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It has been suggested recently thate can be prepared and studied as a quasi-one-dimensional quantum
fluid. In this paper we calculate the static and dynamic properties of one-dimenéléealsing variational
methods based upon the Jastrow-Feenberg wave function and its extension to dynamic systems with time-
dependent, correlated wave functions. We calculate the zero temperature equation of state and show that in one
dimension“He is just barely self-bound with a binding energy of 0.002 K at a density of 0.036 We
calculate the Feynman excitation spectrum and corrections that contain multiphonon processes and study the
density dependence of the roton feature as well as the static response function. In addition we demonstrate the
presence of strong anomalous dispersion in the phonon regime. Finally, we introdiibe inpurity and
calculate the zero concentration chemical potential as a functidieflinear density. We also compute the
3He-3He effective interaction in théHe background and compute the energy of dimerization.
[S0163-18209)01241-2

[. INTRODUCTION density system with negative enejgnly occurs if there is
also a dimer. The Lennard-Jones 6-12 potential is an old
Because of its macroscopic quantum behavible has  model for “He. We showed that in the Lennard-Jones ap-
been one of the most intensely studied many-body systemgroximation one-dimensiondHe hasno many-body bound
The physics responsible for this remarkable behavior, th&tate and, also, it has no dimer. In this work, we utilize the
balance of kinetic energy to potential energy and the impormodern Aziz potentidland show that a dimer and a many-
tance of stronghort-rangedcorrelations, also make the sys- body bound state both exist. All three model systems showed
tem very difficult to treat theoretically. During the period of signs of a high density transition from a liquid to a solid. In
the 1980’s, two approaches showed they were able to yieldigher dimensions the onset of this phase transition was sig-
quantitative understanding of the ground-state properties afaled by an inability to obtain convergent solutions from the
bulk (three-dimensional, homogenegufHe. One approach variational equations for a homogeneous ground-state be-
coupled the development of powerful numerical techniqguegyond some maximum density. We find this same instability
to the development of powerful computers. The other apwith the Aziz potential and we tentatively identify the region
proach is the variational method based on Feenberg's corras the onset of a one-dimensional standing density wave. In
lated basis functionéCBF) theory! During the last decade one dimension such a phase transition can occur only at ab-
as interest in two-dimensional and inhomogeneous quantumolute zero temperature.
liquids soared, these two basic approaches once more formed The “He filled channels studied recently by the authors of
the underpinnings of our theoretical understanding. Very reRef. 2 were composed of a material they denoted as FSM-16.
cently there has been some experiméritand theoreticd®  The substance was reported to consist of a honeycomb of
interest in the properties ofHe in one dimension. In this hexagonally shaped tubes approximately 18 A in diameter
paper we shall apply the Jastrow-Feenberg variationalith an undisclosed length. Thus, the geometry of the real
method to calculate the static and dynamic properties ofystem is characterized by tubes with one macroscopic spa-
quasi-one-dimensionalHe. For reviews of the application tial dimension and two transverse microscopic spatial dimen-
of these techniques ttHe in higher dimensions we refer the sions. This type of system is termedasione dimensional.
reader to Refs. 1, 6, and 7. In an exact theory of such tubes, the motions which are trans-
In recent worl the variational approach to be used in this verse and parallel to the macroscopic dimension do not sepa-
work was applied to three model, one-dimensional, manyrate simply and are correlated. Such geometries can be
boson systems: hard rods, the Morse potential and th&eated microscopically within the extension of the Jastrow-
Lennard-Jones potential. We showed that the variational erfFeenberg  variational method to inhomogeneous
ergies agree to better than 4% with the energies of the exgeometries®! but the uncertainties due to the large variety
actly known hard rod system. We examined the Morse sysef possible geometries and interactions with the channel
tem with its exactly solvable two-body Hamiltonian for the walls rather suggests a focused effort with a careful explora-
effects of dimerization on the many-body ground-state. Thigion of the possibilities within reasonable physical limits.
analysis indicated that, for these types of systems, the exis- In Sec. Il we introduce a one-dimension#e Hamil-
tence of a many-body bound state zero pressure, finite tonian with the Aziz potentidlused for the helium-helium
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interparticle interaction. The potential parameters are detempproximation and in the strongly interacting limit(in
mined by bulk helium measurements. The Aziz potential hasvhich case it reduces to the Bethe-Goldstone equiation
been used successfully to calculate static and dynamic prop- An important aspect of the variational theory is the opti-
erties of inhomogeneous and two-dimensiofile. In this  mization of the correlations. The-body functionsu, are
section, we briefly describe the hypernetted-chain Eulerdetermined by the minimization of the energy-expectation
Lagrange(HNC-EL) formalism and then discuss the equa- value, formally written as

tion of state.

We next(Sec. Il turn to the excitations. We describe K
excitations by introducindime-dependentorrelated varia- Sup
tional wave functions which are the natural generalization o
our static ground-state theory. Over the density regime wher:

the liquid is stable, we find a dramatic change of the natur he physically observable distribution functions. This con-
of the excitations from a quasifree spectrum around the sat Rection is provided by the hypernetted-chaiiiNC)

ration density, to a typical phonon-roton spectrum at hlghequationsl. These equations are derived by diagrammatic

densities. We also calculate the static density-density re- : o . )
sponse function and demonstrate that the above mention alysis of the two-body_ dlstnbut!on functiay(2) n terms
the two-body correlation function. The analysis leads to

hase transition corresponds indeed to the softening of ; .

Enode with finite wave vgctor. ’ ?ﬁe HNC relationships

~ In Sec. IV we introduce dHe impurity and calculate the g(z)=ex ux(z)+ N(2)+E(2)]. (2.4)
impurity binding energy and théHe-*He distribution func-

tions. We then introduce a secoile impurity and compute The functionE(z) represents an infinite series of “elemen-
the effective interaction between tiéle atoms due to their tary” diagrams which can be expressed as multidimensional
direct interaction and that induced by their presence in thétegrals involvingg(z). The sum of nodal diagrams(z)

4He medium. This interaction can then be used to calculaté@n be expressed conveniently in momentum space. Intro-

(WolH[Wo)
(Wo|Wo)

he additional information needed to solve these equations is
e connection between the correlated wave functions and

—0, n=2,3. 2.3

the 3He-dimer binding energy. ducing the dimensionless Fourier transform
Each of these sections begins with a “theory” subsection
where a brief outline of the relevant theory is presented. ?(k):pf dzf(z)e'k, (2.5

These are then followed by a “results” subsection contain-

ing a discussion of the computations. Each section contair\ﬁherep denotes the linear density, then the functid(k)
references to the existing literature where the interestefl < the form

reader can find detailed derivations. Section V is the conclu-

sion. ~ [S(k)—17?
N(k)= BECEE (2.9
Il. THE GROUND STATE where the static structure function is defined by
A. Theory
The *He Hamiltonian can be written S(k)=l+pJ’ dzé*qg(z)—1]. (2.7
72 g2 The level of the HNC approximation is defined by the

H=- 2m, ;1 EJ’;] v(lzi—z)). (2.9 choice of E(2); e.g., HNC/O neglects the elementary dia-
grams altogether, note that triplet correlations can be imple-
The system consists &f, “He atoms which uniformly filla mented through a modification of the definition of “elemen-
tube of lengthL. The particles in the tube are treated as at@ry diagrams.” The combination of the HNC equations
one-dimensional many-boson system whose interaction hdg-4 and the Euler equation®.3) are generally referred to

the residual three-dimensional Aziz form. as the hypernetted-chain Euler-LagrarigtNC-EL) theory.
The ground-state wave function is written as a variationalVith the quantities introduced above, the correlation energy

ansatz of the Jastrow-Feenberg form can be written as

1 E:Er+Ek+ Ee+ E3 (28)

V(zy, ... 2zn)=exp 5| 2 Us(Z,2) with
4 2|i5
E, p(~ 72| d 2
+ 2 us(ziizjizk)-k... ] (22) WZEJ_de [g(Z)_l]V(Z)‘}'H d_z\/g(z) ,
i<j<k

(2.9

The most important component of the variational wave func- "

. ; . . = 1 dk ~

tion is the two-body functiomi,(z; ,z;), which describes both — = —f —t(k)[S(k)—1]N(k), (2.10
the short- and long-range correlations between pairs of par- N 4J-=(2mp)

ticles. In fact, one of the reasons for the success of the varia- .

tional theory is that it isexactin both the weakly interacting E: _ l dk K K)— 11E (K 21

. t(k[S(k)—1]E(k), (2.1D
limit (in which case the theory reduces to the random phase N 4)_-w(2mp)
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wheret (k) =%2k?/2m is the kinetic energy of a free particle, 038 P re———r .
E; is the contribution from triplet correlations. This term can /
be expressed in terms of the three-body correlation functior

0.7

us(z1,2,,23) and the three-body distribution function. In 0.6 - o) .
Refs. 12—14, working formulas and a scaling procedure for | 2 f )
elementary diagrams have been established that have be¢ £001 10%

successful in a wide range of applications. o4l § o 1

The details of the HNC-EL scheme have been discusse
in many contexts, for a comprehensive review of the method®
see Ref. 15. The Euler-Lagrange equation can be conve 02fF 000
niently written in coordinate space for the radial distribution
function

0.0

01k 002 004 006 008 010

0.0 |- reme s e T IR L -
s L . . .
mgZ2 9(2) +[v(2)+ AVad 2) +Wi(2)]VG(2) =0, 00 0.05 0.10 0.15 0.20
Al
(2.12 p (Ah
h he “ind di s FIG. 1. The figure shows the equation of state of one-
where the “induced Interaction™ Is dimensional*He, a magnified picture of the area around saturation
density is shown in the inset. Asterisks in the inset show results of
~ 1 1 Ref. 5.
wi(k)=—=t(k)[S(k) = 1] = 5t(k) =N
P dE/N 2.17
= —t(K)[S(k) = 11= V. (K), (213 p Pdp '
and AV.(2) is a term that arises from triplet correlations 1h€ chemical potential of the system is defineduasE/N
and elementary diagrams, +P/p, and the hydrodynamic compressibilky; is obtained
by differentiating the chemical potential with respect to den-
AVal2) 2 S8(Ez+Ey) . sity
7)== — ——. .
¢ Np  69(2) 1 du
i i : mG= =P g (2.18
The coordinate-space formulation of the Euler equation PRt p

(2.12 is readily identified with the boson Bethe-Goldstone yherec, is the isothermal speed of sound. For the adsorbed
equation, which sums the dominant diagrams in the strongsystems,c, should be interpreted as fourth sodfigince
coupling limit. ' ~ presumably the pore size will be significantly smaller than
A momentum space formulation of the Euler equationsthe viscous penetration depth in the hydrodynamic limit.
equivalent to(2.12) can be given in terms of the structure gince the definition of the compressibility contains the sec-
factor S(k), ond derivative of the energy one also needs to calculate the
linear response of the ground-state structure functions to

2 o density variati i [
_ Ry y variations. We will return to this problem when the
Stky=| 1+ t(k)vp'“(k)} ' 219 static response function is evaluated.
This equation is formally identical to the boson-RPA expres- B. Results

sion for the structure factor; the HNC-EL theory supple-

ments the RPA with a microscopic theory of the particle-hole _ N Fig. 1 we show the zero-temperature equation of state
interaction of one dimensional*He. We find that, in one dimension,

“He is self-bound at zero pressure. The binding energy is
#2] d 2 0.002K at a density of 0.036&. The existence of a many-
Vpn(2)=9(2)[v(Z2) +AVed2) ]+ ™ d—z\/g(z) bo<ij pou.nd state is in agreement W|th our previous work
which indicated that if the system dimerizes then it will also
+[g(2)—1]w(2). (2.1 have a many-body bound state. By solving the two-body
Schralinger equation with the Aziz potential we have found
Thus the HNC-EL theory sumigoth important sets of dia- a two-body bound state with total energy—0.83 mK and
grams self-consistently. an average particle-particle separation of 64A. Newer
Equations(2.15), (2.16, and(2.13 can be solved itera- potentiald’'® give the slightly lower binding energies of
tively for g(z) andS(k). We can then go back and calculate —1.68 mK and—1.78 mK, respectively. The low density and
the ground-state energy from the expressi@r8) for the  small value of the binding energy necessitated great care in
energy-expectation value. the numerical work for both the two-body and many-body
The pressure of the system is calculated by varying theystems. As shown in Fig. 1, we found solutions for densities
energy per particle with respect to the density. It can bén the range 0.03 A1<p<0.19 A"*; by very cautious itera-
expressed entirely in terms of the ground-state structuréions one might be able to decrease the lowest density, and
functions increase the highest density, slightly.
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The range of densities where solutions of the HNC-EL 1.50
equations are found is determined by the onset of physical 125
instabilities. The low density instability is spinodal point 1.00
separating the self-bound liquid from a zero-density gas; it is <~ 075
determined by the density Whefép_h(0+) vanishes. The w0 0.50
instability is seen in Eq2.15); in order to have a re&(k), 0.25
we must havé/, ,(0+)>0. 0.00

The inset of Fig. 1 shows a magnified picture of the den- 015

sity region around saturation. Going below saturation den- p (4010
sity, one quickly approaches the spinodal point. In principle, ‘

the long-wavelength limit of\~/p_h(k) is equal to the hydro-

g}ygcigqslgoc?gqp[jzsnstli?;gﬁg12,; dlr][hgr?:]:;[gg’scgoﬁeviréggte FIG. 2. The figure shows thtHe-*He pair distribution function
pic g ' pic g y g(2) as a function of interparticle distane&nd densityp. Note the

Vp-h(0+) are identical Omy inan exact .t'heory. The calcula- gevelopment of a very typical low-density form@t0.03 A~ up

tion of the hydrodynamic compressibility through macro-to the highly structured form at the highest attainable density.
scopic derivative$2.17) and(2.18), is normally more accu- o _ o091 _

rate than using the smakHimit of Eq. (2.15. Both in two & liquid-solid phase transiticft:*" In 1D this same conclu-
and in three dimensions it was foufidhat the inconsistency Z'Of’,] is not evident and rrgore Wdork r‘?"” be required behfore a
between Eq(2.18 andV,(0+) is not very severe in the efinitive statement can be made that we are, or perhaps are

o ) ! : o2 not, seeing a transition to a state with a nonuniform density.
vicinity of the spinodal point. The inset in Fig. 1 also showsWe will return to this point in the next section where we

Vpn(0+) at low densities, by extrapolating, ,(0+) to  discuss excitations and the static response function.

lower densities, we estimate that the spinodal point of the In Fig. 2, we show the set of “radial” distribution func-
one-dimensional liquid is gi;~0.022 A%, A fully consis-  tions, g(z), for one-dimensionafHe. We note that there is
tent calculation along the lines of Ref. 19 would lower this considerable structure in the highest density distribution
value to perhaps 0.02&. Applying the analysis of Ref. 19 function despite the fact that relative to bulk interparticle

to a one-dimensional system, we find that spacings, this system is very dilute. A similar statement can
o3 be made about the static structure functig(k), shown in
mc&=(p—ps)?* as p—ps. (219 Fig. 3. At high densities, one has a very strong peak at

. . . — —1 i
As a word of caution we mention that the nonanalytic form=1-44A™* corresponding to a pronounced structure at a
(2.19 is valid only in a very small density regime around the ength scale of 4.25 A which is the location of the nearest
spinodal point and normally does not provide a useful tooln€ighbor peak ing(z). However, a pronounced quasi-

for finding the spinodal density by extrapolation. periodic structure appears in botf(z) and S(k) only at
We note that the system is, in the whole accessible redensities well beyond saturation. _
gime, at relatively low density in terms of theterparticle In Ref. 5 a diffusion Monte Carlo calculation of the equa-

distance In three dimensions at zero pressure, the averaghon of state for‘He in one-dimension is reported. This cal-
spacing per particle is approximately 3.6A whereas ouculation is consistent with our conclusion that a Iow-d_ensny
saturation density corresponds to an average particle spacifpund state exists. Some of the Monte Carlo results in den-
of 33 A , and thehighestdensity corresponds to a spacing of SIty regimep=0.1 shown, for the sake of comparison, in Fig.
5.3A . But even at these relatively low densities, the inclu-1. Whereas the agreement between our variational results
sion of the contributions from the elementary diagrams and@nd the simulation data is, for the two lower densities, of the
also the three-body terms made non-negligible changes ifxpected accuracy, there is a notable discrepancy at
the results, in other words the system is in a sense morg 0-1A~*. This apparent discrepancy is due to large cancel-
strongly correlated than the two- and three-dimensional andations between kinetic and potential energy, as seen in Table

logs. In the long wavelength limit we have I. The table shows a breakdown of the total energy between
S(k ik 2.2
(k)~ me’ (2.20

It follows thatg(z) =1+ #/mcpz? for z—=. Hence, the ki-
netic energy termdyg(z)/dz? in V,4(r) has the same
range as the bare potential which dominates, at long dis-
tances, in both two and three dimensions.

Triplet correlations and elementary diagrams are, of
course, more important at high densities. For example, at the
two-body, HNC/O level there were stable solutions found up

to a density of approximately 0.22 & while the inclusion : 00 05 1O 7 A
of triples and elementary diagrams reduced the maximum
density, for which solutions could be found, to 0.19A FIG. 3. Same as Fig. 2 for thetatic structure function &). At

In 2D and 3D, the disappearance of solutions at highsmall densities the large slope is indicative of a small value for the
densities can be identified as the signature of the presence gffeed of sound.
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TABLE I. A comparison between the DMC results of Ref. 5 for J
potential and kinetic energyRef. 44 with HNC-EL results. All L={WP(t) H—iﬁﬁ \If(t)> =<‘I’0
energies are given in K is the Monte Carlo statisitcal uncertainty.

o d
H—Eo—lﬁE’\P0>.

(3.9

p (A7) (V) (T) o .
DMC A  HNC-EL DMC A  HNC-EL Mlnlm_lzmg the action (3.3 _Ieadg to four Euler-Lagrange
equations for the real and imaginary partséf; and du,

0.100 —0.538 0.005 —0.513 0.550 0.005 0.530  which are conveniently written in the form of two continuity
0125  —0777 0023 —0756 0813 0023 0812 equations
0.150 —1.121 0.028 —1.100 1.199 0.028 1.249
0.175 —1.595 0.059 —1.581 1.791 0.062 1.932 . .
a]l(zlvt)_' (Z t)
&Zl pil41,0),

kinetic and potential energy for both the DMC data and the

HNC-EL results. Thepotential energy agrees, throughout, . )

with our result within better than a percent, whereas the dis- MJF(L_)Z):F', (21,25:1) (3.5
crepancy of the kinetic energies is between one and 8% 9z4 arhte '
Thus, the disagreement between our results and the simula-

tion data of Ref. 5 is to a large extent due to the accidentaith the one- and two-particle currents

cancellation of large numbers; it is consistent with the ex-
pected accuracy derived from the comparison of our results
with exact results for hard rodslt is indicative of the fact
that the Jastrow-Feenberg wave functi@x?) is not exact.
The good agreement of the potential energies is an indication
that our pair distribution functions, which are important input +f 2,212 )075U2(21,22;t)
for our further calculations, are very good. 2P 41,42 9z,

- h |— doéu(zy;t)
—iji(z3;t)= ﬁlpl(zl)—azl

IIl. DYNAMICS 9U1(z4;1)

. ho|—
_Uz(Zl,Zz;t):ﬁ(ﬁz(zl,zz)( 9z,

A. Theory

A plausible way to deal with excitations within the varia- doUy(2y,25;t)
tional approach is to allow for a time dependence of the + —)
n-body functionsu,(r4, ... r,). Beyond the time depen-
dence of the components of the wave function, Eq. (2.2), we — ddU,(Z1,23;1)
must also include a time-dependent one-body function since +J’ dZsPs(Zl,Zz,Zs)a—Zl],
the dynamics will normally break the translational invari-
ance. The wave function of the excited system is again writ- (3.6)
ten in the Jastrow-Feenberg form

9z,

where;1 andzz are the time-independent ground-state quan-

e Eot/fig(12)0U(ry, . .| 'n ;t)|\PO> tities. The derivatives of the correlation functions are related
W (t))= 50 7 , (3.1 to the derivatives of the pair-distribution functions through
[(Wole| V)] the set of exact BGY equations.
) o Note that, for the derivation of Eq&3.6) it is necessary to
where| W) is the (variationa) ground state, and assume that correlations up tn(z;,2,,23,2,) have been

optimized or, equivalently, thati,(z;,z,,23,24) is negli-
gible. One has normally only indirect evidence that this ap-
oU(ry, ... 'rN;t):Ei U (ri ;t)+i2<j u(ri,ryst) proximation is legitimate, for example, by comparing the
(3.2) energetics with simulation data. In one dimension, one also
can compare with exact results for the point-rod system. This

is a time-dependent complex function representing fluctua/@s done in Ref. 8 where we found that the agreement be-
tions of then-body parts of the wave function. Since the tween the exacg(k) andg(z) with our HNC-EL results is
excitations can be considered as small perturbations of thguite good. We expect therefore that the neglect of
ground state, one can tredit) to the leading nontrivial order. Y4(Z1,22,23,24) i legitimate; in particular we feel the ex-

The time-dependent correlations are determined by th@Ctly one-dimensional system is a substantially cruder ap-
action principlé*?® proximation for “He in a nanotube than the omission of

U4(21,2,23,24).
. Since the relationships between the time-dependent com-
5= 5] 2£[‘I’(t),‘i’(t)]dt=0 (3.3  Pponents of the pair-correlation and pair-distribution functions
ty involve ground-state densities up to four-body distribution
function p,, approximations are necessary. Different
with the Lagrangian implementation¥-?>2! use different approximations which
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are chosen depending on the problem under consideration, 72 [S(p)S(q) - _
and on the system that is being investigated. Va(kip,a)=5— W[kpX(p)ﬂquX(q)
At this time, the best implementation of the theory in 3D
and 2D is by Saarela and collaborafdré’ which lead to Kk pa )], (3.10

very good agreement between the thoretically predicted and

the experimentally observed roton minimum. Our calcula- | the zero-frequency limit we obtain the static response

tions utilize the so-called “convolution approximatiod”  function

the expected accuracy of this approximation will be dis-

cussed further below where we display the analytic formula. 25(k)
Restricting the time dependence to thee-body compo- xBF(k,00=— oF .

nent only leads directly to the Feynman theory of e(k)+ 2~ (k,0)

excitation$® and to the dispersion relation If we ignore the self-energy correctid®(k,w), the response
52K2 function(3.8) reduces to the familiar response function in the
(3.7 random phase approximation

(3.11

e(k)= ImSk)
Equation(3.7) provides an upper bound for the lowest-lying RPA(K, ) = 2t(k)y Xo(K, @)

excitation and is exact in the long-wavelength limit, butis X (K1@)= 7202 e2(K)  1—Von(K)xo(k,®)

less accurate at shorter wavelengths. The cause of this defi- > ' (3.12
ciency is evident from the variational point of view: when

the wavelength of an excitation becomes comparable to theith the response function of the noninteracting boson sys-
average particle distance, one should expect that all correl4€m

tions that are important at that wavelength are also time-

dependent. Consequently, it was found in previous studies of 2t(k)
liquid *He (Refs. 24—27,2pthat much of the energetics of Xo(k,w)= 20— t2(k)
the excitations in the medium-to-high momentum range can

be attributed to fluctuating short-ranged correlations, and the The dynamic structure factor follows immediately from

same iS_expeCted tO- be true in the One'dimensional.sy-sterfhe imaginary part of the dynamic response function
For the implementation of the present theory of excitations

(3.13

and dynamic structure the structure functi®¢k) is the es- 1

sential input. ThisS(k) is provided by our ground-state cal- S(k,w)=——Im x(k,0). (3.19
culations described above, but it may equally well be taken

from other calculations like a Monte Carlo simulation. It is worth stressing that the static structure facB§k)

A convenient and mathematically transparent level bepptained from the above response functionidentical to
yond the Feynman approximation at which one can deal withoth, the one obtained from the ground state calculation and
fluctuating ~pair correlations is the uniform limit the one obtained in the Feynman approximation. In other
approximation for the kerels of the equations of motion yords, the self-energy correction changes the relative weight
(3.5 and (3.6). In a somewhat different derivation of the of the individual excitations and resonances, but it does not
dynamics, this approximation has also been used by Campnange the integrated strength. Thus, the first two energy

6,24 i R . N .
bell et al.>* to calculate the phonon-roton spectrum in bulk yeighted sum rules are identical whether calculated in Feyn-
liquid “He. Important formal properties of the dynamic man or in CBF approximation:

structure function have been discussed by JacR¥6AThe

equations-of-motion method has first been used in Ref. 25, © dhw
the connection to the derivations of Campbelland 5(k)=f - Im XAk, )
Jacksoi’~3? has, in the somewhat more general case of an o
inhomogeneous system, been derived in Refs. 29 and 33. » dhw
The theory leads to a dynamic response function of the plau- =f on Im x“*F(k, o),
sible form -
S(k) S(k) h2%k? f% dhw P
Xko) = =S (ko) T —fo—e(k) -3 (K —w) om )2 e ImxT Ak e)
(3.8 . dh
whereS(k) is the static structure functioa(k) the Feynman = f o Im X°B(k, o). (3.15
excitation spectruni3.7) andX (k,w) is the self-energy aris- — 4T
ing from phonon-splitting and recombination processes:
B. Results
CBF _1( dpdq Vs(k;p,9)|? o . . ,
2k w)=5] 5——8k+p+q) - — , Excitations are conveniently discussed in terms of the dy-
2) (2mp w=e(p)—e(a) namic structure functioS(k, »), Eq.(3.14. In the Feynman

approximation S(k, ) is exhausted by a single mode,
where the three-phonon coupling matrix element is given in
terms of ground-state quantities’as S(k,w)=S(k)d[hw—e(K)] (3.1
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S(kw)  p =0.10 (87" S(kw)  p=0.10 (87")

0 0.5 1 7 1.5 2 0 0.5 1 1.5 2

k (87" k (&7
FIG. 4. Grey-scale plot of the dynamic structure function FIG. 5. Same as Fig. 4 fgr=0.10 A1,

S(k,w) atp=0.05 A 1. Darker areas correspond to higher values

of S(k,w). The heavy solid line follows the Feynman approxima- the_highest density, 0.19 &, with a value of 3.5 K at 1.38

tion (3.7). A~1. The Feynman approximation gives an upper bound for
the roton minimum of 6.8 K. From experience with our cal-

whereas it is nontrivial when the self-ener¢9.9) is in- culations in 2D and 3D we suspect that our calculation still

cluded. Before turning to the numerical results, we shouldPverestimates the roton energy since a renormalized energy-

briefly discuss the expected accuracy of the calculations. I#enominator in the self-energ.9) will increase the mag-

three dimensions, the present implementation of the theorf)itude of the self-energy. Once more it is interesting that this

underestimateshe consequence of including self-energy @mount of structure is appearing in a system whose average

corrections by about 30%; the reason is that the energy dé&Pacing is more tha5 A per particle.

nominator in Eq.(3.9 contains the Feynman spectrum, Returning to the high-density instability of the system, we

whereas itshouldcontain a self-consistent spectrum. Artifi- consider the static response functig(k,0). At the point of

cially lowering the spectrum in the energy denominator suct® Phase transition,x(k,0) should become singular, or

that it agrees roughly with the experimental phonon-rotonl/x(k,0) should develop a node.

spectrum also lowers the spectrum and produces good agree- Figure 8 shows the inverse static response function as a

ment with the experiments. In general, we consider soméunction of density and momentum transfer. At low densi-

phenomenological input as legitimate; however, here wdi€s, the response function is relatively featureless; it starts

shall not include such modifications. We expect, thereforedeveloping a minimum in the reginte~0.9-1.5 A™* cor-

that our resultsunderestimatethe importance of time- responding roughly to the average particle distance at the

dependent pair correlations. relevant density. The value of Y(k,,,0) at its minimum

In Figs. 4—7 we shov(k, ) for the densities 0.05, 0.10,
0.15, and 0.19 A*. At the lowest densities the spectrum is
quadratic with little evidence of a roton minimum. This is
clear from the previous results, Figs. 2 and 3. The Feynman I
spectrum(3.7) is, at saturation density, practically a free
spectrum; a linear phonon branch persists for very long
wavelengths only and is practically invisible.

A consequence of the anomalous dispersion of a quadratic
excitation spectrum is that it is kinematically allowed for a
single phonon to decay into two phonons. For wave vectors
on the order of 1 A there are no propagating collective
modes because of this anomalous dispersion. Such an effect
is contained in the CBF self-energy; the ridges{k, w) seen
at abouthalf the Feynman energy in Fig. 4 reflects this ef-
fect. The strength ofS(k,w) is still distributed along the
kinetic energy line, but th&(k,w) has a finite width. Inter- I
estingly, the free spectrum remains the dominant feature up o 1
to a density of 0.15 A where the first signatures of a “ro- 0 0.5 1 1.5 2
tonlike” structure appear. kK (RN

As the density is increased, a linear regiorkiappears as
does a roton minimum. The minimum is quite pronounced at FIG. 6. Same as Fig. 4 fgr=0.15 A%,

S(k,w) o =015 &

15

10

(K)

hw
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FIG. 9. The figure shows the minimum value of the inverse
, ‘ static response functior; 1/x(kmi,,0) (solid line, left scalgand the
= 0 0.5 1 15 o 2 locationky;, of that minimum(dashed line, left scalas a function
i of density.
k (BT

We can treat the single impurity system as the zero concen-
tration limit of a spatially homogeneous mixture, thus we

) need not include a one-particle correlation function into the
and the corresponding momentug;, are shown, as a func- - jastrow-Feenberg wave function. The fact that there is only
tion of density, in Fig. 9. At high densities, the inverse staticy,q foreign particle makes it possible to use &) for the
response function drops very rapidly; cautious extrapolatiorbackground wave functio (zy., . . . ,ZN4) and multiply that

of the results of Fig. 9 suggests that it should go to zero ) . . .
p~0.22 A1, Keeping our above remarks in mind that thea%un(itlon with the correlation function between tRele and
the “He background

present implementation of the self-enengyderestimatefts
contribution, the results of Fig. 9 are consistent with our

FIG. 7. Same as Fig. 4 fgr=0.20 AL,

Ny
2r;dc|)r.1g9t_hgfzsoolAu}|l(?ns of the Euler equation cease to exist at V(29,24 . .. ,ZN4)=exp2— jzl u(z9,2))
1
IV. *He IMPURITIES +57 > u(zo,7 ,zk)}
A. Theory o
In this section we shall describe the modifications needed XW(zg, 2, 4.2

when one®He atom is added to a fluid &, “He particles.
We distinguish the®He from the rest of the particles by
using the notatiorg, for its position in space. The Hamil-
tonian, H', contains the kinetic energy terms and tftde-
“He and“*He-*He interactions.

As in Sec. Il, the description of théHe background, we
include pair and triplet correlation functions.

The chemical potentiabf the 3He is the energy gained or
lost by adding one®He into the liquid, in other words it
equals to the energy difference

hz d2 Ny h2 d2 Ny <\If||HI|\I’| \Ilel\I’
LG A BV e Eo ) CIHI)
2mg ¢ 2 ;2‘1 2m; dz? 121 (I20=2)) #a=EnaEn, (v (el “9
Ny I ; 4
+2 V44(|z,-—zk|). @.) whereENfongl |§ the (_anergy of the syste_m of , He_atom_s
<k and one °He impurity. In the calculation of the impurity

chemical potential from the definitioi#.3) we must include,
besides the explicit terms containing impurity distribution
functions, also thechangesin the background distribution
and correlation functions due to the presence of an impurity.
These changes are of the order dil nd therefore cause a
change of order unity in théHe correlation energy.

The one-particle density for the impurity is defined by
integrating over all the background coordinates in the wave
function

-17xk,0) (K)

1 1

Zo)=—| dz;---dz ‘I’IZ,'“,Z ZE—;

FIG. 8. The inverse static response functierl/y(k,0) as a P3(20) NOJ 1 N4| (o N4)| L
function of momentum and density. (4.9
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it is equal to one over théotal volume Lof the system, 4 . T T
which includes the impurity particle. Similarly, to obtain the '
impurity-background two-particle density, one integrates

over all background coordinates except one, b Ar N
- 4t
Ny | 2 2 = .
P3(20121):A_/0 de---dZN4|‘P(20,21:---,ZN4)| : " 5t
= | - -
(4.5 T

where is the normalization integral B
0.00 0.05

/\/o=fdzo...dzN4|‘P'(zo,...,zN4)|2. (4.6)

The radial distribution function between the impurity and 0 !

background particles is defined by 0.00 0.05 O.I(OA , 0.15 0.20
b (A

34
= . 4. .
Paul20:21) = p3(20)Pa(21) 9720, 21) .0 FIG. 10. The figure shows the chemical potengial of a 3He
Note thatp,(z;) in Eq. (4.7) is the pure “He background impurity in one-dimensionafHe as a function of the background
density density. The inset shows the volume facgr

d
dez LY I RICN 3:p4(p)£ 4.13
pa(21) =Ny L.

f dzl. ' 'dZN4|\I}(Zl! LI 1ZN4)|2

over the pressur®. These two relations can be used as a
4.9 check of consistency of the theory in a similar manner as
' using the thermodynamic compressibility to test the consis-

Definitions (4.4)— (4.8) determine the volume integral tency of the slope of the structure function in the long wave

length limit.
34 The remaining manipulations have been described exten-
dz,97(z1,20) =Ly4- (4.9 sively in the literatur®® and shall not be repeated here.

. ] . Along the same lines, thateraction between pairs of
The volume occupied by onéHe particle,l,=L4/Ny is  3He impurities can also be derivédin the dilute limit one

different from the volume ;=L — L, occupied by the’He.  gptains an effective Schdinger equation for the relative
This difference has consequences for the sequential relatiqPaye functiongs(2)

for the 3He-*He radial distribution function of Eq4.7)

72 d?
| _ o 33
f d21p4(21)[g34(21720)—1]:_|_35_B- (4.10 M 472 $h33(2) +[Vv(2) + AV 2) + W33(2) | p3x(2)
4
Here we have introduced th@lume excess factg®, which h? d?
is an important experimental parametér. R $33(2) + V33(2) p33(2)
The 3He structure function is the Fourier transform of the
radial distribution function = €330033(2), (4.19
” o Kz 34 where the induced interactiomgs(z) is obtained from back-
S (k):P4J7deé [g7(2) 1], (41D ground and single-impurity quantities,
and its value at the origin, ~ #2k2 [ S4k)\ T m,
Wag(K)=—5—| 2 2—S*Kk)+1|. (4.15
SM4(0+)=— 3, (4.12 My | S*(k)/ | M3

is given by the sequential relatidd.10. In the definitions The correctionsAvgf;(z) due to elementary diagrams and
(4.4 and (4.89) we have taken explicit advantage of the facttriplet correlations contain topologically the same diagrams
that the zero concentration limit of a homogeneous mixtureas were used in the ground-state calculation; details may
is formally equivalent to the one particle limit which makes again be found in Ref. 15. However, the single-impurity
it possible to take the Fourier transform with respect to thdimit also provides useful insight into th&tability of a mix-
relative coordinate alone. From now on we shall ignore theure of 3He and“He. In threedimension, such mixtures are
coordinate argument in the density factors. stable against concentration fluctuations even in the low con-
The volume excess factor is a measurable quantity andentration limit. Since Eq(4.14 is the low-concentration
when it is well determined, as for thiHe impurity, it can be  limit of the Euler equation of the 33 correlations in the mix-
used to calculate théHe chemical potential by integrating ture theory, itmust nothave a bound state. If the converse is
the equation true, the mixture will be unstable, first against the formation
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FIG. 13. The figure shows the effective interactidgy(z) be-
p (A1010 tween two>He impurities as a function of distaneeand density.

20
¢ 8 10 12 14 1618
o 2 4 z (A)

calculation in this low-density regime requires very large
FIG. 11. The figure shows théHe-3He pair distribution func- sizes of_ the _dlscret|zat|on volume. We have carried out our
. . ) i ; , calculations in a box of length 400 A . We feel that, even if
tion gs4(z) as a function of interparticle distanzeand densityp. ical calculati t h b . is feasible. th
Note the very long range of the correlations at low densities the)f'i nu_menca .C"’.‘ culation at such box sSIzes 1S 1easl _e, €
reach out to 100 A ap=0.05 A L. physicalpredictions based on such a model are questionable
because there is certainly no reason that the aforementioned
of dimers, and then against concentration fluctuations. [pharrow channels can be faithiully approximated by perfectly

deed, such a scenario has been proposed by Bashkin aﬁglooth tubes. Hence we have restricted ourselves to giving
collaboratorS83° results forp,>0.05 A1 only.

Basically the same statement applies to the binding en-
ergy of two He impurities. For all densities where we be-
lieve that our numerical calculation is reliable, we find, con-

The calculation of |mpur|ty properties was imp|emented5istent with the pl’edictions of Bashkin and CO”aboraﬁafgg,
at the same level as the calculation of the background quarbat there is indeed a weakly bound state of tite impu-
tities which is, in turn, the same as used in previoudities within the liquid. Since a singléHe atom would be
work 143615 Results of the calculations include impurity €xpelled from the system, such a scenario can be reached
binding energies, distribution and structure functions, and th@nly if the *He has no free surfaces at the end of the channel.
volume factor. Figure 10 shows the energetics of fhtee ~ The binding energy increases rapidly with the density of the
impurity. Within computational accuracy, 3e atom is un-  *He liquid, cf. Fig 12 displays the dimer binding energy as a
bound in one-dimensional liquiiHe at all densities. function of density. For most of the accessible density re-

We note that in one dimension the surface state can bg@ime, the binding energy is of the order of a few hundredths
generated by simply removing either the right or left handK, in other words about an order of magnitude more than the
line of “He atoms from the vicinity of the’He impurity.  €nergy per particle of théHe background component. Fig-
Thus, the above result would indicate that the existence of aHres 13 and 14 show the effective interactiogy(z) used in
Andreev type of surface state is unlikely in one-dimensionathe Schrdinger equatiori4.14 and the square of the ground
helium. state wavefunction, as a function of interparticle distance and

Figure 10 also shows the volume excess fagtocf. Eqs.  density. It is evident that the effective interaction becomes
(4.10, (4.12. Evidently the 3He atoms do not want to be Mmore attractive with increasing density; it becomes identical
confined within the*He system. In order to further illustrate t0 the bare potential in the low-density limit. THte-*He
this, we show in Fig. 11 thg3¥(z) as a function ofp,.  dimer wave function is very broad up to a density of 0.1
Clearly, the correlation hole at low densities is enormous, i ", corresponding to a mean particle distance of 1050 A.
reaches out to beyond 100 A a;=0.05 A L. A reliable  Note that there is no bound state in the zero-density limit

which cannot be reached within the mixture picture due to

B. Results

0.00 , , , , , the spinodal instability of the hostHe liquid. The dimer
state becomes reasonably localized close to the highest den-

-0.01 .
£ o0t . .

-0.03 | - =

B
oo b i 020 ]
p (A-I)O 10
-0.05 1 ! ! ! !
0.05 0.10 _ 015 0.20
p A
FIG. 12. The figure shows the binding energy of ttée-3He FIG. 14. Same as Fig. 13 for the square of the dimer wave

dimer as a function of density. function | ¢s5(2)|2.
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V. DISCUSSION

In this paper we have reported on calculations for the APPENDIX DENSITY MATRIX

properties of the ground state and low lying excitations for | js well known that the one-dimensional interacting Bose
“He in one spatial dimension. We expect this to be a viablesystem has no Bose-Einstein condensate. Nevertheless it is
model for quasi-one-dimensionéHe in the thin tube limit.  useful to verify this feature for the present case; once again
Some evidence for this can be drawn from our calculationshe importance of optimization will become apparent.
on quasi-two-dimensional systems, specifically adsorbed We start from the wave functiof2.2) and assume, for the
films.!* In that case, the conditions under whichj@asi-two-  time being, that the two-body functian(|z; —zj]) is known
dimensionalsystem such as an atomic monolayer could beand is some short-ranged function in the sense that it has a
treated rigorously as a two-dimensional liquid were exam-+ourier transform. We then proceed to calculate the full one-
ined. A similar comparisori.e., a fully three-dimensional body density matrix at absolute zero temperature for this
computation of*“He in a narrow tube geomelrys today Wwavefunction:
computationally feasible, however, we feel that more must ,
be known about the particular tube wall system to Warranf)l(z'Z )
p 3

this effort. In this paper we assume that the walls of the tubes
simply provide boundary conditions. In reality the walls will dzy- - dzyWo(z,25,- -, 2a)Vo(Z', 22, -+ Zn)
appear as an external, possibly periodic potential. We have =N
found that at zero temperature, tAle will condense into a f dzy- - dza|Vo(zy, - - 2zy)|?
weakly bound one-dimensional liquid. The Feynman spec-
trum at zero-pressure is free particlelike and with increasing (Al)
density smoothly develops the well-known phonon-roton
shape.

In the Appendix, we sketch the derivation of the result
that in one-dimension, if the low lying excitations are

phonons the_PhFhe.re 'S o wllell-d(ra]ﬂnegtlmal pa]ir f%ncnon expresseg(r,r') as a series of diagrams in termsmlbody
u2(|zi—zj|). Is in turn implies the absence of a Bose Con-isyriytion functions. Fantofi carried out summations of

densate. o 1 _ diagrams of the HNC topology. The theory was extended in
As the density increases towards 0.19'Athe inverse of Ref. 42 to inhomogeneous geometries.

the static response function shows signs of an imminent tran-  common to the earlier derivatiotfé! was that the theory
sition in the region ok=1.5 A~'. We note that in the pres- was formulated in terms of then-body functions
ence of an external periodic perturbing potential, questiong (r,, ... r,); but the theory can be reformulated such that
of commensurate and incommensurate competing phases lgcontains only physical observables. This has obvious con-
come an interesting possibility. ceptual advantages because it allows one to make direct con-

We investigated the behavior of #e atom in the*He  tact to other theories such as the parquet theory of the con-
and showed that the minimum energy state corresponds iensate fraction which also calculate physical observables,
the single®He atom completely separated from the line of but which are formulated without explicit reference to a
“He. In a strictly one-dimensional system of courséHe  wave function. It is, for the present purpose, essential be-
atom cannot move pastHe atoms to find this minimum cause the optimal two-body functiam(|z —z|) will turn
energy configuration. However, it is probable that these reout to be an ill-defined quantity. _ S
sults will remain valid for the quasi-one-dimensional system We do not introduce a special notation to distinguish the
where rearrangements are possible. one-body density matrip,(z—2") from its diagonal limit

Finally, we showed that a pair ofHe atoms can form a _ .

- - p=p1(2,2); (A2)
very weakly bound dimer in the presence of the one-
dimensional®He. The dimer binding energy increases rap-the notation will be made unambiguous by explicit display of
idly with increasing*He linear density and thus its presence the nontrivial coordinate dependence. An especially interest-
should be most apparent at the highest attain4Hle densi-  ing quantity is the limit of large distances; —z,|,
ties.

Note added in proofAfter submission of this paper, we
have learned about two diffusion Monte Carlo This limit gives, in three dimensions, information about the
calculation$**° that find, consistent with our predictions, coherent structure of the ground stéten. is the fraction of
long-range oscillations in the pair distribution function be- particles occupying the zero momentum Bose-Einstein con-
yond densities op=0.2 A%, densate.

Working formulas for the density matrix for wave func-
tions of the type(2.2) have been derived in several places.
Following a suggestion by Feenberg, Ristig and Cfager-
formed a cumulant analysis of the density mai@xl) and

p1(21—25) —pNe @S |23~ 2, —. (A3)
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There is no need for the rederivation of the equationgphonons are put into the theory, th&fk)=k ask—0*.
summing the diagrams contributing to the condensate fracthen, the last term in EqA6) goes to—o and, hencen,
tion n.; they are obtained from the more general equations=0 as it should be.
derived in Ref. 42 for inhomogeneous systems in the bulk Finally, we return to the statement that tbptimal two-

limit. The final result is that body functionu,(|z,—z|) is an ill-defined quantity. In two
and three dimension, an optimab(r) can be obtained by
nc=exg2D], (A4) " inverting the HNC Eq(2.4)

where the quantityD is derived by first solving the HNC

equations for the momentum distribution u(r)=Ing(r)=N(r)—E(r) (A7)
and using the optimad(r) to calculateN(r) andE(r). The
AX(z)= \/ﬁeAN(z)_ %g(z)— ;—AN(Z), E(r) can also be calculated in 1D, however, we have
k)—112
S Nk = O~ A8)
AN(k)=AX(K)[S(k)—1], (A5) S(k)
from which one obtains and, sinceS(k)«k ask— 0+, the Fourier transformel(r)
10 dk does not exist in one dimension. We note that, for the final
D=AX(0+)— = AX2(K)S(k K —1 formulation of the variational problem, tHé(r) is not nec-
(0+) 2] 27p ()S(oLS(k) —1] essary. But one must understand the theory in such a way

3 that first the theory is derived for short-ranged functions
_Ef iAf((k)[S(k)—l]er EJ ﬁw ux(|zi—zj), then it is reformulated in terms of quantities
2) 2mp 8J) 2mp  S(k) that are well behaved even $i(k) <k, and then one carries
(AB) out the optimization. This technical subtlety occurs, of
course,only when one insists on the Jastrow-Feenberg wave
The equations are valid as long as the pair distributiorfunction. However, the same equations can be obtained by
function has been obtained from some short-ranggd). summing the parquet-class of Feynman diagrams where such
However, if the correlations are optimized, in other words iftechnical difficulties do not exist.
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