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Site-diluted three-dimensional Ising model with long-range correlated disorder
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We present numerical simulations of the site-diluted Ising model in three dimensions in the presence of two
different forms of quenched disorder with long-range correlations. We use finite-size scaling techniques to
compute the critical exponents of these two systems, taking into account the strong corrections to scaling. We
find a value of the critical exponentthat is compatible with the analytical predictions.
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|. INTRODUCTION 2

Neutron and x-ray critical scattering experiments in some
magnetic systemgevealed an unexpected feature: the coex- n=0(€?), (1)
istence of two length scales. In the theory of critical phenom-
ena it is expected that the momentum dependence of th&here, following the usual definitions,is the thermal criti-
scattering intensity is a Lorentzian function with a width cal exponent, associated with the correlation length, el
proportional to the inverse of the correlation length. Neverthe anomalous dimension of the order parameter. Using the
theless, it was fourldthat the experimental results could be usual scaling relations it is possible to obtain the other criti-
better interpreted if we suppose that the scattering intensity i§al €xponents of the system. o
the superposition of a broad Lorentzian and a sharper func- !t could be argued that the first of the relations in E@s.
tion similar to a simple or a squared Lorentzian function.ShOUId be valid for all orders in perturbation theory and that,

Only the width of the first peak behaves according to theotherefore, it should be an exact relation. The more interesting
retical expectations. In Ref. 2 it is proposed that the exis £aSe of non-Gaussian disorder has never been studied in de-
tence of this new component of the scattering intensity is duéa"’ although it is possible that the results for non-Gaussian

to defects. in particular to the presence of dislocations n disorder are the same as for the Gaussian case. It should be
NP P slocations Negl i that the previous relation is valid only if the disorder

the surface of the S"?‘T"p'e- Ther_efore there IS a crossov%recays in a sufficiently slow manner: for large valuesapf
between the bulk critical behavidcorresponding to the i.e., if Eq.(1) predicts a value of the exponent smaller than

_broader compgneh?nttjhthec:sordennduced ciitical behav- the value for the_ system wi_th short-range disorder, vsp),

ior (corresponding to the sharper component . one should obtaim= vgg (this phenomenon has been studied
Dislocations constitute lines, instead of points, oriented afs in the case of self-avoiding wafks

random, and therefore the quenched disorder presents long- \we should also notice that a useful criterion due to

range correlations. Harris’ indicates when the disorder is an irrelevant perturba-
A Gaussian disorder with correlations decaying with ation in the pure system, in terms of the pure critical behavior.
power law was studied in Ref. 3 for the vector spin modelsThis criterion states that the short-range disorder is not rel-
Analytical techniques were used to compute the critical exevant wherdvy,,— 2= — ap,e>0. In Ref. 3 the criterion is
ponents of the system. The authors calculated the expansi@xtended to the long-range correlated case. This kind of dis-
of the exponents in powers @=4—d and5=4—a, up to  order will become an irrelevant perturbation if the condition
first order, wherea is the power with which the correlation 2/a> v, holds, i.e., when the exponent given by relation
function of the disorder decays addis the ordinary spatial (1) is larger than thev,,. exponent of the model without
dimension. The quantitg crucially depends on the origin of disorder.
the quenched disorder. For example, straight dislocation For three dimensions, a line of defects corresponds to a
lines with random orientation correspondae-d—1. In this  correlation function between defects decayingxa$ with
calculation a new fixed point was found in the case ofa=2 (x being the distance between defectaut with a non-
quenched disorder with long-range correlations. Rather sutGaussian distribution of the disorder. In this case, using the
prisingly, it was found that the renormalization group trans-data from the pure Ising cagé>r=0.62945)(5) (Ref.6)]
formation near this new point has a pair of complex eigenthe previous criterion indicates that the disorder is a relevant
values, and consequently we expect oscillating corrections tperturbation. Neglecting the non-Gaussian effects and apply-
scaling. At this order, the critical exponents found for theing the results of Eq(l) to this case, a exponent is found
fixed point corresponding to the long-range correlated disorin Ref. 2 that is close to the experimental data for different
der are materialst Furthermore, the local fluctuations in the critical

0163-1829/99/6(18)/129126)/$15.00 PRB 60 12912 ©1999 The American Physical Society



PRB 60 SITE-DILUTED THREE-DIMENSIONAL ISING MODH. . . . 12913

temperature due to the presence of line defects were comwvhere u(p) is a Gaussian set of random numbers in the
puted and an acceptable agreement with experiments wasmplex plane with the following properties:
found.

In Ref. 7 the same authors studied the influence of the (u(p))=0,
long-range correlated disorder on the line shape of the nar-
row component of the scattering intensity function, finding (u(p)u(p))=1, )
that it can be steeper than a Lorentzian one, in agreement )
with the experimental data. They were assuming that both (u(p)u(p’))=0, if p#p".

the Gaussian disordered model and that with line defects, . . . .

where the disorder is non-Gaussian even at a large scalg, At this point we constructy(x) as the inverse Fourier

belong to the same universality class. transform_ of the7(p) set. In order to make sure that the
In this study we will use Monte Carl@C) simulations 7(x) set s real we have to introduce the condition

to compute the critical exponents of the site-diluted Ising (=p)=7*(p). 6)

model with long-range correlated disorder, in He 2 case,

finding that our results are compatible with analytical predic-The zero-mode divergence which is present in a finite-lattice

tions. In order to do this we will use the finite-size scalingtreatment is eliminated by using the conditin(p=0)=0.

techniques that have been recently applied to the study ofFhis choice agrees with the propeky(p))=0.

random site-diluted Ising systerfiS.We will study both With these definitionsy(x) is a Gaussian random vari-

Gaussian and non-Gaussian disorder and we will find similaable, because it is a sum of a large number of random vari-

results for the critical exponents, which supports the analysiables. It is easy to prove that the relations given by @B4.

of Refs. 2 and 7. are satisfied. Furthermore, it is also possible to calculate the
The layout of the paper is the following. In Sec. Il we will variance of this Gaussian distribution, as the zero-

define the models we have simulated in the lattice and thghomentum inverse Fourier transform ©fp).

two different ways used to introduce the long-range corre- e now use the variablgs;(x)} to choose whether each

lated disorder in the system. In Sec. IIl we will describe thegjte js occupied ¢ =1) or not (;=0) for a given value of

finite-size techniques we used. The technical details of thghe mean concentration of the spins of the systeniThus

simulation will be reported in Sec. IV. The numerical results\ye compute the; value 3, for which the probability to get a

will be shown in Sec. V. Finally, in Sec. VI, the conclusions yaiye < % is p. For eachx point we compare the actual

that can be drawn from this study will be presented. value 7(x) with %(p) and decide that the site is occupied if
7(X)<7.
Il. MODELS AND THE OBSERVABLES In this work we will study thea=2 case corresponding to

) i L i _ linear defects. With this value we have checked that the cor-
We_ havg consujered the follpwmg !—|ar_m|toman defined in o ation obtained for the 7(x)} set with the FF method,
a (_:ublc lattice of linear sizé& with periodic boundary con- performed with double precision, is in good agreement with
ditions: the expected correlation function. Although it is obvious that
the € are not Gaussian variables, their connected correlation
H=—8 ee o0, 2 functions for all points are qual to zero and therefore this
[or model corresponds to a Gaussian model at a large Guate
Gaussian effects are restricted to a short scale and are prob-
where the sum is extended over the nearest neighbors, thably irrelevant. This model corresponds to what we called
o's are the usual, spin variables, and thés are quenched the Gaussian-distributed disorder in the Introduction.
random variables, with long-range spatial correlation. A A second way to obtain samples with long-range corre-
given set of thes; variables will be called aamplefrom now  lated disorder with decaying with the square of the distance
on. We have studied two different ways of introducing theis to remove some lines of spins in a random way. We start
correlation between the, variables. with a cubic lattice and remove lines until we get the fixed
In the first method we start by obtaining a set\£L3  concentratiorp. The last line considered in this procedure is
correlated Gaussian random variabbe<), wherex is the  removed only with a given probability in order to get the

position vector in the lattice, with the properties right value () for the average concentration. We also want
the probability of removal to be the same for all lattice points
(n(x))=0, and lattice symmetries to be preserved. We have been able to

reach this goal by only removing lines along the axes. It is
1 clear that the connected correlation functions with this
(n(X) n(y))yc ——m[=C(|x—y])], (3) method are definitely different from zero even at long dis-
[x=y] tances. The disorder is very far from being Gaussian and this
whered>a>0. In order to do this we have used the FouriermOd.eI is what we called the non-Gaussian-distributed disor-
filtering (FF) method?® der in the Introductlon._ _ _
~ . In both cases, we will consider the case of quenched dis-
~ Letus denote by’(p) the Fourier transform of the func- o qer. We first calculate the average of a given observable on
tion C(|x—yl). Let us define the s&(p) as the {0} variables with the Boltzmann weight given by the
Hamiltonian of Eq.(2), the results on the different samples
7(p)=VC(p) u(p), (4)  beinglater averaged. The quenched approximation is chosen
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because the defect dynamics is much slower than that assaherexg is the critical exponent of the operat@, Fg is a
ciated with the magnetic interaction. We will denote by smooth scaling function which depends on the observable,
brackets the thermal average and by overbars the sampémdw is the eigenvalue of the first irrelevant operator of the
average. The observables will be denoted with script lettergheory from the point of view of the renormalization group.
i.e., O, and we will use italics for the double average All the quantities in Eq.(15) are measurable in a finite
=@_ lattice. In order to obtain the critical exponents we need to
Thus, we can define the nearest-neighbor energy as  remove the unknown scaling functiét, . Let us define the
quotient of a given observab(@ at two different lattice sizes
= E> 60160 . ) and at the same coupling pair as

(L]
= O L; H /O Ll y H 16
This quantity is extensively used for extrapolating the results Qo=0O(sL.A.p)/O(L.A.p) (16

for a given oilaiservablé), obtained at couplingg to a nearby  and let us compute this quotient at the coupling where the

coupling B',"* as well as for calculatingd derivatives  correlation length, in units of the lattice size, is the same for
through its connected correlation with the observable. Fopoth lattices. Thus we get

instance, one can define the specific heat as
1 Qo|Q§:s=SX°/V+ASL7w+'“, 17
C=04(6)= 5 ((ED (). ®) .. ,
whereA; is a constant which depends on the observable and
‘,H]e spin concentratiop and the ellipsis stands for higher-
order scaling corrections. From this equation we can extract
the critical exponent associated with a given observable.

The order parameter of the phase transition is the usu
normalized magnetization

1 The observables used to obtain the different critical expo-
M= vz €0 . 9 nents are the3 derivative of the correlation length for
' (X;,e=v+1) and the susceptibilityy for 7 [x,= (2
In a finite lattice, its mean valud is zero and we con- —7)].
sider only even powers of the magnetization. The second In order to compute the critical coupling in the infinite-
power is related to the susceptibility of the system: volume limit we will use the crossing points of the observ-
ables withxg=0, asg, or &/L, when measured at two dif-
x=V{(M?). (100 ferent lattice sizes andsL. The shift of these points from

_ _ the critical coupling behaves s
With the fourth power we can construct another interest-

ing quantity, the cumulang,, defined as

L 1= —1
ABgor ———L @7, (18)
3 1 (MY st—1
9425—5 : (11
(M?)? IV. NUMERICAL METHODS

In the finite-size scaling method we use it is very convenient The best update method for an Isina model simulation is a
to have a well-behaved estimate for the correlation length in Up 4 . g mode .
cluster algorithnt? In particular, the most efficient one in the

a finite lattice. We have used the second-momentum defini- X ;
tion. which reads pure case is the single-cluster Wolff metH'tS‘cNever.theIess,
' in a diluted system small groups of isolated spins appear,
YIF—1 \12 which are scarcely visited with this algorithm. Furthermore,
= (m) , (12 in the non-Gaussian case isolated occupied lines also appear.
In order to update all-sized spin clusters, after a fixed number
whereF is defined in terms of the Fourier transform of the of single-cluster updates we perform a Swendsen-Wang
spin distribution, sweep. We call this procedure the MC st&fCS). We have
discarded 100 MCS'’s for thermalization and then we have
G(p)= EE e o (13) measured the different observables for each MCS. We have
A\ e checked the correct thermalization of the system by starting
from hot and cold configurations. We have chosen the
single-cluster update number in such a way that the autocor-
vV relation times for all the observables are nearly one MCS.
F=—{(|G(27/L,0,0)|?+ permutations (14  The simulations are carried out in the RTNN machine at
3 Zaragoza University.
Other interesting parameters are the number of measure-
lll. FINITE-SIZE SCALING TECHNIQUES ments we perform for a given disorder realizatidh, using
the Ising Hamiltonian, Eq(2), and the number of different
disorder realizationsNg. We refer to Refs. 8 and 9 for a
discussion of the optimal choice of these parameters. In our
O(L,B,p)=L*"[Fo(4(L,B8,p)/L)+O(L™®)], (15  case, we have performed, =100 measurements ilNg

as

In the scaling region, the mean value of a given observ
able O measured at#4,p) couplings can be written as
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=20000 different samples foL<64 and in Ng=10000 1o
samples folL=128.

We have used in this study the usy@lextrapolation:!
Thus we are restricted to not too strong dilutions.

In order to work with large dilutions it is convenient to
perform also @ extrapolation as a consequence of the phase
diagram form of the systems. In the case of the random site
diluted Ising model this is possible because the distribution™
probability of the actual density of spins is knowit is a 0.4
binomial ong. In the Gaussian model, due to the correlation R i
between the different sites, this distribution it is not known. i e —n
Neither is it known in the non-Gaussian case, in the form 02 7]
presented here. Nevertheless, it is possible to construct :
slight variation of this latter model allowing us to perform a S S I I S A B
dilution extrapolation. It is enough to choose whether a line 0.00 0.25 0.50 0.75 1.00 125 1.50
is empty or filled with a given probability, but this possibility B
will not be considered in this study.

We recalf® that a bias of order 2N, is present in the3

0.8

\ Ferromagnetic phase

o
[}
||||||-|||||||||||
|

Paramagnetic phase

FIG. 1. Phase diagram of the site-diluted Ising model with long-

. . . : range correlated Gaussian disorder, in the inverse temperature—
extrapolation, wherer is the correlation time between the | * . . .
: : ilution plane. The dots correspond to the simulated points, while
energy and the observable under study. This fact is not rel;

. . . e arrow points to the percolation limi .
evant in the usual MC calculations, because the stausuca‘1 P P BE=)

errors are of order 3N,. But in diluted system investiga- dimensional random site-diluted cases 0.6837(24)(29)
tions, whenyNs~N; , this bias could be not negligible. We |n order to obtain the critical exponent, we have to perform
have performed a proper extrapolation procefitiia order  an infinite-volume extrapolation procedure. It is possible that
to obtain unbiased estimates of tifederivatives and the the scaling corrections we observe could be complicated by
values of the different observables in the neighborhOOd the presence of Osci”atory terms, as is Suggested by the first
the simulated couplings. The MCS is chosen in such a wayrder of thee expansion, but we are unable to confirm or
that 7 is nearly one measurement. For the largest lattice Wejiscard this possibility. Strong corrections to simple scaling
have considered|. =128, in the non-Gaussian case, theare present, as we will see later, so it is rather diffi¢alt
single-cluster update number for every Swendsen-Wangnough we study lattices ranging front 80 126) to get

sweep is 1200 and for the Gaussian case it is 400. For thegnclusive statements on the nature of finite-volume correc-
statistical error computation we have used the jackknifgjgns.

method with 50 blocks, which allows us to obtain a 10% of e can try to parametrize the scaling corrections as in Eq.

accuracy in the error bars. (17), keeping only the first term. We have used the data from
the two different dilutions of the Gaussian case to perform a
V. NUMERICAL RESULTS joint fit where a single value for the and v exponents is

assumed, according to the picture of a single universality
We have studied the Gaussian case at two different diluglass along the critical line. Using=8 data and the full
tionsp=0.8 andp=0.65, performing simulations on lattices covariance matrix to compute the statistical functjgh we
of sizesL =8, 16, 32, 64, and 128. In the non-Gaussian caséind a very large value of% DOF=13.9/4. Nevertheless, if
we have only considerepd=0.8 with the same lattice sizes. we discard the data from thé.=8,16 pair, we find
In Fig. 1 we show the phase diagram for the Gaussian2/DOF=1.20/2. The value obtained for the thermal expo-
model. The percolation critical poini,=~0.25 was obtained nent,»=1.012(16), is compatible with the analytical predic-
by studying the behavior of thg, function in aL=128 tions. We also find in this analysis=1.01(13).
lattice. In the thermodynamical limit, we know thgg=0 in We can control the presence of the higher-order correc-
the disordered phase amgd=1 in a ferromagnetic ordered tions in a simple and naive way. We could perform a qua-
one. The corresponding phase diagram for the non-Gaussiaatic fit for each dilution withL=8 data, assuming =1,
case is qualitatively the same, with a ferromagnetic orderedvhich is compatible with our results, and using only the
phase for larges, provided thatp is larger than its percola-
tion threshold. TABLE |. Critical exponenty computed using ;¢ when mea-
sured in (,2L) lattice pairs at the couplings whe@;= 2 for both

models at the different concentrations considered.
A. Thermal exponent

In Table | we present the results for thhexponent in the Gaussian model Non-Gaussian

two cases considered, the Gaussian and non-Gaussian disor-
. . L p=0.8 p=0.65 p=0.8

der. It was computed by applying E(L7) to dgé usings
=2, 8 0.762619) 0.8713) 0.833524)

As we can see, there are visible scaling corrections in all 16 0.8333) 0.9426) 0.9344)
the cases. Nevertheless, the values we have obtained for the 32 0.9074) 0.9697) 1.0099)
v exponent are very different from those of the pure Ising g4 0.9649) 0.99611) 1.00913)

model, »=0.62945)(5).° and from those of the three-
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TABLE Il. Magnetic exponent; computed fromy, using lattice TABLE Ill. Crossing points from I(,2L) pairs ofg, andé/L for
(L,2L) pairs at the couplings whei®,=2 for both Gaussian and the Gaussian case at the different concentrations simulated.
non-Gaussian cases at the different concentrations simulated.

p=0.8 p=0.65
Gaussian model Non-Gaussian
&L Ja &Il 4

L p=0.8 p=0.65 p=0.8

8 0.27453834) 0.27376052) 0.33526976) 0.3335812)
8 0.008%11) 0.025614) —0.051314) 16 0.27354615) 0.27286222) 0.33370941) 0.33261772)
16 0.008214) 0.027416) —0.053212) 32 0.272988®6) 0.27260414) 0.33309919) 0.33268229)
32 0.0137195 0.038418) —0.025918) 64 0.2727806/0) 0.27262411) 0.33298915) 0.33287225)
64 0.025919) 0.0393) 0.005224)

high-order scaling corrections is expected. A way to extract

diagonal part of the covariance matrix. If we do so, we ob-the infinite-volume critical coupling is to perform a fit to the
tain, for p=0.8, x%/DOF=0.76/1 with v=1.012(10) and functional form of Eq(18). In order to find a proper extrapo-
for p=0.65, y?/DOF=0.73/1 andv=1.005(14). Therefore, lated value, we have to make sure that we are within the
the presence of second-order corrections for the thermal eXinear regime and that we can control the higher-order cor-
ponent data seems reasonable. Furthermore, we have fourgttions. As the crossing points faf, show a minimum
that the value ofv is not affected by the presence of thesevalue around thé.=32,64 pair, the former condition is not
terms. satisfied.

In the non-Gaussian case large finite-volume corrections We could fit theé/L crossing points to Eq.18). Never-
are also present. Nevertheless, we find that the estimateiseless, for both concentrations, usibg=8 data, we have
from the two largest lattice pairs for theexponent are com- found a large value of?/DOF, being DOF=1. We will then

patible with the analytical calculations. be forced to assume the presence of higher-order corrections
to scaling.
B. Magnetic exponent In order to control the finite-volume effects, assuming our

. . i + =2. i =
In Table Il we present the estimates of the magnetic ex_esnmate foro+1/y=2.00(13), we can discard the=3

! - data and perform a linear fit for thé/L data. In thep
ponentz _applylng Eq.(17) to the susceptlblhtyxlmeasureq =0.65 case we find a reasonabé/DOF=1.28/1 in the
::etze points wher®,=2 for all the concentrations consid- central value, and we gei () =0.332 929(13)(12), where

i . . he second error bar is due to the uncertaintywirr 1/v.
As we can see in the table, there are strong scaling effec

. . i ; . . -~ Nevertheless, fop=0.8 we do not find a reasonable fit,
in all cases, especially in the non-Gaussian case. An infinite- . : . i
which shows that the higher-order corrections are important

volume extrapolation procedure is therefore needed in ordeerven in thel = 16 lattice. We can check this latter picture

to get any estimate. . L > 3 T
If we only assume the presence of first-order correction erfor_mmg a fit with 1L~ and “T terms, o_nly considering
he diagonal part of the covariance matrix fo=8 data.

with our previously calculated value, we do not find rea- Ihen we  obtain y2DOF=169/1 and A=)

sonable fits to our data. Therefore, we should conside . .
higher-order correction terms. As we have foune 1, the :0‘.272 7.15(10)' S't?l the_phlcturedof se_co?]Q—order scaling cor-
second-order terms and the analytical corrections are of th'i—f?(:t'or.‘S IS compat! e with our data in t IS case.

y A similar analysis can be done by studying theand&/L

same order, so we can try a quadratic joint fit using ¢he . ) ) . .
—1 value. With theL=16 data for all the concentrations S'0SSINg POINts measured with &,(L2) pair but with a
: fixed L, value.

studied, using only the diagonal part of the correlation ma- . . .
trix, we gety2/DOF=1.63/2 andy=0.0434). So wehave In _the p=_0.65 case, by performing a linear fit for the
found results compatible with the picture of a singlgalue, ~ c"SSing points of/L with L=16, andw+1/v=2.00(13)

" N patible Wi picu Ingigalu we gety?/DOF=1.43/1 for the central value of this interval

with scaling corrections parametrized by= 1, but with non- _
negligible higher-order correction effects. Nevertheless, thié”md Be(>) =0.332 927.(13.)(15)' w_h_ere the second error bar
due to the uncertainty in the critical exponents.

estimate has two different sources of systematic error: th&
4 In the p=0.8 case a diagonal fit fof/L with 1/L2 and

first one is due to the possible dependence of the valug of o X . >

on the minimum lattice size considered in the fits, and thet/L~ (erms usingL=8 data yieldsy“/DOF=0.52/1 and

second is due to the uncertainty on the fitted functional formBc(*) =0.272722(10). The behavior we find is similar to
We can compare this result foj with those from the ©OUr Previous analy5|_s,_f|nd|ng reasqrjable fits and compatible

random site-diluted Ising modeky=0.0374(36(9),® and estimates for the infinite-volume critical couplings.

with those from the Ising case;=0.03746)(6).° finding In Table IV we ShOW_ the _crossing points gj, a”‘i' ¢IL
that they are similar to our estimate fer measured dt and 2 lattice sizes for the non-Gaussian case

with p=0.8 mean concentration.

Also in this case we see that thg crossing point is not a
monotonic function ofL. In the &/L case we find that with

In Table 1l we show the crossing points gf, and &/L our previousw estimate, a linear fit foL =16, is not reason-
from (L,2L) lattice pairs for the Gaussian case. As we canable, so we have to conclude that also in this case the higher-
see in the table, there is a nonmonotohidehavior forg,  order terms are present. In order to check this assumption in
crossing points in both concentrations, so the presence & simple way, we perform a fit with if and 1L® terms,

C. Critical couplings
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TABLE IV. Crossing points ofg, and &/L from (L,2L) pairs

niques for the computation of the critical exponents.
for p=0.8 in the non-Gaussian disorder.

We have found strong scaling corrections for thexpo-
nent. In the Gaussian case, we succeed to parametrize them

L &L 04 with the first corrections-to-scaling term, and find an infinite-
8 0.259264) 0.258035) v_olur_nev_value that is compatible W|th_ the analytical predic-
tion in this model. In the non-Gaussian case, the value we
16 0.25793822) 0.257063) obtain for the two largest lattice-size pairs is also compatible
32 0.257376L3) 0.2570&21) with this calculation ’ P P
64 0.257188) 0.25711013) :

For the » exponent, large finite-volume effects are also
present. Our data fdr=16 are compatible with the picture
using L=8 and using only the diagonal part of the covari- of a single value ofy independent from the type of disorder
ance matrix. We obtainy2/DOF=0.34/1 and B(=) and from the concentration considered, but with non-

. . c . . .
—0.257 126(14), so this picture is compatible with our datan€gligible second-order correction terms. .

In order to compute the value of the scaling functigns _Therefore, we have_ obtaln.ed. a consistent picture of the
and£/L at the critical coupling in the thermodynamical limit, €XiStence of a single fixed poirsingle », », andw values

we have measured the values of these quantities at the cros&'NY Gaussian and non-Gaussian correlated disorder, but

ing points ofg, and ¢/L, respectively. In they, case, the with non-negligible second-order corrections to scaling. This

finite-volume corrections are large, and we find values forfa_‘CF introduces systematic errors in our anaIyS|s_ that are very
this observable in the range 0 58_’0 64. In gk case, we difficult to measure, and it is not easy to obtain solid esti-

have also found that an infinite-volume extrapolation proce—mates of the final errors for the critical exponents.
dure is needed. Performing a_1léxtrapolation we quote for

this quantity the value 0.38).
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