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Fully relativistic description of the magneto-optical properties of arbitrary layered systems
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A fully relativistic formalism is presented that allows us to define the frequency-dependent optical conduc-
tivity tensor for arbitrary layered systems in a layer-resolved way. This opens in particular the way to deal with
the magneto-optical properties of magnetic surface layer systems and to calculate the corresponding magneto-
optical Kerr spectra. The formalism, based on a fully relativistic description of response theory in arbitrary
order, is described in some detail. For an implementation the very flexible spin polarized relativistic Korringa-
Kohn-Rostoker method of band structure calculation has been used. Results of corresponding applications to
the elemental ferromagnets bcc-Fe and fcc-Co treated as homogeneous layer systems are presented.
[S0163-18299)04141-7

[. INTRODUCTION However, all theoretical approaches presented so far to deal
with the MOKE are based on a calculation of the underlying
Most magneto-optical effects of magnetic materialselectronic structure using a so-called linear band structure

known today have already been discovetetlin spite of  method working ink space. Accordingly, all of them are
this, intensive research on this subject has only been carrig@stricted in application to ordered bulk materials with three-
out during the last couple of decades. These activities havgimensional translational invariance. As a consequence they
primarily been triggered by a strongly growing interest in go not supply an adequate platform to deal with the interest-

applications in high density magneto-optical data storagg,q magneto-optical properties of surface layered systems
based on the magneto-optical Kerr-eff@RtOKE).** In or- 2 i0ned above.

der to achieve a high signal-to-noise ratio, this technology
requires first of all materials with large Kerr rotation at op- ) . . .
tical frequencies. Unfortunately, most bulk compound mated€@l with the optical conductivity only for ordered solids
rials with high Kerr rotations tend to loose this favorable cOuld recently be removed by Banh&ftThis author ex-
property when they are prepared in the form of thin fifis. tended the application of the Kubo-Greenwood-formalism
A possible way to overcome these difficulties might be tofor the residual resistivity of disordered alloys, as it has been
extend material design to an additional degree of freedomivorked out originally by Butlef? to finite frequencies. By
e.g., to use layer systems tailored to optimize their magnetdhis way he got access to the optical conductivity of para-
optical propertie§:° Investigations in this direction, espe- magnetic ordered as well as disordered solids. This is
cially on metallic layer systems consisting of magnetic andachieved by a description of the underlying electronic struc-
nonmagnetic films and substrates, have brought new excitinyre by means of electronic Green’s function using the
discoveries, also from the scientific point of view. The mostKorringa-Kohn-Rostoker ~ Green’s  functiofKKR-GF)
important of these are quantum confinement efféttscil-  method of band structure calculation in combination with the
lations of the Kerr rotation with variation of the thickness of coherent potential approximatid@PA) alloy theory.
the magnetic layett*?and an apparent relationship between ~ Another important extension of Butler's approach is the
MOKE and magnetic anisotropiéd Another important field concept of the layer-resolved dc conductivity. This was in-
for the application of MOKE is destruction-free domain pat- troduced by Butler, Zhang, Nicholson, and MacL&feand
tern imaging near the surface using optical microscopy. Emby Weinberger, Levy, Banhart, Szunyogh, arifaliissy® to
ployed for the first time already in the beginning of the deal with the giant magnetoresistan@MR) effect in mag-
1950's* there have been some decisive amendments in resetic multilayer systems.
cent years such as the use of interferometric techntgd@s In the following a generalization of the concept to finite
leading to lateral resolutions below 100 nm. frequencies will be presentdthis approach as well as first

It was already pointed out by Huliein 1932, that the results had already been presented béfore In contrast to
MOKE is caused by the simultaneous presence of magnetiBanhart's approach, however, it gives access to the full com-
order and spin-orbit coupling. Because of this complex situplex optical conductivity tensor of arbitrary layered systems.
ation not much theoretical work has been done in the past ifthis, in combination with a direct solution of the micro-
spite of the many experimental investigations in the field ofscopic Maxwell equation&details on this will be published
magneto-optics. Only about 10 years ago the various technelsewher®), allows one in particular to deal with the
cal problems in calculating the magneto-optical Kerr spectranagneto-optical properties of surface layered systems in an
in a parameter-free way were solved for the first time byadequate way.
Oppeneeet al!® Since then several other groups reported on  In the next two sections our approach that is based on
comparable worksee for example Refs. 19-R4.e., MOKE  Kubo's linear response formalism will be presented in some
spectra can be calculated nowadays in a nearly routine wayletail. For its application use is also made of the KKR-GF

The restriction of the convention& space methods to
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technique to describe the underlying electronic structure. Retaining only the linear term iA, using Coulomb gauge

Most Important for the_ Investigation of magf“?to"’p“ca' for the representation ok and after Fourier transformation
properties, this is done in a spm—pplanzed relativis6&R with respect to time we arrive at the Kubo formula for linear
way. Further features of the resulting SPR-KKR-GF-scheme _ =
relevant for the calculation of optical properties will be dis- "SPONS€ Of}he induced current densjtyto the external
cussed below. To demonstrate the feasibility and implicaglectric fieldE with frequencyw:

tions of our approach, results for the elemental ferromagnets

bce-Fe and fcc-Co which have been treated as layered sys- Cor N 3. g’ )

tems, will be presented. a1 0) % fd oap(n 0B @), (3

with a,B the Cartesian components of the involved vectors.
The nonlocal optical conductivity, s is defined in terms of
the retarded current-current Green’s funct'@ﬁajﬁ and the
A. Fully relativistic description of the nonlocal ground statd7,) as follows:

frequency-dependent optical conductivity

II. THEORETICAL FRAMEWORK
AND TECHNICAL DETAILS

©

The interaction of an electronic system and external elec-
tromagnetic fields in minimal coupling is conventionally de-
scribed in terms of the time-dependent perturbation Hamil-

r~+

(a)+i0+)ﬁfoc lalp

Top(1, T, 0)

tonian X(F,FI,O,_tr)eiwt’foth', (4)
1 R where the limiting value 0 stems from the adiabatic switch-
XM= | d*ri(NA(rD), i ition of & G s g
C ing condition ofA. The quantltijajﬁ is given by
j(N=—ecas(r-r"). (1) Gy () ==i0(t-t)
Here the external vector potential which is considered to X(nol[i2(r, 1), (7" )] m0). (5)

be adiabatically switched on and coupled to the electronic ) ) . .
current density is represented by the operfe). To ensure D_ynamlcal correlation effects, e.qg., eleqtron—hole interaction,
that all possible sources of the MOKE are properly acWill be neglected. On the other hand, inclusion of these ef-

counted for the following formalism is worked out in a fully fects can be achieved within time-dependent density func-
- e o tional theory. This would imply the solution of a Dyson
relativistic way. Accorqulyj(r) is represented by the rela- equation in terms of the optical conductivity given by Egs.
tivistic velocity operatorca with « the vector of the stan- (4) and (5) as the zeroth order approximatidhBecause
dard Dirac matrices? magneto-optical properties of metallic surface layer systems

Employing conventional time-dependent perturbationwithin the frequency range considered here are due to delo-
theory for the density matrix of the systeni; we find by  calised conduction electrons, we expect dynamical correla-
iteration of the corresponding equation of motion the approtion effects to be of minor importance.

priate relation betweeA and the difference in expectation  To evaluateGj*jﬁ, we expressjg according to second
values ofj(r) for the perturbed and the unperturbed systemguantization in terms of Fermion construction operatrs
in time t: and single particle orthonormal eigenstafieswith energies

E; of the unperturbed Hamiltonian of the system:

(oMY= u(MN)o

o jar)=2 (ili(nli)a’ a0 (g
1 t t ij
=E<—)f dtlfldtz--.
n=1\hc) J - Inserting this to Eq(5) and using Eq(4), we finally arrive at
Jt”’l 3 3
X dtnfmfdrlnd M > s T
— o0 o rir y = . . | a r
X 2 Ag(fty) . Ag (1ot X(jlig(ri)
ﬁlx"'vﬁn
xtr{pol - - [ia(r,1),J 5 (Ft)]-, - g - 5,7
0 g,\F1te B, ﬁw+Ej—Ei+i0+< i (r i)
X (rst)]-}, 2

where 0 represents quantities of the unperturbed system and X(] |ja(r)|i>] O(Er~E)O(Ej—Ep), (7)

D denotes Dirac representation of operators. In the follow-
ing, the quantity on the left hand side will be denoted as thevith Eg the Fermi energy. To simulate finite lifetime effects
“induced” current density. and other broadening mechanisms due to finite temperature,
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indirect transitions and limited experimental resolution, wece|is. |n the following, we therefore define a pointo be-

replace the quantity 0in the energy denominators in Ef)  |ong to a layet if its distance to the lattice plarieis smaller
by a lifetime parametet /. than its distance to any other lattice plane. To exploit trans-
An analogous expression for the optical conductivity in ajational invariance, it is convenient to perform a spatial two-
spatially averaged, nonrelativistic form has been given byjimensional Fourier transform to the optical conductivity
W&n?hand Calllal[/ya&E.H?wevel.r, thetrﬁ' is asu?tlefdifftﬁrenlce: and the optical fields with respect to the layer plane. We
Wi e nonrelativistic formalism, the operator for the elec- 4.« g ; ; =Py
trical current density is explicitly dependent on the vectordeflne the two-dimensional Fourier transfofttk;,r,) as
potentialA, while in the relativistic formalism it is not. This oL . L -
originates from the fact that the Schlinger Hamiltonian is E(k .U)=J d2rE(ry+r,)e I (10
of second order in space coordinates, while the Dirac Hamil-
tonian is only of first order; therefore, the so-called diamag
netic (Drude-like contribution to the optical conductivity ap-
pearing explicitly in Eq.(5.1) in Ref. 33 is implicitly
included in the relativistic form of the electric current density

Wwith r=r+r, denoting the separation ofinto a part par-
allel (FH) and perpendicularF(L) to the layer plane. Together
with the fact thaio, 5 possesses translational invariance with

operator. respect to any lattice vectd| :
The formalism described so far could be applied straight- ' .
forwardly to ordered solids by usingkaspace band structure Tap(T+ R I +R)=044(r,1"), (11

method and inserting the resulting Bloch statés,;) and ) ] )
associated eigenvalu,; into Eq. (7). A much more gen- the following relation can be shown to hold by straightfor-
eral scheme is achieved, however, by representing the mari{ard Fourier analysis:

fold of initial and final states by the trace of the correspond-

ing retarded single-particle Green’s function operator = i > PG TINEL LRl D

G (©) e P ik +Glr)=2 fdﬁi”(kuhM)E(kn+GﬁvU)’

' G

For real energies the relation (12)
S i |S(E—Ep)=— ilmG*(E) (8  Where the quantity'! is given by
i I
allows one to rewrite Eq(7) in the following form: G_ij(EH ,ﬂ ’Fi)zuif | d2r
- ws” Aws

o[ o
R x| it
tr{j (NIMG*(E")j 4(r")ImG*(E)}
[E'—E—i(fil7)][ho+E—E' +i(hl7)]

x e~ K|(T|=rDgir{ (G]-G)). (13)

. B ) with o a matrix with respect to Cartesian compone@§!
trjp(r)Im G (E")jo(r)Im G (E)} denote reciprocal lattice vectors with respect to the lattice
[E'—E+i(k/7n)][hw+E' —E+i(h/7)]  plane andA’, Al the area of layed and the area of the
two-dimensional Wigner-Seitz cell in layér respectively.
9 . < e :

o ) Furthermore, it is assumed that (r) is located in layet
where explicit use has been made of the requirement that tr*(?ayer‘]). Equation(13) can be further simplified, if we as-
optical conductivity is finite in the limitv— 0. In the follow- g me the electric field to vary only slowly on an atomic
ing, thew-dependence of all quantities will be suppressed inscale; this is well justified in the optical regime where the

intermediate steps for clarity. typical wave length is by a factor of 1000 larger than the
lattice parameters of ordinary solids. Averaging both sides in
B. Layer-resolved optical conductivity Eq. (13) with respect ta', within layerl—which leads to an

Equation(9) is still of general validity, but of course te- additional indext—and integrating the electric field and the
dious to be evaluated directly. Concerning its applications t@ptical conductivity independently over each layewe ar-
optical problems, one is in general primarily interested in thefive at the following nonlocal, however, discrete, relation
reflection and possibly transmission of light with frequencybetween the average electric field in layérand the electri-

w and wave vectok falling onto a stack of atomic layers cal current density in layelr

with arbitrary mutual distance. In addition, in-plane transla-

tlonal_ invariance _W|II be assumed in the fpllowmg; i.e., the jl(kH_l_élll):E 2 a}f(IZH)EJ(IZHﬁLGf‘). (14)
atomic positions in all layers can be described by a common J é ~

basis of lattice vector@fi“} thus defining a two-dimensional

lattice. Because the optical conductivity is to be used later t&We may further neglect all off-diagonal elementsgﬁp1 with
solve the microscopic Maxwell equations, it is inconvenientrespect to ij) and drop these indices in all following con-
to consider a “layer” to be set up by atomic Wigner Seitz siderations. Together with E¢L3), this means that the real
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system is replaced by a stack of homogeneous layers of A very reliable and accurate way to determine the elec-
atomic thicknesses in an optical sense. This implies in partronic Green’s functiorG ™ (E) to be inserted into Eq(15)
ticular that all local field effects taking place within the di- on the basis of the above Dirac equation is supplied by rela-
mensions of a single layer are neglected. For the optical retivistic multiple scattering theory or KKR formalism. This
gime, this will be justified by an investigation of the allows to write IMG*(E) in its real-space spin representa-
corresponding explicit solutions of the Maxwell equationstion in the compact way:

for realistic systemé’ Relying on this property, it is save to

neglect also the remainiriy dependence of" for optical ImG*(r,r' ,E)= i > Zh\(r,E)

wavelengths. Using E9), one obtains finally the following 21

expression for the layer-resolved optical conductivity: )
- X[rin (B) = TUX (B)IZL (1 E).

. c .
a'jﬁ(w):%J FdEJ dE’ | | dr (18
mAwd e JEe Aws Here 2% is the regular(left hand solution for the single
site Dirac equation for the potential well at siteand A
Xf drj d3r =(«k,u) stands for the relativistic spin-orbit and magnetic
layer | layer J . . nm -
quantum numbers andu, respectively. Finallys, ,, is the
tr{j (r)Im G*(E’)jB(F’)Im G*(E)} so-called scattering path operator that transforms a wave
- - T with characterA’ incoming at sitem into a wave with char-
[E'—E-i(Aln][hw+E-E"+i(h/7)] acterA outgoing from siten with all possible multiple scat-

trlj o) IM G* (E')] o(1)Im G+ (E)} ';ergglge (—:I‘qveefgfs;cocroggted fafor further details see for ex
[E'—E+i(hl7)][Ao+E —E+i(Ail7)] ' Here one should mention that the expression given in Eq.
(18) is completely sufficient to evaluate the energy integrals
15 . ) S
in Eq. (15 for real energies. However, a more efficient
with d' the thickness of layek. scheme is achieved by exploiting the analyticity of the
The explicit solution of the Maxwell equations that is Green’s function and deforming the energy integration paths
needed to determine the magneto-optical properties of thimm an appropriate way into the upper complex plane. This has
system is of course greatly simplified if the nonlocal relationthe great advantage that the Green’s function is less struc-
in Eq. (14) between the current density in laykrand the tured for complex energies allowing to reduce the number of
electric fields in all layers) can be replaced by an effective energy points accordingf}’. However, in this case, also the
local one. In fact, under the assumption that in the directiorso-called irregular parts of the Green’s function have to be
perpendicular to the layers the electric field varies onlytaken into account. This makes the implementation much
slowly compared to the range of the interlayer dependencynore tedious and the whole calculation for one single pair of

within ', we can write with the aid of Eq14) energy points from both paths very time consuming.
N R R An alternative and promising approach seems to use
"(w)=0"(w)E'(w) (16)  Cauchy’s integral theorem to express the integral over the

, < 1 , _ . imaginary part of the second Green’s function times the
with o =2,0° the effectivelocal optical conductivity of energy-dependent prefactor by a single Green’s function.
layer I. For a system with three dimensional translationalty,;g way one gets rid of one of the energy integrations.
invariance this local quantity is of course identical with the However, in this case, the photon energy explicitly ap-
conventional optical conductivity tenser. pears in the argument of the Green’s function. That means
that the whole calculation has to be carried out separately for
C. Optical conductivity within the SPR-KKR-GF each photon energy, i.e., 100—200 tinrepraxi, depending

As mentioned above, one has to account in particular foPn the spectral range one is interested in.
the Spin_orbit Coup"ng when one is dea“ng with magneto_ Flna”y it should l?e ment|0neq .here that a further method
optical properties. This is done here in a fully relativistic way t0 calculate the optical conductivity has been developed re-
by describing the electronic system on the basis of the Diragently by Szunyogh and Weinberd®rThese authors start

atomic Rydberg units the single-particle Green’s function and also end up with

only one single energy integration involved.
c.. 1 R R . For simplicity, it is assumed in the following that the
TavE S (8- 1)c?+V(r)|®i(r)=Edi(r). (17)  in-layer atomic basis consists only of one atom per primitive
unit cell; however, the formalism can be readily extended to
Here it is assumed that the corresponding effective potentidhe case of complex systems. Furthermore the energy inte-
V that is spin dependent is set up within the relativistic ver-grals in Eq.(15) will be restricted to the real energy axis.
sion of spin density functional theoDFT).3*% For sys-  Accordingly Eq.(18) is inserted directly into Eq(15). Per-
tems for which orbital magnetism is of appreciable impor-forming a two-dimensional Fourier transformation with re-
tance appropriate extensions as for example current densigpect to the resulting sums over productsrehatrices and
functional theory(CDFT) (Ref. 36 can be used as well, exploiting the fact that the wave functiodsonly depend on
without affecting the following scheme. the respective layer, we can write
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) 3 sep o with Eg(p)i(r)) the complex amplitudes & (p-) polarized
J;. d rﬁa o |drf|a o Jd rr{jo(r) components of incidenti), reflected ¢), and transmitted
ws Y Y waves (). Light incidence is only permitted from one side of
XIMG*(E")j4(r")ImG*(E)} the layer stack, thus there are no reflected waves on the trans-

mission side. As shown by various auth®t4® the transfer
. 1% N I matrix T can be used in a straightforward way to calculate
. EA (Zyn(BE)ja(NIZL(E")) the reflection coefficientsss,r . ps andr, of the layer
system. Given that, the following approximate relation be-

- 1 tween the reflection coefficients and the complex Kerr rota-
IX =g oy 7Y =
X(Zy (EN)|jpr )le”(E)>VBZ tion angle can be usé§:

NI AP O+ie=r,e/res,
XJ’VBZde[TAA,(k,E) — 7 A (KE)] sT 1€~ Ipslilss

K[ (KE) =73 (KEN] (19 —Optiep=rsp/rpp, (21)
Taramits TamartEs with 65(6,) the real Kerr rotation angle and(e,) the Kerr
with Vg7 the corresponding area of the corresponding two-llipticity of the system as a whole.
dimensional Brillouin zone. Ther matrices in reciprocal For the remaining determination of the general transfer

space,ry ,,(K,E), are obtained by the corresponding hest matrix T, we employ a formalism based on Ed6) and an
matrices and the single-site scattering matridemétrice3  eigenvector equation for any appropriate wave vektand
of the perturbed system via a Dyson equation. Details on th'BoIarization vectore' in layer | which follows from simple

can be found elsewhefé. L , N
oo . combination of Maxwell’s curl equations:
The quantities in angular brackets in E49) represent a

the matrix elements of the current density operatpmwith Ari 2

; ; i (o
respect to the regular wave functiodg(E). Technical de- —' 1+ —(KK'—KK) | €' =0 (22)
tails concerning the evaluation of these matrix elements can 0w — - ?
be found for example in Ref. 42. The spatial integration in- . . . . )
volved here in principle has to be carried out over the regulaiVith | the 3x3 unit matrix andc the velocity of light in
prism extending according to the layer thickness with thevacuum. The procedure can be carried out without any fur-
two-dimensional Wigner-Seitz cell of the in-plane lattice asther restrictions tos'. We have checked our method by a
basis. However, the calculations presented in this paper wefgtally different and far more expensive method employing
carried out making use of the atomic sphere approximatiofliréct numerical solution of Maxwell's equations in differen-
(ASA). This means that each atomic cell is represented by aal form. Details o_f th|§, together with a numerical justifica-
sphere of the volume of the respective atom, which in a firstion of the approximation leading to E(L6), may be found
place also represents the integration volume for our matri¥? & subsequent publicatidi.
elements. The integration volume, i.e., the prism described
above is distributed over several adjacent atomic spheres. As [1l. APPLICATION TO BCC-FE AND FCC-CO
an approximation, we therefore neglect the spatial depen-
dence of the current density matrix elements within an
atomic cell in order to represent its spatial integral by a The calculation of the layer-resolved optical conductivity
weighted sum of integrals over adjacent atomic spheres, atensoro' for the bulk systems bcc-Fe and fee-Co treated as
cording to their volume contributions to the respective righthomogeneous layer systems has been carried out evaluating

A. Layer-resolved optical conductivity tensor

prisms. Eqg. (15 together with Eq.(19 by means of the SPR-
KKR-GF method. Thez axis of the coordinate system as

D. General transfer matrix T well as the direction of magnetization have been taken in the
and Kerr rotation angle of magneto-optic layer systems [001] direction, thex andy axes pointing along the perpen-

In general, the transmission, reflection, and coupling oficular crystallographic directions. The first energy path in
electromagnetic waves for a stack of homogeneous and ofd- (15 was started below the bottom of the conduction
tically local layers is described in terms of the so-called genband and ended at the Fermi energy. The second energy path
eral transfer matrixT.** This approach allows one to calcu- €xtended from the Fermi level over approximately 2 Ryd. To
late for any polarization the amplitude of transmitted light in "€duce the numerical effort the energy paths have been

terms of those of incident and reflected light. We assume th&hifted somewhaf2 mRy) into the complex plane. For the
layer stack to be limited by homogeneous, isotropic dieleclirst (secondenergy path, 15250 energy points have been

tric media(e.g., aij). Then the waves on both sides of the used, respectively. The numberlopoints in the irreducible

stack can be decomposed ime and s-polarized contribu- part of the two-dimensional Brillouin zone was fixed to 528.
For the relaxation time parameter appearing in @), we

tions: used 0.4 eV for bcc-Fe as well as for fcc-Co as in Ref. 47 for
Es,i Est comparison.
E_. E The real part of the diagonal component of the effective
S (200 local conductivity tensoro,, [see Eq.(16)] for bce-Fe is
Esr| —| O shown in Fig. 1, the solid curve being identical to that in Fig.
= 0 2. As one would expect, the intralayer patl ") dominates
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FIG. 3. Kerr rotation angledx for bce-Fe. Solid line: result
FIG. 1. Real part of the diagonal componerlf, of the layer-  pased on the SPR-KKR-GF. The dashed and dotted lines give the
resolved local optical conductivity tensor for bce-Fe. The dottedresults of SPR-LMTO calculationéRef. 47. The latter one has
line gives the layer-diagonal contributier}) (1=J). Dashed lines heen done without the Drude contribution. Circles and squares rep-
give various layer-off-diagonal contributiond=1). The solid line  resent the experimental results of Refs. 50 and 51, respectively.
stands for the resulting effective local conductivity tensor.

B. Kerr rotation spectra

over the whole spectral range. Nevertheless, the coupling to Kerr rotation spectra for bee-Fe and fec-Co for light inci-

the first neighboring layers still gives a substantial contribu-yon¢ along the surface normaiolar Kerr effect are shown
tion. On the other hand, the layer-off-diagonal optical con-iy Figs. 3 and 4 together with theoretical results and mea-
ductivity o) is seen to fall off quite rapidly with increas- syrements from two different sources. The data have been
ing interlayer distance and thus may safely be neglected fosroduced using the formalism sketched in Sec Il D. Shapes
the fifth neighboring layer and beyond. This is why oneand magnitudes of measured curves are well reproduced, at
should expect that the approximation made when employingeast in the photon energy range above than 2(8a& be-

the effective local optical conductivity for the solution of the low).

Maxwell equations should work quite well. Similar results as  The dotted curve in Fig. 3 is calculated by means of the
shown here foro-!(\]x(l) have been obtained for the off- SPR-LMTO band structure method without making explicit
diagonal tensor elements) ). However, these decay Use of the Drudéintraband) contribution to the optical con-

somewhat less rapidly with respect to the interlayer distanc8UctivVity tensor. This well-known term is usually added to
spectra calculated within the framework of conventional

[—=J). ) Lo
( ) band structure methods where only interband contributions
are taken into account in the first place. As one can see, this
term is significant for photon energies below 2 eV. To rep-
resent the Drude term one is employing two different addi-
0.5 T T T T
T
E
:b§
1.0-— '- 10k ]
L 1 L 1 L
095 20 6.0 3.0
energy (eV) -15 X 1 \ 1 .
: , 0.0 2.0 4.0 6.0
FIG. 2. Real part of the diagonal componer, of the effective energy (eV)

local optical conductivity tensor for bcec-Fe. Solid line: present re-

sults based on the SPR-KKR-GF. Dashed line: results obtained FIG. 4. Kerr rotation anglefy for fcc-Co. Solid line: result
from an SPR-LMTO calculatiofRef. 47). The circles and squares based on the SPR-KKR-GF. The dashed line gives the result of an
represent the experimental results given in Refs. 48 and 49, respeSPR-LMTO calculatior{Ref. 47). The circles and squares represent
tively. the experimental results of Refs. 52 and 53, respectively.
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curves depend strongly on the angle of incidence and polar-
ization direction of incoming light. For this reason, ellipso-
metric magneto-optic measurements for fixed photon energy
can be seen as an appropriate tool to check the results of
band structure calculations for the initial and final electronic
states involved.

0

IV. SUMMARY

A scheme to calculate the layer-resolved optical conduc-
tivity tensor on the basis of the single-particle Green'’s func-
tion has been presented. The most important details of a
corresponding implementation within the SPR-KKR-GF
have been discussed. The connection of introduced layer-
resolved optical conductivity tensor with experimentally ac-
cessible magneto-optical quantities such as the Kerr-rotation
angle have been outlined.

To demonstrate the feasibility of our approach, first re-
sults for the elemental ferromagnets bcc-Fe and fcc-Co
treated as a homogeneous layer system were presented. For

FIG. 5. Kerr rotation angles and ellipticities for bee-Fe for vari- photon energies above 2 eV, for which the Drude term can
ous angles of incidence for photon energy of 1.96 eV. Solidbe neglected, good agreement was found between our data
(dashed line is for p- (s-) polarized light. for the real part of the diagonal component of the effective

optical conductivity tensor and Kerr rotation angles for nor-
tional parameters: the zero-frequency conductivity and  mal incidence for bce-Fe and corresponding theoretical and
the Drude(free-electromrelaxation timery . In our method, experimental data. Discrepancies between the theoretical
the intraband contributions are intrinsically taken into ac-Kerr spectra for photon energies below 2 eV have been
count with a single relaxation time parametefor the whole  mainly attributed to the distinct treatment of the intraband
spectrum as required by E(L5). The choice made here for contributions to the optical conductivity tensor.
this parameterf{/7= 0.4 eV) is mainly responsible for the On the basis of the very encouraging results for the ele-
deviation of our Kerr rotation curves from other theoretical ment systems together with an appropriate solution scheme
as well as experimental data for photon energies below 2 e\suggested for the corresponding Maxwell equations, it is ex-

Finally, Kerr rotation, as well as Kerr ellipticity spectra pected that the formalism presented here will allow detailed
for various angles of incidence with respect to the surfaceand reliable investigations of the magneto-optical properties
normal and a fixed photon enerd#.96 eV for common of surface-layered systems as well. Work along this line is in
He-Ne-laser light are presented in Fig. 5. Obviously, the progress now.
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