,

t3
N~n!5uNN~0!@g3~n!t0

N~n!2 ig2~n!t1
N~n!#. ~27!

Let us consider for simplicity the case whenu11
N ,u22

N 50, but
the interband scattering is finite,u12

N 5u21
N 5uÞ0, and intro-

duce three parameters

s5
p2N1~0!N2~0!u2

11p2N1~0!N2~0!u2
~28!

and

G i5
c

pNi~0!
, i 51,2. ~29!

After some straightforward calculations one obtains

renormalized frequenciesṽ in and order parametersD̃ in :
ṽ1n5vn1G1s
~s21!~ṽ1n

2 1D̃1n
2 !ṽ2n2sṽ1nAṽ1n

2 1D̃1n
2 Aṽ2n

2 1D̃2n
2

det 1
, ~30!

D̃1n5D11G1s
~s21!~ṽ1n

2 1D̃1n
2 !D̃2n2sD̃1nAṽ1n

2 1D̃1n
2 Aṽ2n

2 1D̃2n
2

det 1
, ~31!
g to
where

det 152~s21!sAṽ1n
2 1D̃1n

2 ~D̃1nD̃2n1ṽ1nṽ2n!

2@2~s21!s11#~ṽ1n
2 1D̃1n

2 !Aṽ2n
2 1D̃2n

2 .

~32!

The solution for the second band is obtained from Eqs.~30!–
~32! by replacing 1⇔2. In the Born limit one gets
ṽ1n5vn1pcN2~0!u2
ṽ2n

Aṽ2n
2 1D̃2n

2
, ~33!

D̃1n5D11pcN2~0!u2
D̃2n

Aṽ2n
2 1D̃2n

2
; ~34!

i.e., the interband scattering mixes both bands accordin
Eqs.~25! and ~24!. In the unitarity limit s→1 (u→`) the
bands are decoupled, i.e.,
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ṽan5vn1Ga

ṽan

Aṽan
2 1D̃an

2
, ~35!

D̃an5Dan1Ga

D̃an

Aṽan
2 1D̃an

2
. ~36!

So in this unitarity for the interband scattering the Anders
theorem is restored; i.e., the thermodynamic properties
impurity independent.

The latter result can be generalized to the case when

uN5S au u

u u22
D . ~37!

For u→` but a and u22 finite, a and u22 drop out from

equations and the bands are decoupled withṽan and D̃an
given by Eqs.~35! and ~36!. At Tc and fors<1 one has

ṽ1n5vn1sG1 sgn~vn!,

D̃1n5D11sG1S sD̃1n

uṽ1nu
1

~12s!D̃2n

uṽ2nu
D . ~38!

From Eq.~38! it is seen that in the unitarity limits→1,
the renormalized order parameters are decoupled andTc is
unrenormalized by such impurities. Fors,1 it can be easily
shown thatTc is reduced with respect to the clean limit.

IV. SMALL ANISOTROPIC DEFECT
IN ANISOTROPIC SUPERCONDUCTORS

In the following we consider the effect of a single imp
rity ~small defect! with small scattering lengtha, which is
supposed to be much smaller than the superconducting
herence length,uau!j0. The latter condition is with certainty
fulfilled in many clean low-temperature superconductors
small defects due to largej0. However, in HTS materials du
to rather smallj0;20 Å ~in the ab plane! only some spe-
cial defects fulfill this condition (uau!j0). For instance oxy-
gen vacancies could play a role of small defect.

So if uau!j0, the impurity can be considered as a loc
ized perturbation, but with negligible renormalization

D̂(pF ,R) which is of the order (a/j0)2 ~see Refs. 23 and
24!, giving rise to the quasiclassic equations23,24

@~ ivn1evF•A„R…!t̂32D̂~pF ,R!,dĝ~pF ,R,vn!#

1 ivF¹Rdĝ~pF ,R,vn!

5@ t̂~pF ,pF ,vn!,ĝ0~pF ,R,vn!#d~R2Rimp!. ~39!

Here,dĝ(pF ,R,vn)5ĝ(pF ,R,vn)2ĝ0(pF ,R,vn). The ex-
tra term, which is proportional tod(R2Rimp), describes a
jump in ĝ(pF ,R,vn) at the siteRimp of the impurity ~de-
fect!, while the intermediate Green’s functionĝ0(pF ,R,vn)
describes the quasiclassic motion in the absence of impu
~defect! and it is the solution of Eq.~39! with the right-hand
side equal to zero. The Green’s functionsĝ(pF ,R,vn) and
n
re

o-

r

-

ity

ĝ0(pF ,R,vn) are normalized according to Eq.~2!. Thet ma-
trix entering Eq. ~39! is the solution of Eq.~4! where
ĝ(pF ,vn) is replaced byĝ0(pF ,R5Rimp ,vn). The change
of the superconducting free energy in the presence of a si
impurity ~defect! is given by23,24

dF~Rimp!5N~0!T(
n
E

0

1

dlE d2k̂F

4p E d3R Tr

3@dĝ~pF ,R,vn!D̂b~pF ,R!#, ~40!

whereD̂b(pF ,R) and the vector potentialAb(R) are calcu-
lated in the absence of the impurity. The Green’s funct
dĝ(pF ,R,vn) must be evaluated for an order parame

D̂(pF ,R)5lD̂b(pF ,R).
In the following we study the consequences of anisotro

impurity scattering for three selected examples of inhomo
neous anisotropic superconductors.

A. Bound states due to the anisotropic impurity

Let us consider the local change of superconductivity
the presence of a single anisotropic impurity with the pot
tial v(s,s8) given by Eq. ~10! and analyze the impurity-
induced quasiparticle bound state and the change in the
energydF(Rimp). By assuming that 2ps̄ i!EF /D0, where
i 50,2 ands̄ i5v i

2/(11v i
2), thet matrix is given by the same

expression as Eqs.~13! and~14!, but with g̃2(n) replaced by
g2

(0)(n). The bound state energyvB,anis,D0, which is due to
the pair-breaking impurity effects, is obtained as a pole
the t matrix which gives

vB,anis5D0A12s̄pb , ~41!

where

s̄pb5s̄0s̄2

~v02v2!2

v0
2v2

2
. ~42!

In the unitarity limit for both channels, i.e.,v0@1, v2@1,
but v2 /v0 finite, one hasvB,anis→D0 contrary to the unitar-
ity limit for the s-wave scattering (v0@1, v250) where
vB,iso→0. This example tells us that the bound state c
disappear~i.e., moves to the continuum! in anisotropic sys-
tems even in the case of strong quasiparticle scattering
impurities. However, the zero-energy bound statevB,anis
→0 appears whenv0v2521; i.e., if one channel is in the
unitarity limit, the other one must be in the Born limit.

Due to the bound state, there is a change~increase! of the
free energydF(Rimp)[dFimp . By solving Eq. ~39! with
ĝ0(pF ,R,vn) given by Eq.~5! and t̂ given by Eqs.~11!–~14!
one getsdFimp from Eq. ~40!:

dFimp5T(
n
E

0

1

dls̄pb

lD0
2vn

2

@vn
21l2D0

2#@vn
21vB,anis

2 #

52T ln
cosh~D0/2T!

cosh@~12s̄pb!
1/2D0/2T#

, ~43!
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wheres̄pb is given in Eq.~42!. It is seen that there is a los
in the condensation energy,dFimp.0, which is related to the
pair-breaking effect of the impurity. Forv05v2 such an im-
purity does not affect superconductivity anddFimp50.

The obtained results tell us that for angle-dependent
purity scattering even a strong impurity potential may hav
very weak effect onTc , the bound state, and the free ener
of anisotropic and unconventional pairing. In that case
anisotropic pairing is robust in the presence of impurities

B. Pinning of a single vortex by a small anisotropic defect

Because in HTS oxides strong correlations give rise
strong momentum-dependent charge scattering proce
such as, for instance, impurity scattering, it is interesting
analyze the elementary flux-pinning potential of a small
fect by using the approach of Thuneberget al.,23,24 They
showed that ins-wave superconductors the pinning energy
a small~impurity! defect (a!j0) is dominated by scattering
processes at the defect. It is proportional to the product of
scattering cross section and coherence length (}a2j0), in-
stead of~naively believed! a3, thus giving rise to a large
pinning force by a factor (j0 /a)@1. The case of anisotropi
pairing but withs-wave impurities and nearTc was recently
studied in Ref. 29.

In the following we study the effect of anisotropic sca
tering on the pinning energy of a small defect in ananiso-
tropic superconductorat any temperature belowTc . We use
the model potential given in Eq.~10! and assume that th
vortex is placed at the defect. In order to calculate the
ementary flux-pinning energy one has to solve the quasic
sical equations for various ballistic trajectories which
through the vortex core and withR-dependent vector poten
tial A„R… and order parameterDb(pF ,R). For trajectories
going through the vortex core it can be parametrized in
following way:

Db~pF ,R!5uD~pF ,R!ueiuY~u!. ~44!

In the gauge whereu is the angle with respect to theX axis,
A„R… has no radial component. The solution of Eq.~39!
requires for a realistic vortex numerical calculations w
R-dependentuD(pF ,R)u. For a qualitative discussion we wi
adopt a simplified vortex model23,24 which neglects the sup
pression of the order parameter in the vortex core and
uDb(pF ,R)u5D0(pF); i.e., uDb(pF ,R)u is R independent,
but keeps its phase dependence. Hence, the order para
along a trajectory passing through the vortex center has
stant magnitude but its phase changes abruptly byp when
going through the vortex core. We stress that this zero-c
model gives the right order of magnitude of the pinning e
ergy dFpin(Rimp) and its temperature dependence ins-wave
superconductors withs-wave impurity scattering, when com
pared with the numerical calculations.24 In order to calculate
dFpin(Rimp) two quantities are needed. First, the interme
ate solutionĝ0(pF ,R5Rimp ,vn) at the impurity position
Rimp is the vortex solutionĝv in the absence of the impurity
i.e., ĝ0(pF ,R5Rimp ,vn)[ĝv(pF ,R5Rimp ,vn). In the case
of the zero-core vortex model the solution forĝv(pF ,R
5Rimp ,vn) is straightforward24 and has the form (D5D1
1 iD2)
-
a

e

o
es,
o
-

f

e

l-
s-

e

ts

eter
n-

re
-

-

ĝv~pF ,R5Rimp ,vn!5
1

vn
@~2D2t̂11D1t̂2!Y~u!

1~2 ian!t̂3#. ~45!

Second, the impurityt matrix is the solution of Eq.~4! where
ĝ(pF ,vn) is replaced byĝv(pF ,R5Rimp ,vn) given by Eq.
~45!, which gives

t̂~pF ,pF ,vn!5t3t̂352 iguanvnF s̄0

vn
21s̄0D0

2

1
s̄2

vn
21s̄2D0

2G t̂3 . ~46!

Here,an5Avn
21D0

2. Note thatt̂ does not containt1 and t2

becauseD1 andD2 are averaged to zero by integrating ov
k8 in Eq. ~4!. Equation~39! can be solved by the Fourier~or
Laplace! transform which gives the expression for the pi
ning free energy:

dFpin5dFpin
(sti f f)~ s̄0 ,s̄2!1dFpin

(pb)~spb!, ~47!

dFpin
(sti f f)522T lnH cosh

As̄0D0

2T
•cosh

As̄2D0

2T
J , ~48!

dFpin
(pb)52dFimp522T ln

cosh~D0/2T!

cosh@~12s̄pb!
1/2D0/2T#

.

~49!

Equations~47!–~49! imply that dFpin,0 ~becausedFpin
(sti f f)

,0 anddFpin
(pb),0), and the vortex is attracted~pinned! by

the defect. A comparison of Eq.~47! with the corresponding
results fors-wave superconductors with ans-wave scattering
potential shows that in the former case two additional ter
are present. The first one, depending ons̄2, appears also in
s-wave superconductors with anisotropic scattering
counted for. In factdFpin

(sti f f) describes the reduction of th
superconducting stiffness in the presence of an impurity.
instance, nearTc , Eq. ~48! is simplified:

dFpin
(sti f f)52~ s̄01s̄2!

D0
2~T!

4Tc

'22. 72
s̄01s̄2

\vFN~0!
j0Econd~T!, ~50!

where Econd(T) is the condensation energy, i.e.,Econd(T)
5N(0)D0

2(T)/2. It is seen from Eq.~50! that dFpin
(sti f f) is

proportional to the total scattering amplitudes̄01s̄2 and to
j0. For a vortex far away from the impurity there is loss
the condensation energydFimp due to the pair-breaking ef
fect of the impurity. For a vortex sitting on the defect th
latter part of the energy is gained, i.e.,dFpin

(pb)52dFimp

,0. Therefore this part enters into Eq.~47! with a negative
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sign, thus increasing the pinning energy when vortex is
ting on the defect and stabilizing it additionally. NearTc one
has

dFpin
(pb)~se f f!5

s̄pb

~ s̄01s̄2!
dFpin

(sti f f) . ~51!

Note that 0.dFpin
(pb)(se f f).dFpin

(sti f f) for v0v2.0 and for
v0v2,21, while for 21,v0v2,0 one has 0.dFpin

(sti f f)

.dFpin
(pb)(se f f). Forv25v0 the pair breaking of the impurity

is absent,s̄pb50 anddFpin
(pb)50; i.e., in this case the pinning

by the small defect is similar to that ins-wave superconduct
ors. We stress thatdFpin;a2j0, contrary to the naive expec
tation wheredFpin;a3.

The ~qualitative! physical picture of the vortex pinning b
small defect given above is based on the microscopic d
vation of the Ginzburg-Landau equations~near Tc) in the
presence of impurities. For arbitrary temperatures the ex
nation of the impurity pinning is based on the quasiclass
approach which is given in Refs. 23 and 24. We briefly d
cuss it in order to develop an intuition for the case of
double-vortex pinning, which is studied below. Because
the presence of the vortex the order parameter change
phase byp along the trajectories across the vortex core
leads to the phase change ofĝv(pF ,R,vn)

@[ĝ0(pF ,R,vn)# on the distancej0, thus causing a cost in
the condensation energy, i.e. the maximal increase of the
energy. Note that the functionĝv(pF ,R,vn) describes the
quasiclassical motion of particles~or pairs! along trajectories
across the vortex core where the maximal phase changep)
occurs. In the presence of a defect~impurity! the motion of
particles is described by the functionĝ(pF ,R,vn) which
contains scattering of particles to new directions where
phase change~mismatch! is less thanp and it costs less
condensation energy. Therefore the vortex is attracted to
defect because scattering helps superconductivity to su
abrupt changes in the order parameter. The latter ana
explains the contributiondFpin

(sti f f) . However, in anisotropic
superconductors due to the pair-breaking effect of the im
rity, part (dFimp) of the condensation energy is lost. On t
other hand, if the vortex is sitting just on the impurity pos
tion, there is no pair-breaking effect and therefore there
gain in the energy (2dFimp) for vortex sitting on the defect

C. Pinning of a double vortex by a small defect

We extend the method from Ref. 24 to the problem
pinning of a multiply quantized vortex on a small defect. T
doubly quantized~two-quanta! vortex is theoretically pro-
posed in Ref. 25, and the latter can be realized in so
antiferromagnetic superconductors with metamagnetic
spin-flop transition, such as DyMo6S8 ~see Ref. 26!, the bct
modification of ErRh4B4 ~Ref. 27!, and in HTS
GdBa2Cu3O7 ~Ref. 28!. If the lower critical fieldHc1 is of
the order of the field for the metamagnetic transitionHm ,
then there is a redistribution of magnetic induction inside a
outside the vortex core, leading to the magnetic doubly qu
tized vortex.25

In the following thes-wave superconductor is considere
and we put the following question: is it possible to pin t
t-
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double-flux-vortex (F52F0) by the small defect? The latte
is for simplicity characterized by the parameters̄0 for the
s-wave scattering only. We consider again the problem wh
the vortex is sitting on the defect and assume the zero-c
model again. In that case the order parameter can be pa
etrized in the form

Db~pF ,R!5uD~pF ,R!ue2iu. ~52!

For particle~pair! motion across the double vortex core th
order parameter does not change its phase. The solu
for the zero-core double-vortexĝ0(pF ,R5Rimp ,vn)
[ĝ2v(pF ,R5Rimp ,vn) is given by

ĝ2v~pF ,R5Rimp ,vn!5
i

an
@D1t̂11D2t̂21~2vn!t̂3#.

~53!

The solution fort̂ (pF ,pF ,vn) in Eq. ~4! with ĝ(pF ,vn) re-
placed byĝ2v(pF ,R5Rimp ,vn) has again simple form

t̂~pF ,pF ,vn!5t3t̂352 ivnangu

s̄0

vn
21s̃0D0

2
t̂3 , ~54!

wheres̃05s̄0 /v0
2. Note that thet1 and t2 terms are absent

like in the case of a single vortex, but the structure oft3 is
different from the single-vortex case. Then by solving E
~39! with t̂ from Eq. ~54! and by using Eq.~40! one obtains
the pinning energy of the double vortex within the zero-co
model:

dF2v,pin52T(
n
E

0

1

dl
lD0

2vn
2s̄0

an
2@vn

21s̃0l2D0
2#

.0. ~55!

From Eq.~55! follows a surprising result, that due todFpin
.0, the double vortex ins-wave superconductors is repelle
from the defect. This means that the zero-core double vo
can not be pinned contrary to the single-vortex case. W
in the case of a single vortex the defect scatters particle
new directions where the phase change of the order par
eter is smaller, thus lowering the energy, in the case o
double vortex the particles are scattered to directions wh
the phase change is larger, thus increasing the vortex ene
However, it might be that the above-obtained results are
artifact of the ‘‘zero-core model,’’ where there is no suppre
sion of the superconducting order due to the vortex core,
numerical calculations are required for a realistic doub
vortex structure.30

In the case of a double vortex in unconventional sup
conductors, such as that in Sec. II A, where the order par
eter is given byDb(pF ,R)5uD(pF ,R)uexp(2iu)Y(u), it may
happen that thet matrix contains the termst1 and t2Þ0
which may reduce the jump@ t̂ (pF ,pF ,vn),ĝ0(pF ,R,vn)# in
Eq. ~39!, thus makingdF2v,pin less positive. In the case o
unconventional pairing the pinning energy contains an ad
tional term~gain in energy! due to the pair-breaking effect o
the impurity, dFpin

(pb)52dFimp , i.e., dFpin5dF2v,pin

2dFimp . SincedF2v,pin is expected to be less repulsive fo
unconventional pairing than fors-wave pairing and becaus
of 2dFimp,0, it may happen thatdFpin,0 and even the
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zero-core double vortex can be pinned by the defect. A r
istic calculation of dFpin for anisotropic superconductor
with anisotropic scattering of single and double vortexes w
be discussed elsewhere.30

In conclusion anisotropic impurity scattering gives rise
new qualitative effects in unconventional and anisotropic
perconductors, where, for instance, it ‘‘screens’’ the stren
of the scattering in some quantities~such asTc , bound
states, pinning, etc.! even in the unitarity limit—robustnes
of pairing. It seems that this situation is partly realized
HTS oxides whered-wave pairing is robust in the presenc
of even very strong impurity scattering. In two-band mod
nonmagnetic impurities do not affect thermodynamic pro
erties ofs-wave superconductors in the unitarity limit for th
interband scattering, contrary to the Born limit; i.e., in th
.
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.
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ll

-
h

s
-

case the Anderson theorem is restored in the unitarity lim
Anisotropic impurity scattering in unconventional superco
ductors gives additional pinning energy of single and dou
vortexes due to the reduction of the impurity pair-breaki
effect for a vortex sitting on the impurity.
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