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Fully relativistic description of the magneto-optical properties of arbitrary layered systems

T. Huhne and H. Ebert
Institut für Physikalische Chemie, Universita¨t München, Butenandtstrasse 5-13, D-81377 Mu¨nchen, Germany

~Received 4 May 1999!

A fully relativistic formalism is presented that allows us to define the frequency-dependent optical conduc-
tivity tensor for arbitrary layered systems in a layer-resolved way. This opens in particular the way to deal with
the magneto-optical properties of magnetic surface layer systems and to calculate the corresponding magneto-
optical Kerr spectra. The formalism, based on a fully relativistic description of response theory in arbitrary
order, is described in some detail. For an implementation the very flexible spin polarized relativistic Korringa-
Kohn-Rostoker method of band structure calculation has been used. Results of corresponding applications to
the elemental ferromagnets bcc-Fe and fcc-Co treated as homogeneous layer systems are presented.
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I. INTRODUCTION

Most magneto-optical effects of magnetic materi
known today have already been discovered.1–3 In spite of
this, intensive research on this subject has only been ca
out during the last couple of decades. These activities h
primarily been triggered by a strongly growing interest
applications in high density magneto-optical data stor
based on the magneto-optical Kerr-effect~MOKE!.4,5 In or-
der to achieve a high signal-to-noise ratio, this technolo
requires first of all materials with large Kerr rotation at o
tical frequencies. Unfortunately, most bulk compound ma
rials with high Kerr rotations tend to loose this favorab
property when they are prepared in the form of thin films6,7

A possible way to overcome these difficulties might be
extend material design to an additional degree of freed
e.g., to use layer systems tailored to optimize their magn
optical properties.8,9 Investigations in this direction, espe
cially on metallic layer systems consisting of magnetic a
nonmagnetic films and substrates, have brought new exc
discoveries, also from the scientific point of view. The mo
important of these are quantum confinement effects,10 oscil-
lations of the Kerr rotation with variation of the thickness
the magnetic layer,11,12and an apparent relationship betwe
MOKE and magnetic anisotropies.13 Another important field
for the application of MOKE is destruction-free domain pa
tern imaging near the surface using optical microscopy. E
ployed for the first time already in the beginning of th
1950’s,14 there have been some decisive amendments in
cent years such as the use of interferometric techniques15,16

leading to lateral resolutions below 100 nm.
It was already pointed out by Hulme17 in 1932, that the

MOKE is caused by the simultaneous presence of magn
order and spin-orbit coupling. Because of this complex s
ation not much theoretical work has been done in the pas
spite of the many experimental investigations in the field
magneto-optics. Only about 10 years ago the various tec
cal problems in calculating the magneto-optical Kerr spec
in a parameter-free way were solved for the first time
Oppeneeret al.18 Since then several other groups reported
comparable work~see for example Refs. 19–24!, i.e., MOKE
spectra can be calculated nowadays in a nearly routine w
PRB 600163-1829/99/60~18!/12982~8!/$15.00
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However, all theoretical approaches presented so far to
with the MOKE are based on a calculation of the underlyi
electronic structure using a so-called linear band struc

method working inkW space. Accordingly, all of them ar
restricted in application to ordered bulk materials with thre
dimensional translational invariance. As a consequence
do not supply an adequate platform to deal with the intere
ing magneto-optical properties of surface layered syste
mentioned above.

The restriction of the conventionalkW space methods to
deal with the optical conductivity only for ordered solid
could recently be removed by Banhart.25 This author ex-
tended the application of the Kubo-Greenwood-formali
for the residual resistivity of disordered alloys, as it has be
worked out originally by Butler,26 to finite frequencies. By
this way he got access to the optical conductivity of pa
magnetic ordered as well as disordered solids. This
achieved by a description of the underlying electronic str
ture by means of electronic Green’s function using t
Korringa-Kohn-Rostoker Green’s function~KKR-GF!
method of band structure calculation in combination with t
coherent potential approximation~CPA! alloy theory.

Another important extension of Butler’s approach is t
concept of the layer-resolved dc conductivity. This was
troduced by Butler, Zhang, Nicholson, and MacLaren27 and
by Weinberger, Levy, Banhart, Szunyogh, and U´ jfalussy28 to
deal with the giant magnetoresistance~GMR! effect in mag-
netic multilayer systems.

In the following a generalization of the concept to fini
frequencies will be presented~this approach as well as firs
results had already been presented before54,55!. In contrast to
Banhart’s approach, however, it gives access to the full co
plex optical conductivity tensor of arbitrary layered system
This, in combination with a direct solution of the micro
scopic Maxwell equations~details on this will be published
elsewhere29!, allows one in particular to deal with th
magneto-optical properties of surface layered systems in
adequate way.

In the next two sections our approach that is based
Kubo’s linear response formalism will be presented in so
detail. For its application use is also made of the KKR-G
12 982 ©1999 The American Physical Society
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technique to describe the underlying electronic structu
Most important for the investigation of magneto-optic
properties, this is done in a spin-polarized relativistic~SPR!
way. Further features of the resulting SPR-KKR-GF-sche
relevant for the calculation of optical properties will be d
cussed below. To demonstrate the feasibility and impli
tions of our approach, results for the elemental ferromagn
bcc-Fe and fcc-Co which have been treated as layered
tems, will be presented.

II. THEORETICAL FRAMEWORK
AND TECHNICAL DETAILS

A. Fully relativistic description of the nonlocal
frequency-dependent optical conductivity

The interaction of an electronic system and external e
tromagnetic fields in minimal coupling is conventionally d
scribed in terms of the time-dependent perturbation Ham
tonian

X~ t !52
1

cE d3r jW~rW !AW ~rW,t !,

jW~rW !52ecaW d~rW2rW8!. ~1!

Here the external vector potentialAW which is considered to
be adiabatically switched on and coupled to the electro
current density is represented by the operatorjW(rW). To ensure
that all possible sources of the MOKE are properly a
counted for the following formalism is worked out in a full
relativistic way. AccordinglyjW(rW) is represented by the rela
tivistic velocity operatorcaW with aW the vector of the stan
dard Dirac matrices.30

Employing conventional time-dependent perturbat
theory for the density matrixr of the system,31 we find by
iteration of the corresponding equation of motion the app
priate relation betweenAW and the difference in expectatio
values of jW(rW) for the perturbed and the unperturbed syst
in time t:

^ j a~rW !&~ t !2^ j a~rW !&0

5 (
n51

` S i

\cD nE
2`

t

dt1E
2`

t1
dt2•••

3E
2`

tn21
dtnE •••E d3r 1•••d3 r n

3 (
b1 ,•••,bn

`, . . . ,̀

Ab1
~rW1 ,t1! . . . Abn

~rWn ,tn!

3tr$r0@•••@ j a
D~rW,t !, j b1

D ~rW1 ,t1!#2 , . . . ,j bn

D

3~rWn ,tn!#2%, ~2!

where 0 represents quantities of the unperturbed system
D denotes Dirac representation of operators. In the follo
ing, the quantity on the left hand side will be denoted as
‘‘induced’’ current density.
e.
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Retaining only the linear term inAW , using Coulomb gauge
for the representation ofAW and after Fourier transformatio
with respect to time we arrive at the Kubo formula for line
response of the induced current densityjW to the external
electric fieldEW with frequencyv:

j a~rW,v!5(
b

E d3r 8sab~rW,rW8,v!Eb~rW8,v!, ~3!

with a,b the Cartesian components of the involved vecto
The nonlocal optical conductivitysab is defined in terms of
the retarded current-current Green’s functionGj a j b

1 and the

ground stateuh0& as follows:

sab~rW,rW8,v!5
i

~v1 i01!\
E

2`

`

dt8Gj a j b
1

3~rW,rW8,0,2t8!eivt8201t8, ~4!

where the limiting value 01 stems from the adiabatic switch
ing condition ofAW . The quantityGj a j b

1 is given by

Gj a j b
1 ~rW,rW8,t,t8!52 iQ~ t2t8!

3^h0u@ j a
D~rW,t !, j b

D~rW8,t8!#2uh0&. ~5!

Dynamical correlation effects, e.g., electron-hole interacti
will be neglected. On the other hand, inclusion of these
fects can be achieved within time-dependent density fu
tional theory. This would imply the solution of a Dyso
equation in terms of the optical conductivity given by Eq
~4! and ~5! as the zeroth order approximation.32 Because
magneto-optical properties of metallic surface layer syste
within the frequency range considered here are due to d
calised conduction electrons, we expect dynamical corr
tion effects to be of minor importance.

To evaluateGj a j b
1 , we expressj a

D according to second

quantization in terms of Fermion construction operatorsai
and single particle orthonormal eigenstatesu i & with energies
Ei of the unperturbed Hamiltonian of the system:

j a
D~rW,t !5(

i j
^ i u j a~rW !u j &ai

1aje
(Ei2Ej )t/\. ~6!

Inserting this to Eq.~5! and using Eq.~4!, we finally arrive at

sab~rW,rW8,v!5
i

v1 i01 H (
i j

1

\v1Ei2Ej1 i01
^ i u j a~rW !u j &

3^ j u j b~rW8!u i &

2
1

\v1Ej2Ei1 i01
^ i u j b~rW8!u j &

3^ j u j a~rW !u i &J Q~EF2Ei !Q~Ej2EF!, ~7!

with EF the Fermi energy. To simulate finite lifetime effec
and other broadening mechanisms due to finite tempera
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indirect transitions and limited experimental resolution,
replace the quantity 01 in the energy denominators in Eq.~7!
by a lifetime parameter\/t.

An analogous expression for the optical conductivity in
spatially averaged, nonrelativistic form has been given
Wang and Callaway.33 However, there is a subtle differenc
with the nonrelativistic formalism, the operator for the ele
trical current density is explicitly dependent on the vec
potentialAW , while in the relativistic formalism it is not. This
originates from the fact that the Schro¨dinger Hamiltonian is
of second order in space coordinates, while the Dirac Ham
tonian is only of first order; therefore, the so-called diama
netic~Drude-like! contribution to the optical conductivity ap
pearing explicitly in Eq. ~5.1! in Ref. 33 is implicitly
included in the relativistic form of the electric current dens
operator.

The formalism described so far could be applied straig
forwardly to ordered solids by using akW -space band structur
method and inserting the resulting Bloch statesuCnkW& and
associated eigenvaluesEnkW into Eq. ~7!. A much more gen-
eral scheme is achieved, however, by representing the m
fold of initial and final states by the trace of the correspon
ing retarded single-particle Green’s function opera
G1(E).

For real energies the relation

(
i

u i &^ i ud~E2Ei !52
1

p
Im G1~E! ~8!

allows one to rewrite Eq.~7! in the following form:

sab~rW,rW8,v!5
i\

p2E2`

EF
dEE

EF

`

dE8

3
tr$ j a~rW !Im G1~E8! j b~rW8!Im G1~E!%

@E82E2 i ~\/t!#@\v1E2E81 i ~\/t!#

1
tr$ j b~rW8!Im G1~E8! j a~rW !Im G1~E!%

@E82E1 i ~\/t!#@\v1E82E1 i ~\/t!#
,

~9!

where explicit use has been made of the requirement tha
optical conductivity is finite in the limitv→0. In the follow-
ing, thev-dependence of all quantities will be suppressed
intermediate steps for clarity.

B. Layer-resolved optical conductivity

Equation~9! is still of general validity, but of course te
dious to be evaluated directly. Concerning its applications
optical problems, one is in general primarily interested in
reflection and possibly transmission of light with frequen
v and wave vectorkW falling onto a stack of atomic layer
with arbitrary mutual distance. In addition, in-plane trans
tional invariance will be assumed in the following; i.e., th
atomic positions in all layers can be described by a comm
basis of lattice vectors$RW i

i % thus defining a two-dimensiona
lattice. Because the optical conductivity is to be used late
solve the microscopic Maxwell equations, it is inconvenie
to consider a ‘‘layer’’ to be set up by atomic Wigner Se
y
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cells. In the following, we therefore define a pointrW to be-
long to a layerI if its distance to the lattice planeI is smaller
than its distance to any other lattice plane. To exploit tra
lational invariance, it is convenient to perform a spatial tw
dimensional Fourier transform to the optical conductiv
and the optical fields with respect to the layer plane. W
define the two-dimensional Fourier transformEW (kW i ,rW') as

EW ~kW i ,rW'!5E d2rEW ~rW i1rW'!e2 ikW ir
W

i ~10!

with rW5rW i1rW' denoting the separation ofrW into a part par-
allel (rW i) and perpendicular (rW') to the layer plane. Togethe
with the fact thatsab possesses translational invariance w
respect to any lattice vectorRW i

i :

sab~rW1RW i
i ,rW81RW i

i !5sab~rW,rW8!, ~11!

the following relation can be shown to hold by straightfo
ward Fourier analysis:

jW~kW i1GW i
i ,rW'!5(

GW i
j
E dr'8 s i j ~kW i ,rW' ,rW'8 !EW ~kW i1GW i

j ,rW'8 !,

~12!

where the quantitys i j is given by

s i j ~kW i ,rW' ,rW'8 !5
1

AWS
I E

AWS
I

d2r

3E
AJ

d2r 8s~rW i ,rW' ,rW i8 ,rW'8 !

3e2 ikW i(r
W

i2rW i8)eirW i8(GW i
j
2GW i

i ), ~13!

with s a matrix with respect to Cartesian components.GW i
i ( j )

denote reciprocal lattice vectors with respect to the latt
plane andAJ, AWS

I the area of layerJ and the area of the
two-dimensional Wigner-Seitz cell in layerI, respectively.
Furthermore, it is assumed thatrW' (rW'8 ) is located in layerI
~layer J). Equation~13! can be further simplified, if we as
sume the electric field to vary only slowly on an atom
scale; this is well justified in the optical regime where t
typical wave length is by a factor of 1000 larger than t
lattice parameters of ordinary solids. Averaging both sides
Eq. ~13! with respect torW' within layer I—which leads to an
additional indexI—and integrating the electric field and th
optical conductivity independently over each layerJ, we ar-
rive at the following nonlocal, however, discrete, relatio
between the average electric field in layersJ and the electri-
cal current density in layerI:

jW I~kW i1GW i
i !5(

J
(
GW i

j
s i j

IJ~kW i!EW
J~kW i1GW i

j !. ~14!

We may further neglect all off-diagonal elements ofs i j
IJ with

respect to (i j ) and drop these indices in all following con
siderations. Together with Eq.~13!, this means that the rea
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system is replaced by a stack of homogeneous layer
atomic thicknesses in an optical sense. This implies in p
ticular that all local field effects taking place within the d
mensions of a single layer are neglected. For the optica
gime, this will be justified by an investigation of th
corresponding explicit solutions of the Maxwell equatio
for realistic systems.29 Relying on this property, it is save t
neglect also the remainingkW i dependence ofs IJ for optical
wavelengths. Using Eq.~9!, one obtains finally the following
expression for the layer-resolved optical conductivitys IJ:

sab
IJ ~v!5

i\

p2AWSd
IE2`

EF
dEE

EF

`

dE8E
AWS

I
d2r

3E
layer I

drE
layer J

d3r 8

3
tr$ j a~rW !Im G1~E8! j b~rW8!Im G1~E!%

@E82E2 i ~\/t!#@\v1E2E81 i ~\/t!#

1
tr$ j b~rW8!Im G1~E8! j a~rW !Im G1~E!%

@E82E1 i ~\/t!#@\v1E82E1 i ~\/t!#
,

~15!

with dI the thickness of layerI.
The explicit solution of the Maxwell equations that

needed to determine the magneto-optical properties of
system is of course greatly simplified if the nonlocal relati
in Eq. ~14! between the current density in layerI and the
electric fields in all layersJ can be replaced by an effectiv
local one. In fact, under the assumption that in the direct
perpendicular to the layers the electric field varies o
slowly compared to the range of the interlayer depende
within s IJ, we can write with the aid of Eq.~14!

jW I~v!5s I~v!EW I~v! ~16!

with s I5(Js
IJ the effectivelocal optical conductivity of

layer I. For a system with three dimensional translation
invariance this local quantity is of course identical with t
conventional optical conductivity tensors.

C. Optical conductivity within the SPR-KKR-GF

As mentioned above, one has to account in particular
the spin-orbit coupling when one is dealing with magne
optical properties. This is done here in a fully relativistic w
by describing the electronic system on the basis of the D
equation for magnetic solids~from now on we will use
atomic Rydberg units!:

Fc

i
aW ¹W 1

1

2
~b21!c21V~rW !GF i~rW !5EF i~rW !. ~17!

Here it is assumed that the corresponding effective poten
V that is spin dependent is set up within the relativistic v
sion of spin density functional theory~SDFT!.34,35 For sys-
tems for which orbital magnetism is of appreciable imp
tance appropriate extensions as for example current de
functional theory~CDFT! ~Ref. 36! can be used as well
without affecting the following scheme.
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A very reliable and accurate way to determine the el
tronic Green’s functionG1(E) to be inserted into Eq.~15!
on the basis of the above Dirac equation is supplied by r
tivistic multiple scattering theory or KKR formalism. Thi
allows to write ImG1(E) in its real-space spin represent
tion in the compact way:

Im G1~rW,rW8,E!5
1

2i (
LL8

ZL
n ~rW,E!

3@tLL8
nm

~E!2tL8L
mn* ~E!#ZL8

m3
~rW8,E!.

~18!

Here ZL
n(3) is the regular~left hand! solution for the single

site Dirac equation for the potential well at siten and L
5(k,m) stands for the relativistic spin-orbit and magne
quantum numbersk andm, respectively. Finally,tLL8

nm is the
so-called scattering path operator that transforms a w
with characterL8 incoming at sitem into a wave with char-
acterL outgoing from siten with all possible multiple scat-
tering events accounted for~for further details see for ex
ample Refs. 37 or 38!.

Here one should mention that the expression given in
~18! is completely sufficient to evaluate the energy integr
in Eq. ~15! for real energies. However, a more efficie
scheme is achieved by exploiting the analyticity of t
Green’s function and deforming the energy integration pa
in an appropriate way into the upper complex plane. This
the great advantage that the Green’s function is less st
tured for complex energies allowing to reduce the numbe
energy points accordingly.39 However, in this case, also th
so-called irregular parts of the Green’s function have to
taken into account. This makes the implementation mu
more tedious and the whole calculation for one single pai
energy points from both paths very time consuming.

An alternative and promising approach seems to
Cauchy’s integral theorem to express the integral over
imaginary part of the second Green’s function times
energy-dependent prefactor by a single Green’s funct
This way one gets rid of one of the energy integratio
However, in this case, the photon energy\v explicitly ap-
pears in the argument of the Green’s function. That me
that the whole calculation has to be carried out separately
each photon energy, i.e., 100–200 timesin praxi, depending
on the spectral range one is interested in.

Finally it should be mentioned here that a further meth
to calculate the optical conductivity has been developed
cently by Szunyogh and Weinberger.40 These authors star
from the formula given by Wang and Callaway33 in terms of
the single-particle Green’s function and also end up w
only one single energy integration involved.

For simplicity, it is assumed in the following that th
in-layer atomic basis consists only of one atom per primit
unit cell; however, the formalism can be readily extended
the case of complex systems. Furthermore the energy i
grals in Eq.~15! will be restricted to the real energy axis
Accordingly Eq.~18! is inserted directly into Eq.~15!. Per-
forming a two-dimensional Fourier transformation with r
spect to the resulting sums over products oft-matrices and
exploiting the fact that the wave functionsZ only depend on
the respective layer, we can write
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E
AWS

I
d2r E

layer I
drE

layer J
d3r 8tr$ j a~rW !

3Im G1~E8! j b~rW8!Im G1~E!%

52 (
L . . . L-

^ZL-
I 3

~E!u j a~rW !uZL
I ~E8!&

3^ZL8
J3

~E8!u j b~rW8!uZL9
J

~E!&
1

VBZ

3E
VBZ

d2k@tLL8
IJ

~kW ,E! 2tL8L
* JI

~kW ,E!#

3@tL9L-
JI

~kW ,E8!2tL-L9
* IJ

~kW ,E8!# ~19!

with VBZ the corresponding area of the corresponding tw
dimensional Brillouin zone. Thet matrices in reciproca
space,tLL9

IJ (kW ,E), are obtained by the corresponding host
matrices and the single-site scattering matrices (t matrices!
of the perturbed system via a Dyson equation. Details on
can be found elsewhere.41

The quantities in angular brackets in Eq.~19! represent
the matrix elements of the current density operatorj a with
respect to the regular wave functionsZL(E). Technical de-
tails concerning the evaluation of these matrix elements
be found for example in Ref. 42. The spatial integration
volved here in principle has to be carried out over the regu
prism extending according to the layer thickness with
two-dimensional Wigner-Seitz cell of the in-plane lattice
basis. However, the calculations presented in this paper w
carried out making use of the atomic sphere approxima
~ASA!. This means that each atomic cell is represented b
sphere of the volume of the respective atom, which in a fi
place also represents the integration volume for our ma
elements. The integration volume, i.e., the prism descri
above is distributed over several adjacent atomic spheres
an approximation, we therefore neglect the spatial dep
dence of the current density matrix elements within
atomic cell in order to represent its spatial integral by
weighted sum of integrals over adjacent atomic spheres,
cording to their volume contributions to the respective rig
prisms.

D. General transfer matrix T
and Kerr rotation angle of magneto-optic layer systems

In general, the transmission, reflection, and coupling
electromagnetic waves for a stack of homogeneous and
tically local layers is described in terms of the so-called g
eral transfer matrixT.43 This approach allows one to calcu
late for any polarization the amplitude of transmitted light
terms of those of incident and reflected light. We assume
layer stack to be limited by homogeneous, isotropic diel
tric media ~e.g., air!. Then the waves on both sides of th
stack can be decomposed intop- and s-polarized contribu-
tions:

S Es,i

Ep,i

Es,r

Ep,r

D 5TS Es,t

Ep,t

0

0

D ~20!
-

is

n
-
r

e

re
n
a
t

ix
d
As
n-
n

c-
t

f
p-
-

e
-

with Es(p),i (r )(t) the complex amplitudes ofs- (p-! polarized
components of incident (i ), reflected (r ), and transmitted
waves (t). Light incidence is only permitted from one side o
the layer stack, thus there are no reflected waves on the tr
mission side. As shown by various authors,44,45 the transfer
matrix T can be used in a straightforward way to calcula
the reflection coefficientsr ss,r pp ,r ps and r sp of the layer
system. Given that, the following approximate relation b
tween the reflection coefficients and the complex Kerr ro
tion angle can be used:46

us1 i es5r ps /r ss,

2up1 i ep5r sp /r pp , ~21!

with us(up) the real Kerr rotation angle andes(ep) the Kerr
ellipticity of the system as a whole.

For the remaining determination of the general trans
matrix T, we employ a formalism based on Eq.~16! and an
eigenvector equation for any appropriate wave vectorkW and
polarization vectoreW I in layer I which follows from simple
combination of Maxwell’s curl equations:

S 4p i

v
s I1I 1

c2

v2
~kWkW t2kW tkW !D eW I50 ~22!

with I the 333 unit matrix andc the velocity of light in
vacuum. The procedure can be carried out without any
ther restrictions tos I . We have checked our method by
totally different and far more expensive method employi
direct numerical solution of Maxwell’s equations in differe
tial form. Details of this, together with a numerical justific
tion of the approximation leading to Eq.~16!, may be found
in a subsequent publication.29

III. APPLICATION TO BCC-FE AND FCC-CO

A. Layer-resolved optical conductivity tensor

The calculation of the layer-resolved optical conductiv
tensors IJ for the bulk systems bcc-Fe and fcc-Co treated
homogeneous layer systems has been carried out evalu
Eq. ~15! together with Eq.~19! by means of the SPR
KKR-GF method. Thez axis of the coordinate system a
well as the direction of magnetization have been taken in
@001# direction, thex andy axes pointing along the perpen
dicular crystallographic directions. The first energy path
Eq. ~15! was started below the bottom of the conducti
band and ended at the Fermi energy. The second energy
extended from the Fermi level over approximately 2 Ryd.
reduce the numerical effort the energy paths have b
shifted somewhat~2 mRy! into the complex plane. For the
first ~second! energy path, 150~250! energy points have bee
used, respectively. The number ofk points in the irreducible
part of the two-dimensional Brillouin zone was fixed to 52
For the relaxation time parameter appearing in Eq.~15!, we
used 0.4 eV for bcc-Fe as well as for fcc-Co as in Ref. 47
comparison.

The real part of the diagonal component of the effect
local conductivity tensorsxx @see Eq.~16!# for bcc-Fe is
shown in Fig. 1, the solid curve being identical to that in F
2. As one would expect, the intralayer partsxx

II (1) dominates
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over the whole spectral range. Nevertheless, the couplin
the first neighboring layers still gives a substantial contrib
tion. On the other hand, the layer-off-diagonal optical co
ductivity sxx

IJ (1) is seen to fall off quite rapidly with increas
ing interlayer distance and thus may safely be neglected
the fifth neighboring layer and beyond. This is why o
should expect that the approximation made when employ
the effective local optical conductivity for the solution of th
Maxwell equations should work quite well. Similar results
shown here forsxx

IJ (1) have been obtained for the of
diagonal tensor elementssxy

IJ (1). However, these deca
somewhat less rapidly with respect to the interlayer dista
(I 2J).

FIG. 1. Real part of the diagonal componentsxx
IJ of the layer-

resolved local optical conductivity tensor for bcc-Fe. The dot
line gives the layer-diagonal contributionsxx

IJ (I 5J). Dashed lines
give various layer-off-diagonal contributions (JÞI ). The solid line
stands for the resulting effective local conductivity tensor.

FIG. 2. Real part of the diagonal componentsxx of the effective
local optical conductivity tensor for bcc-Fe. Solid line: present
sults based on the SPR-KKR-GF. Dashed line: results obta
from an SPR-LMTO calculation~Ref. 47!. The circles and square
represent the experimental results given in Refs. 48 and 49, res
tively.
to
-
-

or

g

e

B. Kerr rotation spectra

Kerr rotation spectra for bcc-Fe and fcc-Co for light inc
dent along the surface normal~polar Kerr effect! are shown
in Figs. 3 and 4 together with theoretical results and m
surements from two different sources. The data have b
produced using the formalism sketched in Sec II D. Sha
and magnitudes of measured curves are well reproduce
least in the photon energy range above than 2 eV~see be-
low!.

The dotted curve in Fig. 3 is calculated by means of
SPR-LMTO band structure method without making expli
use of the Drude~intraband-! contribution to the optical con-
ductivity tensor. This well-known term is usually added
spectra calculated within the framework of convention
band structure methods where only interband contributi
are taken into account in the first place. As one can see,
term is significant for photon energies below 2 eV. To re
resent the Drude term one is employing two different ad

d

-
d

ec-

FIG. 3. Kerr rotation angleuK for bcc-Fe. Solid line: result
based on the SPR-KKR-GF. The dashed and dotted lines give
results of SPR-LMTO calculations~Ref. 47!. The latter one has
been done without the Drude contribution. Circles and squares
resent the experimental results of Refs. 50 and 51, respectively

FIG. 4. Kerr rotation angleuK for fcc-Co. Solid line: result
based on the SPR-KKR-GF. The dashed line gives the result o
SPR-LMTO calculation~Ref. 47!. The circles and squares represe
the experimental results of Refs. 52 and 53, respectively.
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12 988 PRB 60T. HUHNE AND H. EBERT
tional parameters: the zero-frequency conductivitys0 and
the Drude~free-electron! relaxation timetD . In our method,
the intraband contributions are intrinsically taken into a
count with a single relaxation time parametert for the whole
spectrum as required by Eq.~15!. The choice made here fo
this parameter (\/t5 0.4 eV! is mainly responsible for the
deviation of our Kerr rotation curves from other theoretic
as well as experimental data for photon energies below 2

Finally, Kerr rotation, as well as Kerr ellipticity spectr
for various angles of incidence with respect to the surf
normal and a fixed photon energy~1.96 eV for common
He-Ne-laser light! are presented in Fig. 5. Obviously, th

FIG. 5. Kerr rotation angles and ellipticities for bcc-Fe for va
ous angles of incidence for photon energy of 1.96 eV. So
~dashed! line is for p- (s-! polarized light.
g

ai
ce
9

to

e

y

-

l
V.

e

curves depend strongly on the angle of incidence and po
ization direction of incoming light. For this reason, ellips
metric magneto-optic measurements for fixed photon ene
can be seen as an appropriate tool to check the result
band structure calculations for the initial and final electro
states involved.

IV. SUMMARY

A scheme to calculate the layer-resolved optical cond
tivity tensor on the basis of the single-particle Green’s fun
tion has been presented. The most important details o
corresponding implementation within the SPR-KKR-G
have been discussed. The connection of introduced la
resolved optical conductivity tensor with experimentally a
cessible magneto-optical quantities such as the Kerr-rota
angle have been outlined.

To demonstrate the feasibility of our approach, first
sults for the elemental ferromagnets bcc-Fe and fcc
treated as a homogeneous layer system were presented
photon energies above 2 eV, for which the Drude term c
be neglected, good agreement was found between our
for the real part of the diagonal component of the effect
optical conductivity tensor and Kerr rotation angles for no
mal incidence for bcc-Fe and corresponding theoretical
experimental data. Discrepancies between the theore
Kerr spectra for photon energies below 2 eV have be
mainly attributed to the distinct treatment of the intraba
contributions to the optical conductivity tensor.

On the basis of the very encouraging results for the e
ment systems together with an appropriate solution sch
suggested for the corresponding Maxwell equations, it is
pected that the formalism presented here will allow detai
and reliable investigations of the magneto-optical proper
of surface-layered systems as well. Work along this line is
progress now.
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