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Magnetotransport in conducting composite films with a disordered columnar microstructure
and an in-plane magnetic field
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Some exact relations are found between different elements of the bulk effective resistivity tensor of a
two-component composite medium with a columnar microstructure. A self-consistent effective-medium ap-
proximation is constructed that incorporates those relations. This is then used to conduct a theoretical study of
magnetotransport in such a medium, which can be implemented experimentally as a thin conducting film with
perpendicular cylindrical inclusions. Detailed, explicit results are obtained for a conductor/insulator random
mixture and a normal conductor/perfect conductor random mixture that are above the two-dimensional perco-
lation threshold of the normal conducting constituent. At large magnetic figldse in-plane magnetoresis-
tance components increase B& without any saturatiorin mixtures of the first kind, but tend to constant
asymptotic values in mixtures of the second kind. The Clausius-Mossotti or Maxwell Garnett type of approxi-
mation, which predicts a different behavior, is shown to be unreliable at strong magnetic fields even for very
dilute mixtures[S0163-18209)06641-3

[. INTRODUCTION threshold. In order to study such systems, we develop a self-
consistent effective-medium approximation that is a variant
Following the early pioneering work of many years agoof the well-known approximation invented by Bruggeman
by Landauer and his associatei, has become apparent, many years ag#® Generalizations of that approximation
over the last 15 years, that among the various physical propwvere  developed  previously  for  application to
erties of macroscopically inhomogeneous or composite memagnetotranspoft=2* However, for the columnar systems
dia, magnetotransport exhibits unique forms of behaviorunder discussion here it appears that those generalizations
This is due to the fact that the material response, althougkiiolate some exact relations that must hold between the vari-

linear, is characterized by monsymmetric (electrical con- ous elements of the bulk effective resistivity tenger We
ductivity) tensoyr and to the fact that this tensor hasi@n-  discovered those relations recently, and they are presented
linear dependencen the magnetic field.””** Some of here. Our variant of the self-consistent effective medium ap-
those developments are described in a 1992 review article gfroximation takes into account those exact relations, and en-

IOh)’S_ile?lI properties of macroscopically inhomogeneousbles us to set up a system of coupled algebraic equations for
media:” More recently, composite structures with a colum- ﬁe) and ;ie) in the case of a two-component composite

har microstructure, 1€, a structure that is uniform alqng aC\/here both constituents are isotropic conductors. We exploit
columnar Symme”Y axis, have rece|veq some attention. l;q approximation in order to discuss the case of a
was found that periodic structures of this kind, e.g., a two-

: : > . conductor/insulator mixture, and the case of a normal
d|_men3|_0nal array of_parallel _cyllndrlc_al_ holes in an Other'conductor/perfect conductor mixture.
wise un.|form qonductlng medmm, exh|b|t_a very strong_and The rest of this article is organized as follows: In Sec. Il
very anisotropic magnetoresistance wtigitis strong and is . . 4 P
perpendicular to the cylinder axes, i.e., both the longitudina}'e derive the exact relations whigh, must satisfy in a

: P : two-component columnar composite. In Sec. lll a self-
bulk effective resistivity componens(® and the in-plane ; : ; S
y P Wﬁﬁ P consistent effective-medium approximation is developed that

transverse bulk effective resistivity compopq«nf) WEre  satisfies those relations. In Sec. IV that approximation is ap-
fqund to oscnlgte strongly wheB was rotat_ed in the perpen- plied to the study of random columnar mixtures of
dicular plane'® Very recently, this behavior was shown to conductor/insulator and of normal conductor/perfect conduc-
arise due to local currents that flow _along th_e cylinder axeSyor constituents. Section V provides a summary and discus-
Such currents, when present, continue to increase WithoWion of the results obtained, and indicates directions for fur-
any limit asB increases, leading to a positive magnetoresiSiner work. In the Appendix we describe a method for finding
tance that never saturates whigrand the volgme_aver?ged the uniform electric field that appears inside an isolated con-
current densityJ) point in certain in-plane directio8™*° g cting inclusion of ellipsoidal shape, which is embedded in
Here we discuss the case of a disordered columnar microyn gtherwise homogeneous conducting host, when a uniform
structure. In that case we do not expect any dependence gfectric field is applied at large distances. This is applied to
p{® or p{? on the direction ofB. But we do expect those the case of an inclusion shaped as a circular cylinder, which
resistivities to exhibit a nonsaturating dependenc&pdue is an isotropic conductor, and a host, whose response can be
to the nonsaturating local currents along the columnar axisanisotropic, but one of the principal axes of its resistivity
as mentioned before. We also expect to find critical behaviotensor coincides with the cylinder axis. A uniform magnetic
when such a system is near a two-dimensional percolatiofield is applied along another principal axis, so that both
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¥ e % % Exz(ﬁ-J)X either over the total volume, or just over the
ZIB | subvolume of a single constituent. This leads to another re-
y . lation betweenJ) and(J),:

(J) — (e (IN)y=(p1-(I)1)x- (2.4

FIG. 1. Composite conductor with columnar microstructure Having to satisfy this equation, which is independent of the
shaped as a wire or thin film, with the film plane, magnetic field {jee previous equatior(@.3), means that we have an over-
B|lz, and volume-averaged current densiy all perpendicular to  getermined set of equations for the three components of
the columnar axis. (J);. Actually, there will be several sets of over-determined

N ) . i equations for(J);, since one can make three independent
resistivity tensors are nonsym.metrl_c—th|s is needed in ordegppices forJ). For example, we can single out each one of
to carry out the studies described in Sec. IV. the average current componeiits), (J,), (J;) to be non-

zero, leading to three different sets of over-determined equa-
Il. EXACT RESULTS FOR COLUMNAR SYSTEMS tions. Each of these sets will usually require some determi-
nant to vanish in order to allow a consistent solution, and

_Consider an infinite, three-dimensional conducting me+nat will result in an exact relation among the elements of
dium with columnar symmetry, i.e., the local resistivity and ~

L ~ ~ ~ e-

conductivity tensorp and o=1/p depend only on the two " \ye now apply these general considerations to a particular
Cartesian coordinatesandz, and are independent af(see a5 where both constituents exhibit isotropic electrical re-
Fig. 1). When boundary conditions are applied, which W°U|dsponse, and where a static magnetic fBle applied along

result in uniform values for the local electric fiel and  he7 axis. In that case, the constituent resistivity tensors have
local current density if the system were homogeneous, thenine form

the actual local values of those quantitiasthe inhomoge-

neous systemwill also depend only upoy andz Moreover, M, o

it is easily shown that the requireme¥Mt< E=0 then leads p% p,”

to the result thak, , the component of along the columnar ;)j = pH) pi” 0|, j=1.2 (2.5
symmetry axis, isuniform everywhere These results are 0 0 i

valid regardless of the detailed form pf'® In particular, i

they continue to hold in the presence of a static magneti¢f the z axis, which is perpendicular to the columnar symme-

field, whenp and o are nonsymmetric tensors. try axis x, is also a symmetry axis of the two-dimensional
VYe now turn to consider thAe bquAeffective resistivity ten- microstructure, therp, also has a relatively simple form,

sor p. and conductivity tensos= 1/p,, wWhich are defined namely,

S0 as to characterize the linear relation between the volume

averaged field$E), (J): P& —p® o
- ~ @ e
(EY=pe-(3). 2.1 pe=| Pt Py O @8
0 0 pf?

We now show that some exact relations must exist among

the elements ob. in the case of a two-component composite We note that, in general, we will hayg3# p{§) , because
medium with a columnar microstructure—these are a Conséhe microstructure Is def|n|te|y noninvariant with reSpeCt to
quence of the uniformity of,. We use the notatiof);, arbitrary three-dimensional rotation€On the other hand, if
(), to denote averages over the subvolumes of the two corihe microstructure is invariant undeertain two-dimensional
stituents, ang, , p,=1— p, to denote the two volume frac- rotations around the columnar axis, then of course will

tions, andp,, p, to denote the two resistivity tensors. It is retain its form under such rotations, if we apply the same

clear that we have rotations also to the magnetic fieRl
For such a system, ttecomponent of Eq(2.3) decouples
from the other equations and leads to no restriction on an
(BE)=p1(E)1tPAE)2, (I)=p1(I1+P2(J)2, q y

elements ofp,:

and that from these relations and Eg.1) we can obtain a Pl(Pﬁz)—Pﬁl))Uz)l:(Pﬁz)—Pﬁe))Uz)- 2.7)
linear relation betweefJ) and(J):

The x andy components of Eq(2.3), as well as Eq(2.4),

(p2—pe)-(I)=p1(pa—p1)-(I)1. (2.3)  then become a set of three equations fdy); and(Jy),

given (J,) and(J,). By alternately choosingJ,)=0 and
These can be viewed as three equations that determine tké,)=0, we get two independent sets of over-determined
three components ofJ);, given the three components of equations foxJ,), and(J,),. Setting the two determinants
(J). BecauseE,=(E,);=(E,) is uniform everywhere, we equal to O leads, after some algebra, to the following exact
will get the same result when we average theal relation  relations among)fj(), pg,?/) andp,(f):
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PO (pP—pM)(p1pP+popD) + (pP - p) ing that the total (_:hange in conduct_ivity v_anish when aver-
) ) _— D o aged over the different types of inclusiofisWhen the
X (P14 papi)]— p@(p P — pMp2)) inclusions are shaped as ellipsoids, the change in conductiv-

ity can be calculated exactly to leading ordeMp./V<1,

therefore explicit equations are obtained for the conductivity
of the effective medium. This approach, which reproduces
all the usual self-consistent effective-medium results, has

=P @24 pl —pP (2, (29

PP =P (P1pl +P2pl) + (P = pi)

(2) (1) @ (2) (1)_ (1) (2) some advantages compared to other approaches.
X + + i ) _ ) )
(PP P2 ) * pyy (P11 = P pH) (i) One avoids having to decide which average to use,
=pP(pP2+ p(22) — p2)(p (D24 5 (1)2) (2.9  because the change in total conductivity produced by a single

inclusion is very small. Thus, to ord&f,./V<1, all aver-
These relations become especially simple in the importardges are equivalent to the arithmetic average. Due to this

limiting case;)2>;)1. In that case, Eg(2.9) leads to circumstance, we find it appropriate to call this approach
the  “unambiguous self-consistent effective-medium
(2) ,(1)_ (1) (2) ; i 29 ”
O @ 0P =pMpf; appfoxm_atloﬁ (USEMA). .
PiPH =PH =Py — 22, (22 (2.10 (i) This approach can be extended also to nonlinear com-
PPN posites, where other approaches run into serious

The second term on the right-hand sidks) is only impor-  difficulties =%

tant if p§,‘§,)=0(;)2), namely, if constituent 2 percolates in the A simple way to implement USEMA, iin the case where

y,z plane. If that is not the case, which means that constituEhe inclusions are assumed to have an ellipsoidal shape, is

ent 1 does percolate in that plane, then 8410 reduces to based on the fact that the internal electric fi@g; in an

. isolated inclusion is uniform when a uniform external field

the simple result, Eo=(E) is applied at large distances. The relation between

p(Hl) A A those fields is lineafsee the Appendix

p{@=-—"- for p,=o and p; percolating in plane. A

P1 (219 Eini=Yinc: Eo. (3.1
Under the same conditiop,>p,, Eq. (2.9) leads to the @nd the matrixyin(cinc, ohos) depends on the conductivity
equally simple result, te_nsors_of the host and_lnclusmn, as wel! as on the shape and

orientation of the inclusion. Whe{E) = E; is given, then the
( pV R change in{J) caused by a single inclusion is
pxi)=ﬁ for pp=cc. (2.12

o o (9) = Thost Eo=7" (Finc Tnost- E
In the following section, these exact relations will be used ost v oo ost it

to develop a self-consistent effective-medium approximation V.
that differs from the conventional generalization of Brugge- =ﬂ‘((}mc_ Ohos) - Yine-Eor (3.2
man'’s self-consistent effective-medium approximation to an- v
isotropic conductivity, as developed, for example, in Ref. 23, leading order iV, /V.

This basic result can be used to derive the dilute approxi-

lll. SELF-CONSISTENT EFFECTIVE-MEDIUM mation, in which the changes produced by differisalated
APPROXIMATION inclusionsare added together, ignoring any interactions. Us-
A. General remarks ing the fact tha{J)= - Ey, whereo.=1/p,, this leads to

L . . the following simple equation for the bulk effective conduc-
Most approximations of this type are extensions or gener-

alizations of the original self-consistent effective-mediumtVity tensor in the dilute approximationrei
approximation, which was formulated many years ago by .

Bruggemaf® and by Landaue?® Those extensions have in- Te dil ™ Thost={ (Tinec ™ Thosd* Yinc)

cluded anisotropic  constituefts and  columnar S
microstructure¥ in the presence of a magnetic field. An- = > P{(0)= Thosd Yind T} s Thosd); -
other extension of the basic idea that underlies these approxi- J#host

mations leads to the well-known coherent potential approxi- 3.3
mation, used extensively in quantum-mechanical treatments . . . .

of disordered systenf§ 2 Here the sum is over the different types of inclusignex-

One way to derive the Bruggeman-type approximations i€!uding the host componergach with its particular volume
to seek a homogeneous “effective medium” by the follow- ractionp;, and(), signifies an average over the distribution
ing procedure: The total change in bulk effective conductiv-Of Shapes and orientations of the inclusions of typaclud-
ity is first calculated for the case where a single inclusion of9 @n average over the orientations of the principal axes of
volume V. is embedded in a much larger volurieof the ~ oj. The Clausius-Mossottitor Maxwell Garnettitype ap-
effective medium—the total change in conductivity will then proximation(CMTA) for the bulk effective conductivity ten-
be of orderV,,./V<1. The conductivity of the fictitious ho- sor, denoted byr. ¢y, can be obtained by equating the av-
mogeneous effective medium is then determined by requirerage that appears in this equation to the result that would be



PRB 60 MAGNETOTRANSPORT IN CONDUCTING COMPOSHE . . . 13019

obtained by having a single inclusion of a particular shapewhen the actual physical system is a thin film, in which a
made of the effective mediunut occupying the entire vol- collection of perpendicular holes, or other inclusions, with

ume i.e., with a volume fraction equal to 1: constant(i.e., x independentcross sections have been em-
. . L A bedded. In experiments on such microstructures, the average
(0ecM™ Thosd * Yind{ Te cM 1 Thos of J, always vanishes, while the constant fiédis unmea-
surable. We will therefore omitd,) and Ey, from the self-
= (01— Oroe) - Ve 01,0 - 34  consistency requirements.
j;;ost Pi{(j = Thosd * Vinel 0 Thosd) @4 In order to do this, we first transform E¢3.2) into an

expression for the change {fE)=E,, caused by a single
Finally, the unambiguous self-consistent effective-inclusion when(J) is given:
medium approximation, denoted simply by, is obtained
by taking the host to be the fictitious, uniform, effective me- - Vine ~ - R
dium, and requiring that the change (i) vanish when av- Eo— Phost ()=~ (Pinc™ Phost  Tinc: Eint
eraged over the different kinds of inclusions in that medium:

Vinc ~ ~ ~
0= ((a'inc_ (}e) . A’Yinc( (}inc , (}e)> :7 Pinc™ phOSt) " Tinc
= pi(65=00) Yind 07.00));. (35 ¥ine Tinc: Thos) Prost () (3.7)
J

We then assume thatl,)=0, and only require that the

Here the sum is oveall the different constituent each  cpangeg irEqy , Eo, vanish when averaged over the different
with its particular volume fractiop; , and(); again signifies K

L X , inds of inclusions. This only involves the four eleme
an average over the distribution of shapes and orientations og y yie

the constituent particles of tygeincluding an average over 2% Y% ZY Of the 33 matriX (pinc=phos) * Tinc: ¥inc' Phost
. : P . _ype 9 o g ) which constitute the 2 submatrix in its lower right-hand
the orientations of the principal axes of. This is equiva-

. . corner. It is only this submatrix, which links betweédy),
lent to conventional extensions of the Bruggeman self-

consistent effective-medium approximatisee Ref. 28 <‘]AZ> aAnd Eoy, Eo, and is denoted bi(pinc_f’hosb'?inc
If &, and ooq are both scalar tensors, and if we choose’ Yine' Phostiyz . that must average out to 0 WheRos= pe:
the coordinate axes to lie along the major axes of the ellip- . o
soidal inclusion, theny,,. is a diagonal matrix, whose non- 0=([(Pinc=Pe)* Tinc* Yine( Tinc: Te) - Peliyz)
zero elements aré S
=2 Pi[(p;=pe)- T} Yind 0}, 00) - Pelyn); - (38
O host !
1-n,) Ohostt Ny Tine

yaa(o-inC!o-hOST): ( ’ (36)
The average(); now denotes a two-dimensional average
wheren,, is the depolarization factor along the major axis ~ Over shapes of columnar inclusions of typeas well as a

In general, however, the determination %Z\fmc is nontrivial three-dimensional average over the orientation of the princi-

when ¢, and (}host are nonscalar tensors. A general methodp";‘II axes qu the poss!bly gnlsptrog)l:c dcor:]dlictl\(lty tenspr
for doing this is presented in the Appendix. In the following 1€ résulting approximation is called the "columnar unam-
subsection we apply that approach to the development of iguous self-consistent effective-medium approximation

self-consistent effective-medium approximation for colum- CUS.EMA)'” Clgarly, Eq. (3.8 involves fgwer self-
nar microstructures. consistency requirements than E8.5). There will also be a

smaller number of unknowns whose values are determined
by those equations, when the exact relations of E28)—
(2.12 are used. In general, the scalar equations for the ele-
For the columnar systems under consideration here, thgents ofp,, which follow from the two approaches, will
straightforward implementation of USEMA, described in differ.
Sec. Il A, leads to results that are consistent with earlier \we note that, in the case of a columnar microstructure
WOI‘k.24 However, when the constituent resistivities are nonN-yith isotropic ConstituentS, wheR is para||e| to the colum-
scalar tensors, these results usually do not satisfy the exaghr axisand an averagéE) or (J) is prescribed in the per-
relations that were obtained in Sec. Il. Of course, we coulthendicular plane, all the local values BfandJ also lie in
impose those relations from the outset, thus there would bghat plane. This case has been studied before, both
fewer unknowns among the matrix elementspgf But the  theoretically*#33-*>%nd experimentally® The physics be-
requirement of Eq(3.5 would then lead to more equations comes two-dimensional, and the behavior is very different
than unknowns, and usually there would be no solution.  from what is found wherB lies in the perpendicular plane,
In order to overcome this dilemma, we must reduce thewhich is the case under discussion here.
number of equations. In order to do this in a sensible fashion, Finally, we note that the film should be not too thin if our
we restrict our discussion to the case where a given value gfresent discussion is to be valid: As argued in the past, the
(J) is imposed upon the system. Moreover, we assume thafilm thicknessl and the inclusion radiua must satisfya/l
like B, (J) too is always perpendicular to the columnar axis<max(1|uB|), wheren is the Hall mobility of the uniform
(see Fig. 1L Those assumptions are natural ones to makdilm.%’

B. Columnar microstructures
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IV. SOME PART'CU'—AE ESXAMPS'-ES OF COLUMNAR The resistivity tensop,, of the conducting constituent is
YSTEM assumed to have the same fornpas of Eq. (A22), namely,
The matrix i, can be calculated in closed form for an 1 —H 0
inclusion that has the shape of an infinitely long circular R
cylinder. This is explained in the Appendix, where the ex- pw=pm| Hu 1 0], (4.2
plicit form of &inc is calculated under the assumption that the 0 0 12y

inclusion is an isotropic conductor and the host, while aniso- ) _ ) -
tropic, has the principal axes of its conductivity tensor alongvhile that of the insulating constituent has the fopn

the columnar axix and the magnetic fiel|z [see Eqs. =p,l, wherel is the unit tensor. We assume that thk
(A21)—(A24)]. The latter assumption is sufficiently general constituent percolates in the plane perpendicular to the co-
to allow for the anisotropy o, that is expected due to the lumnar axisA—that i::: why we chose the same resistivity scale
columnar microstructure. pwm for bothpy, andp,, while p, /py,— . The other param-

We now use these results in order to apply CUSEMA to aetersag, Be, Ve, Nes ¥m, Hy are all dimensionless and of
discussion of two interesting types of conducting columnarorder 1. The parametét,, will be of special interest, since it
composite films, subject to an in-plane magnetic field: adenotes the Hall-to-transverse Ohmic resistivity of e
conductor/insulator random mixture and a normal conductortomponent. It can also be expressed in terms of the Hall
perfect conductor random mixture. In both of these systemsobility u asHy, = u|B|, or asHy= w7 in the case of a
we expect to find interesting behavior whBnis large, and free-electron-like conductor, where.=¢€|B|/(mc) is the
also when the normal conductor volume fractipgy ap-  cyclotron frequency of the charge carriers and the con-
proaches the two-dimensional percolation threshmldrom ductivity relaxation time. We note that the subsequent results
above. would remain unchanged evenyif/p, had a more compli-

In these systems, all types of inclusions are assumed tgated form, as long ag, /py—=. The difference between
ha\_/e isotropic electrlc_al response, and are shaped as_cwculgtfe volume fractions of the two componemip=py,—p,
cylinders. Thus there is no need to average over the dlfferemzz(pM —1/2)>0 also measures the distance from the per-
types of orientations of the inclusions in Eg.8). Itis only  colation threshold for an uncorrelated random mixture,
necessary to calculate thex2 matrix [(pinc—pe)- Tinc  Where the threshold ip.= 1/2.

Yin( Tinc,0¢) - Pelyz for the different inclusions. It is then ~ The results of Egs.(2.12, (2.11) now become a,

a straightforward, though tedious, exercise to apply that 1/Pm, Be=Hwm/pw . We use these results, as well as Eq.
equation. In particular, the off-diagonal elements of that ma{A24) for y;,. of a cylindrical inclusion, in the matrix self-
trix vanish identically. Also, the exact relations of E¢8.8)  consistency equatiori3.8). Due to the three-dimensional
and(2.9) reduce in these cases to simple resuItSp@r and isotropy of the constituent resistivity tensors, and the two-
p!? [see Eqgs(2.10—(2.12)]. Therefore we will finally have dimensional isotropy of the inclusion shapes, no averaging is
two coupled equations for the two unknowp@ andpg?. required beyond that which is already implied by the volume
Because thexz, yz, zx, and zy elements of the matrices fractionsp; appearing in that equation. The two equations,
;inc, ’36, a,inc all vanish, therefore the scalar equation Ob_obtalned, respectively, from thgy and zz components of

tained in this way from thez component of Eq(3.8) is the that equation, are

same as the one obtained from the component of Eq. 2 H2 \ Y2
(3.5). By contrast, the equation obtained from thg com- 0=—pPe| Yot M4 Mol Yot M
ponent of Eq(3.8) includes contributions from the four dif- Pwm Pm

ferent componentgx, yy, xy, yx of Eq. (3.5), with coeffi-

2
cients that depend on those same componentsﬁeof X|Apye—1-— ﬂHf,, +Pwm y§+(Hf,,—1)ye— —M,
Therefore, theyy components of Eq$3.8) and(3.5) lead to Pu Pu
two scalar self-consistency equations that are quite different. 4.3
For comparison, we will also calculags?) andp!? using ) 11
the CMTA of Eq.(3.4). We shall see that CUSEMA and _ M
CMTA usually predict very different behavior for these 0=pi|Ae Yet o ~Puletvm- 44

guantities at strong magnetic fields, even for very dilute mix-

tures. We will subsequently argue that CUSEMA is by farAS mentioned earlier, the second equation is the same as the
the more reliable of those approximations. one that would follow from USEMA, while the first one is

definitely different, and leads to different results. By elimi-
nating y. from these equations, one arrives at a quartic equa-
tion for Ao, which can be factorized, somewhat tediously, to

We assume that the effective medium resistivity tepgor  Yield
has the same form as,.; of Eq. (A21), namely, 0=(\o— vy)(Prythe— ¥31)
@ —Be O p?(l—vm%)) )
- X —_— |+
pe=pm| Be ve O ]. 4.1 2pm M
0 0 Ne (4.5

A. Disordered conductor/insulator mixture

Ap)\g—Z)\e( vmPm+
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The physical solution fol. is one of the zeros of the qua- in the direction ofB in the plane perpendicular to the colum-
dratic polynomial factor in the square brackets of B9,  nar axis. However, it was also found thalf)«B? without
namely, any saturation whatever the direction ®f and thatpﬁe) ex-

hibits similar behavior for almost all directions &: p{®

2 2
A :i P +M saturates only wheB points in an in-plane direction where
e Ap| MFM 2pm there exist inclusion-free parallel slabs that span the system
from end to end®

P (1—vy)2+Hy]
4p

+py| vm(1+Hiy) + namely, p;<1, then for fields of low and intermediate
strength, whenH | <1/p,, the changes in. and v, (i.e.,

(4.6)  the relative magnetoresistivitie|®/py—1=Ae—1 and
That is the only solution that reduces to the correct formp{?/pw—1=v.—1) are proportional tOH_fA when [Hy|
Ne=1/Ap whenHy=0, »vy=1, andAp>0. From Egs. <1, and to|Hy| when 1<[Hy|<1/p,. This behavior can
(4.4) and (4.6) one also gets the following simple relation Pe understood by recalling the changes produced $ipgle

1/2} When the mixture is dilute in the insulating constituent,

betweeny, and\,: isolated inclusionin that case, extra dissipation is caused by
a cigar-shaped region of strong current distortion that ex-
1-wy tends from the inclusion along the two direction$3. That
Ye— Ne= "V 4.7 region has a cross section that is roughly equal to that of the

inclusion, and a length that is roughly equal to the inclusion
size multiplied by|Hy|.*®3 In a system with many inclu-
sions, distributed randomly with a mean density that is low
enough so that their volume fractiop, satisfies p,

For the special case whepg, is a free-electron resistivity
tensor, i.e.,vy=1, these results reduce to particularly

simple forms: <1/|Hy|, the region of strong distortion around any inclu-

i sion will usually not overlap with distortion regions pro-
1 pZHZ, 5 pZHY, duced by other inclusions. In that case, interactions between
Ne= Y= xp Pm+ Tﬂ% 1+Hyt —— those distortions are negligible, and the induced magnetore-

M M . . . . .

sistance of the entire system will simply reflect the totality of

, 2 extra dissipation produced by many isolated inclusions. Only
1 1+ PiHM +O(HY) IHyl<1 at fields strong enough so thpt= 1//Hy| will those inter-

Ap 2pm M7 actions become important, causing a gradual saturation of the

1 in-plane current componeng andJ,. In that case the co-
={ 1+p|Hy|+O(pfHY), 1<|Hy|<— lumnar axis current componedy will usually exhibit non-
P saturatingJ,«<H,, behavior, leading t(j-lf,I behavior of the
magnetoresistance, as shown in Sec. Il.
We note that a microstructure similar to the disordered
one under discussion here was already considered many
(4.8  years ago, namely, a system of parallel cylindrical inclu-

. - L sions, embedded in a free-electron host, in the presence of a
The fact that the bulk effective longitudinal resistivity com- magnetic field perpendicular to the columnar asise Figs.

ponentp(® =py\ and the bulk effective in-plane transverse 1 and 2 of Ref. 24 But the inclusions were assumed to be
resistivity componen"y}(f)= Pm7Ye Came out to be equal in open-orbit crystallites, and the discussion was based on a
this case is unexpected: The two in-plane directions are insimpler Clausius-Mossotti4or Maxwell Garnettytype ap-
equivalent, even wheny, =1, and one might have therefore proximation. The fact, that a nonsaturatiff, magnetoresis-
expected to find\.# y, even then. For columnar arrays with tance will appear in a free-electron metal film with a random
a periodic microstructure this expectation is indeed borneollection of perpendicular cylindrical holes, was not appre-
out!”8 |t is not clear whether the equality,=7y, when ciated previously, and is shown here.
vy=1 is a result of the approximations used to derive For the microstructure under consideration, it is also rela-
CUSEMA. In any case, it is clear that even whap+# 1, A,  tively easy to apply CMTA, by assuming that the composite
and y, both tend to the same limit, which is proportional to inclusion also has a circular-cylinder shape and usipgof
H2,, when|Hy|>1/p, . Eq. (A25) in Eq.(3.4). In this case, for a conductor/insulator
It is noteworthy that both resistivity components do notmixture, the exact relations of Sec. Il are automatically sat-
saturate with increasing, but continue to increase as;ﬁﬂ isfied. We thus get the following results g cp and ye cm':
«B? at very large field$H,,|=|uB|>1/p,. This is consis-

1 [p{Hy
M 2py+0
kAp[ by M

1) ol 1
piHZ | "M py

tent with the strong field behavior of magnetoresistance v+ Pl vm(1+HZ) M2

found earlier to occur in a composite where tao- Necm= , (4.9
dimensional periodic arrayf parallel, infinitely long, insu- Py

lating columnar inclusions are embedded in an otherwise ho-

mogeneous conducting hdtin contrast with the disordered 1-vy 1+p[vm(l+ Hf,,)]”2
structures under consideration here, in those periodic micro- ~ Yecm=Aecu™ Py Py :

structures botfp(® and p{® oscillate strongly with changes (4.10
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These results can be compared with the results of CUSEMApre we can continue to use a common absolute resistivity
Eqgs.(4.6), (4.7), or (4.9 for the casevy,=1. The two ap- scalepy for the effective medium as well as for thé com-
proximations make similar predictions whepis small, but  ponent.

only for weak and intermediate fields, whiy|<1/p,. In The exact results of Eqgs(2.12 and (2.1) now

the opposite case, whdhl,|>1/p,, they predict a drasti- become psac=ps/py, PsBe=[Hst ve(Hs—Hw)/(1
cally different behavior: CMTA continues to predict an +HZ,)]ps/py. The two equations, obtained, respectively,
asymptotice|Hy| behavior, whereas CUSEMA predicts an from theyy andzz components of Eq3.8), are now
asymptoticoch,I behavior. As explained above, the latter

prediction is consistent with numerical calculations, as well _ 12 e

as with exact results, on periodic microstructuf®¥*®and 0=(7eke) 142 M T PsYe: (4.12
is due to interactions between the current distortion patterns M

produced by different inclusions. Thus, it seems as though \

CMTA does not take proper account of those interactions Oz(ye)\e)l’z(v—;—p,v, +pshe. (4.13

even for a dilute collection of inclusiong;<1. We note
that, when|Hy|>1, the cigar-shaped current distortion In contrast with Eqs(4.3) and (4.4), these are easily trans-
caused by an isolated inclusion is very different from theformed into a quadratic equation for either of the two un-
well known dipolar distortion that appears around an isolate&nowns\., y.. The equation thus obtained fot, is
spherical or cylindrical inclusion wheid, = 0.%° Therefore,
the fact that the CMTA takes into account the interactions Ye Ye P&(1+HRy—vv)
petweepdipolar distortionsis insufficient to account for the 1+ an 1+H2M 2P M +Ap.
interactions wherH ,|>1. (414
The results shown in E¢4.8) obviously exhibit divergent ) o
behavior for the magnetic-field-dependent partsypfat the ~ The physical solution, i.e., the one that reduces\{e- ye
percolation threshold, whetep—0*. However, we do not =Ap whenHy=0 andvy=1, is
expect the critical exponents obtained in this way to be ac-
curate, as is usual in the case of effective-medium approxi-__ e

2

Pwm

pA(1—vy+HE)
il S L —

mations of this kind?’ 1+HZ, 2Pmvm
: . 2 2 22112
B. Disordered normal conductor/perfect conductor mixture od 1+ l-vy+Hy N ps(1—vy+Hy)
) ) o -~ ) ~PFs 2 2 '
The effective-medium resistivity tensagr, is again as- Ym 4py v
sumed to have the form of E¢4.1), and the normal conduc- (4.15
tor resistivity tensor is assumed to have the form of @®).
The perfect conductor resistivity tensor has the form 1 1 1/1 1
—=—t—|— = . (4.1
1 —-Hs O Ae Ye PmlPm  1+HZ
ps=ps|l Hs 1 01, (4.1  In the limit ps—0 this leads to the correct result=1ry,,
but also to the incorrect resuft,=1+H?2,, instead ofy,
0 0 Vs M

=1. This reflects the fact thgis—0 is a singular limit
where p’\s/pMHO. The subsequent results will not changeA|th0ugh E,=0 for anyps#0, whenps=0 that field com-
even if ps/pg has a different form, as long ass/py—0. ponent, though still uniform, ceases to vanish. Consequently,
The volume fraction differenc&p=py—ps=2(py—1/2)  a.andfB. also cease to vanish. Therefore some of the results
again measures the distance from the percolation thresholsbtained in this subsection are expected to be invalidated
p.=1/2. We confine our discussion to the cad@>0, whenpg=0. In the limits|H,|<1 and|Hy|>1, Eq.(4.19
which means that th& component does not percolate, there-becomes

Ps

Ap+szVM{2vaM+ps<1—vM>—[4p§AvM+pé(l—vM>2]1’2}

psH? vm(Pi+Ap) +p3

2puv Ps™ 2 2712 [Hul<1

Ye B M¥YM [4vaM+pS(1_VM)] (4 17)
1+Hf,|: ps/Hul 1 '

Ap— , 1</Hy|<€—

p V%,{z | |V|| Ps
vmPpmAP 1
o [Hul>—.

PsHw Ps
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When vy =1, these equations simplify to years ago in three-dimensional normal conductor/perfect
" conductor mixtures using the dilute approximatfdn.
2142 244
Ye PsHy > Psfm
2 Pwm 2 —Ps 1+H M + 2 ’
1+Hy Pwm Pwm V. SUMMARY AND DISCUSSION

We have shown that there exist some exact relations
among elements of the bulk effective resistivity tensor of a
= ' (4.19  composite medium with a columnar microstructure. Those
Ne Ye 1+ Hf,l relations are usually violated by naive extensions to such

structures of the Bruggeman self-consistent effective-
1 medium approximation. In particular, this occurs when a
, |Hul< p_ magnetic field is present that is perpendicular to the colum-
S 4.20 nar axis: It results from the coupling between electric field
pPuApP 1 ' and current components along the columnar axis and similar
2 [Hul> p_ components that are perpendicular to that axis. We therefore
Ps s proposed a different extension of the Bruggeman approxima-
tion, namely the ‘“columnar unambiguous self-consistent
Ap PsHw IHyl<1 effective-medium approximation,” which incorporates those
2pwm exact relations. We then applied CUSEMA to disordered
A= 1 (4.21) conductor/insulator mixtures and to normal conductor/
—, [Hu|>1. perfect conductor mixtures, where all constituents were as-
Pwm sumed to exhibit isotropic electrical response, and where a
magnetic field is present that is perpendicular to the colum-

r axis.

: X In the conductor/insulator mixtures we found that both the
!oerfect conductol(z?ndom mixtures using USEKWAThe.re longitudinal and the in-plane transverse magnetoresistivities,
!t was foun.d thafp}™ saturates at strong _f|elds, byt a I!nearpﬁe) andf)(f) increase a8? without any saturatiorfor suffi-

increase wittH ) was found to appear at intermediate fields. cjently strong fields. This remains true even when the mix-

We do not find such an intermediate regime, eitherd@St  ture is very dilute in the insulating component: The unsatur-
=pu7Ye Or for pﬁe)=p,\,|)\e. The fact that bothy, and\,  atedB? behavior appears whene\grB|> 1/p, . By contrast,
saturate at large field$l),|>1 is again consistent with pre- in the normal conductor/perfect conductor mixtures we
vious results for column:_ar co_mpos_ites, where a periodi_c arfound that bothpﬁe) andp!® approach constant asymptotic
ray of perfectly conducting inclusions are embedded in &jues at comparably large fields, i.e., whignB|> 1/ps.
normal conductor host! In that casep(® was found to satu-  The CMTA does not reproduce the correct behavior at strong
rate whatever the direction & in the perpendicular plane, fields for either type of mixture: In the case of conductor/
while ”[)(f) was found to saturate for almost all directions of insulator mixtures it has botbqﬁe) andp!® increasing only as

B, except for those few where there are system spanningp| even whenB is very large. This is due to inadequate
inclusion-free, parallel slabs. treatment of interactions between current distortion effects of
Equationg(4.15 and(4.16) also show that, and\ tend  different inclusions in that approximation. In the case of nor-
t0 0, in the same fashion, g, approaches the percolation ma conductor/perfect conductor mixtures it g8 saturat-
thresholdp,=1/2 from above. -, _ing but p® increasing as|B| for large B, when |uB|
In this case, the CMTA again satisfies the exact reIauong ,
of Sec. Il automatically. The results far, and vy, are >1/ps. We conclude that for strong fields, whepB|
: : e Ye =1/p, or |uB|=1/ps, CMTA is not a good approximation
2 even for a very dilute collection of inclusions. A large dis-
_ Purm(1+Hy) (4.22 crepancy between the predictions of CMTA and those of a
© 1+HE+pd vm(1+HE) 1M ' Bruggeman-type self-consistent effective-medium approxi-
mation or USEMA, for magnetotransport in certain types of
o vn (14 H2) three-dimensional composites, was already found many
Vo= MM M ) (4.23  Yyears ago by Stroud and P&hThe more powerful tools that
vm+pg vm(1l+ Hf,,)]”2 we were able to deploy for the study of columnar microstruc-

) tures, along with the explicit algebraic expressions that we
These results satisfy E¢4.16), and they reduce to the cor- gptained, enabled us to better understand the reasons for
rect form ye=Ae=pym/(1+ps) whenHy=0 andvy=1.  sych discrepancies in that case. Work is in progress to apply
Whenps—0, A reduces to the correct resulfy , while vy some of this understanding also to magnetotransport in three-
again yields the wrong result-1Hf, instead of 1. When  dimensional disordered microstructures.
|[Hu|>1, \¢ saturates gby vy , but when/Hy|> 1/ps, then In both types of random mixtures that we conside(iesl,
Ye=puvidHul/ps, i-€., it continues to increase without conductor/insulator mixtures and normal conductor/perfect
any saturation. From our previous discussion of CUSEMA conductor mixtures the magnetoresistivity components ex-
this behavior ofy, is qualitatively wrong. These CMTA be- hibit critical behavior as the two-dimensional percolation
haviors of A\, and vy, are similar to what was found many threshold of the normal conducting constituent is approached

2
1+

These results can be compared with some results obtain
many years ago fothree-dimensionahormal conductor/
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from above. It will be interesting to study this behavior usingNote thatG depends only on the symmetric part of the tensor
methods that are more reliable than CUSEMA, which is eX'a-z' Using G, we can transform the boundary-va|ue prob|em
pected to fail near that threshold. of Egs.(A1) and(A2) to an integrodifferential equation for
The results obtained in this work are applicable to thing ),
conducting films with perpendicular holes, and also to thin
semiconducting films with perpendicular metallic or super-
conducting inclusions. The only requirement is that the film _ , " N
thickness| and the inclusion radiia satisfy a/l<|Hy| <;/>——E0-r—f dV'G(r.r'|op) V' (8160 V'$")
=|uB|. Work is currently in progress to extend these results (A8)
to two-component mixtures where both constituents have fi-
nite resistivity tensors.

=—E0-r+jdV’ei(V’G-&}-V’tb'), (A9)

ACKNOWLEDGMENTS or

We gladly acknowledge useful conversations with Marc

Barthelemy. This research was supported in part by grants

from thg U.S.—lIsrael I_Binational Scier_lce Fpund_ation, the Is- E(r)= —V¢=Eo+f dV' 9,VV'G- so-E'. (A10)

rael Science Foundation, the Tel Aviv University Research

Authority, and the Gileadi Fellowship program of the Min- ) )

istry of Absorption of the State of Israel. Here we used the abbre\{lated notatigh for ¢(r'), etc.
WhenV is infinite, G(r,r’|o) depends only on the separa-
tion vectorr—r’. The Fourier transform o6 then has the

APPENDIX: ISOLATED ELLIPSOIDAL INCLUSION simple form
We start by recalling that the local electric potentigir)
in an inhomogeneous conductor can be found by solving the -t L 1
following boundary-value problem: f dve G(rr'|o)= Kok (A11)

V.[&(r) -Vé(r)]=0 inthe entire volume/, (A1) G itself also has a fairly simple form, if the coordinate axes
are chosen to lie along the principal axes of the symmetric

¢(r)=—(Ep-r) atthe external surfac®/, (A2) part of the tensorr

where E, is the volume-averaged electric field andr) is

the local conductivity tensor, which is nonsymmetric in the G(r,r'|o)= 1

presence of a magnetic fiell. We can express(r) in A7 (oxxoyyT20) "

terms of the constituent conductivity tensersand the char- (x—x")2 (y—y")? (z—z')?| 12
acteristic (or indicatoy functions 6;(r) [6,(r)=1 if o(r) X T + 7y + o

=0, and o(r)=0 otherwisg. In the case of a two- AL
constituent composite medium we can thus write, (AL2)

If we consider the case of a single inclusion, of ellip-
soidal shape, embedded in a uniform host med&gnthen
we can solve Eq(A9) in a fairly explicit manner. We can
So=0,—07. (A4)  also show that the electric field inside the inclusion is uni-
form, no matter how complicated the tensers, o.

In order to show this, we transform to a new system of
Cartesian coordinates: First we align the coordinate axes
V-&Z-Vqﬁ:V- 5&01V . (A5) along the principal axes of the symmetric partaof Then
we rescale the coordinate axes as follows

(1) =010,(r)+0,0,5(r)=0,— 8c6,(r),  (A3)

Using this, the differential Eq.A1) becomes

The left-hand side of this equation is simple enouigh,
a second-order elliptic differential operator with constant co-

efficient9 that it is useful to define its Green’s function £= X £= y £= z (A13)
G(r,r'|o): ' \/0')%21 ? \/O'Y(?’ s \/O'Z(ZZj .
V.0, VG=—8%r—r") for reV, (A6) This changes the shape of the inclusion, but it still remains

an ellipsoid. It also greatly simplifies the form &, which
becomes proportional to the Coulomb potentidlé2/&’|.
G=0 for redV. (A7) Eqg. (A10) becomes
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1 system has a so-calleguasistatic resonanc¥¢ This is an
E(H=Eg,+ >, m interesting phenomenon in its own right, but it can only oc-
By (04405p) cur at nonzero frequencies.
J (9 1 We note that the solution fdE;, depends upomr, also
xf die'— Sop,E(E), throughn,, since the precise shape of the transformed el-
Ve 9%a 555 |§ g lipsoid, of volumeV,,, depends onr,. The final depen-

(A14)  dence ofE;,; on the conductivity or resistivity tensors and on
the actual shape of the original inclusion is thus, in general,
where the integration volumé, in £ space is the volume of qyite complicated.

the transformedellipsoidal inclusion. Obviously, Eqs(A18) show that we can write
We now recall the fact that, if both components are iso-
tropic conductors anB8=0, (i.e., o, o, are scalar tensors
and if Eq lies along a principal axig of an isolated ellip- Ein= Yine: Eo» (A19)
soidal inclusion, then the electric field inside that inclusion is
uniform and points in the same direction, and its magnitude

is given by(see, e.g., Ref. 32 where the elements of the inverse matriy;}/ are given by
ano'z ( 1 ) aﬁéa-ﬁY
: A15 —| =8y E — (A20)
i+ oA, (A1 Yol o, 7B (@)

Heren,, is the appropriate depolarization factor. Using this

result in Eqs(A10) or (A14), we easily get As an example, which is relevant for Sec. IV, we consider

an inclusion that has a fully isotropic electrical response and

is shaped as an infinitely long circular cylinder along the

axis. The host has an electrical response that may be aniso-

Naop= dV’VaVE 1 for reVy, tropic, putx is one of its_ principal axes. 'Alqng one of its
Vel Ag|r—r'| other principal axes a uniform magnetic fidddis applied—

(Ale) that is taken to be the axis. Consequently, the resistivity
tensors must have the following forms:

which is valid if the coordinate axes are the principal axes of

the inclusion. For other choices of coordinate axes this gen- a —B 0
eralizes to A

pros=po| B v O, (A21)

0 0 A

1
aﬂ f dv’'v Vﬁ for re Ve”, (Al?)

Vel 4arlr—r’| 1 -H 0
_ o pnc=ps| H 1 0 (A22)

wheren,; are Cartesian components of the depolarization 0o 0 v

tensor. An important conclusion from this discussion is that

the last integral is independent ofinside V. It is impor-

tant to remember that this tensor depends on the shape of tA&@e rescaling transformation of Eq#13) changes the infi-
transformed inclusionHowever, that shape depends uponnitely long circular cylinder into an infinitely long elliptic

the conductivity tensoe-, of the host medium, therefore, 5 cylinder, with major axes along, y, andz The depolariza-
will also depend ory tion factor along each major axis of such a cylinder is in-
2.

. . versely proportional to the length of that axsee, e.g., Ref.
_ I_n order_ to test the proposition thE(r)_ is a constanE;; _ 32). therefore those factors are given by
inside Vg in the general casewe substitute that ansatz in

Eq. (Al14). Using Eq.(A17), we thus get the following set of
three linear algebraic equations for the components;pf

_ (Thostyy) v _ 1
- - 2 172 '
(Uhostzz)1/2+ (O'hostyy) 2 ( LN /a) +1
oo N
_ _Napd0py
Einta_ E0a+ ,BE)/ ( (2) (2))1/2 Elnty (A18)
n,=1-n,, n=0. (A23)

These equations usually have a unique solution, in which . )
case the above-mentioned proposition is verified. When thErom these it is a straightforward procedure to calculate the
determinant of these equations vanishes, it means that theatrix v;,., which comes out to be
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1 0 0
B po o  H 7+B2/a)1’2
——+—(y+p%a 14| ——
a Pl(y p )1+H2 A 0
2 1/2
y+,82/a’ 172 2 pO/pl ’y+ﬂ /a 2 pO/pl
- —_— —| T (y+Bla)——
+ 2/ 1/2
1. v_ﬂa)
0 0 A
L PoX(yH+pTa)
pr v X\
(A24)

This is used in Sec. IV to derive the columnar unambiguous self-consistent effective-medium approximation for columnar

composites.

If we switch the roles of host and inclusion, so that E@&1) and (A22) now represenp;,. and phost, respectively, then

we similarly find

1 0 0
/
—uH+%v(1+H2)% b [(1+H?) 2
Y a 0

v(1+H?) p; 0

~ piagpp, V(LHH?) py o [p(1+H?)]o4 ————

Yine= | [¥(1+H)] +m% y+B%la Po (A25)

v+[v(1+H?)]Y2
0 0

v P1
v+ —[v(1+H?) V22
NN

This is needed in order to derive the Clausius-Mossotti—type approximation for columnar composite$4-$q&4.10),

(4.22, and(4.23.
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