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Superconductivity versus tunneling in a doped antiferromagnetic ladder
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The low-energy charge excitations of a doped antiferromagnetic ladder are modeled by a system of inter-
acting spinless fermions that live on the same ladder. A relatively large spin gap is assumed to “freeze out”
all spin fluctuations. We find that the formation of rung hole pairs coincides with the opening of a single-
particle gap for charge excitations along chains and with the absence of coherent tunneling in between chains.
We also find that such hole pairs condense into either a crystalline or superconducting state as a function of the
binding energy[S0163-182¢09)10625-9

One of the strangest features of high-temperature supetween pairs that form along the chains are found to be short
conductors is the semiconducting nature of electric transporange when hole pairing along rungs occurs.
perpendicular to the copper-oxygen planes common to these To motivate the spinless fermion analysis that will follow,
materials shown in the normal stdteAnderson and co- consider first the standard nearest-neightted model
workers have proposed that this behavior is intrinsic, andiamiltonian
that it results from the microscopic coincidence of Cooper
pairing with incoherent tunneling in between adjacent metal- - -
lic planes? Analogous behavior has been observed recently H=2 [t & tH.c)+IS-S] 1)
in the doped “ladder” material3.In particular, a large an- \BY
isotropy in the electronic conduction with respect to the lad- ) . ~
der direction appeats at compositions that exhibit fOr @ doped antiferromagnetic ladder. Abo“%s creates a
superconductivity:® The authors of Ref. 4 suggest that the SPin S €lectron on sitd as long as this site is unoccupied,
chain version of the above interlayer-pair-tunnelitigT) ~ While S measures the spin at siteAt half filling, the t-J
mechanism is responsible for the phenomehbdn. model (1) reduces to the Heisenberg ladder, which is known
Such “ladder” materials are made up of a parallel ar-to have a spin gapq,=J/2 The latter persists in the pres-
rangement of magnetically isolated antiferromagnetic ladderence of a dilute hole concentratidix.<J.*° In general, long
that fill copper-oxygen planes similar to those of the cupratavavelength electronic excitations within chains can be de-
superconductors. They notably show a spin gap on the ord&cribed via the standard Luther-EméhE) model**~**The
of Agyin~500K when undoped, in accord with theoretical
expectations based on the spin-1/2 antiferromagnetic Heisen- V,=V=V,
berg laddef. The actual ladders in these materials can also
be doped with a concentrationof mobile holes, in which
case the spin gap persists. Again, theoretical studies of the
t-J model for a lightly doped laddetx<J, find evidence 10l
for the formation ofhole pairsalong rungs that leave the
remaining singlet bonds along the rungs int&cthe spin
gap persists, as a result, and charge excitations are left asthe £, oo RUNG CDW

STAGGERED CDW
(4,=0)

Imt,

only low-energy excitations. > (A.>0)

In this paper, we shall model the low-energy singlet °
charge excitations of a doped antiferromagnetic ladder by 10 1pT s
interacting spinless fermions that live on the same ladder in @ >0 »’::;'I(_)_IET”

the vicinity of half filling.}! We presume, therefore, that spin ",
excitations are frozen out due to a relatively large spin gap of To0 Vit 1.0
order A~ J/2. A bosonization analysis based on the cor- T

respon(ljéq%] I__uther-Emery mod@?ls and generallz_atlons FIG. 1. The phase diagram of the @/invariant model5) for
thereof,>"" yields that the appearance of hole pairs alongy,e charge excitations of a doped antiferromagnetic ladder is dis-
rungs coincides with the absence of coherent tunneling iBjayed in the regime of effective repulsion within each chain,
between chains, as well as with the creation of a gap fO":VL>o, and in the absence of hopping in between chains. The
Single-pal’ticle excitations along chains. Also, while the h0|6rung_h0|e_pair regimeX ,>0) is, nevertheless, expected to persist
pairs generally crystallize into a charge-density-we@BW)  for small enough interchain hopping matrix elementsA /2. In
state in the weak-coupling limitwe predict that they Bose such a case, the line separating dominant CDW correlations from
condense into an IPT-type superconductor at large enougtuperconducting ones among the rung-hole pairs is determined by
binding energiegsee Fig. 1 Last, the correlations in be- the conditionK ,=1.
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spin gap present in lightly dopedJ ladders indicates then where nj=n; ;+n;, and m;=n; ,—n; ; and whereV=(V,
that the intrachain LE backscattering term has the form  +V,)/2 andV'=V,—V, . It is important to remark that the
interaction terms in this ladder model are invariant with re-

2 spect to SUR2) rotations of the chain labels W=V, .
Hback~—(Aspin/a)|Zl f dxcog ¢ (x,1) = (x,1)], We now rotate to the bonding-antibonding basis,.
B @ =27V, ,=1f; ), that diagonalizes the transverse kinetic

energy(5). In the limit near(but not aj half filling, all um-

where ¢((x,1) is the bosonic field that represents collective klapp processes are negligible. Taking the continuum limit of
particle-hole” excitations of spis electrons at positiorx  the ladder mode(5) in the manner of Kogut and Susskifid
=ia along chainl of the ladder® Yet long-wavelength then yields the Luttinger modél=H+H| , where
charge excitations have a typical energy scale on the order of
the kinetic energyl chargs~ tx Which is small in comparison ) N . ot
to the spin gap g, in the low doping limittx<J. We may ~ H 22 f dx2tja(Lnidyxln— RyidxRn) +4VaLl,RiRyLy,
therefore takel gpi— o in this limit. The bosonic spin de-
grees of freedom are frozen in such a casge= ¢=¢ . The — /-Ln(l—xl—n"_ Ran)] (6)
remaining(bosonig¢ charge degree of freedog(x,l) must
then correspond to an effective spinless fermion on eachpg
chain. This idea is developed below.

In general, the Hamiltonian for a system Nfconsecu-
tively coupled chains of spinless fermiénsan be divided
into parallel and perpendicular patts=H;+H, , where

I ’ ’ ! !
HL - HL,1+ HL,2+ HL,4+ HL,pair

are rotated parallel and perpendicular pieces, with a back-
scattering term

N
H”:Zl ZI [—t|\(f;r,|fi+1,|+H-C-)+Vuni,|”i+1,|] ©)
ilz Z fdX(UL—ZV”)a[LERL,Lnar-FH.C.], (7

and " n<n’

N ‘ with interband forward scattering terms
Hizgl E. [_M(e'q)/Nf;rin,Hl*’H-C-)+Uini,|ni,|+1

r 1ot
+Vi(ni Nit1y+11TN |+1ni+l|)] (4) 1,2 2 J dXZ(VH_VL)a[Lan,Rann‘FH.C.], (8)
' ' ' ! n<n’
describe, respectively, the quantum mechanics within and in
between chains. Herd; | denotes the annihilation operator , ot fo ot
for the spinless fermion on thi¢h site of chainl, with occu- Hy 4= E f dx(U, +2V )a:(LoLn+ RyRy) (L Ly
. T n<n

pation numbem; ,=f; f; ;. Also, t, andt, are the nearest-
neighbor hopping matrix elements, whitg, U, , andV, +R2,Rn/):, 9)

are the model interaction energies. In the case of open per-

pendicular boundary conditions, we shall skty.;=0  and with an interband pseudotriplet pairing interaction
=fiT,N+1. On the other hand, the identificatiofisy.,=f; 1

and f{,,=f, produce periodic boundary conditions, in

which cased denotes the magnetic flux along the parallel i’pair: 2 f dx2(V”—VL)a[LER;§Rn,Ln,+H.c.].
direction. Consider now the simple ladder, witl+2 chains n<n’

and open perpendicular boundary conditiods<0). Since (10)
low-energy spin excitations are frozen out due to the forma- : _ : _
tion of singlet bonds along the rung, is natural to identify Her?,l/ elkFi:!?”(X):L llekglkxa“(k) and e .IkFXL”(X)
the true electron field; | ¢ with the spinless fermion field =L _ zEke_ ba(k) den_ote f|_eld operators for right f_;md Ie_ft
following f; ;=i 15y and f; ;= Ci »_gi, Wheres(i) repre- moving spinless fermlons in the b_ondmg or antibonding
sents the antiferromagnetic spin configuration on a giveff@ndn=+,— for chains of lengttL., with a Fermi surface at
chain. After some algebraic manipulations, it can be shown™ Kr- Above, the colon symbols represent normal
that the above spinless-fermion Hamiltonian takes the forn?'dering:" Also, u.==t, are the chemical potentials for

of an extended Hubbard mod&in transverse magnetic field €ach band. Notice that Eqg6)—(10) describe a Luther-
Emery model for pseudo-spin-1/2 fermions. Since such fer-

2 mions experience pseudo-spin-charge separation, we have
H:E. -, (fiT‘lfi_*_l’l+H_C_)_tl(fiT’1fi‘2+ H.c)+ (U, that the coupled chains factorize following=H,+H,,
i =1 where
+2V,) 1V( )2 1v'( )2
N 1N o— =V(Nj =N ==V (M 1—m)°|,
Lz T T g ek Hp=2wﬁvp§0j;}L pj(q)p,-(—q)+gp§q) Pr(A)pL(—a),

©) (11)
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Ho=2mhv, >, > oj(q)o;(—q)
g>0 j=R,L

+ ga’% or(q)o(—Qq)+ Hi,1+ HJ,_,pair

—(2L)Y%,[0(0)+ 0R(0)] 12

are the respective commuting portions of the HamiltonianOrder

Here, pj(q)=2""4p;(q,+)+pj(q,—)] and oy(q)
=2"Y9p,(q,+)—pj(q,—)] are the standard particle-hole

operators for total-charge and pseudo-spin excitations wit

respect to the bands= +,—, with pg(q,n)=L"¥?3,a'(q
+K)an(k) and p (q,n)=L " Y25,bl(q+k)by(k). The
Fermi velocities and interaction strengths for each comp
processe$Egs. (8) and(9)] to

vy e=al2t = (U, +2V,)27]lh, (13
gp,a':a[4Vi(UL+2VH)]1 (14)

where the+(—) signs above correspond to tpér) labels.
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TABLE I. Listed is the correlation exponent obtained via the
bosonization technique for various order paramet@(g) in the
doped spin ladder model5); i.e., (O(x)O(0))x=(a/x)”. The
SU(2)-invariant case is assumésee Ref. 1b Below, the valuen

=o indicates shortrange order, while K,=(27%v,
-9,)"(27hv,+g,) "2
Order n (Staggered % (Rung hole
parameter CDW) pair9

CDW, | RIL, K,+1 K,
Pair, I RL, K t+1 %

DW, L RIL, K,+1 %
Pair, L RiL, K,t+1 Kt
CDW? RIRJL,L, 4K, 4K,
gaiﬁ RiR,L, L, 4K 4K

N,=N_, for t,<A,/2Y? and that N, —N_=Ly[t?
—(1/2)A%1¥2 for t, >27Y2A 2t where yo=2/mhv | is the
pseudospin susceptibility. Band splitting is therefatesent
below a critical interchain hopping matrix eleménthe
general cased # 0, off of the SU2) invariant line can also

We remind the reader that it is assumed throughout that thike analyzed at the Luther-Emery “ling(15). One finds that

system of spinless fermion(§) is near half filling.

the product of all of the energy eigenvaluesl'i§>o(vgzp2

To proceed further, we first note that the pure Luttinger+ A2+ A’?)2, which never vanishes. We conclude that the

model (11) for the total-charge excitations along the ladder

corresponds precisely to thiEfetov-Larkin hardcore boson

modef® for the rung hole pairs that is elaborated Ref. 20.
The former is characterized entirely by the Luttinger liquid

parameterK ,= (2mhv,—g,)"4(27hv,+9g,)"? that will
reappear below. The pseudospin pi€@@) of the present

spinless fermion description for a doped antiferromagneti

ladder is less trivial, however. Along the 8)}-invariant line
V=V, the pairing termH| ., in Eq. (12) is null. Appli-
cation of the bosonic representattét® for the spinless fer-
mions then reveals that a gdp,# 0 opens in the spectrum
of the pseudospin excitationd?) for g,/a=2V, —U,>0
in the absence of transverse hopptid, =0. For general
interchain hopping, #0 and interactiond/,#V, it is in-
structive to move along the Luther-Emery “line’g,,

=6mhv /5, in which case the spinless fermions that corre-,

spond to the pseudospin systddP) are governed by the
noninteracting Hamiltonian

Ho=fivf >, k(afa,—bib)—2Y%, > (aja+blby)
k k

+A,>, (alby+H.c)+A! > (albl, +H.c).
k k

(19

Here, the pseudospin gaps have valdes=(a/ag)[ (U,
—2V))/27] andA] = (a/ap)(V'/ ) where agl is the mo-
mentum cutoff of the Luttinger model, whiler= (4/5)v, .
Consider first the S[2) invariant line V=V, , in which
case the gapA . that originates from the pairing terfd0) is

net pseudospin gaficnarge= (A2+ A!2)* is therefore robust
with respect to S(2) symmetry breaking in the spinless fer-
mion model(5).

Yet what is the physical character of the present ladder
model at zero temperature? To answer this question, it is
convenient to look again along the ling,=V, , in which

tase the S(?) noninvariant interaction term in the model

Hamiltonian(5) is absent. Let us start by assuming no inter-
chain hopping,t, =0. Then the boundary dt/, =2V that
marks the appearance of the pseudospinapgan be iden-
tified with the phase boundary that exists between the stag-
gered CDW state and the rurljole-paiy CDW state in the
strong-coupling limit (see Fig. 1 and Ref. 22 A self-
consistent calculation in terms of the CDW mean field
(R'L,) vyields the approximate formulaA,=%wy/
sinh(wfiv,/g,) for the pseudospin gap in the hole-pair
regimel’ g,>0, with prefactorog=v,/aq. It agrees rea-
sonably well with the previous exact result along the Luther-
Emery point. The same exact analysis indicates that band
splitting generally remains absent at small enough interchain
hopping amplitudes, <A /22 We now address the initial
question posed by computing the correlation functions at
long distances and at long times within this hole-pair regime
(see Table ). Then SU2) invariance yields the identity
(fo1(0)1 (1)) =(fon(0)f{ ,(t)) for the intrachain one-
particle  propagator, where (foln(O)fIn(t))=GR(x,t)

+ G, (x,t) is the propagator in the bonding-antibonding basis
(x=ia), with right and left moving componenGg andG, ,
respectively. Note that the latter independence of the spinless
fermion propagation with the band indexs a result of the
equal band occupatioN, =N_ present in the hole pair re-

null. The spinless fermions corresponding to the pseudospigime t, <A_/2Y2. The application of the bosonization

sector therefore have energy eigenvalugs= t(vézp2

method plus pseudo-spin-charge separation yields the forms

+A2)Y2 1If N, denotes the number of spinless fermions inGg =GY%) - GY} for the right and left propagators, with a
bandn, then it follows that the band occupations are equalluttinger liquid factor
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GE’J’{N(XIv;t)_llz[Z'n'aO/(Xz—v,’)ztz)llz]ap (16)

$=0 S=1) =0

due to excitations of the total chardfeand with pseudospin Tlol T o0

factor® |
l 1017

(Spair) (epair+Aspin) (8pair)

TQTi

Ltor1 LrL

Gf?gl)_w (XFogt)~ 1/29_(A0/ﬁ%)(><2—v§t2)1/2
, - .

17

FIG. 2. A diagrammatic representation is given for the second-
order matrix elementt(,) that connects rung and chain hole pairs.
The spin gap 44, is presumed to be large in comparison to any
difference in the binding energy () between rung and chain hole
pairs.

The exponent and velocity that appear in expressios)
have the 1‘orm5ap=sinh2 ¥, and vgzupsech 2,, respec-
tively, with the hyperbolic angleys, set by the relation
tanh 2, =—g,/2mhv,. A gap Acpage= A, therefore exists
for one-particle charge excitations along chains. The inter-
chain single-particle propagator, on the other hand,

is by definition (fo4(0)f{,(t))=(1/2)[(fo(0)f] (1)) HZ:E?
—<foy,(0)fﬁ,(t)>]. Again, the band occupatiord , and

N_ are equal fort, <A, /2Y2 which implies that
(foyl(O)fiTyz(t» vanishes at long times and at long distances
in such case. In other words, we find thatherentsingle-
particle tunneling of charge in between chains is entirely
suppressed in the hole-pair regime. Notice that this is cong,, the triangular ladder model Hamiltonian, wherg
sistent with renormalization group calculations that find in-=2|3:1ni | is the manifestly S(B) invariant number opera-

tgrchailn h_(()jppin_ghto be ag irrelev_anthpe(;turbgtior} fo;ﬁLu.t-tor' After rotating to the ba5i$i,0:371/22|3:1fi,l and f .
tinger liquids with a pseudo gap in the density of stafes: =3"V253 e*127Bf; | that diagonalizes the transverse ki-

N(w)oc.|w.|a’ with e)fponenta>1. . . hetic energy, we obtain the previous Luttinger modgds.

A similar analysis can be employed to obtain the statlc(G), (7), and (9)], but with the band index summed over the
auto-correlators for various CDW and pair order parametergq,y basisi=0 + — . The new chemical potentials for each
at long distance. These results are compiled in Table I. Thg,nq are,u0=,2t£ cos@/3) and w.=2t, cog(d+2m)/3].

3 3
_tulzl (f;r,|fi+1,|+H-C-)—h|21 (ei®/3fﬁ|fi,|+1

3 1 )
+H-C-)+(UL+2V)|:21 N N1~ EV(nHl_ni)

(18

intrachain CDW correlator, for example, has the f&m®
(LI(0)R(0)R[ (X)L,(x) )~ cos(&ex)(ag/X)e. It coincides

Now consider the special ling, = -2V, along which the
interband forward scattering interacti@®) vanishes. What

with the form obtained for the density-density correlator ofremains is a generalized backscattering model with three in-

the hardcore boson mod8lfor the rung-hole pairs’ b/

ternal quantum numbef§. A mean-field analysis of this

=f; ,fi ». On the other hand, both interchain CDW order andmodel’ finds that long-range CDW order of the ty(iégL,Q
chain-hole-pair autocorrelations are short range in the rungs stable for effective attraction between rungs,<0, with
hole-pair regimes, with a unique correlation lengfly  a single-particle gap\,=2%wee 2™3Y.l, and prefactor
=hv/2A . Finally, the static autocorrelator for rung-hole % wy~(a/ag)t,. Hence for small enough interchain hopping,
pairs has the asymptotic formiL;(0)R,(0)RL(x)LI(x))  t.<A,/2, the chemical potential of each band lies within the
~(ag/x)¥¥s. This form also coincides with that obtained gap, which means that the transverse charge stiffness,
from the previously cited hardcore boson model for thed”Eq/d®?o, isnull. In addition, since the band occupations,
propagation(b;b), of rung-hole pairs. In conclusion, the No andN.., are all equal fort, <A,/2, the single-particle
phase-boundary separating dominant rung-CDW correlationgtraband amplitudesf,,(0)f] (t)) are then all equal. The
from dominant rung-pair autocorrelations is evidently deterdnterchain  single-particle  amplitude (fOJ(O)fI,H(t))
mined by the conditiorK ,=1 (see Table)l Given the ab- =(1/3)2ne‘Z”“’S(foyn(O)fIn(t» must therefore vanish as
sence of coherent tunneling that characterizes the rung-holevell, in agreement with the previous case of the simple lad-
pair regime in general, we interpret the latter phakg ( der. On the basis of this mean-field analyisve conclude

>1) as an IPT-type superconducisee Fig. 1

that the present ladder model allows coherent transport

To address the question of the transverse conductivity ofvhatsoever in between chains in ttrang) hole-pair regime.

the ladder mode(5), we shall now compute the transverse

charge stiffness of the triangular three-leg ladtlier particu-
lar, consider the corresponding spinless fermion mogk.
(3) and (4), N=3] with a magnetic fluxd threading each
triangle formed by the rungs. Then along the IMe=V, ,

Let us now apply the spinless fermion modgl to doped
antiferromagnetic ladders by first drawing a comparison with
the corresponding-J model™® In the limit A gp— that is
assumed throughout due to the relatively small energy scale
tx for charge excitations, triplet excitations are forbidden.

the interaction terms of this model Hamiltonian are invariantThis means that the only possible charge carriers are hole
with respect to S(B) rotations of the chain labels. After pairs aligned parallel to either the rungs or to the chains of
making algebraic manipulations similar to those employed tdhe ladder(see Fig. 2. The spinless fermion syste(B) de-

achieve the form(5) for the simple ladder, we obtain the scribes the motion of these objects. Since rung hole pairs are
form responsible for coherent charge transport along the ladder,
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we havet,=t. In other words, the hopping of the spinless neighboring doped ladders. Let us also suppose that adjacent
fermion along chains accounts for the effective tunneling ofadders are shifted with respect to each other by half a lattice
rung hole pairs between rungs. Yet what is the value of thg€onstant, which is in fact the case for real ladder systems that
interchain model parameteér ? First, observe that the rota- exhibit superconductivit9:5'6The dynamics of the rung-hole
tion of a rung hole pair into a chain hole pair is a two-stagepairs bj =f; 1f; , is then equivalent to that of coupled spin-
process. As depicted in Fig. 2, the initial and final singlets XXZ chains in magnetic fielt*° The frustrating nature of
pair states $=0) pass through an intermediate triplet pair the “Zig-zag” (Josephsoncoupling in between chaifisf-
state 6=1) that is the lowest-energy spin-excitation of the fectively reduces this system to isolatXZ Chifllnsza each
systent?° Second order perturbation theory then yields theWith a renormalized intrachaitJosephsoncoupling™ We
matrix element, =t;t, /Agy, for the rotation of a rung hole thus recover the previous superc_onducto_r—CDW transition,
pair into a chain hole pair, and vice versa. Yet since such 90PUt with K, now dependent on the interchain Josephson cou-
rotations represent the low-energy single-particle charge exling as well. _ o _
citations of the ladder, we have the identity= A ;age This Concernl_ng the exper_lm_ental situation, the incoherent tun-
yields the expression, = (A gin/t)) A charge fOr the effective neling that is characteristic of the rung-CDW phase could
interchain hopping matrix element. Yet sintg=t and ©xplain the large conduction anisotropy seen in the normal
Agpii<J/2, we obtain the desired inequality state of antiferromagnetic ladder mater!‘é?sz. In addition,

if such a rung-CDW state were to be pinned, then all com-
ponents of the resistivity tensor would exhibit insulating be-
havior in the low-temperature limit. This is indeed observed
experimentally* It must be pointed out, however, that
Whether or not the low-temperature conductivity in doped
antiferromagnetic ladder materials is intrinsic remains to be
determinedsee Refs. 4, 9, and 28f, on the other hand, the
i . o . . _ rung-CDW state would depin at some elevated temperature,
with exact dlagonallganon resuftthat find a smgle-pamz%le then the generic Drude response characteristic of the present
93P Acnarge OF Order 3tx .(the energy toadd' an electron . ladder model5) would yield metallic behavior in the longi-
The latter energy scale is small in comparison to the spin 98 dinal resistivity. The latter is also observed in antiferro-

at low doping,tx<J, which justifies use of the spinless fer- magnetic ladder materials at relatively high temperatfifés.

mion model(S). Last, such materials are observed to go superconducting un-
€der extreme pressureA transition under pressure from a
rung-CDW state to an IPT superconductor due to a strong
dependence in the binding enetdy-U, ~J of the rung-
hole pairs with the lattice constants, for example, could ac-
count for this phenomenon. Very recently, however, the ob-
servation of high-temperature superconductivity in doped

antiferromagnetic ladder materials at ambient pressure has

those (_)btained from a d‘gUS‘W'ma”‘X renormalization 9roltheen reportefl.The above discussion suggests that this sys-
analysis of thet-J laddef® indicate that such a doped anti- 1o could transit into a rung-CDW ground state, on the con-

ferromagnet is in the vicinity of this superconductor- y»ry “py anpropriate variations in the doping levels, or by
insulator transition; |.e.KQ~1. On thls b_aS|s, we conclqde ‘varying other parameters such as the pressure.

that coherent single particle tunneling in between chains is
absent in a lightly doped antiferromagnetic ladder, since This work was supported in part by National Science

A,#0 by Eq.(19). This does not exclude the possibility of Foundation Grant No. DMR-9322427. The author thanks G.

(coherent Josephson tunneling of hole pairs in between adGomez-Santos, A. Leggett, D. Poilblanc, P. Sacramento, and
jacent ladders, however. To address this issue, consider twd. Vieira for discussions.

tJ_ <A chargé2 (19)

for J<t. This indicates that the simpteJ ladder is indeed
consistently within the rung-hole-pair regime per the spinles
fermion description(5). Note also that Eq19) implies that
coherent motior(11) of rung-hole pairs represents the only
gapless charge excitation of the) ladder. This is consistent

spinless fermion modéb) will be considered to be phenom-
enological. For simplicity, let us move along the @Jin-
variant line V=V, >0. We then notably predict a phase
transition in between a rung-CDW state and an IPT-type su
perconductor aK ,=1 (see Fig. 1. Comparison of the cor-
responding correlation exponents shown in Table | with

*Permanent address.
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