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Properties of 4He in one dimension
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It has been suggested recently that4He can be prepared and studied as a quasi-one-dimensional quantum
fluid. In this paper we calculate the static and dynamic properties of one-dimensional4He using variational
methods based upon the Jastrow-Feenberg wave function and its extension to dynamic systems with time-
dependent, correlated wave functions. We calculate the zero temperature equation of state and show that in one
dimension4He is just barely self-bound with a binding energy of 0.002 K at a density of 0.036 Å21. We
calculate the Feynman excitation spectrum and corrections that contain multiphonon processes and study the
density dependence of the roton feature as well as the static response function. In addition we demonstrate the
presence of strong anomalous dispersion in the phonon regime. Finally, we introduce a3He impurity and
calculate the zero concentration chemical potential as a function of4He linear density. We also compute the
3He-3He effective interaction in the4He background and compute the energy of dimerization.
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I. INTRODUCTION

Because of its macroscopic quantum behavior4He has
been one of the most intensely studied many-body syste
The physics responsible for this remarkable behavior,
balance of kinetic energy to potential energy and the imp
tance of strongshort-rangedcorrelations, also make the sy
tem very difficult to treat theoretically. During the period
the 1980’s, two approaches showed they were able to y
quantitative understanding of the ground-state propertie
bulk ~three-dimensional, homogeneous! 4He. One approach
coupled the development of powerful numerical techniq
to the development of powerful computers. The other
proach is the variational method based on Feenberg’s co
lated basis functions~CBF! theory.1 During the last decade
as interest in two-dimensional and inhomogeneous quan
liquids soared, these two basic approaches once more for
the underpinnings of our theoretical understanding. Very
cently there has been some experimental2,3 and theoretical4,5

interest in the properties of4He in one dimension. In this
paper we shall apply the Jastrow-Feenberg variatio
method to calculate the static and dynamic properties
quasi-one-dimensional4He. For reviews of the application
of these techniques to4He in higher dimensions we refer th
reader to Refs. 1, 6, and 7.

In recent work,8 the variational approach to be used in th
work was applied to three model, one-dimensional, ma
boson systems: hard rods, the Morse potential and
Lennard-Jones potential. We showed that the variational
ergies agree to better than 4% with the energies of the
actly known hard rod system. We examined the Morse s
tem with its exactly solvable two-body Hamiltonian for th
effects of dimerization on the many-body ground-state. T
analysis indicated that, for these types of systems, the e
tence of a many-body bound state~a zero pressure, finite
PRB 600163-1829/99/60~18!/13038~13!/$15.00
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density system with negative energy! only occurs if there is
also a dimer. The Lennard-Jones 6-12 potential is an
model for 4He. We showed that in the Lennard-Jones a
proximation one-dimensional4He hasno many-body bound
state and, also, it has no dimer. In this work, we utilize t
modern Aziz potential9 and show that a dimer and a man
body bound state both exist. All three model systems show
signs of a high density transition from a liquid to a solid.
higher dimensions the onset of this phase transition was
naled by an inability to obtain convergent solutions from t
variational equations for a homogeneous ground-state
yond some maximum density. We find this same instabi
with the Aziz potential and we tentatively identify the regio
as the onset of a one-dimensional standing density wave
one dimension such a phase transition can occur only at
solute zero temperature.

The 4He filled channels studied recently by the authors
Ref. 2 were composed of a material they denoted as FSM
The substance was reported to consist of a honeycom
hexagonally shaped tubes approximately 18 Å in diame
with an undisclosed length. Thus, the geometry of the r
system is characterized by tubes with one macroscopic
tial dimension and two transverse microscopic spatial dim
sions. This type of system is termedquasione dimensional.
In an exact theory of such tubes, the motions which are tra
verse and parallel to the macroscopic dimension do not s
rate simply and are correlated. Such geometries can
treated microscopically within the extension of the Jastro
Feenberg variational method to inhomogeneo
geometries,10,11 but the uncertainties due to the large varie
of possible geometries and interactions with the chan
walls rather suggests a focused effort with a careful explo
tion of the possibilities within reasonable physical limits.

In Sec. II we introduce a one-dimensional4He Hamil-
tonian with the Aziz potential9 used for the helium-helium
13 038 ©1999 The American Physical Society
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PRB 60 13 039PROPERTIES OF4He IN ONE DIMENSION
interparticle interaction. The potential parameters are de
mined by bulk helium measurements. The Aziz potential
been used successfully to calculate static and dynamic p
erties of inhomogeneous and two-dimensional4He. In this
section, we briefly describe the hypernetted-chain Eu
Lagrange~HNC-EL! formalism and then discuss the equ
tion of state.

We next ~Sec. III! turn to the excitations. We describ
excitations by introducingtime-dependentcorrelated varia-
tional wave functions which are the natural generalization
our static ground-state theory. Over the density regime wh
the liquid is stable, we find a dramatic change of the nat
of the excitations from a quasifree spectrum around the s
ration density, to a typical phonon-roton spectrum at h
densities. We also calculate the static density-density
sponse function and demonstrate that the above mentio
phase transition corresponds indeed to the softening
mode with finite wave vector.

In Sec. IV we introduce a3He impurity and calculate the
impurity binding energy and the3He-4He distribution func-
tions. We then introduce a second3He impurity and compute
the effective interaction between the3He atoms due to thei
direct interaction and that induced by their presence in
4He medium. This interaction can then be used to calcu
the 3He-dimer binding energy.

Each of these sections begins with a ‘‘theory’’ subsect
where a brief outline of the relevant theory is present
These are then followed by a ‘‘results’’ subsection conta
ing a discussion of the computations. Each section cont
references to the existing literature where the interes
reader can find detailed derivations. Section V is the con
sion.

II. THE GROUND STATE

A. Theory

The 4He Hamiltonian can be written

H52
\2

2m4
(
i 51

N4 d2

dzi
2

1(
i , j

v~ uzi2zj u!. ~2.1!

The system consists ofN4
4He atoms which uniformly fill a

tube of lengthL. The particles in the tube are treated as
one-dimensional many-boson system whose interaction
the residual three-dimensional Aziz form.

The ground-state wave function is written as a variatio
ansatz of the Jastrow-Feenberg form

C~z1 , . . . ,zN4
!5expH 1

2 F(
i , j

u2~zi ,zj !

1 (
i , j ,k

u3~zi ,zj ,zk!1•••G J . ~2.2!

The most important component of the variational wave fu
tion is the two-body functionu2(zi ,zj ), which describes both
the short- and long-range correlations between pairs of
ticles. In fact, one of the reasons for the success of the va
tional theory is that it isexactin both the weakly interacting
limit ~in which case the theory reduces to the random ph
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approximation! and in the strongly interacting limit~in
which case it reduces to the Bethe-Goldstone equation!.

An important aspect of the variational theory is the op
mization of the correlations. Then-body functionsun are
determined by the minimization of the energy-expectat
value, formally written as

d

dun
F ^C0uHuC0&

^C0uC0&
G50, n52,3. ~2.3!

The additional information needed to solve these equation
the connection between the correlated wave functions
the physically observable distribution functions. This co
nection is provided by the hypernetted-chain~HNC!
equations.1 These equations are derived by diagramma
analysis of the two-body distribution functiong(z) in terms
of the two-body correlation function. The analysis leads
the HNC relationships

g~z!5exp@u2~z!1N~z!1E~z!#. ~2.4!

The functionE(z) represents an infinite series of ‘‘eleme
tary’’ diagrams which can be expressed as multidimensio
integrals involvingg(z). The sum of nodal diagramsN(z)
can be expressed conveniently in momentum space. In
ducing the dimensionless Fourier transform

f̃ ~k!5rE dz f~z!eikz, ~2.5!

wherer denotes the linear density, then the functionÑ(k)
has the form

Ñ~k!5
@S~k!21#2

S~k!
, ~2.6!

where the static structure function is defined by

S~k!511rE
2`

`

dzeikz@g~z!21#. ~2.7!

The level of the HNC approximation is defined by th
choice of E(z); e.g., HNC/0 neglects the elementary di
grams altogether, note that triplet correlations can be imp
mented through a modification of the definition of ‘‘eleme
tary diagrams.’’ The combination of the HNC equatio
~2.4! and the Euler equations~2.3! are generally referred to
as the hypernetted-chain Euler-Lagrange~HNC-EL! theory.
With the quantities introduced above, the correlation ene
can be written as

E5Er1Ek1Ee1E3 ~2.8!

with

Er

N
5

r

2E2`

`

dzF @g~z!21#v~z!1
\2

m U d

dz
Ag~z!U2G ,

~2.9!

Ek

N
52

1

4E2`

` dk

~2pr!
t~k!@S~k!21#Ñ~k!, ~2.10!

Ee

N
52

1

4E2`

` dk

~2pr!
t~k!@S~k!21#Ẽ~k!, ~2.11!
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13 040 PRB 60E. KROTSCHECK AND M. D. MILLER
wheret(k)5\2k2/2m is the kinetic energy of a free particle
E3 is the contribution from triplet correlations. This term ca
be expressed in terms of the three-body correlation func
u3(z1 ,z2 ,z3) and the three-body distribution function. I
Refs. 12–14, working formulas and a scaling procedure
elementary diagrams have been established that have
successful in a wide range of applications.

The details of the HNC-EL scheme have been discus
in many contexts, for a comprehensive review of the meth
see Ref. 15. The Euler-Lagrange equation can be co
niently written in coordinate space for the radial distributi
function

2
\2

m

d2

dz2
Ag~z!1@v~z!1DVele~z!1wI~z!#Ag~z!50,

~2.12!

where the ‘‘induced interaction’’ is

w̃I~k!52t~k!@S~k!21#2
1

2
t~k!F 1

S2~k!
21G

52t~k!@S~k!21#2Ṽp-h~k!, ~2.13!

and DVele(z) is a term that arises from triplet correlation
and elementary diagrams,

DVele~z!5
2

Nr

d~E31Ee!

dg~z!
. ~2.14!

The coordinate-space formulation of the Euler equat
~2.12! is readily identified with the boson Bethe-Goldsto
equation, which sums the dominant diagrams in the stro
coupling limit.

A momentum space formulation of the Euler equatio
equivalent to~2.12! can be given in terms of the structu
factor S(k),

S~k!5F11
2

t~k!
Ṽp-h~k!G21/2

. ~2.15!

This equation is formally identical to the boson-RPA expr
sion for the structure factor; the HNC-EL theory supp
ments the RPA with a microscopic theory of the particle-h
interaction

Vp-h~z!5g~z!@v~z!1DVele~z!#1
\2

m U d

dz
Ag~z!U2

1@g~z!21#wI~z!. ~2.16!

Thus the HNC-EL theory sumsboth important sets of dia-
grams self-consistently.

Equations~2.15!, ~2.16!, and ~2.13! can be solved itera
tively for g(z) andS(k). We can then go back and calcula
the ground-state energy from the expression~2.8! for the
energy-expectation value.

The pressure of the system is calculated by varying
energy per particle with respect to the density. It can
expressed entirely in terms of the ground-state struc
functions
n

r
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P

r
5r

dE/N

dr
. ~2.17!

The chemical potential of the system is defined asm5E/N
1P/r, and the hydrodynamic compressibilityKT is obtained
by differentiating the chemical potential with respect to de
sity

mcs
25

1

rKT
5r

dm

dr
, ~2.18!

wherecs is the isothermal speed of sound. For the adsor
systems,cs should be interpreted as fourth sound16 since
presumably the pore size will be significantly smaller th
the viscous penetration depth in the hydrodynamic lim
Since the definition of the compressibility contains the s
ond derivative of the energy one also needs to calculate
linear response of the ground-state structure functions
density variations. We will return to this problem when th
static response function is evaluated.

B. Results

In Fig. 1 we show the zero-temperature equation of st
of one dimensional4He. We find that, in one dimension
4He is self-bound at zero pressure. The binding energy
0.002 K at a density of 0.036 Å21. The existence of a many
body bound state is in agreement with our previous w
which indicated that if the system dimerizes then it will al
have a many-body bound state. By solving the two-bo
Schrödinger equation with the Aziz potential we have foun
a two-body bound state with total energy520.83 mK and
an average particle-particle separation of 64 Å . New
potentials17,18 give the slightly lower binding energies of
21.68 mK and21.78 mK, respectively. The low density an
small value of the binding energy necessitated great car
the numerical work for both the two-body and many-bo
systems. As shown in Fig. 1, we found solutions for densit
in the range 0.03 Å21,r,0.19 Å21; by very cautious itera-
tions one might be able to decrease the lowest density,
increase the highest density, slightly.

FIG. 1. The figure shows the equation of state of on
dimensional4He, a magnified picture of the area around saturat
density is shown in the inset. Asterisks in the inset show result
Ref. 5.



EL
ic

it

n
en
le

y
la
o-

s

th

is

rm
he
oo

r

ag
ou
c
of
lu
n

s
o
n

di

o
t
u

u

gh
ce

a
are

ity.
e

-

ion
le

can

t
t a
est
i-

a-
l-
ity
en-
g.
ults

the
t
el-

able
een

the

PRB 60 13 041PROPERTIES OF4He IN ONE DIMENSION
The range of densities where solutions of the HNC-
equations are found is determined by the onset of phys
instabilities. The low density instability is aspinodal point
separating the self-bound liquid from a zero-density gas;
determined by the density whereṼp-h(01) vanishes. The
instability is seen in Eq.~2.15!; in order to have a realS(k),
we must haveṼp-h(01).0.

The inset of Fig. 1 shows a magnified picture of the de
sity region around saturation. Going below saturation d
sity, one quickly approaches the spinodal point. In princip
the long-wavelength limit ofṼp-h(k) is equal to the hydro-
dynamic compressibility~2.18!. In practice, however, the
macroscopic quantity~2.18! and the microscopic quantit
Ṽp-h(01) are identical only in an exact theory. The calcu
tion of the hydrodynamic compressibility through macr
scopic derivatives~2.17! and ~2.18!, is normally more accu-
rate than using the small-k limit of Eq. ~2.15!. Both in two
and in three dimensions it was found19 that the inconsistency
between Eq.~2.18! and Ṽp-h(01) is not very severe in the
vicinity of the spinodal point. The inset in Fig. 1 also show
Ṽp-h(01) at low densities, by extrapolatingṼp-h(01) to
lower densities, we estimate that the spinodal point of
one-dimensional liquid is atrs'0.022 Å21. A fully consis-
tent calculation along the lines of Ref. 19 would lower th
value to perhaps 0.02 Å21. Applying the analysis of Ref. 19
to a one-dimensional system, we find that

mcs
2}~r2rs!

2/3 as r→rs . ~2.19!

As a word of caution we mention that the nonanalytic fo
~2.19! is valid only in a very small density regime around t
spinodal point and normally does not provide a useful t
for finding the spinodal density by extrapolation.

We note that the system is, in the whole accessible
gime, at relatively low density in terms of theinterparticle
distance. In three dimensions at zero pressure, the aver
spacing per particle is approximately 3.6 Å whereas
saturation density corresponds to an average particle spa
of 33 Å , and thehighestdensity corresponds to a spacing
5.3 Å . But even at these relatively low densities, the inc
sion of the contributions from the elementary diagrams a
also the three-body terms made non-negligible change
the results, in other words the system is in a sense m
strongly correlated than the two- and three-dimensional a
logs. In the long wavelength limit we have

S~k!'
\k

2mcs
. ~2.20!

It follows that g(z)511\/mcrz2 for z→`. Hence, the ki-
netic energy termudAg(z)/dzu2 in Vp-h(r ) has the same
range as the bare potential which dominates, at long
tances, in both two and three dimensions.

Triplet correlations and elementary diagrams are,
course, more important at high densities. For example, at
two-body, HNC/0 level there were stable solutions found
to a density of approximately 0.22 Å21 while the inclusion
of triples and elementary diagrams reduced the maxim
density, for which solutions could be found, to 0.19 Å21.

In 2D and 3D, the disappearance of solutions at hi
densities can be identified as the signature of the presen
al
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a liquid-solid phase transition.20,21 In 1D this same conclu-
sion is not evident and more work will be required before
definitive statement can be made that we are, or perhaps
not, seeing a transition to a state with a nonuniform dens
We will return to this point in the next section where w
discuss excitations and the static response function.

In Fig. 2, we show the set of ‘‘radial’’ distribution func
tions, g(z), for one-dimensional4He. We note that there is
considerable structure in the highest density distribut
function despite the fact that relative to bulk interpartic
spacings, this system is very dilute. A similar statement
be made about the static structure functionS(k), shown in
Fig. 3. At high densities, one has a very strong peak ak
51.44 Å21 corresponding to a pronounced structure a
length scale of 4.25 Å which is the location of the near
neighbor peak ing(z). However, a pronounced quas
periodic structure appears in bothg(z) and S(k) only at
densities well beyond saturation.

In Ref. 5 a diffusion Monte Carlo calculation of the equ
tion of state for4He in one-dimension is reported. This ca
culation is consistent with our conclusion that a low-dens
bound state exists. Some of the Monte Carlo results in d
sity regimer<0.1 shown, for the sake of comparison, in Fi
1. Whereas the agreement between our variational res
and the simulation data is, for the two lower densities, of
expected accuracy, there is a notable discrepancy ar
50.1 Å21. This apparent discrepancy is due to large canc
lations between kinetic and potential energy, as seen in T
I. The table shows a breakdown of the total energy betw

FIG. 2. The figure shows the4He-4He pair distribution function
g(z) as a function of interparticle distancez and densityr. Note the
development of a very typical low-density form atr'0.03 Å21 up
to the highly structured form at the highest attainable density.

FIG. 3. Same as Fig. 2 for thestatic structure function S(k). At
small densities the large slope is indicative of a small value for
speed of sound.
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13 042 PRB 60E. KROTSCHECK AND M. D. MILLER
kinetic and potential energy for both the DMC data and
HNC-EL results. Thepotential energy agrees, throughou
with our result within better than a percent, whereas the
crepancy of the kinetic energies is between one and
Thus, the disagreement between our results and the sim
tion data of Ref. 5 is to a large extent due to the accide
cancellation of large numbers; it is consistent with the
pected accuracy derived from the comparison of our res
with exact results for hard rods.8 It is indicative of the fact
that the Jastrow-Feenberg wave function~2.2! is not exact.
The good agreement of the potential energies is an indica
that our pair distribution functions, which are important inp
for our further calculations, are very good.

III. DYNAMICS

A. Theory

A plausible way to deal with excitations within the vari
tional approach is to allow for a time dependence of
n-body functionsun(r1 , . . . ,rn). Beyond the time depen
dence of the components of the wave function, Eq. (2.2),
must also include a time-dependent one-body function s
the dynamics will normally break the translational inva
ance. The wave function of the excited system is again w
ten in the Jastrow-Feenberg form

uC~ t !&5
e2 iE0t/\e(1/2)dU(r1 , . . . ,rN ;t)uC0&

@^C0uedUuC0&#1/2
, ~3.1!

whereuC0& is the ~variational! ground state, and

dU~r1 , . . . ,rN ;t !5(
i

du1~r i ;t !1(
i , j

du2~r i ,r j ;t !

~3.2!

is a time-dependent complex function representing fluct
tions of then-body parts of the wave function. Since th
excitations can be considered as small perturbations of
ground state, one can treatdU to the leading nontrivial order

The time-dependent correlations are determined by
action principle22,23

dJ5dE
t1

t2L@C~ t !,Ċ~ t !#dt50 ~3.3!

with the Lagrangian

TABLE I. A comparison between the DMC results of Ref. 5 f
potential and kinetic energy~Ref. 44! with HNC-EL results. All
energies are given in K,D is the Monte Carlo statisitcal uncertainty

r (Å21) ^V& ^T&
DMC D HNC-EL DMC D HNC-EL

0.100 20.538 0.005 20.513 0.550 0.005 0.530
0.125 20.777 0.023 20.756 0.813 0.023 0.812
0.150 21.121 0.028 21.100 1.199 0.028 1.249
0.175 21.595 0.059 21.581 1.791 0.062 1.932
e
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n
t

e

e
e
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-

he

e

L5 K C~ t !UH2 i\
]

]t UC~ t !L 5 K C0UH2E02 i\
]

]t UC0L .

~3.4!

Minimizing the action ~3.3! leads to four Euler-Lagrange
equations for the real and imaginary parts ofdu1 and du2
which are conveniently written in the form of two continuit
equations

] j 1~z1 ;t !

]z1
5 ṙ1~z1 ;t !,

] j 2~z1 ,z2 ;t !

]z1
1~1↔2!5 ṙ2~z1 ,z2 ;t ! ~3.5!

with the one- and two-particle currents

2 i j 1~z1 ;t !5
\

2m H r̄1~z1!
]du1~z1 ;t !

]z1

1E dz2r̄2~z1 ,z2!
]du2~z1 ,z2 ;t !

]z1
J

2 i j 2~z1 ,z2 ;t !5
\

2m H r̄2~z1 ,z2!S ]du1~z1 ;t !

]z1

1
]du2~z1 ,z2 ;t !

]z1
D

1E dz3r̄3~z1 ,z2 ,z3!
]du2~z1 ,z3 ;t !

]z1
J ,

~3.6!

wherer̄1 andr̄2 are the time-independent ground-state qu
tities. The derivatives of the correlation functions are rela
to the derivatives of the pair-distribution functions throu
the set of exact BGY equations.1

Note that, for the derivation of Eqs.~3.6! it is necessary to
assume that correlations up tou4(z1 ,z2 ,z3 ,z4) have been
optimized or, equivalently, thatu4(z1 ,z2 ,z3 ,z4) is negli-
gible. One has normally only indirect evidence that this a
proximation is legitimate, for example, by comparing t
energetics with simulation data. In one dimension, one a
can compare with exact results for the point-rod system. T
was done in Ref. 8 where we found that the agreement
tween the exactS(k) andg(z) with our HNC-EL results is
quite good. We expect therefore that the neglect
u4(z1 ,z2 ,z3 ,z4) is legitimate; in particular we feel the ex
actly one-dimensional system is a substantially cruder
proximation for 4He in a nanotube than the omission
u4(z1 ,z2 ,z3 ,z4).

Since the relationships between the time-dependent c
ponents of the pair-correlation and pair-distribution functio
involve ground-state densities up to four-body distributi
function r4, approximations are necessary. Differe
implementations24,25,21 use different approximations whic
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PRB 60 13 043PROPERTIES OF4He IN ONE DIMENSION
are chosen depending on the problem under considera
and on the system that is being investigated.

At this time, the best implementation of the theory in 3
and 2D is by Saarela and collaborators25–27 which lead to
very good agreement between the thoretically predicted
the experimentally observed roton minimum. Our calcu
tions utilize the so-called ‘‘convolution approximation,’’24

the expected accuracy of this approximation will be d
cussed further below where we display the analytic formu

Restricting the time dependence to theone-body compo-
nent only leads directly to the Feynman theory
excitations28 and to the dispersion relation

«~k!5
\2k2

2mS~k!
. ~3.7!

Equation~3.7! provides an upper bound for the lowest-lyin
excitation and is exact in the long-wavelength limit, but
less accurate at shorter wavelengths. The cause of this
ciency is evident from the variational point of view: whe
the wavelength of an excitation becomes comparable to
average particle distance, one should expect that all corr
tions that are important at that wavelength are also tim
dependent. Consequently, it was found in previous studie
liquid 4He ~Refs. 24–27,29! that much of the energetics o
the excitations in the medium-to-high momentum range
be attributed to fluctuating short-ranged correlations, and
same is expected to be true in the one-dimensional sys
For the implementation of the present theory of excitatio
and dynamic structure the structure functionS(k) is the es-
sential input. ThisS(k) is provided by our ground-state ca
culations described above, but it may equally well be tak
from other calculations like a Monte Carlo simulation.

A convenient and mathematically transparent level
yond the Feynman approximation at which one can deal w
fluctuating pair correlations is the uniform lim
approximation1 for the kernels of the equations of motio
~3.5! and ~3.6!. In a somewhat different derivation of th
dynamics, this approximation has also been used by Ca
bell et al.6,24 to calculate the phonon-roton spectrum in bu
liquid 4He. Important formal properties of the dynam
structure function have been discussed by Jackson.30–32 The
equations-of-motion method has first been used in Ref.
the connection to the derivations of Campbell24 and
Jackson30–32 has, in the somewhat more general case of
inhomogeneous system, been derived in Refs. 29 and
The theory leads to a dynamic response function of the p
sible form

x~k,v!5
S~k!

\v2«~k!2S~k,v!
1

S~k!

2\v2«~k!2S~k,2v!
,

~3.8!

whereS(k) is the static structure function,«(k) the Feynman
excitation spectrum~3.7! andS(k,v) is the self-energy aris
ing from phonon-splitting and recombination processes:

SCBF~k,v!5
1

2E dpdq

~2p!r
d~k1p1q!

uV3~k;p,q!u2

\v2«~p!2«~q!
,

~3.9!

where the three-phonon coupling matrix element is given
terms of ground-state quantities as24
n,

d
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h
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5,

n
3.

u-

n

V3~k;p,q!5
\2

2m
AS~p!S~q!

S~k!
@kpX̃~p!1kqX̃~q!

2k2ũ3~k,p,q!#. ~3.10!

In the zero-frequency limit we obtain the static respon
function

xCBF~k,0!52
2S~k!

«~k!1SCBF~k,0!
. ~3.11!

If we ignore the self-energy correctionS(k,v), the response
function~3.8! reduces to the familiar response function in t
random phase approximation

xRPA~k,v!5
2t~k!

\2v22«2~k!
5

x0~k,v!

12Ṽp-h~k!x0~k,v!
~3.12!

with the response function of the noninteracting boson s
tem

x0~k,v!5
2t~k!

\2v22t2~k!
. ~3.13!

The dynamic structure factor follows immediately fro
the imaginary part of the dynamic response function

S~k,v!52
1

p
Im x~k,v!. ~3.14!

It is worth stressing that the static structure factorS(k)
obtained from the above response function isidentical to
both, the one obtained from the ground state calculation
the one obtained in the Feynman approximation. In ot
words, the self-energy correction changes the relative we
of the individual excitations and resonances, but it does
change the integrated strength. Thus, the first two ene
weighted sum rules are identical whether calculated in Fe
man or in CBF approximation:

S~k!5E
2`

` d\v

2p
Im xRPA~k,v!

5E
2`

` d\v

2p
Im xCBF~k,v!,

\2k2

2m
5E

2`

` d\v

2p
\v Im xRPA~k,v!

5E
2`

` d\v

2p
\v Im xCBF~k,v!. ~3.15!

B. Results

Excitations are conveniently discussed in terms of the
namic structure functionS(k,v), Eq. ~3.14!. In the Feynman
approximation,S(k,v) is exhausted by a single mode,

S~k,v!5S~k!d@\v2«~k!# ~3.16!
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whereas it is nontrivial when the self-energy~3.9! is in-
cluded. Before turning to the numerical results, we sho
briefly discuss the expected accuracy of the calculations
three dimensions, the present implementation of the the
underestimatesthe consequence of including self-ener
corrections by about 30%; the reason is that the energy
nominator in Eq. ~3.9! contains the Feynman spectrum
whereas itshouldcontain a self-consistent spectrum. Artifi
cially lowering the spectrum in the energy denominator su
that it agrees roughly with the experimental phonon-ro
spectrum also lowers the spectrum and produces good a
ment with the experiments. In general, we consider so
phenomenological input as legitimate; however, here
shall not include such modifications. We expect, therefo
that our resultsunderestimatethe importance of time-
dependent pair correlations.

In Figs. 4–7 we showS(k,v) for the densities 0.05, 0.10
0.15, and 0.19 Å21. At the lowest densities the spectrum
quadratic with little evidence of a roton minimum. This
clear from the previous results, Figs. 2 and 3. The Feynm
spectrum~3.7! is, at saturation density, practically a fre
spectrum; a linear phonon branch persists for very lo
wavelengths only and is practically invisible.

A consequence of the anomalous dispersion of a quad
excitation spectrum is that it is kinematically allowed for
single phonon to decay into two phonons. For wave vec
on the order of 1 Å21 there are no propagating collectiv
modes because of this anomalous dispersion. Such an e
is contained in the CBF self-energy; the ridge inS(k,v) seen
at abouthalf the Feynman energy in Fig. 4 reflects this e
fect. The strength ofS(k,v) is still distributed along the
kinetic energy line, but theS(k,v) has a finite width. Inter-
estingly, the free spectrum remains the dominant feature
to a density of 0.15 Å21 where the first signatures of a ‘‘ro
tonlike’’ structure appear.

As the density is increased, a linear region ink appears as
does a roton minimum. The minimum is quite pronounced

FIG. 4. Grey-scale plot of the dynamic structure functi
S(k,v) at r50.05 Å21. Darker areas correspond to higher valu
of S(k,v). The heavy solid line follows the Feynman approxim
tion ~3.7!.
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the highest density, 0.19 Å21, with a value of 3.5 K at 1.38
Å21. The Feynman approximation gives an upper bound
the roton minimum of 6.8 K. From experience with our ca
culations in 2D and 3D we suspect that our calculation s
overestimates the roton energy since a renormalized ene
denominator in the self-energy~3.9! will increase the mag-
nitude of the self-energy. Once more it is interesting that t
amount of structure is appearing in a system whose ave
spacing is more than 5 Å per particle.

Returning to the high-density instability of the system, w
consider the static response functionx(k,0). At the point of
a phase transition,x(k,0) should become singular, o
1/x(k,0) should develop a node.

Figure 8 shows the inverse static response function a
function of density and momentum transfer. At low den
ties, the response function is relatively featureless; it st
developing a minimum in the regimek'0.921.5 Å21 cor-
responding roughly to the average particle distance at
relevant density. The value of 1/x(kmin,0) at its minimum

FIG. 5. Same as Fig. 4 forr50.10 Å21.

FIG. 6. Same as Fig. 4 forr50.15 Å21.
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PRB 60 13 045PROPERTIES OF4He IN ONE DIMENSION
and the corresponding momentumkmin are shown, as a func
tion of density, in Fig. 9. At high densities, the inverse sta
response function drops very rapidly; cautious extrapola
of the results of Fig. 9 suggests that it should go to zero
r'0.22 Å21. Keeping our above remarks in mind that th
present implementation of the self-energyunderestimatesits
contribution, the results of Fig. 9 are consistent with o
finding that solutions of the Euler equation cease to exis
r'0.1920.20 Å21.

IV. 3He IMPURITIES

A. Theory

In this section we shall describe the modifications nee
when one3He atom is added to a fluid ofN4

4He particles.
We distinguish the3He from the rest of the particles b
using the notationz0 for its position in space. The Hamil
tonian, HI , contains the kinetic energy terms and the3He-
4He and 4He-4He interactions.

HI52
\2

2m3

d2

dz0
2

2(
j 51

N4 \2

2m4

d2

dzj
2

1(
j 51

N4

V34~ uz02zj u!

1(
j ,k

N4

V44~ uzj2zku!. ~4.1!

FIG. 7. Same as Fig. 4 forr50.20 Å21.

FIG. 8. The inverse static response function21/x(k,0) as a
function of momentum and density.
n
at

r
at

d

We can treat the single impurity system as the zero conc
tration limit of a spatially homogeneous mixture, thus w
need not include a one-particle correlation function into
Jastrow-Feenberg wave function. The fact that there is o
one foreign particle makes it possible to use Eq.~2.2! for the
background wave functionC(z1 , . . . ,zN4

) and multiply that

function with the correlation function between the3He and
the 4He background

C I~z0 ,z1 , . . . ,zN4
!5exp

1

2 F (
j 51

N4

u34~z0 ,zj !

1
1

2! (
j Þk

N4

u344~z0 ,zj ,zk!G
3C~z1 , . . . ,zN4

!. ~4.2!

As in Sec. II, the description of the4He background, we
include pair and triplet correlation functions.

Thechemical potentialof the 3He is the energy gained o
lost by adding one3He into the liquid, in other words it
equals to the energy difference

m35EN411
I 2EN4

5
^C I uHI uC I&

^C I uC I&
2

^CuHuC&

^CuC&
, ~4.3!

whereEN411
I is the energy of the system ofN 4

4He atoms

and one 3He impurity. In the calculation of the impurity
chemical potential from the definition~4.3! we must include,
besides the explicit terms containing impurity distributio
functions, also thechangesin the background distribution
and correlation functions due to the presence of an impur
These changes are of the order of 1/N and therefore cause
change of order unity in the4He correlation energy.

The one-particle density for the impurity is defined b
integrating over all the background coordinates in the wa
function

r3~z0!5
1

N0
E dz1•••dzN4

uC I~z0 ,•••,zN4
!u2[

1

L
;

~4.4!

FIG. 9. The figure shows the minimum value of the inver
static response function,21/x(kmin,0) ~solid line, left scale! and the
locationkmin of that minimum~dashed line, left scale! as a function
of density.
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13 046 PRB 60E. KROTSCHECK AND M. D. MILLER
it is equal to one over thetotal volume Lof the system,
which includes the impurity particle. Similarly, to obtain th
impurity-background two-particle density, one integra
over all background coordinates except one,

r3~z0 ,z1!5
N4

N0
E dz2 . . . dzN4

uC I~z0 ,z1 , . . . ,zN4
!u2,

~4.5!

whereN0 is the normalization integral

N05E dz0 . . . dzN4
uC I~z0 , . . . ,zN4

!u2. ~4.6!

The radial distribution function between the impurity a
background particles is defined by

r34~z0 ,z1!5r3~z0!r4~z1!g34~z0 ,z1!. ~4.7!

Note thatr4(z1) in Eq. ~4.7! is the pure 4He background
density

r4~z1!5N4

E dz2•••dzN4
uC~z1 , . . . ,zN4

!u2

E dz1•••dzN4
uC~z1 , . . . ,zN4

!u2
[

N4

L4
.

~4.8!

Definitions ~4.4!2~4.8! determine the volume integral

E dz1g34~z1 ,z0!5L4 . ~4.9!

The volume occupied by one4He particle, l 45L4 /N4 is
different from the volumel 35L2L4 occupied by the3He.
This difference has consequences for the sequential rela
for the 3He-4He radial distribution function of Eq.~4.7!

E dz1r4~z1!@g34~z1 ,z0!21#52
l 3

l 4
[2b. ~4.10!

Here we have introduced thevolume excess factorb, which
is an important experimental parameter.34

The 3He structure function is the Fourier transform of t
radial distribution function

S34~k!5r4E
2`

`

dzeikz@g34~z!21#, ~4.11!

and its value at the origin,

S34~01 !52b, ~4.12!

is given by the sequential relation~4.10!. In the definitions
~4.4! and ~4.8! we have taken explicit advantage of the fa
that the zero concentration limit of a homogeneous mixt
is formally equivalent to the one particle limit which mak
it possible to take the Fourier transform with respect to
relative coordinate alone. From now on we shall ignore
coordinate argument in the density factors.

The volume excess factor is a measurable quantity
when it is well determined, as for the3He impurity, it can be
used to calculate the3He chemical potential by integratin
the equation
s

on

t
e

e
e

d

b5r4~P!
dm3

dP
~4.13!

over the pressure.35 These two relations can be used as
check of consistency of the theory in a similar manner
using the thermodynamic compressibility to test the con
tency of the slope of the structure function in the long wa
length limit.

The remaining manipulations have been described ex
sively in the literature36,15 and shall not be repeated here.

Along the same lines, theinteraction between pairs of
3He impurities can also be derived.37 In the dilute limit one
obtains an effective Schro¨dinger equation for the relative
wave functionf33(z)

2
\2

m3

d2

dz2
f33~z!1@v~z!1DVele

33~z!1w33~z!#f33~z!

52
\2

m3

d2

dz2
f33~z!1V33~z!f33~z!

5e33f33~z!, ~4.14!

where the induced interactionw33(z) is obtained from back-
ground and single-impurity quantities,

w̃33~k!52
\2k2

2m4
S S34~k!

S44~k!
D 2F2

m4

m3
S44~k!11G . ~4.15!

The correctionsDVele
33(z) due to elementary diagrams an

triplet correlations contain topologically the same diagra
as were used in the ground-state calculation; details m
again be found in Ref. 15. However, the single-impur
limit also provides useful insight into thestability of a mix-
ture of 3He and 4He. In threedimension, such mixtures ar
stable against concentration fluctuations even in the low c
centration limit. Since Eq.~4.14! is the low-concentration
limit of the Euler equation of the 33 correlations in the mi
ture theory, itmust nothave a bound state. If the converse
true, the mixture will be unstable, first against the formati

FIG. 10. The figure shows the chemical potentialm3 of a 3He
impurity in one-dimensional4He as a function of the backgroun
density. The inset shows the volume factorb.
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PRB 60 13 047PROPERTIES OF4He IN ONE DIMENSION
of dimers, and then against concentration fluctuations.
deed, such a scenario has been proposed by Bashkin
collaborators.38,39

B. Results

The calculation of impurity properties was implement
at the same level as the calculation of the background qu
tities which is, in turn, the same as used in previo
work.14,36,15 Results of the calculations include impuri
binding energies, distribution and structure functions, and
volume factor. Figure 10 shows the energetics of the3He
impurity. Within computational accuracy, a3He atom is un-
bound in one-dimensional liquid4He at all densities.

We note that in one dimension the surface state can
generated by simply removing either the right or left ha
line of 4He atoms from the vicinity of the3He impurity.
Thus, the above result would indicate that the existence o
Andreev type of surface state is unlikely in one-dimensio
helium.

Figure 10 also shows the volume excess factorb, cf. Eqs.
~4.10!, ~4.12!. Evidently the 3He atoms do not want to b
confined within the4He system. In order to further illustrat
this, we show in Fig. 11 theg34(z) as a function ofr4.
Clearly, the correlation hole at low densities is enormous
reaches out to beyond 100 Å atr450.05 Å21. A reliable

FIG. 11. The figure shows the4He-3He pair distribution func-
tion g34(z) as a function of interparticle distancez and densityr.
Note the very long range of the correlations at low densities; t
reach out to 100 Å atr50.05 Å21.

FIG. 12. The figure shows the binding energy of the3He-3He
dimer as a function of density.
-
nd
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s

e

e

n
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calculation in this low-density regime requires very lar
sizes of the discretization volume. We have carried out
calculations in a box of length 400 Å . We feel that, even
a numerical calculation at such box sizes is feasible,
physicalpredictions based on such a model are questiona
because there is certainly no reason that the aforementio
narrow channels can be faithfully approximated by perfec
smooth tubes. Hence we have restricted ourselves to gi
results forr4.0.05 Å21 only.

Basically the same statement applies to the binding
ergy of two 3He impurities. For all densities where we b
lieve that our numerical calculation is reliable, we find, co
sistent with the predictions of Bashkin and collaborators,38,39

that there is indeed a weakly bound state of two3He impu-
rities within the liquid. Since a single3He atom would be
expelled from the system, such a scenario can be reac
only if the 4He has no free surfaces at the end of the chan
The binding energy increases rapidly with the density of
4He liquid, cf. Fig 12 displays the dimer binding energy as
function of density. For most of the accessible density
gime, the binding energy is of the order of a few hundred
K, in other words about an order of magnitude more than
energy per particle of the4He background component. Fig
ures 13 and 14 show the effective interactionV33(z) used in
the Schro¨dinger equation~4.14! and the square of the groun
state wavefunction, as a function of interparticle distance
density. It is evident that the effective interaction becom
more attractive with increasing density; it becomes identi
to the bare potential in the low-density limit. The3He-3He
dimer wave function is very broad up to a density of 0
Å21, corresponding to a mean particle distance of 10–50
Note that there is no bound state in the zero-density li
which cannot be reached within the mixture picture due
the spinodal instability of the host4He liquid. The dimer
state becomes reasonably localized close to the highest

y

FIG. 13. The figure shows the effective interactionV33(z) be-
tween two3He impurities as a function of distancez and density.

FIG. 14. Same as Fig. 13 for the square of the dimer wa
function uf33(z)u2.
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13 048 PRB 60E. KROTSCHECK AND M. D. MILLER
sity, where the binding energy increases drastically. Thu
effects of 3He dimerization are sought in nanotubes, expe
ments should be carried out at the highest possible4He lin-
ear densities.

V. DISCUSSION

In this paper we have reported on calculations for
properties of the ground state and low lying excitations
4He in one spatial dimension. We expect this to be a via
model for quasi-one-dimensional4He in the thin tube limit.
Some evidence for this can be drawn from our calculati
on quasi-two-dimensional systems, specifically adsor
films.11 In that case, the conditions under which aquasi-two-
dimensionalsystem such as an atomic monolayer could
treated rigorously as a two-dimensional liquid were exa
ined. A similar comparison~i.e., a fully three-dimensiona
computation of 4He in a narrow tube geometry! is today
computationally feasible, however, we feel that more m
be known about the particular tube wall system to warr
this effort. In this paper we assume that the walls of the tu
simply provide boundary conditions. In reality the walls w
appear as an external, possibly periodic potential. We h
found that at zero temperature, the4He will condense into a
weakly bound one-dimensional liquid. The Feynman sp
trum at zero-pressure is free particlelike and with increas
density smoothly develops the well-known phonon-rot
shape.

In the Appendix, we sketch the derivation of the res
that in one-dimension, if the low lying excitations a
phonons then there is no well-definedoptimal pair function
u2(uzi2zj u). This in turn implies the absence of a Bose co
densate.

As the density increases towards 0.19 Å21, the inverse of
the static response function shows signs of an imminent t
sition in the region ofk51.5 Å21. We note that in the pres
ence of an external periodic perturbing potential, questi
of commensurate and incommensurate competing phase
come an interesting possibility.

We investigated the behavior of a3He atom in the4He
and showed that the minimum energy state correspond
the single 3He atom completely separated from the line
4He. In a strictly one-dimensional system of course a3He
atom cannot move past4He atoms to find this minimum
energy configuration. However, it is probable that these
sults will remain valid for the quasi-one-dimensional syst
where rearrangements are possible.

Finally, we showed that a pair of3He atoms can form a
very weakly bound dimer in the presence of the on
dimensional4He. The dimer binding energy increases ra
idly with increasing4He linear density and thus its presen
should be most apparent at the highest attainable4He densi-
ties.

Note added in proof. After submission of this paper, w
have learned about two diffusion Monte Car
calculations44,45 that find, consistent with our prediction
long-range oscillations in the pair distribution function b
yond densities ofr50.2 Å21.
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APPENDIX DENSITY MATRIX

It is well known that the one-dimensional interacting Bo
system has no Bose-Einstein condensate. Nevertheless
useful to verify this feature for the present case; once ag
the importance of optimization will become apparent.

We start from the wave function~2.2! and assume, for the
time being, that the two-body functionu2(uzi2zj u) is known
and is some short-ranged function in the sense that it h
Fourier transform. We then proceed to calculate the full o
body density matrix at absolute zero temperature for t
wavefunction:

r1~z,z8!

5N
E dz2•••dzNC0~z,z2 ,•••,zA!C0~z8,z2 ,•••,zN!

E dz1•••dzAuC0~z1 ,•••,zN!u2
.

~A1!

Working formulas for the density matrix for wave func
tions of the type~2.2! have been derived in several place
Following a suggestion by Feenberg, Ristig and Clark40 per-
formed a cumulant analysis of the density matrix~A1! and
expressedr1(r ,r 8) as a series of diagrams in terms ofn-body
distribution functions. Fantoni41 carried out summations o
diagrams of the HNC topology. The theory was extended
Ref. 42 to inhomogeneous geometries.

Common to the earlier derivations40,41was that the theory
was formulated in terms of then-body functions
un(r1 , . . . ,rn); but the theory can be reformulated such th
it contains only physical observables. This has obvious c
ceptual advantages because it allows one to make direct
tact to other theories such as the parquet theory of the c
densate fraction which also calculate physical observab
but which are formulated without explicit reference to
wave function. It is, for the present purpose, essential
cause the optimal two-body functionu2(uzi2zj u) will turn
out to be an ill-defined quantity.

We do not introduce a special notation to distinguish
one-body density matrixr1(z2z8) from its diagonal limit

r[r1~z,z!; ~A2!

the notation will be made unambiguous by explicit display
the nontrivial coordinate dependence. An especially inter
ing quantity is the limit of large distancesuz12z2u,

r1~z12z2!→rnc as uz12z2u→`. ~A3!

This limit gives, in three dimensions, information about t
coherent structure of the ground state.43 nc is the fraction of
particles occupying the zero momentum Bose-Einstein c
densate.
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There is no need for the rederivation of the equatio
summing the diagrams contributing to the condensate f
tion nc ; they are obtained from the more general equati
derived in Ref. 42 for inhomogeneous systems in the b
limit. The final result is that

nc5exp@2D#, ~A4!

where the quantityD is derived by first solving the HNC
equations for the momentum distribution

DX~z!5Ag~z!eDN(z)2
1

2
g~z!2

1

2
2DN~z!,

DÑ~k!5DX̃~k!@S~k!21#, ~A5!

from which one obtains

D5DX̃~01 !2
1

2E dk

2pr
DX̃2~k!S~k!@S~k!21#

2
1

2E dk

2pr
DX̃~k!@S~k!21#21

1

8E dk

2pr

@S~k!21#3

S~k!
.

~A6!

The equations are valid as long as the pair distribut
function has been obtained from some short-rangedu2(z).
However, if the correlations are optimized, in other words
da

w

w

T.

el

.

.

s
c-
s

lk

n

f

phonons are put into the theory, thenS(k)}k as k→01.
Then, the last term in Eq.~A6! goes to2` and, hencenc
50 as it should be.

Finally, we return to the statement that theoptimal two-
body functionu2(uzi2zj u) is an ill-defined quantity. In two
and three dimension, an optimalu2(r ) can be obtained by
inverting the HNC Eq.~2.4!

u~r !5 ln g~r !2N~r !2E~r ! ~A7!

and using the optimalg(r ) to calculateN(r ) andE(r ). The
E(r ) can also be calculated in 1D, however, we have

N~k!5
@S~k!21#2

S~k!
~A8!

and, sinceS(k)}k ask→01, the Fourier transformedN(r )
does not exist in one dimension. We note that, for the fi
formulation of the variational problem, theN(r ) is not nec-
essary. But one must understand the theory in such a
that first the theory is derived for short-ranged functio
u2(uzi2zj u), then it is reformulated in terms of quantitie
that are well behaved even ifS(k)}k, and then one carries
out the optimization. This technical subtlety occurs,
course,only when one insists on the Jastrow-Feenberg w
function. However, the same equations can be obtained
summing the parquet-class of Feynman diagrams where
technical difficulties do not exist.
ys.
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