
8, Israel

PHYSICAL REVIEW B 1 NOVEMBER 1999-IIVOLUME 60, NUMBER 18
Magnetotransport in conducting composite films with a disordered columnar microstructure
and an in-plane magnetic field
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School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997
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Some exact relations are found between different elements of the bulk effective resistivity tensor of a
two-component composite medium with a columnar microstructure. A self-consistent effective-medium ap-
proximation is constructed that incorporates those relations. This is then used to conduct a theoretical study of
magnetotransport in such a medium, which can be implemented experimentally as a thin conducting film with
perpendicular cylindrical inclusions. Detailed, explicit results are obtained for a conductor/insulator random
mixture and a normal conductor/perfect conductor random mixture that are above the two-dimensional perco-
lation threshold of the normal conducting constituent. At large magnetic fieldsB, the in-plane magnetoresis-
tance components increase asB2 without any saturationin mixtures of the first kind, but tend to constant
asymptotic values in mixtures of the second kind. The Clausius-Mossotti or Maxwell Garnett type of approxi-
mation, which predicts a different behavior, is shown to be unreliable at strong magnetic fields even for very
dilute mixtures.@S0163-1829~99!06641-2#
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I. INTRODUCTION

Following the early pioneering work of many years a
by Landauer and his associates,1 it has become apparen
over the last 15 years, that among the various physical p
erties of macroscopically inhomogeneous or composite
dia, magnetotransport exhibits unique forms of behav
This is due to the fact that the material response, altho
linear, is characterized by anonsymmetric (electrical con
ductivity) tensor, and to the fact that this tensor has anon-
linear dependenceon the magnetic fieldB.2–13 Some of
those developments are described in a 1992 review articl
physical properties of macroscopically inhomogeneo
media.14 More recently, composite structures with a colum
nar microstructure, i.e., a structure that is uniform along
columnar symmetry axis, have received some attention
was found that periodic structures of this kind, e.g., a tw
dimensional array of parallel cylindrical holes in an othe
wise uniform conducting medium, exhibit a very strong a
very anisotropic magnetoresistance whenB is strong and is
perpendicular to the cylinder axes, i.e., both the longitudi
bulk effective resistivity componentr i

(e) and the in-plane

transverse bulk effective resistivity componentr̃'
(e) were

found to oscillate strongly whenB was rotated in the perpen
dicular plane.15 Very recently, this behavior was shown
arise due to local currents that flow along the cylinder ax
Such currents, when present, continue to increase with
any limit asB increases, leading to a positive magnetores
tance that never saturates whenB and the volume average
current densitŷ J& point in certain in-plane directions.16–19

Here we discuss the case of a disordered columnar mi
structure. In that case we do not expect any dependenc
r i

(e) or r̃'
(e) on the direction ofB. But we do expect those

resistivities to exhibit a nonsaturating dependence onB, due
to the nonsaturating local currents along the columnar a
as mentioned before. We also expect to find critical beha
when such a system is near a two-dimensional percola
PRB 600163-1829/99/60~18!/13016~12!/$15.00
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threshold. In order to study such systems, we develop a s
consistent effective-medium approximation that is a vari
of the well-known approximation invented by Bruggem
many years ago.20 Generalizations of that approximatio
were developed previously for application
magnetotransport.21–24 However, for the columnar system
under discussion here it appears that those generaliza
violate some exact relations that must hold between the v

ous elements of the bulk effective resistivity tensorr̂e . We
discovered those relations recently, and they are prese
here. Our variant of the self-consistent effective medium
proximation takes into account those exact relations, and
ables us to set up a system of coupled algebraic equation
r i

(e) and r̃'
(e) in the case of a two-component compos

where both constituents are isotropic conductors. We exp
this approximation in order to discuss the case of
conductor/insulator mixture, and the case of a norm
conductor/perfect conductor mixture.

The rest of this article is organized as follows: In Sec.
we derive the exact relations whichr̂e must satisfy in a
two-component columnar composite. In Sec. III a se
consistent effective-medium approximation is developed t
satisfies those relations. In Sec. IV that approximation is
plied to the study of random columnar mixtures
conductor/insulator and of normal conductor/perfect cond
tor constituents. Section V provides a summary and disc
sion of the results obtained, and indicates directions for f
ther work. In the Appendix we describe a method for findi
the uniform electric field that appears inside an isolated c
ducting inclusion of ellipsoidal shape, which is embedded
an otherwise homogeneous conducting host, when a unif
electric field is applied at large distances. This is applied
the case of an inclusion shaped as a circular cylinder, wh
is an isotropic conductor, and a host, whose response ca
anisotropic, but one of the principal axes of its resistiv
tensor coincides with the cylinder axis. A uniform magne
field is applied along another principal axis, so that bo
13 016 ©1999 The American Physical Society
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resistivity tensors are nonsymmetric—this is needed in or
to carry out the studies described in Sec. IV.

II. EXACT RESULTS FOR COLUMNAR SYSTEMS

Consider an infinite, three-dimensional conducting m
dium with columnar symmetry, i.e., the local resistivity a
conductivity tensorsr̂ and ŝ51/r̂ depend only on the two
Cartesian coordinatesy andz, and are independent ofx ~see
Fig. 1!. When boundary conditions are applied, which wou
result in uniform values for the local electric fieldE and
local current densityJ if the system were homogeneous, th
the actual local values of those quantitiesin the inhomoge-
neous systemwill also depend only upony andz. Moreover,
it is easily shown that the requirement“3E50 then leads
to the result thatEx , the component ofE along the columnar
symmetry axis, isuniform everywhere. These results are
valid regardless of the detailed form ofr̂.16 In particular,
they continue to hold in the presence of a static magn
field, whenr̂ and ŝ are nonsymmetric tensors.

We now turn to consider the bulk effective resistivity te
sor r̂e and conductivity tensorŝe51/r̂e , which are defined
so as to characterize the linear relation between the vol
averaged fieldŝE&, ^J&:

^E&[r̂e•^J&. ~2.1!

We now show that some exact relations must exist am
the elements ofr̂e in the case of a two-component compos
medium with a columnar microstructure—these are a con
quence of the uniformity ofEx . We use the notation̂ &1 ,
^ &2 to denote averages over the subvolumes of the two c
stituents, andp1 , p2512p1 to denote the two volume frac
tions, andr̂1 , r̂2 to denote the two resistivity tensors. It
clear that we have

^E&5p1^E&11p2^E&2 , ^J&5p1^J&11p2^J&2 ,
~2.2!

and that from these relations and Eq.~2.1! we can obtain a
linear relation between̂J& and ^J&1:

~ r̂22 r̂e!•^J&5p1~ r̂22 r̂1!•^J&1 . ~2.3!

These can be viewed as three equations that determine
three components of̂J&1, given the three components o
^J&. BecauseEx5^Ex&15^Ex& is uniform everywhere, we
will get the same result when we average thelocal relation

FIG. 1. Composite conductor with columnar microstructu
shaped as a wire or thin film, with the film plane, magnetic fie
Biz, and volume-averaged current density^J& all perpendicular to
the columnar axisx.
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Ex5( r̂•J)x either over the total volume, or just over th
subvolume of a single constituent. This leads to another
lation between̂ J& and ^J&1:

~ r̂e•^J&!x5~ r̂1•^J&1!x . ~2.4!

Having to satisfy this equation, which is independent of t
three previous equations~2.3!, means that we have an ove
determined set of equations for the three components
^J&1. Actually, there will be several sets of over-determin
equations for̂ J&1, since one can make three independe
choices for̂ J&. For example, we can single out each one
the average current components^Jx&, ^Jy&, ^Jz& to be non-
zero, leading to three different sets of over-determined eq
tions. Each of these sets will usually require some deter
nant to vanish in order to allow a consistent solution, a
that will result in an exact relation among the elements
r̂e .

We now apply these general considerations to a partic
case, where both constituents exhibit isotropic electrical
sponse, and where a static magnetic fieldB is applied along
thez axis. In that case, the constituent resistivity tensors h
the form

r̂ j5S r'
( j ) 2rH

( j ) 0

rH
( j ) r'

( j ) 0

0 0 r i
( j )
D , j 51,2. ~2.5!

If the z axis, which is perpendicular to the columnar symm
try axis x, is also a symmetry axis of the two-dimension
microstructure, thenr̂e also has a relatively simple form
namely,

r̂e5S rxx
(e) 2rH

(e) 0

rH
(e) ryy

(e) 0

0 0 r i
(e)
D . ~2.6!

We note that, in general, we will haverxx
(e)Þryy

(e) , because
the microstructure is definitely noninvariant with respect
arbitrary three-dimensional rotations. On the other hand, if
the microstructure is invariant undercertain two-dimensional

rotations around the columnar axis, then of courser̂e will
retain its form under such rotations, if we apply the sa
rotations also to the magnetic fieldB.

For such a system, thez component of Eq.~2.3! decouples
from the other equations and leads to no restriction on
elements ofr̂e :

p1~r i
(2)2r i

(1)!^Jz&15~r i
(2)2r i

(e)!^Jz&. ~2.7!

The x and y components of Eq.~2.3!, as well as Eq.~2.4!,
then become a set of three equations for^Jx&1 and ^Jy&1,
given ^Jx& and ^Jy&. By alternately choosinĝJx&50 and
^Jy&50, we get two independent sets of over-determin
equations for̂ Jx&1 and ^Jy&1. Setting the two determinant
equal to 0 leads, after some algebra, to the following ex
relations amongrxx

(e) , ryy
(e) , andrH

(e) :
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rxx
(e)@~r'

(2)2r'
(1)!~p1r'

(2)1p2r'
(1)!1~rH

(2)2rH
(1)!

3~p1rH
(2)1p2rH

(1)!#2rH
(e)~r'

(2)rH
(1)2r'

(1)rH
(2)!

5r'
(1)~r'

(2)21rH
(2)2!2r'

(2)~r'
(1)21rH

(1)2!, ~2.8!

rH
(e)@~r'

(2)2r'
(1)!~p1r'

(2)1p2r'
(1)!1~rH

(2)2rH
(1)!

3~p1rH
(2)1p2rH

(1)!#1ryy
(e)~r'

(2)rH
(1)2r'

(1)rH
(2)!

5rH
(1)~r'

(2)21rH
(2)2!2rH

(2)~r'
(1)21rH

(1)2!. ~2.9!

These relations become especially simple in the impor
limiting caser̂2@ r̂1. In that case, Eq.~2.9! leads to

p1rH
(e)>rH

(1)2ryy
(e)

r'
(2)rH

(1)2r'
(1)rH

(2)

r'
(2)21rH

(2)2
. ~2.10!

The second term on the right-hand side~rhs! is only impor-
tant if ryy

(e)5O( r̂2), namely, if constituent 2 percolates in th
y,z plane. If that is not the case, which means that const
ent 1 does percolate in that plane, then Eq.~2.10! reduces to
the simple result,

rH
(e)5

rH
(1)

p1
for r̂25` and r̂1 percolating in plane.

~2.11!

Under the same conditionr̂2@ r̂1, Eq. ~2.8! leads to the
equally simple result,

rxx
(e)5

r'
(1)

p1
for r̂25`. ~2.12!

In the following section, these exact relations will be us
to develop a self-consistent effective-medium approximat
that differs from the conventional generalization of Brugg
man’s self-consistent effective-medium approximation to
isotropic conductivity, as developed, for example, in Ref.

III. SELF-CONSISTENT EFFECTIVE-MEDIUM
APPROXIMATION

A. General remarks

Most approximations of this type are extensions or gen
alizations of the original self-consistent effective-mediu
approximation, which was formulated many years ago
Bruggeman20 and by Landauer.25 Those extensions have in
cluded anisotropic constituents23 and columnar
microstructures24 in the presence of a magnetic field. An
other extension of the basic idea that underlies these app
mations leads to the well-known coherent potential appro
mation, used extensively in quantum-mechanical treatm
of disordered systems.26–28

One way to derive the Bruggeman-type approximation
to seek a homogeneous ‘‘effective medium’’ by the follow
ing procedure: The total change in bulk effective conduc
ity is first calculated for the case where a single inclusion
volumeVinc is embedded in a much larger volumeV of the
effective medium—the total change in conductivity will the
be of orderVinc /V!1. The conductivity of the fictitious ho
mogeneous effective medium is then determined by req
nt

-

d
n
-
-
.
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y

xi-
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-
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ing that the total change in conductivity vanish when av
aged over the different types of inclusions.29 When the
inclusions are shaped as ellipsoids, the change in condu
ity can be calculated exactly to leading order inVinc /V!1,
therefore explicit equations are obtained for the conductiv
of the effective medium. This approach, which reproduc
all the usual self-consistent effective-medium results,
some advantages compared to other approaches.

~i! One avoids having to decide which average to u
because the change in total conductivity produced by a sin
inclusion is very small. Thus, to orderVinc /V!1, all aver-
ages are equivalent to the arithmetic average. Due to
circumstance, we find it appropriate to call this approa
the ‘‘unambiguous self-consistent effective-mediu
approximation29 ~USEMA!.’’

~ii ! This approach can be extended also to nonlinear c
posites, where other approaches run into seri
difficulties.29–31

A simple way to implement USEMA, in the case whe
the inclusions are assumed to have an ellipsoidal shap
based on the fact that the internal electric fieldEint in an
isolated inclusion is uniform when a uniform external fie
E05^E& is applied at large distances. The relation betwe
those fields is linear~see the Appendix!

Eint5ĝ inc•E0 , ~3.1!

and the matrixĝ inc(ŝ inc ,ŝhost) depends on the conductivit
tensors of the host and inclusion, as well as on the shape
orientation of the inclusion. When̂E&5E0 is given, then the
change in̂ J& caused by a single inclusion is

^J&2ŝhost•E05
Vinc

V
~ ŝ inc2ŝhost!•Eint

5
Vinc

V
~ ŝ inc2ŝhost!•ĝ inc•E0 , ~3.2!

to leading order inVinc /V.
This basic result can be used to derive the dilute appro

mation, in which the changes produced by differentisolated
inclusionsare added together, ignoring any interactions. U
ing the fact that̂ J&5ŝe•E0, whereŝe[1/r̂e , this leads to
the following simple equation for the bulk effective condu
tivity tensor in the dilute approximationŝedil ,

ŝe dil2ŝhost5^~ ŝ inc2ŝhost!•ĝ inc&

5 (
j Þhost

pj^~ ŝ j2ŝhost!•ĝ inc~ ŝ j ,ŝhost!& j .

~3.3!

Here the sum is over the different types of inclusionsj, ex-
cluding the host component, each with its particular volume
fractionpj , and^& j signifies an average over the distributio
of shapes and orientations of the inclusions of typej, includ-
ing an average over the orientations of the principal axes
ŝ j . The Clausius-Mossotti–~or Maxwell Garnett–!type ap-
proximation~CMTA! for the bulk effective conductivity ten-
sor, denoted byŝe CM , can be obtained by equating the a
erage that appears in this equation to the result that woul



pe
-

e

e

m

s
r

el

s
llip
-

o
g

of
m

t
in
lie
n
x
ul
b

s

th
io
e
h
xis
ak

a
ith
-

rage

nt

ge

ci-

m-
ion

ned

ele-
l

ure

-

oth

ent
,

r
the

PRB 60 13 019MAGNETOTRANSPORT IN CONDUCTING COMPOSITE . . .
obtained by having a single inclusion of a particular sha
made of the effective mediumbut occupying the entire vol
ume, i.e., with a volume fraction equal to 1:

~ ŝe CM2ŝhost!•ĝ inc~ ŝe CM ,ŝhost!

5 (
j Þhost

pj^~ ŝ j2ŝhost!•ĝ inc~ ŝ j ,ŝhost!& j . ~3.4!

Finally, the unambiguous self-consistent effectiv
medium approximation, denoted simply byŝe , is obtained
by taking the host to be the fictitious, uniform, effective m
dium, and requiring that the change in^J& vanish when av-
eraged over the different kinds of inclusions in that mediu

05^~ ŝ inc2ŝe!•ĝ inc~ ŝ inc ,ŝe!&

5(
j

pj^~ ŝ j2ŝe!•ĝ inc~ ŝ j ,ŝe!& j . ~3.5!

Here the sum is overall the different constituentsj, each
with its particular volume fractionpj , and^& j again signifies
an average over the distribution of shapes and orientation
the constituent particles of typej, including an average ove
the orientations of the principal axes ofŝ j . This is equiva-
lent to conventional extensions of the Bruggeman s
consistent effective-medium approximation~see Ref. 23!.

If ŝ inc andŝhost are both scalar tensors, and if we choo
the coordinate axes to lie along the major axes of the e
soidal inclusion, thenĝ inc is a diagonal matrix, whose non
zero elements are32

gaa~s inc ,shost!5
shost

~12na!shost1nas inc
, ~3.6!

wherena is the depolarization factor along the major axisa.
In general, however, the determination ofĝ inc is nontrivial
whenŝ inc andŝhost are nonscalar tensors. A general meth
for doing this is presented in the Appendix. In the followin
subsection we apply that approach to the development
self-consistent effective-medium approximation for colu
nar microstructures.

B. Columnar microstructures

For the columnar systems under consideration here,
straightforward implementation of USEMA, described
Sec. III A, leads to results that are consistent with ear
work.24 However, when the constituent resistivities are no
scalar tensors, these results usually do not satisfy the e
relations that were obtained in Sec. II. Of course, we co
impose those relations from the outset, thus there would
fewer unknowns among the matrix elements ofr̂e . But the
requirement of Eq.~3.5! would then lead to more equation
than unknowns, and usually there would be no solution.

In order to overcome this dilemma, we must reduce
number of equations. In order to do this in a sensible fash
we restrict our discussion to the case where a given valu
^J& is imposed upon the system. Moreover, we assume t
like B, ^J& too is always perpendicular to the columnar a
~see Fig. 1!. Those assumptions are natural ones to m
,
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when the actual physical system is a thin film, in which
collection of perpendicular holes, or other inclusions, w
constant~i.e., x independent! cross sections have been em
bedded. In experiments on such microstructures, the ave
of Jx always vanishes, while the constant fieldEx is unmea-
surable. We will therefore omit̂Jx& andE0x from the self-
consistency requirements.

In order to do this, we first transform Eq.~3.2! into an
expression for the change in̂E&[E0, caused by a single
inclusion when̂ J& is given:

E02 r̂host•^J&5
Vinc

V
~ r̂ inc2 r̂host!•ŝ inc•Eint

5
Vinc

V
~ r̂ inc2 r̂host!•ŝ inc

•ĝ inc~ ŝ inc ,ŝhost!• r̂host•^J&. ~3.7!

We then assume that̂Jx&50, and only require that the
changes inE0y , E0z vanish when averaged over the differe
kinds of inclusions. This only involves the four elementsyy,
zz, yz, zy of the 333 matrix (r̂ inc2 r̂host)•ŝ inc•ĝ inc• r̂host,
which constitute the 232 submatrix in its lower right-hand
corner. It is only this submatrix, which links between^Jy&,
^Jz& and E0y , E0z and is denoted by@( r̂ inc2 r̂host)•ŝ inc

•ĝ inc• r̂host#$yz% , that must average out to 0 whenr̂host5 r̂e :

05^@~ r̂ inc2 r̂e!•ŝ inc•ĝ inc~ ŝ inc ,ŝe!• r̂e#$yz%&

5(
j

pj^@~ r̂ j2 r̂e!•ŝ j•ĝ inc~ ŝ j ,ŝe!• r̂e#$yz%& j . ~3.8!

The averagê & j now denotes a two-dimensional avera
over shapes of columnar inclusions of typej, as well as a
three-dimensional average over the orientation of the prin
pal axes of the possibly anisotropic conductivity tensorŝ j .
The resulting approximation is called the ‘‘columnar una
biguous self-consistent effective-medium approximat
~CUSEMA!.’’ Clearly, Eq. ~3.8! involves fewer self-
consistency requirements than Eq.~3.5!. There will also be a
smaller number of unknowns whose values are determi
by those equations, when the exact relations of Eqs.~2.8!–
~2.12! are used. In general, the scalar equations for the
ments of r̂e , which follow from the two approaches, wil
differ.

We note that, in the case of a columnar microstruct
with isotropic constituents, whereB is parallel to the colum-
nar axisand an averagêE& or ^J& is prescribed in the per
pendicular plane, all the local values ofE and J also lie in
that plane. This case has been studied before, b
theoretically1,24,33–35,3and experimentally:36 The physics be-
comes two-dimensional, and the behavior is very differ
from what is found whenB lies in the perpendicular plane
which is the case under discussion here.

Finally, we note that the film should be not too thin if ou
present discussion is to be valid: As argued in the past,
film thicknessl and the inclusion radiusa must satisfya/ l
!max(1,umBu), wherem is the Hall mobility of the uniform
film.37
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IV. SOME PARTICULAR EXAMPLES OF COLUMNAR
SYSTEMS

The matrix ĝ inc can be calculated in closed form for a
inclusion that has the shape of an infinitely long circu
cylinder. This is explained in the Appendix, where the e
plicit form of ĝ inc is calculated under the assumption that t
inclusion is an isotropic conductor and the host, while ani
tropic, has the principal axes of its conductivity tensor alo
the columnar axisx and the magnetic fieldBiz @see Eqs.
~A21!–~A24!#. The latter assumption is sufficiently gener
to allow for the anisotropy ofr̂e that is expected due to th
columnar microstructure.

We now use these results in order to apply CUSEMA t
discussion of two interesting types of conducting colum
composite films, subject to an in-plane magnetic field
conductor/insulator random mixture and a normal conduc
perfect conductor random mixture. In both of these syste
we expect to find interesting behavior whenB is large, and
also when the normal conductor volume fractionpM ap-
proaches the two-dimensional percolation thresholdpc from
above.

In these systems, all types of inclusions are assume
have isotropic electrical response, and are shaped as cir
cylinders. Thus there is no need to average over the diffe
types of orientations of the inclusions in Eq.~3.8!. It is only
necessary to calculate the 232 matrix @( r̂ inc2 r̂e)•ŝ inc

•ĝ inc(ŝ inc ,ŝe)• r̂e#$yz% for the different inclusions. It is then
a straightforward, though tedious, exercise to apply t
equation. In particular, the off-diagonal elements of that m
trix vanish identically. Also, the exact relations of Eqs.~2.8!
and~2.9! reduce in these cases to simple results forrxx

(e) and
rH

(e) @see Eqs.~2.10!–~2.12!#. Therefore we will finally have
two coupled equations for the two unknownsryy

(e) andrzz
(e) .

Because thexz, yz, zx, and zy elements of the matrice
r̂ inc , r̂e , ĝ inc all vanish, therefore the scalar equation o
tained in this way from thezz component of Eq.~3.8! is the
same as the one obtained from thezz component of Eq.
~3.5!. By contrast, the equation obtained from theyy com-
ponent of Eq.~3.8! includes contributions from the four dif
ferent componentsxx, yy, xy, yx of Eq. ~3.5!, with coeffi-
cients that depend on those same components ofr̂e .
Therefore, theyy components of Eqs.~3.8! and~3.5! lead to
two scalar self-consistency equations that are quite differ

For comparison, we will also calculateryy
(e) andrzz

(e) using
the CMTA of Eq. ~3.4!. We shall see that CUSEMA an
CMTA usually predict very different behavior for thes
quantities at strong magnetic fields, even for very dilute m
tures. We will subsequently argue that CUSEMA is by
the more reliable of those approximations.

A. Disordered conductor/insulator mixture

We assume that the effective medium resistivity tensorr̂e

has the same form asr̂host of Eq. ~A21!, namely,

r̂e5rMS ae 2be 0

be ge 0

0 0 le

D . ~4.1!
r
-

-
g

l

a
r
a
r/
s

to
lar
nt

t
-

-

t.

-
r

The resistivity tensorr̂M of the conducting constituent i
assumed to have the same form asr̂ inc of Eq. ~A22!, namely,

r̂M5rMS 1 2HM 0

HM 1 0

0 0 nM

D , ~4.2!

while that of the insulating constituent has the formr̂ I

5r I Î , where Î is the unit tensor. We assume that theM
constituent percolates in the plane perpendicular to the
lumnar axis—that is why we chose the same resistivity sc
rM for both r̂M andr̂e , while r I /rM→`. The other param-
etersae , be , ge , le , nM , HM are all dimensionless and o
order 1. The parameterHM will be of special interest, since i
denotes the Hall-to-transverse Ohmic resistivity of theM
component. It can also be expressed in terms of the H
mobility m as HM5muBu, or asHM5vct in the case of a
free-electron-like conductor, wherevc5euBu/(mc) is the
cyclotron frequency of the charge carriers andt is the con-
ductivity relaxation time. We note that the subsequent res
would remain unchanged even ifr̂ I /r I had a more compli-
cated form, as long asr I /rM→`. The difference between
the volume fractions of the two componentsDp[pM2pI
52(pM21/2).0 also measures the distance from the p
colation threshold for an uncorrelated random mixtu
where the threshold ispc51/2.

The results of Eqs.~2.12!, ~2.11! now become ae
51/pM , be5HM /pM . We use these results, as well as E
~A24! for ĝ inc of a cylindrical inclusion, in the matrix self-
consistency equation~3.8!. Due to the three-dimensiona
isotropy of the constituent resistivity tensors, and the tw
dimensional isotropy of the inclusion shapes, no averagin
required beyond that which is already implied by the volum
fractionspj appearing in that equation. The two equation
obtained, respectively, from theyy and zz components of
that equation, are

052pIleS ge1
HM

2

pM
D 1FleS ge1

HM
2

pM
D G1/2

3S Dpge212
pI

pM
HM

2 D1pMge
21~HM

2 21!ge2
HM

2

pM
,

~4.3!

05pIFleS ge1
HM

2

pM
D G1/2

2pMle1nM . ~4.4!

As mentioned earlier, the second equation is the same a
one that would follow from USEMA, while the first one i
definitely different, and leads to different results. By elim
natingge from these equations, one arrives at a quartic eq
tion for le , which can be factorized, somewhat tediously,
yield

05~le2nM !~pMle2nM !

3FDple
222leS nMpM1

pI
2~12nM1HM

2 !

2pM
D 1nM

2 G .
~4.5!
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The physical solution forle is one of the zeros of the qua
dratic polynomial factor in the square brackets of Eq.~4.5!,
namely,

le5
1

Dp H nMpM1
pI

2~12nM1HM
2 !

2pM

1pIF nM~11HM
2 !1

pI
2@~12nM !21HM

4 #

4pM
2 G 1/2J .

~4.6!

That is the only solution that reduces to the correct fo
le51/Dp when HM50, nM51, and Dp.0. From Eqs.
~4.4! and ~4.6! one also gets the following simple relatio
betweenge andle :

ge2le5
12nM

pM
. ~4.7!

For the special case wherer̂M is a free-electron resistivity
tensor, i.e., nM51, these results reduce to particular
simple forms:

le5ge5
1

Dp F pM1
pI

2HM
2

2pM
1pIS 11HM

2 1
pI

2HM
4

4pM
2 D 1/2G

>5
1

Dp F11
pIHM

2

2pM
1O~HM

4 !G , uHMu!1

11pI uHMu1O~pI
2HM

2 !, 1!uHMu!
1

pI

1

Dp FpI
2HM

2

pM
12pM1OS 1

pI
2HM

2 D G , uHMu@
1

pI
.

~4.8!

The fact that the bulk effective longitudinal resistivity com
ponentr i

(e)5rMle and the bulk effective in-plane transver

resistivity componentr̃'
(e)5rMge came out to be equal in

this case is unexpected: The two in-plane directions are
equivalent, even whennM51, and one might have therefor
expected to findleÞge even then. For columnar arrays wit
a periodic microstructure this expectation is indeed bo
out.17,18 It is not clear whether the equalityle5ge when
nM51 is a result of the approximations used to der
CUSEMA. In any case, it is clear that even whennMÞ1, le
andge both tend to the same limit, which is proportional
HM

2 , whenuHMu@1/pI .
It is noteworthy that both resistivity components do n

saturate with increasingB, but continue to increase asHM
2

}B2 at very large fieldsuHMu5umBu@1/pI . This is consis-
tent with the strong field behavior of magnetoresistan
found earlier to occur in a composite where atwo-
dimensional periodic arrayof parallel, infinitely long, insu-
lating columnar inclusions are embedded in an otherwise
mogeneous conducting host.18 In contrast with the disordere
structures under consideration here, in those periodic mi
structures bothr̃'

(e) andr i
(e) oscillate strongly with change
n-

e

t

e

o-

o-

in the direction ofB in the plane perpendicular to the colum
nar axis. However, it was also found thatr̃'

(e)}B2 without
any saturation whatever the direction ofB, and thatr i

(e) ex-
hibits similar behavior for almost all directions ofB: r i

(e)

saturates only whenB points in an in-plane direction wher
there exist inclusion-free parallel slabs that span the sys
from end to end.18

When the mixture is dilute in the insulating constituen
namely, pI!1, then for fields of low and intermediat
strength, whenuHMu!1/pI , the changes inle and ge ~i.e.,
the relative magnetoresistivitiesr i

(e)/rM215le21 and

r̃'
(e)/rM215ge21) are proportional toHM

2 when uHMu
!1, and touHMu when 1!uHMu!1/pI . This behavior can
be understood by recalling the changes produced by asingle
isolated inclusion: In that case, extra dissipation is caused
a cigar-shaped region of strong current distortion that
tends from the inclusion along the two directions6B. That
region has a cross section that is roughly equal to that of
inclusion, and a length that is roughly equal to the inclus
size multiplied byuHMu.38,39 In a system with many inclu-
sions, distributed randomly with a mean density that is l
enough so that their volume fractionpI satisfies pI
!1/uHMu, the region of strong distortion around any incl
sion will usually not overlap with distortion regions pro
duced by other inclusions. In that case, interactions betw
those distortions are negligible, and the induced magnet
sistance of the entire system will simply reflect the totality
extra dissipation produced by many isolated inclusions. O
at fields strong enough so thatpI*1/uHMu will those inter-
actions become important, causing a gradual saturation o
in-plane current componentsJy andJz . In that case the co-
lumnar axis current componentJx will usually exhibit non-
saturatingJx}HM behavior, leading toHM

2 behavior of the
magnetoresistance, as shown in Sec. II.

We note that a microstructure similar to the disorder
one under discussion here was already considered m
years ago, namely, a system of parallel cylindrical inc
sions, embedded in a free-electron host, in the presence
magnetic field perpendicular to the columnar axis~see Figs.
1 and 2 of Ref. 24!. But the inclusions were assumed to b
open-orbit crystallites, and the discussion was based o
simpler Clausius-Mossotti–~or Maxwell Garnett–!type ap-
proximation. The fact, that a nonsaturating,B2 magnetoresis-
tance will appear in a free-electron metal film with a rando
collection of perpendicular cylindrical holes, was not app
ciated previously, and is shown here.

For the microstructure under consideration, it is also re
tively easy to apply CMTA, by assuming that the compos
inclusion also has a circular-cylinder shape and usingĝ inc of
Eq. ~A25! in Eq. ~3.4!. In this case, for a conductor/insulato
mixture, the exact relations of Sec. II are automatically s
isfied. We thus get the following results forle CM andge CM :

le CM5
nM1pI@nM~11HM

2 !#1/2

pM
, ~4.9!

ge CM5le CM1
12nM

pM
5

11pI@nM~11HM
2 !#1/2

pM
.

~4.10!
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These results can be compared with the results of CUSEM
Eqs. ~4.6!, ~4.7!, or ~4.8! for the casenM51. The two ap-
proximations make similar predictions whenpI is small, but
only for weak and intermediate fields, whenuHMu!1/pI . In
the opposite case, whenuHMu@1/pI , they predict a drasti-
cally different behavior: CMTA continues to predict a
asymptotic}uHMu behavior, whereas CUSEMA predicts a
asymptotic}HM

2 behavior. As explained above, the latt
prediction is consistent with numerical calculations, as w
as with exact results, on periodic microstructures,10,17,18and
is due to interactions between the current distortion patte
produced by different inclusions. Thus, it seems as tho
CMTA does not take proper account of those interactio
even for a dilute collection of inclusionspI!1. We note
that, when uHMu@1, the cigar-shaped current distortio
caused by an isolated inclusion is very different from t
well known dipolar distortion that appears around an isola
spherical or cylindrical inclusion whenHM50.39 Therefore,
the fact that the CMTA takes into account the interactio
betweendipolar distortionsis insufficient to account for the
interactions whenuHMu@1.

The results shown in Eq.~4.8! obviously exhibit divergent
behavior for the magnetic-field-dependent parts ofge at the
percolation threshold, whereDp→01. However, we do not
expect the critical exponents obtained in this way to be
curate, as is usual in the case of effective-medium appr
mations of this kind.40

B. Disordered normal conductor/perfect conductor mixture

The effective-medium resistivity tensorr̂e is again as-
sumed to have the form of Eq.~4.1!, and the normal conduc
tor resistivity tensor is assumed to have the form of Eq.~4.2!.
The perfect conductor resistivity tensor has the form

r̂S5rSS 1 2HS 0

HS 1 0

0 0 nS

D , ~4.11!

where rS /rM→0. The subsequent results will not chan
even if r̂S /rS has a different form, as long asrS /rM→0.
The volume fraction differenceDp[pM2pS52(pM21/2)
again measures the distance from the percolation thres
pc51/2. We confine our discussion to the caseDp.0,
which means that theScomponent does not percolate, ther
A,

ll

s
h
s

d

s

-
i-

ld

-

fore we can continue to use a common absolute resisti
scalerM for the effective medium as well as for theM com-
ponent.

The exact results of Eqs.~2.12! and ~2.11! now
become pSae5rS /rM , pSbe5@HS1ge(HS2HM)/(1
1HM

2 )#rS /rM . The two equations, obtained, respective
from theyy andzz components of Eq.~3.8!, are now

05~gele!
1/2S ge

11HM
2

2pM D 1pSge , ~4.12!

05~gele!
1/2S le

nM
2pM D1pSle . ~4.13!

In contrast with Eqs.~4.3! and ~4.4!, these are easily trans
formed into a quadratic equation for either of the two u
knownsle , ge . The equation thus obtained forge is

05S ge

11HM
2 D 2

22
ge

11HM
2 FpM1

pS
2~11HM

2 2nM !

2pMnM
G1Dp.

~4.14!

The physical solution, i.e., the one that reduces tole5ge
5Dp whenHM50 andnM51, is

ge

11HM
2

5pM1
pS

2~12nM1HM
2 !

2pMnM

2pSF11
12nM1HM

2

nM
1

pS
2~12nM1HM

2 !2

4pM
2 nM

2 G 1/2

,

~4.15!

1

le
5

1

ge
1

1

pM
S 1

nM
2

1

11HM
2 D . ~4.16!

In the limit pS→0 this leads to the correct resultle5nM ,
but also to the incorrect resultge511HM

2 , instead ofge

51. This reflects the fact thatpS→0 is a singular limit:
Although Ex50 for anypSÞ0, whenpS50 that field com-
ponent, though still uniform, ceases to vanish. Consequen
ae andbe also cease to vanish. Therefore some of the res
obtained in this subsection are expected to be invalida
whenpS50. In the limitsuHMu!1 anduHMu@1, Eq.~4.15!
becomes
ge

11HM
2

>

¦

Dp1
pS

2pMnM
$2pMnM1pS~12nM !2@4pM

2 nM1pS
2~12nM !2#1/2%

1
pSHM

2

2pMnM
F pS2

nM~pM
2 1Dp!1pS

2

@4pM
2 nM1pS

2~12nM !2#1/2G , uHMu!1

Dp2
pSuHMu

nM
1/2

, 1!uHMu!
1

pS

nMpMDp

pS
2HM

2
, uHMu@

1

pS
.

~4.17!
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WhennM51, these equations simplify to

ge

11HM
2

5pM1
pS

2HM
2

2pM
2pSS 11HM

2 1
pS

2HM
4

4pM
2 D 1/2

,

~4.18!

1

le
5

1

ge
1

HM
2 /pM

11HM
2

, ~4.19!

ge>5 DpF11
HM

2 ~pM1Dp!

2pM
G , uHMu!

1

pS

pMDp

pS
2

, uHMu@
1

pS
,

~4.20!

le>H DpF11
pSHM

2

2pM
G , uHMu!1

1

pM
, uHMu@1.

~4.21!

These results can be compared with some results obta
many years ago forthree-dimensionalnormal conductor/
perfect conductor random mixtures using USEMA:41 There
it was found thatr̃'

(e) saturates at strong fields, but a line
increase withHM was found to appear at intermediate field
We do not find such an intermediate regime, either forr̃'

(e)

5rMge or for r i
(e)5rMle . The fact that bothge and le

saturate at large fieldsuHMu@1 is again consistent with pre
vious results for columnar composites, where a periodic
ray of perfectly conducting inclusions are embedded in
normal conductor host:18 In that case,r i

(e) was found to satu-
rate whatever the direction ofB in the perpendicular plane
while r̃'

(e) was found to saturate for almost all directions
B, except for those few where there are system spann
inclusion-free, parallel slabs.

Equations~4.15! and~4.16! also show thatge andle tend
to 0, in the same fashion, aspM approaches the percolatio
thresholdpc51/2 from above.

In this case, the CMTA again satisfies the exact relati
of Sec. II automatically. The results forle andge are

le5
pMnM~11HM

2 !

11HM
2 1pS@nM~11HM

2 !#1/2
, ~4.22!

ge5
pMnM~11HM

2 !

nM1pS@nM~11HM
2 !#1/2

. ~4.23!

These results satisfy Eq.~4.16!, and they reduce to the cor
rect form ge5le5pM /(11pS) when HM50 and nM51.
WhenpS→0, le reduces to the correct resultnM , while ge

again yields the wrong result 11HM
2 instead of 1. When

uHMu@1, le saturates atpMnM , but whenuHMu@1/pS , then
ge>pMnM

1/2uHMu/pS , i.e., it continues to increase withou
any saturation. From our previous discussion of CUSEM
this behavior ofge is qualitatively wrong. These CMTA be
haviors ofle and ge are similar to what was found man
ed

.

r-
a

g,

s

,

years ago in three-dimensional normal conductor/per
conductor mixtures using the dilute approximation.42

V. SUMMARY AND DISCUSSION

We have shown that there exist some exact relati
among elements of the bulk effective resistivity tensor o
composite medium with a columnar microstructure. Tho
relations are usually violated by naive extensions to s
structures of the Bruggeman self-consistent effecti
medium approximation. In particular, this occurs when
magnetic field is present that is perpendicular to the colu
nar axis: It results from the coupling between electric fie
and current components along the columnar axis and sim
components that are perpendicular to that axis. We there
proposed a different extension of the Bruggeman approxi
tion, namely the ‘‘columnar unambiguous self-consiste
effective-medium approximation,’’ which incorporates tho
exact relations. We then applied CUSEMA to disorder
conductor/insulator mixtures and to normal conduct
perfect conductor mixtures, where all constituents were
sumed to exhibit isotropic electrical response, and wher
magnetic field is present that is perpendicular to the colu
nar axis.

In the conductor/insulator mixtures we found that both t
longitudinal and the in-plane transverse magnetoresistivit
r i

(e) and r̃'
(e) increase asB2 without any saturationfor suffi-

ciently strong fields. This remains true even when the m
ture is very dilute in the insulating component: The unsat
atedB2 behavior appears wheneverumBu@1/pI . By contrast,
in the normal conductor/perfect conductor mixtures
found that bothr i

(e) and r̃'
(e) approach constant asymptot

values at comparably large fields, i.e., whenumBu@1/pS .
The CMTA does not reproduce the correct behavior at str
fields for either type of mixture: In the case of conducto
insulator mixtures it has bothr i

(e) andr̃'
(e) increasing only as

uBu even whenB is very large. This is due to inadequa
treatment of interactions between current distortion effects
different inclusions in that approximation. In the case of n
mal conductor/perfect conductor mixtures it hasr i

(e) saturat-

ing but r̃'
(e) increasing asuBu for large B, when umBu

@1/pS . We conclude that for strong fields, whenumBu
*1/pI or umBu*1/pS , CMTA is not a good approximation
even for a very dilute collection of inclusions. A large di
crepancy between the predictions of CMTA and those o
Bruggeman-type self-consistent effective-medium appro
mation or USEMA, for magnetotransport in certain types
three-dimensional composites, was already found m
years ago by Stroud and Pan.24 The more powerful tools tha
we were able to deploy for the study of columnar microstru
tures, along with the explicit algebraic expressions that
obtained, enabled us to better understand the reasons
such discrepancies in that case. Work is in progress to a
some of this understanding also to magnetotransport in th
dimensional disordered microstructures.

In both types of random mixtures that we considered~i.e.,
conductor/insulator mixtures and normal conductor/perf
conductor mixtures!, the magnetoresistivity components e
hibit critical behavior as the two-dimensional percolati
threshold of the normal conducting constituent is approac
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from above. It will be interesting to study this behavior usi
methods that are more reliable than CUSEMA, which is
pected to fail near that threshold.

The results obtained in this work are applicable to th
conducting films with perpendicular holes, and also to t
semiconducting films with perpendicular metallic or sup
conducting inclusions. The only requirement is that the fi
thickness l and the inclusion radiia satisfy a/ l !uHMu
5umBu. Work is currently in progress to extend these resu
to two-component mixtures where both constituents have
nite resistivity tensors.
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APPENDIX: ISOLATED ELLIPSOIDAL INCLUSION

We start by recalling that the local electric potentialf(r )
in an inhomogeneous conductor can be found by solving
following boundary-value problem:

“•@ŝ~r !•“f~r !#50 in the entire volumeV, ~A1!

f~r !52~E0•r ! at the external surface]V, ~A2!

whereE0 is the volume-averaged electric field andŝ(r ) is
the local conductivity tensor, which is nonsymmetric in t
presence of a magnetic fieldB. We can expressŝ(r ) in
terms of the constituent conductivity tensorsŝ i and the char-
acteristic ~or indicator! functions u i(r ) @u i(r )51 if ŝ(r )
5ŝ i , and ŝ(r )50 otherwise#. In the case of a two-
constituent composite medium we can thus write,

ŝ~r !5ŝ1u1~r !1ŝ2u2~r !5ŝ22dŝu1~r !, ~A3!

dŝ[ŝ22ŝ1 . ~A4!

Using this, the differential Eq.~A1! becomes

“•ŝ2•“f5“•dŝu1“f. ~A5!

The left-hand side of this equation is simple enough~i.e.,
a second-order elliptic differential operator with constant
efficients! that it is useful to define its Green’s functio
G(r ,r 8uŝ2):

“•ŝ2•“G52d3~r2r 8! for rPV, ~A6!

G50 for rP]V. ~A7!
-

n
-

s
-

ts
-

h

e

-

Note thatG depends only on the symmetric part of the tens
ŝ2. UsingG, we can transform the boundary-value proble
of Eqs. ~A1! and ~A2! to an integrodifferential equation fo
f(r ),

f52E0•r2E dV8G~r ,r 8uŝ2!“8•~u18dŝ•“8f8!

~A8!

52E0•r1E dV8u18~“8G•dŝ•“8f8!, ~A9!

or

E~r !52“f5E01E dV8u18““8G•dŝ•E8. ~A10!

Here we used the abbreviated notationf8 for f(r 8), etc.
When V is infinite, G(r ,r 8uŝ) depends only on the separa
tion vectorr2r 8. The Fourier transform ofG then has the
simple form

E dVe2k•(r2r8)G~r ,r 8uŝ !5
1

~k•ŝ•k!
. ~A11!

G itself also has a fairly simple form, if the coordinate ax
are chosen to lie along the principal axes of the symme
part of the tensorŝ

G~r ,r 8uŝ !5
1

4p~sxxsyyszz!
1/2

3S ~x2x8!2

sxx
1

~y2y8!2

syy
1

~z2z8!2

szz
D 21/2

.

~A12!

If we consider the case of a single inclusionŝ1, of ellip-
soidal shape, embedded in a uniform host mediumŝ2, then
we can solve Eq.~A9! in a fairly explicit manner. We can
also show that the electric field inside the inclusion is u
form, no matter how complicated the tensorsŝ1 , ŝ2.

In order to show this, we transform to a new system
Cartesian coordinates: First we align the coordinate a
along the principal axes of the symmetric part ofŝ2. Then
we rescale the coordinate axes as follows

j1[
x

Asxx
(2)

, j2[
y

Asyy
(2)

, j3[
z

Aszz
(2)

. ~A13!

This changes the shape of the inclusion, but it still rema
an ellipsoid. It also greatly simplifies the form ofG, which
becomes proportional to the Coulomb potential 1/uj2j8u.
Eq. ~A10! becomes
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Ea~j!5E0a1(
b,g

1

~saa
(2)sbb

(2)!1/2

3E
Vell

d3j8
]

]ja

]

]jb8

1

4puj2j8u
dsbgEg~j8!,

~A14!

where the integration volumeVell in j space is the volume o
the transformedellipsoidal inclusion.

We now recall the fact that, if both components are is
tropic conductors andB50, ~i.e., ŝ1 , ŝ2 are scalar tensors!
and if E0 lies along a principal axisa of an isolated ellip-
soidal inclusion, then the electric field inside that inclusion
uniform and points in the same direction, and its magnitu
is given by~see, e.g., Ref. 32!

E0as2

s1na1s2~12na!
. ~A15!

Here na is the appropriate depolarization factor. Using th
result in Eqs.~A10! or ~A14!, we easily get

nadab5E
Vell

dV8“a“b8
1

4pur2r 8u
for rPVell ,

~A16!

which is valid if the coordinate axes are the principal axes
the inclusion. For other choices of coordinate axes this g
eralizes to

nab5E
Vell

dV8“a“b8
1

4pur2r 8u
for rPVell , ~A17!

where nab are Cartesian components of the depolarizat
tensor. An important conclusion from this discussion is t
the last integral is independent ofr insideVell . It is impor-
tant to remember that this tensor depends on the shape o
transformed inclusion. However, that shape depends up
the conductivity tensorŝ2 of the host medium, thereforenab

will also depend onŝ2.
In order to test the proposition thatE(r ) is a constantEint

inside Vell in the general case, we substitute that ansatz i
Eq. ~A14!. Using Eq.~A17!, we thus get the following set o
three linear algebraic equations for the components ofEint :

Einta5E0a1(
b,g

nabdsbg

~saa
(2)sbb

(2)!1/2
Eintg . ~A18!

These equations usually have a unique solution, in wh
case the above-mentioned proposition is verified. When
determinant of these equations vanishes, it means tha
-

s
e

f
n-

n
t

the

h
e
he

system has a so-calledquasistatic resonance.14 This is an
interesting phenomenon in its own right, but it can only o
cur at nonzero frequencies.

We note that the solution forEint depends uponŝ2 also
throughnab , since the precise shape of the transformed
lipsoid, of volumeVell , depends onŝ2. The final depen-
dence ofEint on the conductivity or resistivity tensors and o
the actual shape of the original inclusion is thus, in gene
quite complicated.

Obviously, Eqs.~A18! show that we can write

Eint5ĝ inc•E0 , ~A19!

where the elements of the inverse matrix 1/ĝ inc are given by

S 1

ĝ inc
D

ag

5dag2(
b

nabdsbg

~saa
(2)sbb

(2)!1/2
. ~A20!

As an example, which is relevant for Sec. IV, we consid
an inclusion that has a fully isotropic electrical response a
is shaped as an infinitely long circular cylinder along thex
axis. The host has an electrical response that may be an
tropic, but x is one of its principal axes. Along one of it
other principal axes a uniform magnetic fieldB is applied—
that is taken to be thez axis. Consequently, the resistivit
tensors must have the following forms:

r̂host5r0S a 2b 0

b g 0

0 0 l
D , ~A21!

r̂ inc5r1S 1 2H 0

H 1 0

0 0 n
D . ~A22!

The rescaling transformation of Eqs.~A13! changes the infi-
nitely long circular cylinder into an infinitely long elliptic
cylinder, with major axes alongx, y, andz. The depolariza-
tion factor along each major axis of such a cylinder is
versely proportional to the length of that axis~see, e.g., Ref.
32!, therefore those factors are given by

ny5
~shostyy!

1/2

~shostzz!
1/21~shostyy!

1/2
5

1

S g1b2/a

l D 1/2

11

,

nz512ny , nx50. ~A23!

From these it is a straightforward procedure to calculate
matrix ĝ inc , which comes out to be
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ĝ inc51
1 0 0

2
b

a
1

r0

r1
~g1b2/a!

H

11H2

S g1b2/a

l D 1/2

1~g1b2/a!
r0 /r1

11H2

11S g1b2/a

l D 1/2

S g1b2/a

l D 1/2

1~g1b2/a!
r0 /r1

11H2

0

0 0
11S g1b2/a

l D 1/2

11
r0

r1

l

n S g1b2/a

l D 1/2
2 .

~A24!

This is used in Sec. IV to derive the columnar unambiguous self-consistent effective-medium approximation for col
composites.

If we switch the roles of host and inclusion, so that Eqs.~A21! and~A22! now representr̂ inc and r̂host, respectively, then
we similarly find

ĝ inc51
1 0 0

2nH1
b/a

g1b2/a
n~11H2!

r1

r0

@n~11H2!#1/21
n~11H2!

g1b2/a

r1

r0

n1@n~11H2!#1/2

@n~11H2!#1/21
n~11H2!

g1b2/a

r1

r0

0

0 0
n1@n~11H2!#1/2

n1
n

l
@n~11H2!#1/2

r1

r0

2 . ~A25!

This is needed in order to derive the Clausius-Mossotti–type approximation for columnar composites—Eqs.~4.9!, ~4.10!,
~4.22!, and~4.23!.
.
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