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Scaling functions of interfacial tensions for a class of Ising cylinders
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We apply Plechko’s Grassmann path-integral method to Ising cylinders of rectangular, triangular, and
hexagonal lattices to obtain the analytic solutions of free energies for the periodic and antiperiodic boundary
conditions in the joined circumferences of the cylinders. These analytic solutions are used to analyze the
scaling functions of the interfacial tensions for isotropic and anisotropic couplings. The finite-size corrections
to the scaling functions are also discusd&0163-182€09)12141-

[. INTRODUCTION cylinders of square, triangular, and hexagonal lattices with
periodically or antiperiodically joined circumferences. Then
There is extensive current interest in the properties of surwe use these solutions to find the interfacial tensions, and to
faces and interfaces near the bulk critical point in both theonptudy the scaling functions of the interfacial tensions for dif-
and experiment. The interfacial free energy is defined as thérent coupling ratios.
difference of two finite-size systems with different boundary ~ This paper is organized as follows. In Sec. Il, we set up a
conditions. For the case of the Ising model, the difference irgéneral form of the partition function of the Ising model that
free energy between a system with periodic and antiperiodi€a" be applied to square, triangular, and hexagonal lattices.

boundary conditions is sometimes referred to as the Bloclf S€C- Ill, we first introduce three pairs of conjugate Grass-
wall free energy, and few resuttd? exist for the properties mann variables for a lattice site to factorize the Boltzmann

of the free energy of an infinitely extended Block wall. In Weights, and then we use the principle of mirror ordering to
this paper we analyze the properties, mainly the scaling fund€arrange the Grassmann factors so we can perform the sum-
tions, of the Bloch wall free energies of infinitely long Ising Mation over Ising spins to obtain a pure fermionic expression

cylinders of square, triangular, and hexagonal lattices, basedf the partition function. In Sec. IV, using the Fourier trans-
on the analytic solutions of the free energies. form technique we complete the integrations over the Grass-

The analytic solution of the Ising model on a square lat-Tann variables to obtain the analytic solutions of the free
tice was first solved by Onsager in the limit of an infinitely €Nergies. In Sec. V, we use the free energies obtained in the
large lattice using the theory of Lie algeBr&his method last _sect|0n tq study the sgallng functl(_)ns of the |nte_rfaC|aI
was simplified by Kaufmahusing the theory of spinor rep- tensions for different coupling ratios. Finally, Sec. VI is re-
resentation. Then Schultz, Mattis, and Liegave explicity ~ Served for the summary of the resuits.
the fermionic treatment. The other alternative is the combi-
natorial method, which was first developed by Kac and Il. GENERALIZED PARTITION FUNCTION
Ward" and then rigorously reformulated by Hurst and ] ] ) ) ) )

Green? More recently Plechko used a nonstandard and rela- !N this section, starting with a triangular lattice we set up
tively simple approach to obtain analytic expressions of the? 9eneralized partition function of the Ising model that can
partition functions for the Ising model on a torflia,class of ~ P€ applied to rectangular, triangular, and hexagonal lattices.
triangular-type decorated latticsand a triangular lattice Consider a triangular lattice with site identifications
net with holest? This method is based on the GrassmannSnoWn in Fig. 1. The partition function is written as
path-integral factorization of the Boltzmann weights along

with the principle of mirror ordering of the arising Grass- 7= o #H e
mann factors. Here traditional transfer matrix or combinato- ! '

rial considerations used in the previous methods are not

needed. In this paper, we work in this framework to obtainwhere B is the inverse of the reduced temperatyge
analytic solutions of the partition functions for infinitely long =1/(kgT), H is the Hamiltonian defined as
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FIG. 1. A basic cell in the type of triangular lattices used in this
work. A lattice site is given byr,n), and the coupling constants J | |
areJq, J,, andJ;.

H:_% (J10mnOms1nTI20mnOmn+1
+‘]30'm+1,n0'm,n+1)a 2 J,
J; with i=1,2,3 is the coupling constant, arnx,, is the oo,
Ising spin defined on the siten(n) and it has two possible
values,+1 and —1. Using the identity, 1 T
(b)
eB‘]i"'j‘Tk:(1—ti2)71/2(1+ti0'j0'k), (3)

FIG. 2. (a) The basic cell in the type of hexagonal lattices used

with t;=tanh(3J)), we can rewrite the partition function as in this work. There is no position specification at the location of the
Ising spinoy. (b) The equivalent structure of the hexagonal lattice.

1 : . .
Z:= R$TH —> (1+ rIUm,nUm+1,n)(1+r-2ro'm,n0'm,n+l) where NH(=2|_\IT) is the total number of Iattl_ce sites of a
mn € omn hexagonal lattice, anB,=2Ry. After performing the sum
over oy, the partition function becomes

X(1+130m100™" ), (4)
. . . . 1
where N+ is the total number of lattice sites of a triangular Zy= REHH = 2
lattice, mn £ omn
3 X(@agt @10mnTmi1nt @20 mnOmn+1
RT:2|];|;|_ (1_ti2)_1/21 (5) + a30'm+1,n0'm,n+l)a (8)
with

andr] =t; with i =1,2,3. Note that this partition function can
be transformed to the one on a rectangular lattice by setting ap=1, a;=t1t3, ar,=tit,, and az=t,t;. 9
t3:0.

a‘,lihe above patrtition function can be reparametrized in a form

For the case of a hexagonal lattice, we note that one ¢ g .
g imilar to Eqg.(4), and the resultant form is

use the star-triangle transformation to transform a hexagonal
to a triangular lattice as shown in Fig. 2. First we can express

: . 1
the Hamiltonian as Zy=Ry'[] = 2 {1+ omnomin)
mn £ omn
H= _%1 (Jlo-OO'm,n+J20'00'm,n+1+'~]30'00'm+1,n)v (6) X(1+rg0'm,n0'm,n+l)
X (14150 100m 1)} (10)

where oy denotes the Ising spins indicated in Fig. 2. Then W ) ) )
using the identity of Eq(3), we can obtain the partition Wherer{® with i=0,1,2,3 is determined by the relations
function as

ag=rH@+rrirty, ag=rfi+rirt,
1 1
—_pN Ho H, H.H H  H_  H.h
ZH_RHHH] —UE [52’ (1+t,000m ) (11,000 mns1) ar=ri(ri+rirt), ag=rlii+rtl). (1)
’ m,n 0

From Egs.(4) and (10), we can define the generalized
><(1+t30'00'm+1’n)], (7) reduced partition function as
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L

x by q Similar definitions are used fdr,, , andb}, ,, andc,, , and
= H I1 7 > Punl(0), (12 cf ,. We also define the total average over all these pairs as
m=1 n= Om,n '
L L
whereP take the form ol
mn(©) Sp {g(a,a*;b,b*;c,c*)}= 1__[1 Hl Sp Sp Sp
Pmn(0)=(1+1100n0m+10)(1+ 1200 n0mn+1) (a,b,c) M5 (@) () (Cmn)
X(1+r30'm,n+10'm+1,n)v (13 X{g(a,a*;b,b*;c,c*)}.
(17

and the parameters with i =1,2,3 vary from one lattice to

the other. Using these Grassmann variables, we can rewjte( o)

of Eq. (13) as
IIl. FERMIONIC EXPRESSION OF PARTITION
FUNCTION Pmn(o)= Sp Sp Sp

. . . . . . (@m,n)(bm n)(Cm n)
In this section, first we introduce a set of anticommuting

Grassmann variables for each lattice site to express the gen- X{AmnAm+ 10BmnBmn+1Cmn+1Chs 10}
eralized reduced partition functid@ of Eq. (12) as a mixed (18)
representation of spin and Grassmann variables. In this
mixed representation, a Boltzmann weight in EtR) is de-  where the Grassmann factos,A*,B,B*,C, and C* are
coupled to the product of two factors of separated spinsdefined as

Then by using the technique of the mirror-ordered factoriza-

tion, we can group the factors containing the same spin to- ~ App=1+amn,omn, An,=1tr@5 1,0mn, (19
gether to perform the sum over spins. After eliminating the
spin variables we obtain a purely fermionic expressioQof Bmn=1+bmnomn, Bhn=1+r2by —10mn, (20

that is a multidimensional Gaussian integral. The boundary
condition we use is defined as follows: For thdirection we ~ a@n
first set o, 1= Um,Ly+1=0 and then take the limit ot
—oo, and for thex direction we sera,_xﬂyn:kalvn with k
=1 for the periodic boundary condition ahkd=—1 for the  Here a Boltzmann weight in Eq12) is decoupled to the
antiperiodic boundary condition. Thus the solution we obtainproduct of two factors of separated spins. Then by substitut-
corresponds to the case of an Ising cylinder infinitely extending Eq. (18) into Eq. (12) and by using the fact that
ing in they direction and rounding periodically or antiperi- Cy, ,+1Cp 1, for givenmandn is commutable with Grass-
odically in thex direction. mann variables inside the Grassmann integral, we can ex-
Three pairs of conjugate Grassmann variablespress the partition function as
{amn.@mnibmn:bmniCmn.Cmnt, are defined on a lattice
site (m,n). All Grassmann variables anticommute, and their x 21
squares are zeros. The basic rules of integration for one = Sp 1__[ H EZ AmnCmn+1
Grassmann variable are defined as (abo){M=L =L £ oma

Con=l+Cnn-10mn, C’r:w,n: 1+ I’:‘nfl,na'm,n . (21

L L

XC* BB 22
f dam’n.]_:o andjdam,n'am,nzl- (14) m+1n m+1n m,n=m,n+1 ( )

This definition can be viewed as the consequence of proper To group the factors containing the same spin variable

normalization and transnational invariance, namely together, we proceed by applying the principle of mirror or-
dering. To simplify the notation, we define
| dann 0@t = [ dane D@nn, 09 @A Cones and B0 Gl Al

for an arbitrary anticommuting complex number'? Also @3

the symbols of the differentials anticommute with each otheBY using the fact that the combinatiah, , 7, ; , taken as
and with the variables. For each pair of conjugate variable@ Whole is a commutable object inside the Grassmann inte-
introduced above, sag,, , andaZ,,, we follow Plechko’s ~gral, we can rewrite the partition function as

notation to define the average of an arbitrary function

. : - g Ly Ly
f(amn.amn) with a Gaussian weight as Q= Sp {ZNTE ( H (I)m,nq)ﬁu,n)
. (a,b,c) {o} \m=1n=1
Sp {f(amn,amn)}
(am,n)

o

To factorize out the boundary terms, we can reexpress Eg.
(16) (24 as

*
=J daﬁ],nj dam,neam,nam,nf(am,n,aﬁm).
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Ly~1 Ly which have the mirror-ordered form for the terms in the first
Q= spi2m> | I] II @ m+1n) two brackets. To further simplify the notation, we define
(a,b,c) {o} \ m=1n=1
n

Ly Ly-1 noLy o0
X‘I’B-( [1 11 &, mnﬂ)] (25) =1l @, and &7= ]’[ oF (29

with Vg, the boundary terms Then substitutingV' g of Eq. (28) into Eq.(25) and using the
’ 1 n n

fact that®_) (O] as a Whole is a commutable object

X
H oF +1n)< H ) (26)  to insert it between@* and G)L for m=1 to L,—1
- properly, we can rewrite the partltlon function as

n

| o

Here the two products in are ordered in opposite direction

as indicated by the arrows, and similarly the order of the [ *NTE non

LX
11 &7
m=1

Ly m
product inm is also indicated by an arrow. Note that in Q= Sp H1 Bm,Ly>
obtaining Eq.(26), first we use the fact that the combination @b.c) "
(I)Lx,nq)fxﬂ,n taken as a whole is a commutable object. We Ly Ly—
have the order im shown by the arrows, and then also using H H B, nﬂ) ] (30
the property of commutability we arrange the product of m=2n=
Bm.L Bm L1 in mto have the order shown by an arrow, and To have a complete mirror-ordered form, we have to rear-

f|na||y we use the boundary conditiomr,,, ,,=0 to set range the terms in the last two brackets To achieve this, first

B:1,Ly+1:1- Subject to the boundary conditiom .1,  we use Eqs(23) and(29) to expressd,, as
=koy, with k=1 or —1, we have to impose the identifica-

tions n L1 n -
aa‘n: — kat N and an: — kcf o (27) Om - I:.[ Am,ncm,n+1 Am,LyCm,Ly-Hv
as the boundary conditions of the Grassmann variables swith C, L, +1=1. Then by using the fact th&, ,By, ,, 1 as
that we can rewrite the boundary terms as a whole for giverm andn is a commutable object inside the
Grassmann integral, we can have nthe insertion of
n L n L m

y o X . * — .

H F H o, ( Bt ) (28) Bm,anyn+1 betweenA, , andC, .., of O, to obtain the

= n=1 m=1 y expression

L, _m
I e, || 2
=1

m

x n Ly-1 "
Q= Sp Z—NTZ H @:‘, H Am,an,nBr’;n+lcmn+l (

(a,b.c) {o} m=1 n=1

By using the boundary conditios,, ;=0 to setA,, ;=B ;=1, we can rearrange the above equation to yield

n

L m
T - (33
1_=[1 Bm’L ) )

m

T N N
0= SP 2_NT2 H G):(; H2 B:,ncm,nAm,an,n B:,Lycm,LyAm,Ly (
= ne

Now it is straightforward to show that the partition function n
given in the above is equivalent to <1 by
T= L, H CL nAL nBL n
{a} n=2
Ly Ly 1
Q= Sp H H 5 2 CE,nAE,nBE,nCm,nAm,an,n
(a,b,c) ([ M=1n=2 & opy

XBf 1 Cp 1AL 1B 1| (395
(34) X7y ¥y y ¥y

First we consider the term ah=L, in Eq. (33) denoted by
T, By substituting Eq(29) into Eqg. (35), we have
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L " Here the boundary condition isg,=—af , and cj,=
Y
T=>, cx AF . —c{ , for the periodic case, araf; ,=a[" , andcg,=c{ , for
o0 | \n=2 ™= * the antiperiodic case.
L " IV. FREE ENERGY

Il Bf .c, AL LB (36) N o -

gy Len Lyl B Lon o In this section, starting with the fermionic expression of
the generalized reduced partition function obtained in the last
section, we use the technique of Fourier transform to com-
plete the integration so that we can have the analytic solution
of the reduced free energy.

The fermionic expression of the generalized reduced par-
tition function Q given by Eq.(42) is a Gaussian integral of
inside the Grassmann integration due to the fact thaghe Grassmann variables that mix together with the variables
after summing over spin, the factor at different sites. To have a diagonal form, we make a Fou-

2o (CL AL nBL nCu, nAL nBL, n), for a givenniis  rier transformation to obtain its momentum representation.
an even polynom|al in Grassmann variables and becomes &€ Fourier transformation is defined as
commutable object. Note that in obtaining E§7), we use
the boundary conditionr, ;=0 to setCy® A’ ;=1. Then 1
L. ' . X x Xmn= 77— 2
by continuing such construction froom=L, down to m ’ \/LXL;‘ P.g
=1, we can obtain the expression of E§4).

For the partition function given by Eq34), the factors and
containing the same spin are grouped together and we can
perform the sum over spins. Note that for two Grassmann
variablesg, andg,, we can use the identities?=1 and Xinn=
e9192=1+g,g,, to obtain the formula

eN9[1+(g;+gz)0], (39
and after summing over spin we have

which is equivalent to the form

Ly
T=]1 > (C} Af Bf +Ci AL nBL n)) (37)

n=2o_ o
X

xaae—t(zw/Lx)mEe—i(zw/L; )na, (44)

2 X f|(27-r/LX)mpet(27r/L )nq (45)
LLyﬁa

where the variableX,, n(X* n) denotes one of the variables
{am,nvbm,n va n}({amn' m,n? mn}) L* L 1 and p
=p+3 andq=q+ 3 for the periodic case anﬁr p andq
=( for the antiperiodic case with the integeranging from

(1+910)(1+gz0)=

2 (14+9,0)(1+g,0)=2e%9%, (39
o=*1

By using this formula to perform the sum over spins, we

obtain the result

5 2 C nBE,nCm,nAm,an,n

Umn

=exp(Gp,n), (40)
with

ém,n: rlr3C;}1r"|— l,na;;— 1,n+ (rSC:%— 1,n+ rla’r;\— 1,n)r2b:q,n—1
+ (rSC*mf 1,n+ rlaﬁl, 1,n+ erE,nfl)Cm,n*l
+ (rscﬁr 1,n+ rlag, l,n+ erE,nfl"' Cm,nfl)am,n
+(raCh-1ntri@n-1ntrobhn_1+Cmn-1
+am,n)bm,n- (41)
Then we obtain a purely fermionic expressionf

Ly Ly
Q H H damndamndb;ndbmndcmndcmn

m=1 n=2

Ly Ly
exp( > 22 Gm,n), (42

where

Gm,n:am,na*m,n—i_bm,nb;,n"'Cm,nC*m,n'i_Gm,n- (43)

1tolL, andq from 2 toL,—1. Note that owing to the free
boundary condition for the direction, which we used in
obtaining Eq.(42) by settingo, ;= U'm,Lerl:Oa the Fourier
transforms defined by Eq$44) and (45) are exact only in
the limit of L,— . In this limit takingq to be eitheq+ 3 or
g leads to the same result.

After performing the Fourier transformation, the partition
function becomes

Q=11 Qpy> (46)

whereQp g is given by

Q= | AV exitHsg). @)
with the measurel Vg3 given by
dVpg=dag gdapqdbgdbqdcigdcpg, (48

and the functiorHy 7, given in Table I. BecausE 7 con-

tains not only the variableX; —and X2, but also the vari-

p.a’
ablesXLX,p,L;,q andXLx_EL,yk ey instead of calculating

it is easier to calculat®? given by

=]l Q3% (49

P.q
with
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TABLE I. The terms contained irHy g of Eq (47) with p C, 27 dg 27p
=2mplL, and§=2mq/Ly . Each row with the coefficient in front f=—-C;— L_Z f 2—In Ag—A; CO{L—A) — A, Cc0os¢
of the variable represents a term appearingijn. x p JO &7 X
. . 27p
Variable Coefficient —As Cog( :p_ ¢,) } , (57)
X
*at . o raf . . :
ngﬂix—p,Ly—q LR ieh) with C;=InR; and C,=% for a triangular lattice, andC,
Cg'q Leply—a r2r3ei(a_’3) =InRy andC,=3 for a hexagonal lattice. Here the param-
aE#OfoaL; -q rafz€ etersA,, A;, A,, andA;, are given in terms of, r,, and
Co.a@L, b} - e rs by Egs.(52—(55) and vary with the lattices. We have
CoaPL bz -a e'd r,=t,, ro=t,, andrg=0 for a rectangular lattice;; =t,,
aEﬁOLX—EL; ry 1 o r,=t,, andrz=t5 for a triangular lattice. For a hexagonal
CodChg 1—rgel(d=p) lattice, we have
aggar 1-re?
P.9%.q 1® _ 2, 2, 2, 2
bpabe 1-rpe Ap=agtajtastas, (58
P —ip
“paea gl A1=2(aoay— azay), (59
CEEbM rse_(A .
papa rlei‘?ﬁ ’ Ar=2(apar— aas), (60)
anOEE i€ and
bgacp,q 2
— =1
by a8 re ' As=2(apaz— ajay), (62)

2 - o o o *
Ea— f de,adVLX*p,L; —q eXF(Hp’q"' HLX*EL; 75)

(50

*

HereH LopLEq can be obtained frorhi; 4 by replacingp

with @y, a1, @y, and aj given by Eq.(11). Note that the
relations given by the above equations for a hexagonal lattice
can be verified to be the same as E@®R)—(55) by substi-
tuting the relations of Eq(11) into these equations. For the
limit of L,—o, Eq.(57) becomes

by Ly—p andq by Ly —q for the Grassmann variables and
replacing the coefficient in front of the Grassmann variables
by its complex conjugate. The integration in E§0) is very
complicated, but the result turns out to be very simple and it

27 d 27 d
f=_C1_C2J </>1f b2

02’7702’77

XIn[Ag—A1 COSh;—A; COSh,— Az COL 1~ ¢h7) ],

yields
2mp 2mq
Qaq_— AO—A]_CO L_ —AZCO L_*
x y
27p 2wq)\ |Y?

—A3cos( » —ﬁ , (51)
with
Ag=1+r2+r54+r2412r2412r2+12r23+1r2ror24+8r 1,5,

(52

Ar=2ry(1=r3=r3+r3r), (53

Ap=2rp(1=ri=rs+rir), (549
and

Az=2r5(1—r2—r3+r2rd). (55)

Then the dimensionless free energy density on the infi-

nitely long cylinder, defined as

1
f=—Ilim =InQ,

N (56)

L;‘Hw

becomes

(62

and the critical point is determined by the singular point of
the free energyAo— A;—A,—A3;=0, which comes from the
zero modep=0 andq=0, in Eq.(51).1°

The expression of Eq57) for the free energy density can
be further simplified by completing the integration. To obtain
this, we reexpress E@57) as

C
f=—Ci- 2 1(P), (63)
x P
where the integratioh(p) is
2m dqs )
I(p)= f 5 In[f1(P) —X(P)cosg—Y(P)sin ],
0 T
(64)
with
27p
fl(ﬁ):AO_Al COs L.’ (65)
27p
X(ﬁ) = A2 - A3 COS L (66)
and
_2mp
Y(p)=Agzsin (67)

Ly °
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By defining the angl® as

_Y(p) 0.08 |
tan® = W, (68)

we can rewrite the integration as

(1,30)

(1,60)

(1,90)
0.06

2a7-0 dd
=[S @ - falcose], (69

where the functiorf,(p) is
f2(p)=VX2(p) + Y*(p). 7 °

This integration can be completed, and the resultant free en
ergy density is

0.04

0.02

f1(p)+ V5(P) - f5(P)

f=—C1—L—Z In 5 . (7D

(c0,30)

(c0,60)
(c0,90)

where the limits of the sum ip depend on the boundary 0.00
condition and are specified previously after E4f).

0.00 0.01 0.02 0.03 0.04

The usual way of defining interfacial tension is as follows. @) -0
Consider aL, XL, Ising rectangle with periodic boundary 0.12
condition alongL, so that the geometry is a finite cylinder.

Such an Ising system has either no domain walls or an evet (60,100)
number of such walls for the cases where the boundary con
ditions alongL, are ++ and ——, respectively. Here the
boundary condition++ (——) refers to the situation in
which the Ising spins on the left and on the right have fixed
valueo=+1 (—1). On the other hand, for the — boundary
condition in which the Ising spins are specified-a% on the

left and —1 on the right, the system has an odd number of | (60,300)
domain walls. Then comparing with the boundary conditions >
++ or —— the system with ther — boundary condition has < 0.06 |-
excess free energy caused by domain walls, and for low (60,600)
enough temperatures it is conjectured that the excess fre® i
energy is caused exactly by one domain wall in the thermo-
dynamic limit*® Thus the interfacial tension, which is the 0-04 I 60,900
excess free energy per site and ggr, is

V. INTERFACIAL TENSION

0.08 |-

(20, 00)

[ (60,1200)

T(G!Ril-x):Lx[erf(a’Rer)_erJr(Q!R!LX)]v (72)

whered is the reduced temperatuée=(T—T.)/T., Ris the
aspect ratioR=L,/L,, f,_ is the free energy density per
ks T with the +— boundary condition, andl, . is that with : (60, c0) .

the ++ boundary condition. In the limit,, L, —c with 0.00 0.05 0.00 0.05
fixed R, the quantityr(6,R,L,) approaches the bulk interfa-

cial tension7°(#) which vanishes for6=0, and 7°(6)~ ®) _ _ 8 . o
(— 6)* for 6<0. Hereu is the critical index for the interfa- FIG. 3._ The mterfamal_tensmmfor square lattices with isotro-
cial tension, and its value is 1 for the two-dimensional Isingp'c coupling as a function of the. "?dUCEd temperampe(T
model. —T.)/T. calculated from Eq(74) (solid lineg for (a) given values

. . . .. of (R,L,) with aspect ratid?, and(b) given values of (,,L,). The
In th|§ Wo_rk we e?“e”d the above consideration t.o a dIf’doﬁted Ixi)nes in(a)pare from the relat?orr:a—be witﬁxcoryl?stanta
ferent situation. Similar to the above case, we consider twq 4,
LyXLy Ising rectangles that both have a periodic boundary
condition alongL, . But the boundary conditions alorig, Both systems have either no domain walls or an even num-
are periodic and antiperiodic, respectively, and hence theer of such walls, and hence the physical situation here
geometric shapes are toruses. Note that for the antiperiodis different from the usual case defined previously. But
boundary alond-, the spins between the first and the lastcomparing with the case of periodic boundary conditions on
rows at the same column have antiferromagnetic couplingsoth sides, the system with a periodic boundary condition

0.02 -
(40,0}
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TABLE II. The values of the parameters in the scaling function,

2(zra)=ay (r20) +b(ra)z, with an () =A(ra)[1
0.008 | +a,(r,)x%+---] andx=1/N,, for an Ising cylinder of the rectan-
gular lattice with different coupling ratio,; .
21 Oc A(r1) ay(roy) b(r2y)
0.006 L i 8 7.77875599®) 3.02131) 3.2595) —1.51Q4)
;; 7 7.112 386 204L) 2.7565%5) 2.7479) —1.47Q1)
I; 6 6.423 824 38(D) 2.48232) 2.2815) —1.4298)
e A 5 5.707 791 44 2.19622) 1.8313) —1.3616)
o 4 4.95631093@) 1.89449) 1.4168) —1.2789)
0.004 |- i 3 4.15617377®) 1.57079) 1.0433) —1.2031)
2 3.282035818) 1.21240) 0.6920) —1.0813)
1 2.26918528@) 0.78539) 0.4113) —0.8790)
3 1.641017906) 0.50848) 0.2924) —0.6966)
0.002 L i % 1.38539127(6) 0.39270) 0.2575) —0.5992)
’ i 7 1.23907773®) 0.32560) 0.2415) —0.5338)
," % 1.141 558 298) 0.28087) 0.2335) —0.4853)
% 1.070 637 39®) 0.24849) 0.22713) —0.4477)
i 1.0160551661) 0.22377) 0.2233) —0.4180)
0.000 1 L : 0.972344508) 0.20417) 0.2200) —0.3933)
0.05 0.00 0.05
e Ly—1 Lyfl 1/2
2mp 2wq+
FIG. 4. The interfacial tensions as a function of the reduced as=[[ 11 [M‘M Cos——+cos— ) ,
temperatureg for infinitely long cylinders of a rectangulasolid pP=0 g=0 X Y
) . ; . . (77)
line), triangular(dashed ling and hexagonaldotted ling lattices.
The couplings are isotropic, and the circumference of the cylinder is
Lx=100. Le—1Ly,—1 27D 2mq| |12
a= 11 11 [)\O—Al(cos +cos—” ,
on one side and an antiperiodic boundary condition on the p=0 q=0 Lx Ly 79

other side may still have excess free energy caused by the

additional antiferromagnetic layer. Thus, similar to ER), No=(1+1t%)?, and \;=2t(1—1t?), with J;=J,=J andt

for the isotropic couplings we define the interfacial tension:tanh(g‘]). Note that the sign factor in front of the last term

as of Eq. (74) is equal to+1 for >0 and—1 for #<0. Some
results calculated from Eq74) are shown in Fig. 3. We find

7(0,R, L) =Ly fap(0.R L) —fon(6,R,Ly], (73  thatthe interfacial tension agrees very well with the relation

r=a+b(— 6)* for 6<0 andu=1, as shown in Fig. &).

wheref,, is the free energy density pkgT with an antipe- However, when we fix th&, size to be 60 and increase the

riodic boundary condition alony, and a periodic boundary Ly Size, the behavior ofr changes dramatically and ap-

condition alongd.,, andf, is that with a periodic boundary Proaches that in an infinitely long cylinder fog,=1500 as

condition on both sides. The analytical expression of the inShown in Fig. 8). This dramatic change in the behavior of

terfacial tension was obtained to have the f§frm 7may be caused by the suppression of the fluctuation of the
antiferromagnetic layer for sufficiently larde,. For an in-
finitely long cylinder as shown also in Fig(l3, the peak of

(74) 7 is located exactly at the critical point, the value ofle-

' creases in a symmetrical way from the critical point, and the
distribution of r becomes more sharp but with the same criti-
cal indexu=1 when thel, size is decreaseld. These fea-

al-i- 0[2+ C(3_Sgr( 0)&4
al—a2+ a3+ Sgr( 0)6!4

1
7( H,R,LX)I L—In
y

where
tures may be understood in the following way. In a low
L1 Ly-1 2t ot 2 enough tempera'\ture,l the spin configuration with all the spins
=11 11 [)\0 A,| cos T S mq 77) up or down, which gives the lowest energy to the case of a
p=0 g=0 Ly Ly ’ periodic boundary condition, also gives the lowest energy to
(75 the case of an antiperiodic boundary, and hence the interfa-
cial tension tends to vanish. However, the free energy den-
sity at the critical point for the case of an antiperiodic bound-
L1 ly-1 oo ) e ary conditi_on given by E_q(.5_7) contain§ the zero mpc(dae.,
a=11 {)\o—M(cos T 7 ”q” ¢=0 andp=L,), and this is responsible for the rise of the
p=0 =0 Ly L ' peak. Similar to the finite case, for the infinite cylinder we

(76) have the peak decreased whenlthesize increases, and this
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TABLE Ill. The values of the parameters in the scaling func-  TABLE IV. The values of the parameters in the scaling func-
tion, E(Z;er,r31):aNX(r21,r3]_)+b(er,rgl)Z, W|th aNX(I’zl,r31) tion, E(Z;I’21,I’31)=aNx(r21,r31)+b(l’21,l’31)2, W|th aNx(r21,r31)

=A(ry,ra)[1+ay(rp,ra)x®+-++] and x=1/N,, for an Ising  =A(rp,rz)[1+a(rpn,ra)x>+---] and x=1/N,, for an lIsing
cylinder of the triangular lattice with different coupling ratios; cylinder of the hexagonal lattice with different coupling ratigs
andry;. andrg;.

ra1 a1 O A(rar,rs) ai(rairs) b(rai,ra) ran Ta Oc A(rar,rs)  ailranra) b(rai,rsd

10.46449020@) 0.45845) —0.0995) —0.6708)
9.42110055P) 0.48014) —0.1091) —0.6876)
8.312347588) 0.49952) —0.1117) —0.7040)
7.1238608®) 0.51047) —0.0729) —0.7102)
5.77078011@) 0.49365 0.0271) —0.6939)
5.01352194@) 0.46081) 0.1334) —0.6642)
4741590 82®) 0.444316) 0.1744) —0.6485)
4.600956 720) 0.43265) 0.1930) —0.6380)
45149016601 0.42573) 0.2093) —0.6321)
9.10541112(6) 0.43968) —0.0305) —0.6522)
8.1385138%1) 0.47295) —0.0560) —0.6808)
7.11238608®) 0.51047) —0.0729) —0.7102)
6.00355475@) 0.54795) —0.0803) —0.7390)
4.76624397@) 0.57190) —0.0042) —0.7527)
4.069256 94®) 0.562qG7) 0.1085) —0.7421)
3.81930027®) 0.55116) 0.1631) —0.7323)
3.69011685@) 0.54353) 0.1915 —0.72712)
3.61110126() 0.53812) 0.2131) —0.7223)
7.57505600%) 0.39162) 0.0832) —0.6034)
6.69962859@) 0.43590) 0.0587) —0.6443)
5.77078011@) 0.49365 0.0271) —0.6949)
4.76624397@) 0.57190) 0.0042) —0.7528)
3.64095687@ 0.68017) 0.0040) —0.8231)
3.00177739%7) 0.74374) 0.09%3) —0.86Q1)
2.77078253@) 0.76320) 0.1588) —0.8696)
2.6508884910) 0.77163) 0.2023) —0.8744)
2.57735603B) 0.776@3) 0.2359) —0.8766)
6.70388988®) 0.34760) 0.1631) —0.5623)
5.884122690) 0.39473) 0.1462) —0.6049)
5.01352194®) 0.46081) 0.1324) —0.6642)
4.069256 947) 0.562q7) 0.1085) —0.7421)
3.00177739¢) 0.74374) 0.0913) —0.86Q1)
2.38312198(6) 0.90894) 0.1445) —0.9482)
2.15475261@) 0.98757) 0.2141) —0.9854)
2.03462847@®) 1.03377) 0.2763) —1.0058)
1.96027793@) 1.06420) 0.3221) —1.0191)
6.38926979@) 0.32839) 0.1900) —0.5395)
5590457 06() 0.37533) 0.1808) —0.5872)
4741590 82®) 0.44316) 0.1767) —0.6485)
3.81930027®) 0.55116) 0.1757) —0.7326)
2.77078253@) 0.76320) 0.1588) —0.8696)
2.15475261@) 0.98737) 0.2141) —0.9855)
1.92359386(8) 1.11072) 0.2917) —1.0387)
1.800587 70{0) 1.18993) 0.3616) —1.0710)
1.7238020900) 1.24550) 0.4233) —1.0923)

3.679615323) 0.83336) 0.7015 —0.7791)
3.462985708) 0.85400) 0.5321) —0.8201)
3.159685820) 0.87979) 0.2349) —0.8557)
2.72904282&) 0.904q7) —0.1893) —0.8688)
2.078086900) 0.87810) —0.6303) —0.8066)
1.57984291%5) 0.75095) —0.4661) —0.6779)
1.35503203®) 0.645@6) —0.1734) —0.59%9)
1.22086046@) 0.56529) 0.0581) —0.5309)
1.12938357@) 0.50414) 0.0189) —0.4851)
3.07455942@) 1.03925) 0.9443) —0.8375)
2.93911646@) 1.05136) 0.7748) —0.8894)
2.729042826) 1.06544) 0.4964) —0.9435)
2.40545668() 1.07010) 0.0371) —0.9804)
1.88452556F) 0.999G4) —0.4437) —0.9319)
1.46955823(8) 0.822G1) —0.3246) —0.7858)
1.277843628) 0.692G6) —0.0586) —0.6808)
1.161682666) 0.59896) 0.0118) —0.6055)
1.08155263@) 0.52961) 0.2376) —0.5483)
2.22870756@) 1.57039) 1.5470) —0.9477)
2.17907979%) 1.56876) 1.4005) —1.0005)
2.07808690@) 1.561G7) 1.1276) —1.0752)
1.884525563) 1.52639) 0.6356) —1.1571)
1.51865142@) 1.36034) 0.0112) —1.1395)
1.20272834(6) 1.07010) 0.0461) —0.9798)
1.05322860®) 0.87980) 0.2246) —0.8546)
0.96211646@) 0.74999) 0.3669) —0.7627)
0.89914326(%) 0.656Q7) 0.4829) —0.6924)
1.634866 75@) 2.42181) 2.7449) —1.1017)
1.621073688) 2.41386) 2.65714) —1.1347)
1.57984291%) 2.38899) 2.4068) —1.2094)
1.46955823@®) 2.30662) 1.7996) —1.3165)
1.20272834(%) 1.99684) 0.8318) —1.3386)
0.94226278(9) 1.52640) 0.6286) —1.1514)
0.8139069571) 1.23984) 0.7227) —0.9987)
0.73477911®) 1.05136) 0.7743) —0.8880)
0.67987471@) 0.91790) 0.8070) —0.8046)
1.38352316@) 3.13931) 4.0595) —1.2126)
1.377673358) 3.132G8) 4.0102) —1.2341)
1.35503203®) 3.10320) 3.7893) —1.2985)
1.27784362@) 2.993G8) 3.1028) —1.4159)
1.05322860(8) 2.56391) 1.7267) —1.4592)
0.813906957) 1.93250) 1.2174) —1.2470)
0.692695636)) 1.51606) 1.1338) —1.0741)
0.61753593®) 1.32184) 1.1002) —0.9519)
0.565397928) 1.15469) 1.0740) —0.8641)
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FIG. 5. The scaling function of the interfacial tension is defined (b) Mo
as S(ONY 111, 1 3) = AN 1,1 30) - [14@5(F 51,1 3) INZ+- -] . . . . L )
+b(rp,r31)- (ONYY). (@) The A(r,1,rs1) VS I3y curve for a given FIG. 6. The scaling function of the interfacial tension is defined
value ofr,;, and(b) theb(r »;,r3;) VST 3 curve for a given value of  as E(ﬁNy”l?/rzl,rsl)=A(f21,f31)'[1+al(f21-f31)/N§+'_"]
o1, for triangular lattices. The data pointsrat=0 correspond to  +b(r21,r31) - (INy"). (@ The A(rzy,r3) vs g, curve for a given
the case of the rectangular lattice. value ofr,;, and(b) theb(r,,,r3;) vsrg; curve for a given value of

r,,, for hexagonal lattices.

is again due to the suppression of the fluctuation of the an- ] _ _ ) _
tiferromagnetic layer. In the following, we analyze the FOr @ class of Ising cylinders discussed in the previous
coupling-anisotropy and finite-size effects in the scalingS€ctions, we define the interfacial tension as

functions of the interfacial tensions based on the analytical

expressions of free energies obtained in the last section. Be- N — .

caEse the value o:fdecreagses in a symmetrical way from the (0721, P31iN) =N Fal( 6,721,131 Ny)

critical point, we restrict our analysis to the ordered phase. —f5(0,r21,r31:NW 1, (79
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wheref, is the free energy density p&gT for the circum-  specified value of ,; are shown in Fig. 5 for a triangular
ference joined antiperiodicallyf, is for the circumference lattice and in Fig. 6 for a hexagonal lattice. Note that in Fig.
joined periodically,N, is the number of sites along the cir- 5(a) the values for a triangular lattice e4;=0 and the given
cumference, and the coupling ratiog andr 5, are defined as  r,; correspond to the values for a rectangular lattice at the
r,.=J,/J; andrz;=J3/J;. Note that we choose the cou- givenr,;.

pling constant); as the scale to measure the temperature and

to define the coupling ratios, and, is L, for a triangular VI. SUMMARY
lattice, 2L, for a hexagonal lattice. Then from E/3) we )
have We work in the framework of Plechko’s Grassmann path-
integral factorization of the Boltzmann weights with the
(0,721,731, Ny) principle of mirror ordering of the arising Grassmann factors
L, L \/ > 1 > . to obtain the analytic solutions for Ising cylinders of rectan-
:12 n fi(p+3)+ Vfi(p+3)—fa(p+3) gular, triangular, and hexagonal lattices. To deal with the
251 f1(p)+VFi(p)—f5(p) ' boundary conditions imposed on the joined circumferences

of the cylinders, which are periodic or antiperiodic, we in-
(80 troduce three pairs of conjugate Grassmann variables on a
The numerical results of this equation for three types of latlattice site. Then we use the analytic solutions to study the
tices with isotropic couplings anid, = 100 are shown in Fig. Scaling functions of the interfacial tensions, and the results

4. are summarized in the following way:
From the usual scaling ansatz, we can write the scaling (i) The peaks of the interfacial tensions are located ex-
form of 7 as actly at the critical point, and then their values decrease in a
_ . I symmetrical way from the critical point.
(0,7 21,1315 N) = Ny "2 (ON 1 21,7 3), (81) (i) The scaling functions of the interfacial tensions are

where S (z:r5,r51) With z= 6NY” is the scaling function, €XPressed as(zira;.ra)=an, (21t ray) +b(rz,ra)z with
We then employ the form z= aNi’”, ro1=J,/J1, andry;=J3/J,. We determine the
values of the parametei®, and b, for various coupling
3(Z;r o1,z =ay (1,31 +0(r,rs0)z, 82 , x ' o
(Zf21.r30) DUERERSES 2 2 ratios on three types of lattices. Our results indicate that the
to approximate the scaling function. There is a finite-sizefinite-size correction to the values af; is very small, and it
correction inay due to the finite sizéN,, and we define s extremely small on triangular lattice.

A(r,q,r3;) as the value oy (rq,r3q) in the limit of large (iii) If the finite-size correction is neglected, the interfa-
N, * cial tensions can be rearranged to the form of
A(rag,rz)=Ilim ay (r1,rsy). (83 N Y — | 14 1 Alrai,ra)
N, > X 7-(61r211r311Nx) b(r211r31)0 1 Nxellv b(r211r31) .

The value ofA is referred to the amplitude ef at the critical (89)
point. The finite-size dependence of the valueaglc is de-  This form gives the scaling function
termined by fitting to the form of B

aNx(r21vr31)=A(r21ur31)[1+al(r21vr3l)xz+'"]n F(X):l—i_;’ (86)

84
69 with x=N,6'", used by Mon and JasnaotFor the isotropic

with x=1/N,. The leading order of the finite-size effect is couplings, the value oB is —0.8935) for a rectangular lat-
the order of NZ, and this reflects the fact that the finite-size tice, —0.8264) for a triangular lattice, and-1.1938) for a

COI’reCtiOI’l iS Very Sma”. hexagonal |attice_
For isotropic couplings, the values &f a;, andb are
7l4, 0.4113), and —0.8790) for a rectangular lattice,
0.68017), 0.00%0), and —0.8231) for a triangular lattice,
and 1.3608%4), 0.01%2), and—1.1395) for a hexagonal lat- The authors wish to thank V. N. Plechko for valuable
tice. For anisotropic couplings, the valuesfofa,, andbare  discussions and a critical reading of the paper. This work
listed in Table Il for a rectangular lattice, in Table Il for a was partially supported by the National Science Council of
triangular lattice, and in Table IV for a hexagonal lattice. Republic of ChingTaiwan under Grant No. NSC 88-2112-

The qualitative behaviors & andb as functions of 3; fora  M-033-002.
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