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Site-diluted three-dimensional Ising model with long-range correlated disorder
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We present numerical simulations of the site-diluted Ising model in three dimensions in the presence of two
different forms of quenched disorder with long-range correlations. We use finite-size scaling techniques to
compute the critical exponents of these two systems, taking into account the strong corrections to scaling. We
find a value of the critical exponentn that is compatible with the analytical predictions.
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I. INTRODUCTION

Neutron and x-ray critical scattering experiments in so
magnetic systems1 revealed an unexpected feature: the co
istence of two length scales. In the theory of critical pheno
ena it is expected that the momentum dependence of
scattering intensity is a Lorentzian function with a wid
proportional to the inverse of the correlation length. Nev
theless, it was found1 that the experimental results could b
better interpreted if we suppose that the scattering intensi
the superposition of a broad Lorentzian and a sharper fu
tion similar to a simple or a squared Lorentzian functio
Only the width of the first peak behaves according to th
retical expectations. In Ref. 2 it is proposed that the ex
tence of this new component of the scattering intensity is
to defects, in particular to the presence of dislocations n
the surface of the sample. Therefore there is a cross
between the bulk critical behavior~corresponding to the
broader component! and thedisorder-induced critical behav-
ior ~corresponding to the sharper component!.

Dislocations constitute lines, instead of points, oriented
random, and therefore the quenched disorder presents l
range correlations.

A Gaussian disorder with correlations decaying with
power law was studied in Ref. 3 for the vector spin mode
Analytical techniques were used to compute the critical
ponents of the system. The authors calculated the expan
of the exponents in powers ofe542d andd542a, up to
first order, wherea is the power with which the correlatio
function of the disorder decays andd is the ordinary spatia
dimension. The quantitya crucially depends on the origin o
the quenched disorder. For example, straight disloca
lines with random orientation correspond toa5d21. In this
calculation a new fixed point was found in the case
quenched disorder with long-range correlations. Rather
prisingly, it was found that the renormalization group tran
formation near this new point has a pair of complex eig
values, and consequently we expect oscillating correction
scaling. At this order, the critical exponents found for t
fixed point corresponding to the long-range correlated dis
der are
PRB 600163-1829/99/60~18!/12912~6!/$15.00
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h5O~e2!, ~1!

where, following the usual definitions,n is the thermal criti-
cal exponent, associated with the correlation length, andh is
the anomalous dimension of the order parameter. Using
usual scaling relations it is possible to obtain the other cr
cal exponents of the system.

It could be argued that the first of the relations in Eqs.~1!
should be valid for all orders in perturbation theory and th
therefore, it should be an exact relation. The more interes
case of non-Gaussian disorder has never been studied in
tail, although it is possible that the results for non-Gauss
disorder are the same as for the Gaussian case. It shou
noted that the previous relation is valid only if the disord
decays in a sufficiently slow manner: for large values ofa,
i.e., if Eq. ~1! predicts a value of then exponent smaller than
the value for the system with short-range disorder~i.e.,nSR),
one should obtainn5nSR ~this phenomenon has been studi
also in the case of self-avoiding walks4!.

We should also notice that a useful criterion due
Harris5 indicates when the disorder is an irrelevant pertur
tion in the pure system, in terms of the pure critical behav
This criterion states that the short-range disorder is not
evant whendnpure2252apure.0. In Ref. 3 the criterion is
extended to the long-range correlated case. This kind of
order will become an irrelevant perturbation if the conditi
2/a.npure holds, i.e., when then exponent given by relation
~1! is larger than thenpure exponent of the model withou
disorder.

For three dimensions, a line of defects corresponds t
correlation function between defects decaying asx2a with
a52 (x being the distance between defects!, but with a non-
Gaussian distribution of the disorder. In this case, using
data from the pure Ising case@1.n50.6294(5)(5) ~Ref.6!#
the previous criterion indicates that the disorder is a relev
perturbation. Neglecting the non-Gaussian effects and ap
ing the results of Eq.~1! to this case, an exponent is found
in Ref. 2 that is close to the experimental data for differe
materials.1 Furthermore, the local fluctuations in the critic
12 912 ©1999 The American Physical Society
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PRB 60 12 913SITE-DILUTED THREE-DIMENSIONAL ISING MODEL . . .
temperature due to the presence of line defects were c
puted and an acceptable agreement with experiments
found.

In Ref. 7 the same authors studied the influence of
long-range correlated disorder on the line shape of the
row component of the scattering intensity function, findi
that it can be steeper than a Lorentzian one, in agreem
with the experimental data. They were assuming that b
the Gaussian disordered model and that with line defe
where the disorder is non-Gaussian even at a large s
belong to the same universality class.

In this study we will use Monte Carlo~MC! simulations
to compute the critical exponents of the site-diluted Is
model with long-range correlated disorder, in thea52 case,
finding that our results are compatible with analytical pred
tions. In order to do this we will use the finite-size scali
techniques that have been recently applied to the stud
random site-diluted Ising systems.8,9 We will study both
Gaussian and non-Gaussian disorder and we will find sim
results for the critical exponents, which supports the anal
of Refs. 2 and 7.

The layout of the paper is the following. In Sec. II we w
define the models we have simulated in the lattice and
two different ways used to introduce the long-range cor
lated disorder in the system. In Sec. III we will describe t
finite-size techniques we used. The technical details of
simulation will be reported in Sec. IV. The numerical resu
will be shown in Sec. V. Finally, in Sec. VI, the conclusion
that can be drawn from this study will be presented.

II. MODELS AND THE OBSERVABLES

We have considered the following Hamiltonian defined
a cubic lattice of linear sizeL with periodic boundary con-
ditions:

H52b(
^ i , j &

e ie js is j , ~2!

where the sum is extended over the nearest neighbors
s’s are the usualZ2 spin variables, and thee’s are quenched
random variables, with long-range spatial correlation.
given set of thee i variables will be called asamplefrom now
on. We have studied two different ways of introducing t
correlation between thee i variables.

In the first method we start by obtaining a set ofV5L3

correlated Gaussian random variablesh(x), wherex is the
position vector in the lattice, with the properties

^h~x!&50,

^h~x!h~y!&}
1

ux2yua @[C~ ux2yu!#, ~3!

whered.a.0. In order to do this we have used the Four
filtering ~FF! method.10

Let us denote byC̃(p) the Fourier transform of the func
tion C(ux2yu). Let us define the seth̃(p) as

h̃~p!5AC̃~p! u~p!, ~4!
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where u(p) is a Gaussian set of random numbers in t
complex plane with the following properties:

^u~p!&50,

^u~p!u~p!&51, ~5!

^u~p!u~p8!&50, if pÞp8.

At this point we constructh(x) as the inverse Fourie
transform of theh̃(p) set. In order to make sure that th
h(x) set is real we have to introduce the condition

h̃~2p!5h̃* ~p!. ~6!

The zero-mode divergence which is present in a finite-lat
treatment is eliminated by using the conditionu(p50)50.
This choice agrees with the property^u(p)&50.

With these definitionsh(x) is a Gaussian random var
able, because it is a sum of a large number of random v
ables. It is easy to prove that the relations given by Eq.~3!
are satisfied. Furthermore, it is also possible to calculate
variance of this Gaussian distribution, as the ze
momentum inverse Fourier transform ofC̃(p).

We now use the variables$h(x)% to choose whether eac
site is occupied (e i51) or not (e i50) for a given value of
the mean concentration of the spins of the system,p. Thus
we compute theh valueĥ, for which the probability to get a
value h,ĥ is p. For eachx point we compare the actua
valueh(x) with ĥ(p) and decide that the site is occupied
h(x),ĥ.

In this work we will study thea52 case corresponding t
linear defects. With this value we have checked that the c
relation obtained for the$h(x)% set with the FF method
performed with double precision, is in good agreement w
the expected correlation function. Although it is obvious th
thee i are not Gaussian variables, their connected correla
functions for all points are equal to zero and therefore t
model corresponds to a Gaussian model at a large scale~non-
Gaussian effects are restricted to a short scale and are p
ably irrelevant!. This model corresponds to what we calle
the Gaussian-distributed disorder in the Introduction.

A second way to obtain samples with long-range cor
lated disorder with decaying with the square of the dista
is to remove some lines of spins in a random way. We s
with a cubic lattice and remove lines until we get the fix
concentrationp. The last line considered in this procedure
removed only with a given probability in order to get th
right value (p) for the average concentration. We also wa
the probability of removal to be the same for all lattice poin
and lattice symmetries to be preserved. We have been ab
reach this goal by only removing lines along the axes. I
clear that the connected correlation functions with t
method are definitely different from zero even at long d
tances. The disorder is very far from being Gaussian and
model is what we called the non-Gaussian-distributed dis
der in the Introduction.

In both cases, we will consider the case of quenched
order. We first calculate the average of a given observable
the $s i% variables with the Boltzmann weight given by th
Hamiltonian of Eq.~2!, the results on the different sample
beinglater averaged. The quenched approximation is cho
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12 914 PRB 60H. G. BALLESTEROS AND G. PARISI
because the defect dynamics is much slower than that a
ciated with the magnetic interaction. We will denote
brackets the thermal average and by overbars the sa
average. The observables will be denoted with script lett
i.e., O, and we will use italics for the double averageO
5^O&.

Thus, we can define the nearest-neighbor energy as

E5(
^ i , j &

e is ie js j . ~7!

This quantity is extensively used for extrapolating the res
for a given observableO, obtained at couplingb to a nearby
coupling b8,11 as well as for calculatingb derivatives
through its connected correlation with the observable.
instance, one can define the specific heat as

C5]b^E&5
1

V
~^E 2&2^E&2!. ~8!

The order parameter of the phase transition is the u
normalized magnetization

M5
1

V (
i

e is i . ~9!

In a finite lattice, its mean valueM is zero and we con-
sider only even powers of the magnetization. The sec
power is related to the susceptibility of the system:

x5V^M 2&. ~10!

With the fourth power we can construct another intere
ing quantity, the cumulantg4 , defined as

g45
3

2
2

1

2

^M 4&

^M 2&2

. ~11!

In the finite-size scaling method we use it is very conveni
to have a well-behaved estimate for the correlation length
a finite lattice. We have used the second-momentum de
tion, which reads12

j5S x/F21

4 sin2~p/L ! D
1/2

, ~12!

whereF is defined in terms of the Fourier transform of th
spin distribution,

G~p!5
1

V (
r

eip•re rs r , ~13!

as

F5
V

3
^uG~2p/L,0,0!u21permutations&. ~14!

III. FINITE-SIZE SCALING TECHNIQUES

In the scaling region, the mean value of a given obse
ableO measured at (b,p) couplings can be written as

O~L,b,p!5LxO /n@FO„j~L,b,p!/L…1O~L2v!#, ~15!
so-
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wherexO is the critical exponent of the operatorO, FO is a
smooth scaling function which depends on the observa
andv is the eigenvalue of the first irrelevant operator of t
theory from the point of view of the renormalization grou

All the quantities in Eq.~15! are measurable in a finite
lattice. In order to obtain the critical exponents we need
remove the unknown scaling functionFO . Let us define the
quotient of a given observableO at two different lattice sizes
and at the same coupling pair as

QO5O~sL,b,p!/O~L,b,p!, ~16!

and let us compute this quotient at the coupling where
correlation length, in units of the lattice size, is the same
both lattices. Thus we get

QOuQj5s5sxO /n1Ap
OL2v1¯ , ~17!

whereAp
O is a constant which depends on the observable

the spin concentrationp and the ellipsis stands for highe
order scaling corrections. From this equation we can ext
the critical exponent associated with a given observable.

The observables used to obtain the different critical ex
nents are theb derivative of the correlation length forn
(x]bj5n11) and the susceptibilityx for h @xx5n(2

2h)#.
In order to compute the critical coupling in the infinite

volume limit we will use the crossing points of the obser
ables withxO50, asg4 or j/L, when measured at two dif
ferent lattice sizesL andsL. The shift of these points from
the critical coupling behaves as13

Dbc
L}

12s2v

s1/n21
L2v21/n. ~18!

IV. NUMERICAL METHODS

The best update method for an Ising model simulation
cluster algorithm.14 In particular, the most efficient one in th
pure case is the single-cluster Wolff method.15 Nevertheless,
in a diluted system small groups of isolated spins appe
which are scarcely visited with this algorithm. Furthermo
in the non-Gaussian case isolated occupied lines also ap
In order to update all-sized spin clusters, after a fixed num
of single-cluster updates we perform a Swendsen-W
sweep. We call this procedure the MC step~MCS!. We have
discarded 100 MCS’s for thermalization and then we ha
measured the different observables for each MCS. We h
checked the correct thermalization of the system by star
from hot and cold configurations. We have chosen
single-cluster update number in such a way that the auto
relation times for all the observables are nearly one MC
The simulations are carried out in the RTNN machine
Zaragoza University.

Other interesting parameters are the number of meas
ments we perform for a given disorder realization,NI , using
the Ising Hamiltonian, Eq.~2!, and the number of differen
disorder realizations,NS . We refer to Refs. 8 and 9 for a
discussion of the optimal choice of these parameters. In
case, we have performedNI5100 measurements inNS
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PRB 60 12 915SITE-DILUTED THREE-DIMENSIONAL ISING MODEL . . .
520 000 different samples forL<64 and in NS510 000
samples forL5128.

We have used in this study the usualb extrapolation.11

Thus we are restricted to not too strong dilutions.
In order to work with large dilutions it is convenient t

perform also ap extrapolation as a consequence of the ph
diagram form of the systems. In the case of the random s
diluted Ising model this is possible because the distribut
probability of the actual density of spins is known~it is a
binomial one!. In the Gaussian model, due to the correlati
between the different sites, this distribution it is not know
Neither is it known in the non-Gaussian case, in the fo
presented here. Nevertheless, it is possible to constru
slight variation of this latter model allowing us to perform
dilution extrapolation. It is enough to choose whether a l
is empty or filled with a given probability, but this possibilit
will not be considered in this study.

We recall8,9 that a bias of order 2t/NI is present in theb
extrapolation, wheret is the correlation time between th
energy and the observable under study. This fact is not
evant in the usual MC calculations, because the statis
errors are of order 1/ANI . But in diluted system investiga
tions, whenANS;NI , this bias could be not negligible. W
have performed a proper extrapolation procedure8,9 in order
to obtain unbiased estimates of theb derivatives and the
values of the different observables in the neighborhood
the simulated couplings. The MCS is chosen in such a w
that t is nearly one measurement. For the largest lattice
have considered,L5128, in the non-Gaussian case, t
single-cluster update number for every Swendsen-W
sweep is 1200 and for the Gaussian case it is 400. For
statistical error computation we have used the jackkn
method with 50 blocks, which allows us to obtain a 10%
accuracy in the error bars.

V. NUMERICAL RESULTS

We have studied the Gaussian case at two different d
tionsp50.8 andp50.65, performing simulations on lattice
of sizesL58, 16, 32, 64, and 128. In the non-Gaussian c
we have only consideredp50.8 with the same lattice sizes

In Fig. 1 we show the phase diagram for the Gauss
model. The percolation critical pointpc.0.25 was obtained
by studying the behavior of theg4 function in a L5128
lattice. In the thermodynamical limit, we know thatg450 in
the disordered phase andg451 in a ferromagnetic ordere
one. The corresponding phase diagram for the non-Gaus
case is qualitatively the same, with a ferromagnetic orde
phase for largeb, provided thatp is larger than its percola
tion threshold.

A. Thermal exponent

In Table I we present the results for then exponent in the
two cases considered, the Gaussian and non-Gaussian d
der. It was computed by applying Eq.~17! to ]bj using s
52.

As we can see, there are visible scaling corrections in
the cases. Nevertheless, the values we have obtained fo
n exponent are very different from those of the pure Is
model, n50.6294(5)(5),6 and from those of the three
e
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dimensional random site-diluted case,n50.6837(24)(29).8

In order to obtain the critical exponent, we have to perfo
an infinite-volume extrapolation procedure. It is possible t
the scaling corrections we observe could be complicated
the presence of oscillatory terms, as is suggested by the
order of thee expansion, but we are unable to confirm
discard this possibility. Strong corrections to simple scal
are present, as we will see later, so it is rather difficult~al-
though we study lattices ranging from 83 to 1283) to get
conclusive statements on the nature of finite-volume corr
tions.

We can try to parametrize the scaling corrections as in
~17!, keeping only the first term. We have used the data fr
the two different dilutions of the Gaussian case to perform
joint fit where a single value for thev and n exponents is
assumed, according to the picture of a single universa
class along the critical line. UsingL>8 data and the full
covariance matrix to compute the statistical functionx2, we
find a very large value ofx2/DOF513.9/4. Nevertheless, i
we discard the data from theL58,16 pair, we find
x2/DOF51.20/2. The value obtained for the thermal exp
nent,n51.012(16), is compatible with the analytical predi
tions. We also find in this analysisv51.01(13).

We can control the presence of the higher-order corr
tions in a simple and naive way. We could perform a qu
dratic fit for each dilution withL>8 data, assumingv51,
which is compatible with our results, and using only t

FIG. 1. Phase diagram of the site-diluted Ising model with lon
range correlated Gaussian disorder, in the inverse temperat
dilution plane. The dots correspond to the simulated points, w
the arrow points to the percolation limit (b5`).

TABLE I. Critical exponentn computed using]bj when mea-
sured in (L,2L) lattice pairs at the couplings whereQj52 for both
models at the different concentrations considered.

L

Gaussian model Non-Gaussian

p50.8 p50.65 p50.8

8 0.7626~19! 0.871~3! 0.8335~24!

16 0.833~3! 0.942~6! 0.934~4!

32 0.907~4! 0.969~7! 1.009~9!

64 0.964~9! 0.996~11! 1.009~13!
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12 916 PRB 60H. G. BALLESTEROS AND G. PARISI
diagonal part of the covariance matrix. If we do so, we o
tain, for p50.8, x2/DOF50.76/1 with n51.012(10) and
for p50.65,x2/DOF50.73/1 andn51.005(14). Therefore
the presence of second-order corrections for the therma
ponent data seems reasonable. Furthermore, we have f
that the value ofn is not affected by the presence of the
terms.

In the non-Gaussian case large finite-volume correcti
are also present. Nevertheless, we find that the estim
from the two largest lattice pairs for then exponent are com
patible with the analytical calculations.

B. Magnetic exponent

In Table II we present the estimates of the magnetic
ponenth applying Eq.~17! to the susceptibilityx measured
at the points whereQj52 for all the concentrations consid
ered.

As we can see in the table, there are strong scaling eff
in all cases, especially in the non-Gaussian case. An infin
volume extrapolation procedure is therefore needed in o
to get anh estimate.

If we only assume the presence of first-order correcti
with our previously calculatedv value, we do not find rea
sonable fits to our data. Therefore, we should cons
higher-order correction terms. As we have foundv.1, the
second-order terms and the analytical corrections are of
same order, so we can try a quadratic joint fit using thev
51 value. With theL>16 data for all the concentration
studied, using only the diagonal part of the correlation m
trix, we getx2/DOF51.63/2 andh50.043(4). So wehave
found results compatible with the picture of a singleh value,
with scaling corrections parametrized byv.1, but with non-
negligible higher-order correction effects. Nevertheless,
estimate has two different sources of systematic error:
first one is due to the possible dependence of the valueh
on the minimum lattice size considered in the fits, and
second is due to the uncertainty on the fitted functional fo

We can compare this result forh with those from the
random site-diluted Ising model,h50.0374(36)(9),8 and
with those from the Ising case,h50.0374(6)(6),6 finding
that they are similar to our estimate forh.

C. Critical couplings

In Table III we show the crossing points ofg4 and j/L
from (L,2L) lattice pairs for the Gaussian case. As we c
see in the table, there is a nonmonotonicL behavior forg4
crossing points in both concentrations, so the presenc

TABLE II. Magnetic exponenth computed fromx, using lattice
(L,2L) pairs at the couplings whereQj52 for both Gaussian and
non-Gaussian cases at the different concentrations simulated.

L

Gaussian model Non-Gaussian

p50.8 p50.65 p50.8

8 0.0085~11! 0.0256~14! 20.0513~14!

16 0.0082~14! 0.0274~16! 20.0532~12!

32 0.0137~15! 0.0384~18! 20.0259~18!

64 0.0259~19! 0.038~3! 0.0052~24!
-
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high-order scaling corrections is expected. A way to extr
the infinite-volume critical coupling is to perform a fit to th
functional form of Eq.~18!. In order to find a proper extrapo
lated value, we have to make sure that we are within
linear regime and that we can control the higher-order c
rections. As the crossing points forg4 show a minimum
value around theL532,64 pair, the former condition is no
satisfied.

We could fit thej/L crossing points to Eq.~18!. Never-
theless, for both concentrations, usingL>8 data, we have
found a large value ofx2/DOF, being DOF51. We will then
be forced to assume the presence of higher-order correc
to scaling.

In order to control the finite-volume effects, assuming o
estimate forv11/n52.00(13), we can discard theL58
data and perform a linear fit for thej/L data. In thep
50.65 case we find a reasonablex2/DOF51.28/1 in the
central value, and we getbc(`)50.332 929(13)(12), where
the second error bar is due to the uncertainty inv11/n.
Nevertheless, forp50.8 we do not find a reasonable fi
which shows that the higher-order corrections are import
even in theL516 lattice. We can check this latter pictur
performing a fit with 1/L2 and 1/L3 terms, only considering
the diagonal part of the covariance matrix forL>8 data.
Then we obtain x2/DOF51.69/1 and bc(`)
50.272 715(10). So the picture of second-order scaling c
rections is compatible with our data in this case.

A similar analysis can be done by studying theg4 andj/L
crossing points measured with a (L1 ,L2) pair but with a
fixed L1 value.

In the p50.65 case, by performing a linear fit for th
crossing points ofj/L with L>16, andv11/n52.00(13)
we getx2/DOF51.43/1 for the central value of this interva
andbc(`)50.332 927(13)(15), where the second error b
is due to the uncertainty in the critical exponents.

In the p50.8 case a diagonal fit forj/L with 1/L2 and
1/L3 terms usingL>8 data yieldsx2/DOF50.52/1 and
bc(`)50.272 722(10). The behavior we find is similar
our previous analysis, finding reasonable fits and compat
estimates for the infinite-volume critical couplings.

In Table IV we show the crossing points ofg4 and j/L
measured atL and 2L lattice sizes for the non-Gaussian ca
with p50.8 mean concentration.

Also in this case we see that theg4 crossing point is not a
monotonic function ofL. In the j/L case we find that with
our previousv estimate, a linear fit forL>16, is not reason-
able, so we have to conclude that also in this case the hig
order terms are present. In order to check this assumptio
a simple way, we perform a fit with 1/L2 and 1/L3 terms,

TABLE III. Crossing points from (L,2L) pairs ofg4 andj/L for
the Gaussian case at the different concentrations simulated.

L

p50.8 p50.65

j/L g4 j/L g4

8 0.274535~34! 0.273760~52! 0.335269~76! 0.33358~12!

16 0.273545~15! 0.272862~22! 0.333709~41! 0.332617~72!

32 0.2729883~96! 0.272604~14! 0.333099~19! 0.332682~28!

64 0.2727805~70! 0.272624~11! 0.332989~15! 0.332872~25!
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using L>8 and using only the diagonal part of the cova
ance matrix. We obtainx2/DOF50.34/1 and bc(`)
50.257 126(14), so this picture is compatible with our da

In order to compute the value of the scaling functionsg4
andj/L at the critical coupling in the thermodynamical limi
we have measured the values of these quantities at the c
ing points ofg4 and j/L, respectively. In theg4 case, the
finite-volume corrections are large, and we find values
this observable in the range 0.58–0.64. In thej/L case, we
have also found that an infinite-volume extrapolation pro
dure is needed. Performing a 1/L extrapolation we quote fo
this quantity the value 0.36~2!.

VI. CONCLUSIONS

We have studied the three-dimensional site-diluted Is
model, with long-range spatially correlated disorder
Monte Carlo simulations. We have considered Gaussian
non-Gaussian disorder in order to study the influence of
long-range correlations in the disorder on the critical beh
ior of the system. We have used finite-size scaling te

TABLE IV. Crossing points ofg4 and j/L from (L,2L) pairs
for p50.8 in the non-Gaussian disorder.

L j/L g4

8 0.25926~4! 0.25803~5!

16 0.257935~22! 0.25706~3!

32 0.257375~13! 0.25708~21!

64 0.257188~9! 0.257110~13!
n

v

y
.
J

.

ss-

r

-

g

nd
e
-
-

niques for the computation of the critical exponents.
We have found strong scaling corrections for then expo-

nent. In the Gaussian case, we succeed to parametrize
with the first corrections-to-scaling term, and find an infinit
volumen value that is compatible with the analytical predi
tion in this model. In the non-Gaussian case, the value
obtain for the two largest lattice-size pairs is also compati
with this calculation.

For the h exponent, large finite-volume effects are al
present. Our data forL>16 are compatible with the pictur
of a single value ofh independent from the type of disorde
and from the concentration considered, but with no
negligible second-order correction terms.

Therefore, we have obtained a consistent picture of
existence of a single fixed point~singleh, n, andv values!
using Gaussian and non-Gaussian correlated disorder,
with non-negligible second-order corrections to scaling. T
fact introduces systematic errors in our analysis that are v
difficult to measure, and it is not easy to obtain solid es
mates of the final errors for the critical exponents.
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