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Superconductivity versus tunneling in a doped antiferromagnetic ladder
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The low-energy charge excitations of a doped antiferromagnetic ladder are modeled by a system of inter-
acting spinless fermions that live on the same ladder. A relatively large spin gap is assumed to ‘‘freeze out’’
all spin fluctuations. We find that the formation of rung hole pairs coincides with the opening of a single-
particle gap for charge excitations along chains and with the absence of coherent tunneling in between chains.
We also find that such hole pairs condense into either a crystalline or superconducting state as a function of the
binding energy.@S0163-1829~99!10625-8#
pe
po
e

n
e

ta
nt

d
t
e

r-
e
at
rd
a
se
ls

t

e

s

le
b

r
in

o
or

n

fo
ol

u
-

hort

,

d,

wn
-

de-

dis-

The
ist

rom
d by
One of the strangest features of high-temperature su
conductors is the semiconducting nature of electric trans
perpendicular to the copper-oxygen planes common to th
materials shown in the normal state.1 Anderson and co-
workers have proposed that this behavior is intrinsic, a
that it results from the microscopic coincidence of Coop
pairing with incoherent tunneling in between adjacent me
lic planes.2 Analogous behavior has been observed rece
in the doped ‘‘ladder’’ materials.3 In particular, a large an-
isotropy in the electronic conduction with respect to the la
der direction appears4 at compositions that exhibi
superconductivity.5,6 The authors of Ref. 4 suggest that th
chain version of the above interlayer-pair-tunneling~IPT!
mechanism is responsible for the phenomenon.7,8

Such ‘‘ladder’’ materials are made up of a parallel a
rangement of magnetically isolated antiferromagnetic ladd
that fill copper-oxygen planes similar to those of the cupr
superconductors. They notably show a spin gap on the o
of Dspin;500 K when undoped, in accord with theoretic
expectations based on the spin-1/2 antiferromagnetic Hei
berg ladder.3 The actual ladders in these materials can a
be doped with a concentrationx of mobile holes,9 in which
case the spin gap persists. Again, theoretical studies of
t-J model for a lightly doped ladder,tx,J, find evidence
for the formation ofhole pairs along rungs that leave th
remaining singlet bonds along the rungs intact.10 The spin
gap persists, as a result, and charge excitations are left a
only low-energy excitations.

In this paper, we shall model the low-energy sing
charge excitations of a doped antiferromagnetic ladder
interacting spinless fermions that live on the same ladde
the vicinity of half filling.11 We presume, therefore, that sp
excitations are frozen out due to a relatively large spin gap
order Dspin;J/2. A bosonization analysis based on the c
responding Luther-Emery model,12–15 and generalizations
thereof,16,17 yields that the appearance of hole pairs alo
rungs coincides with the absence of coherent tunneling
between chains, as well as with the creation of a gap
single-particle excitations along chains. Also, while the h
pairs generally crystallize into a charge-density-wave~CDW!
state in the weak-coupling limit,3 we predict that they Bose
condense into an IPT-type superconductor at large eno
binding energies~see Fig. 1!. Last, the correlations in be
PRB 600163-1829/99/60~2!/1303~6!/$15.00
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tween pairs that form along the chains are found to be s
range when hole pairing along rungs occurs.

To motivate the spinless fermion analysis that will follow
consider first the standard nearest-neighbort-J model
Hamiltonian

H5(
^ i , j &

@2t~ c̃i ,s
† c̃ j ,s1H.c.!1JSW i•SW j # ~1!

for a doped antiferromagnetic ladder. Above,c̃i ,s
† creates a

spin s electron on sitei as long as this site is unoccupie
while SW i measures the spin at sitei. At half filling, the t-J
model~1! reduces to the Heisenberg ladder, which is kno
to have a spin gapDspin>J/2.3 The latter persists in the pres
ence of a dilute hole concentration,tx,J.10 In general, long
wavelength electronic excitations within chains can be
scribed via the standard Luther-Emery~LE! model.12–15The

FIG. 1. The phase diagram of the SU~2!-invariant model~5! for
the charge excitations of a doped antiferromagnetic ladder is
played in the regime of effective repulsion within each chain,Vi

5V'.0, and in the absence of hopping in between chains.
rung-hole-pair regime (Ds.0) is, nevertheless, expected to pers
for small enough interchain hopping matrix elementst'&Ds/2. In
such a case, the line separating dominant CDW correlations f
superconducting ones among the rung-hole pairs is determine
the conditionKr51.
1303 ©1999 The American Physical Society
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1304 PRB 60J. P. RODRIGUEZ
spin gap present in lightly dopedt-J ladders indicates then
that the intrachain LE backscattering term has the form

Hback;2~Dspin/a!(
l 51

2 E dx cos@f↑~x,l !2f↓~x,l !#,

~2!

wherefs(x,l ) is the bosonic field that represents collecti
particle-hole excitations of spins electrons at positionx
5 ia along chain l of the ladder.18 Yet long-wavelength
charge excitations have a typical energy scale on the orde
the kinetic energyDcharge;tx which is small in comparison
to the spin gapDspin in the low doping limittx!J. We may
therefore takeDspin→` in this limit. The bosonic spin de
grees of freedom are frozen in such a case:f↑5f5f↓ . The
remaining~bosonic! charge degree of freedomf(x,l ) must
then correspond to an effective spinless fermion on e
chain. This idea is developed below.

In general, the Hamiltonian for a system ofN consecu-
tively coupled chains of spinless fermions8 can be divided
into parallel and perpendicular partsH5H i1H' , where

H i5(
l 51

N

(
i

@2t i~ f i ,l
† f i 11,l1H.c.!1Vini ,lni 11,l # ~3!

and

H'5(
l 51

N

(
i

@2t'~eiF/Nf i ,l
† f i ,l 111H.c.!1U'ni ,lni ,l 11

1V'~ni ,lni 11,l 111ni ,l 11ni 11,l !# ~4!

describe, respectively, the quantum mechanics within an
between chains. Here,f i ,l denotes the annihilation operato
for the spinless fermion on thei th site of chainl, with occu-
pation numberni ,l5 f i ,l

† f i ,l . Also, t i and t' are the nearest
neighbor hopping matrix elements, whileVi , U' , and V'

are the model interaction energies. In the case of open
pendicular boundary conditions, we shall setf i ,N1150
5 f i ,N11

† . On the other hand, the identificationsf i ,N115 f i ,1

and f i ,N11
† 5 f i ,1

† produce periodic boundary conditions,
which caseF denotes the magnetic flux along the paral
direction. Consider now the simple ladder, withN52 chains
and open perpendicular boundary conditions (F50). Since
low-energy spin excitations are frozen out due to the form
tion of singlet bonds along the rungs,3 it is natural to identify
the true electron fieldci ,l ,s with the spinless fermion field
following f i ,15ci ,1,s( i ) and f i ,25ci ,2,2s( i ) , wheres( i ) repre-
sents the antiferromagnetic spin configuration on a gi
chain. After some algebraic manipulations, it can be sho
that the above spinless-fermion Hamiltonian takes the fo
of an extended Hubbard model14 in transverse magnetic fiel

H5(
i

F2t i(
l 51

2

~ f i ,l
† f i 11,l1H.c.!2t'~ f i ,1

† f i ,21H.c.!1~U'

12V'!ni ,1ni ,22
1

2
V~ni 112ni !

22
1

4
V8~mi 112mi !

2G ,

~5!
of

h

in

r-

l

-

n
n

where ni5ni ,11ni ,2 and mi5ni ,22ni ,1 and whereV5(Vi

1V')/2 andV85Vi2V' . It is important to remark that the
interaction terms in this ladder model are invariant with
spect to SU~2! rotations of the chain labels ifVi5V' .

We now rotate to the bonding-antibonding basis,f i ,6
5221/2( f i ,26 f i ,1), that diagonalizes the transverse kine
energy~5!. In the limit near~but not at! half filling, all um-
klapp processes are negligible. Taking the continuum limi
the ladder model~5! in the manner of Kogut and Susskind14

then yields the Luttinger modelH5H i81H'8 , where

H i85(
n
E dx@2t ia~Ln

†i ]xLn2Rn
†i ]xRn!14VaLn

†Rn
†RnLn

2mn~Ln
†Ln1Rn

†Rn!# ~6!

and

H'8 5H',18 1H',28 1H',48 1H',pair8

are rotated parallel and perpendicular pieces, with a ba
scattering term

H',18 5 (
n,n8

E dx~U'22Vi!a@Ln
†Rn8

† Ln8Rn1H.c.#, ~7!

with interband forward scattering terms

H',28 5 (
n,n8

E dx2~Vi2V'!a@Ln
†Rn8

† Rn8Ln1H.c.#, ~8!

H',48 5 (
n,n8

E dx~U'12V'!a:~Ln
†Ln1Rn

†Rn!<~Ln8
† Ln8

1Rn8
† Rn8!:, ~9!

and with an interband pseudotriplet pairing interaction

H',pair8 5 (
n,n8

E dx2~Vi2V'!a@Ln
†Rn

†Rn8Ln81H.c.#.

~10!

Here, eikFxRn(x)5L21/2(ke
ikxan(k) and e2 ikFxLn(x)

5L21/2(ke
ikxbn(k) denote field operators for right and le

moving spinless fermions in the bonding or antibondi
bandn51,2 for chains of lengthL, with a Fermi surface at
6kF . Above, the colon symbols represent norm
ordering.14 Also, m656t' are the chemical potentials fo
each band. Notice that Eqs.~6!–~10! describe a Luther-
Emery model for pseudo-spin-1/2 fermions. Since such
mions experience pseudo-spin-charge separation, we
that the coupled chains factorize followingH5Hr1Hs ,
where

Hr52p\vr (
q.0

(
j 5R,L

r j~q!r j~2q!1gr(
q

rR~q!rL~2q!,

~11!
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Hs52p\vs (
q.0

(
j 5R,L

s j~q!s j~2q!

1gs(
q

sR~q!sL~2q!1H',18 1H',pair8

2~2L !1/2t'@sL~0!1sR~0!# ~12!

are the respective commuting portions of the Hamiltoni
Here, r j (q)5221/2@r j (q,1)1r j (q,2)# and s j (q)
5221/2@r j (q,1)2r j (q,2)# are the standard particle-ho
operators for total-charge and pseudo-spin excitations w
respect to the bandsn51,2, with rR(q,n)5L21/2(kan

†(q
1k)an(k) and rL(q,n)5L21/2(kbn

†(q1k)bn(k). The
Fermi velocities and interaction strengths for each com
nent are renormalized by the interband forward scatte
processes@Eqs.~8! and ~9!# to

vr,s5a@2t i6~U'12V'!/2p#/\, ~13!

gr,s5a@4V6~U'12Vi!#, ~14!

where the1~2! signs above correspond to ther~s! labels.
We remind the reader that it is assumed throughout that
system of spinless fermions~5! is near half filling.

To proceed further, we first note that the pure Lutting
model ~11! for the total-charge excitations along the ladd
corresponds precisely to the~Efetov-Larkin! hardcore boson
model19 for the rung hole pairs that is elaborated Ref. 2
The former is characterized entirely by the Luttinger liqu
parameterKr5(2p\vr2gr)1/2/(2p\vr1gr)1/2 that will
reappear below. The pseudospin piece~12! of the present
spinless fermion description for a doped antiferromagn
ladder is less trivial, however. Along the SU~2!-invariant line
Vi5V' , the pairing termH',pair8 in Eq. ~12! is null. Appli-
cation of the bosonic representation14,15 for the spinless fer-
mions then reveals that a gapDsÞ0 opens in the spectrum
of the pseudospin excitations~12! for gs /a52V'2U'.0
in the absence of transverse hopping,13 t'50. For general
interchain hoppingt'Þ0 and interactionsViÞV' it is in-
structive to move along the Luther-Emery ‘‘line’’gs

56p\vs/5, in which case the spinless fermions that cor
spond to the pseudospin system~12! are governed by the
noninteracting Hamiltonian12

Hs5\vF8(
k

k~ak
†ak2bk

†bk!221/2t'(
k

~ak
†ak1bk

†bk!

1Ds(
k

~ak
†bk1H.c.!1Ds8(

k
~ak

†b2k
† 1H.c.!.

~15!

Here, the pseudospin gaps have valuesDs5(a/a0)@(U'

22Vi)/2p# and Ds85(a/a0)(V8/p) wherea0
21 is the mo-

mentum cutoff of the Luttinger model, whilevF85(4/5)vs .
Consider first the SU~2! invariant line Vi5V' , in which
case the gapDs8 that originates from the pairing term~10! is
null. The spinless fermions corresponding to the pseudo
sector therefore have energy eigenvalues«p56(vF8

2p2

1Ds
2)1/2. If Nn denotes the number of spinless fermions

bandn, then it follows that the band occupations are equ
.

th

-
g

e

r
r

.

ic

-

in

l,

N15N2 , for t',Ds/21/2 and that N12N25Lx0@ t'
2

2(1/2)Ds
2 #1/2 for t'.221/2Ds ,21 wherex052/p\vF8 is the

pseudospin susceptibility. Band splitting is thereforeabsent
below a critical interchain hopping matrix element.7 The
general case,Ds8Þ0, off of the SU~2! invariant line can also
be analyzed at the Luther-Emery ‘‘line’’~15!. One finds that
the product of all of the energy eigenvalues isPp.0(vF8

2p2

1Ds
21Ds8

2)2, which never vanishes. We conclude that t

net pseudospin gapDcharge5(Ds
21Ds8

2)12
is therefore robust

with respect to SU~2! symmetry breaking in the spinless fe
mion model~5!.

Yet what is the physical character of the present lad
model at zero temperature? To answer this question,
convenient to look again along the line,Vi5V' , in which
case the SU~2! noninvariant interaction term in the mode
Hamiltonian~5! is absent. Let us start by assuming no inte
chain hopping,t'50. Then the boundary atU'52V that
marks the appearance of the pseudospin gapDs can be iden-
tified with the phase boundary that exists between the s
gered CDW state and the rung~hole-pair! CDW state in the
strong-coupling limit ~see Fig. 1 and Ref. 22!. A self-
consistent calculation in terms of the CDW mean fie
^Rn

†Ln& yields the approximate formulaDs5\v0 /
sinh(p\vs /gs) for the pseudospin gap in the hole-pa
regime,17 gs.0, with prefactorv05vs /a0 . It agrees rea-
sonably well with the previous exact result along the Luth
Emery point. The same exact analysis indicates that b
splitting generally remains absent at small enough interch
hopping amplitudest',Ds/21/2. We now address the initia
question posed by computing the correlation functions
long distances and at long times within this hole-pair regi
~see Table I!. Then SU~2! invariance yields the identity
^ f 0,l(0) f i ,l

† (t)&5^ f 0,n(0) f i ,n
† (t)& for the intrachain one-

particle propagator, where ^ f 0,n(0) f i ,n
† (t)&5GR(x,t)

1GL(x,t) is the propagator in the bonding-antibonding ba
(x5 ia), with right and left moving componentsGR andGL ,
respectively. Note that the latter independence of the spin
fermion propagation with the band indexn is a result of the
equal band occupationN15N2 present in the hole pair re
gime t',Ds/21/2. The application of the bosonizatio
method plus pseudo-spin-charge separation yields the fo
GR,L5GR,L

(r)
•GR,L

(s) for the right and left propagators, with
Luttinger liquid factor

TABLE I. Listed is the correlation exponenth obtained via the
bosonization technique for various order parametersO(x) in the
doped spin ladder model~5!; i.e., ^O(x)O†(O)&}(a/x)h. The
SU~2!-invariant case is assumed~see Ref. 15!. Below, the valueh
5` indicates short-range order, while Kr5(2p\vr

2gr)1/2/(2p\vr1gr)1/2.

Order
Order

parameter
h ~Staggered

CDW!
h ~Rung hole

pairs!

CDW, i Rl
†Ll Kr11 Kr

Pair, i RlLl Kr
2111 `

CDW,' R1
†L2 Kr11 `

Pair,' R1L2 Kr
2111 Kr

21

CDW2 R1
†R2

†L2L1 4Kr 4Kr

Pair2 R1R2L2L1 4Kr
21 4Kr

21
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1306 PRB 60J. P. RODRIGUEZ
GR,L
~r! ;~x7vr8t !

21/2@2pa0 /~x22vr8
2t2!1/2#ar ~16!

due to excitations of the total charge,14 and with pseudospin
factor23

GR,L
~s! ;~x7vst !21/2e2~Ds /\vs!~x22vs

2 t2!1/2
. ~17!

The exponent and velocity that appear in expression~16!
have the formsar5sinh2 cr and vr85vr sech 2cr , respec-
tively, with the hyperbolic anglecr set by the relation
tanh 2cr 52gr/2p\vr . A gap Dcharge5Ds therefore exists
for one-particle charge excitations along chains. The in
chain single-particle propagator, on the other ha
is by definition ^ f 0,1(0) f i ,2

† (t)&5(1/2)@^ f 0,1(0) f i ,1
† (t)&

2^ f 0,2(0) f i ,2
† (t)&#. Again, the band occupationsN1 and

N2 are equal for t',Ds/21/2, which implies that
^ f 0,1(0) f i ,2

† (t)& vanishes at long times and at long distanc
in such case. In other words, we find thatcoherentsingle-
particle tunneling of charge in between chains is entir
suppressed in the hole-pair regime. Notice that this is c
sistent with renormalization group calculations that find
terchain hopping to be an irrelevant perturbation for L
tinger liquids with a pseudo gap in the density of states24

N(v)}uvua, with exponenta.1.
A similar analysis can be employed to obtain the sta

auto-correlators for various CDW and pair order parame
at long distance. These results are compiled in Table I.
intrachain CDW correlator, for example, has the form12–15

^Ll
†(0)Rl(0)Rl

†(x)Ll(x)&;cos(2kFx)(a0 /x)Kr. It coincides
with the form obtained for the density-density correlator
the hardcore boson model20 for the rung-hole pairs,19 bi

†

5 f i ,1f i ,2 . On the other hand, both interchain CDW order a
chain-hole-pair autocorrelations are short range in the ru
hole-pair regimes, with a unique correlation lengthjs

5\vs/2Ds . Finally, the static autocorrelator for rung-ho
pairs has the asymptotic form̂L1(0)R2(0)R2

†(x)L1
†(x)&

;(a0 /x)1/Kr. This form also coincides with that obtaine
from the previously cited hardcore boson model for t
propagation,̂ bibj

†&, of rung-hole pairs. In conclusion, th
phase-boundary separating dominant rung-CDW correlat
from dominant rung-pair autocorrelations is evidently det
mined by the conditionKr51 ~see Table I!. Given the ab-
sence of coherent tunneling that characterizes the rung-h
pair regime in general, we interpret the latter phase (Kr

.1) as an IPT-type superconductor~see Fig. 1!.
To address the question of the transverse conductivit

the ladder model~5!, we shall now compute the transver
charge stiffness of the triangular three-leg ladder.8 In particu-
lar, consider the corresponding spinless fermion model@Eqs.
~3! and ~4!, N53# with a magnetic fluxF threading each
triangle formed by the rungs. Then along the lineVi5V' ,
the interaction terms of this model Hamiltonian are invaria
with respect to SU~3! rotations of the chain labels. Afte
making algebraic manipulations similar to those employed
achieve the form~5! for the simple ladder, we obtain th
form
r-
,

s

y
n-
-
-

c
rs
e

f

g-

ns
-

le-

of

t

o

H5(
i

F2t i(
l 51

3

~ f i ,l
† f i 11,l1H.c.!2t'(

l 51

3

~eiF/3f i ,l
† f i ,l 11

1H.c.!1~U'12V!(
l 51

3

ni ,lni ,l 112
1

2
V~ni 112ni !

2G
~18!

for the triangular ladder model Hamiltonian, whereni

5( l 51
3 ni ,l is the manifestly SU~3! invariant number opera

tor. After rotating to the basisf i ,05321/2( l 51
3 f i ,l and f i ,6

5321/2( l 51
3 e6 i2p l /3f i ,l that diagonalizes the transverse k

netic energy, we obtain the previous Luttinger model@Eqs.
~6!, ~7!, and~9!#, but with the band index summed over th
new basisn50,1,2. The new chemical potentials for eac
band arem052t' cos(F/3) and m652t' cos@(F62p)/3#.
Now consider the special lineU'522V, along which the
interband forward scattering interaction~9! vanishes. What
remains is a generalized backscattering model with three
ternal quantum numbers.16 A mean-field analysis of this
model17 finds that long-range CDW order of the type^Rn

†Ln&
is stable for effective attraction between rungs,U',0, with
a single-particle gapDs>2\v0e22pt i/3uU'u, and prefactor
\v0;(a/a0)t i . Hence for small enough interchain hoppin
t',Ds/2, the chemical potential of each band lies within t
gap, which means that the transverse charge stiffn
]2E0 /]F2u0 , is null. In addition, since the band occupation
N0 and N6 , are all equal fort',Ds/2, the single-particle
intraband amplitudeŝf 0,n(0) f i ,n

† (t)& are then all equal. The
interchain single-particle amplitude ^ f 0,l(0) f i ,l 11

† (t)&
5(1/3)Snei2pn/3^ f 0,n(0) f i ,n

† (t)& must therefore vanish a
well, in agreement with the previous case of the simple l
der. On the basis of this mean-field analysis,17 we conclude
that the present ladder model allowsno coherent transpor
whatsoever in between chains in the~rung! hole-pair regime.

Let us now apply the spinless fermion model~5! to doped
antiferromagnetic ladders by first drawing a comparison w
the correspondingt-J model.10 In the limit Dspin→` that is
assumed throughout due to the relatively small energy s
tx for charge excitations, triplet excitations are forbidde
This means that the only possible charge carriers are
pairs aligned parallel to either the rungs or to the chains
the ladder~see Fig. 2!. The spinless fermion system~5! de-
scribes the motion of these objects. Since rung hole pairs
responsible for coherent charge transport along the lad

FIG. 2. A diagrammatic representation is given for the seco
order matrix element (t3) that connects rung and chain hole pair
The spin gap (Dspin) is presumed to be large in comparison to a
difference in the binding energy («pair) between rung and chain hol
pairs.
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we havet i5t. In other words, the hopping of the spinle
fermion along chains accounts for the effective tunneling
rung hole pairs between rungs. Yet what is the value of
interchain model parametert'? First, observe that the rota
tion of a rung hole pair into a chain hole pair is a two-sta
process. As depicted in Fig. 2, the initial and final sing
pair states (S50) pass through an intermediate triplet pa
state (S51) that is the lowest-energy spin-excitation of t
system.3,20 Second order perturbation theory then yields
matrix elementt35t it' /Dspin for the rotation of a rung hole
pair into a chain hole pair, and vice versa. Yet since such
rotations represent the low-energy single-particle charge
citations of the ladder, we have the identityt35Dcharge. This
yields the expressiont'5(Dspin/t i)Dcharge for the effective
interchain hopping matrix element. Yet sincet i5t and
Dspin,J/2, we obtain the desired inequality

t',Dcharge/2 ~19!

for J,t. This indicates that the simplet-J ladder is indeed
consistently within the rung-hole-pair regime per the spinl
fermion description~5!. Note also that Eq.~19! implies that
coherent motion~11! of rung-hole pairs represents the on
gapless charge excitation of thet-J ladder. This is consisten
with exact diagonalization results25 that find a single-particle
gap Dcharge of order 3

2 tx ~the energy toadd an electron!.20

The latter energy scale is small in comparison to the spin
at low doping,tx!J, which justifies use of the spinless fe
mion model~5!.

The remaining effective interaction parameters of
spinless fermion model~5! will be considered to be phenom
enological. For simplicity, let us move along the SU~2! in-
variant line Vi5V'.0. We then notably predict a phas
transition in between a rung-CDW state and an IPT-type
perconductor atKr51 ~see Fig. 1!. Comparison of the cor-
responding correlation exponents shown in Table I w
those obtained from a density-matrix renormalization gro
analysis of thet-J ladder26 indicate that such a doped ant
ferromagnet is in the vicinity of this superconducto
insulator transition; i.e.,Kr;1. On this basis, we conclud
that coherent single particle tunneling in between chain
absent in a lightly doped antiferromagnetic ladder, sin
DsÞ0 by Eq.~19!. This does not exclude the possibility o
~coherent! Josephson tunneling of hole pairs in between
jacent ladders, however. To address this issue, consider
re
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neighboring doped ladders. Let us also suppose that adja
ladders are shifted with respect to each other by half a lat
constant, which is in fact the case for real ladder systems
exhibit superconductivity.3,5,6 The dynamics of the rung-hole
pairs bi

†5 f i ,1f i ,2 is then equivalent to that of coupled spin
1
2 XXZchains in magnetic field.19,20 The frustrating nature of
the ‘‘zig-zag’’ ~Josephson! coupling in between chains3 ef-
fectively reduces this system to isolatedXXZ chains, each
with a renormalized intrachain~Josephson! coupling.27 We
thus recover the previous superconductor-CDW transiti
but with Kr now dependent on the interchain Josephson c
pling as well.

Concerning the experimental situation, the incoherent t
neling that is characteristic of the rung-CDW phase co
explain the large conduction anisotropy seen in the nor
state of antiferromagnetic ladder materials.4,9,28 In addition,
if such a rung-CDW state were to be pinned, then all co
ponents of the resistivity tensor would exhibit insulating b
havior in the low-temperature limit. This is indeed observ
experimentally.4 It must be pointed out, however, tha
whether or not the low-temperature conductivity in dop
antiferromagnetic ladder materials is intrinsic remains to
determined~see Refs. 4, 9, and 28!. If, on the other hand, the
rung-CDW state would depin at some elevated temperat
then the generic Drude response characteristic of the pre
ladder model~5! would yield metallic behavior in the longi
tudinal resistivity. The latter is also observed in antiferr
magnetic ladder materials at relatively high temperatures4,28

Last, such materials are observed to go superconducting
der extreme pressure.5 A transition under pressure from
rung-CDW state to an IPT superconductor due to a str
dependence in the binding energy10 2U';J of the rung-
hole pairs with the lattice constants, for example, could
count for this phenomenon. Very recently, however, the
servation of high-temperature superconductivity in dop
antiferromagnetic ladder materials at ambient pressure
been reported.6 The above discussion suggests that this s
tem could transit into a rung-CDW ground state, on the c
trary, by appropriate variations in the doping levels, or
varying other parameters such as the pressure.
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