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Nonlinear magnetization dynamics of the classical ferromagnet with two single-ion anisotropies
in an external magnetic field

Wu-Ming Liu
Department of Physics, The University of Texas, Austin, Texas 78712;

Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100 080, China;*
and Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032†

Wu-Shou Zhang and Fu-Cho Pu
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-99, Beijing 100 080, China

Xin Zhou
Department of Mathematics, Duke University, Durham, North Carolina 27706

~Received 6 April 1998; revised manuscript received 17 September 1998!

By using a stereographic projection of the unit sphere of magnetization vector onto a complex plane for the
equations of motion, the effect of an external magnetic field for integrability of the system is discussed. The
properties of the Jost solutions and the scattering data are then investigated through introducing transforma-
tions other than the Riemann surface in order to avoid double-valued functions of the usual spectral parameter.
The exact multisoliton solutions are investigated by means of the Binet-Cauchy formula. The results showed
that under the action of an external magnetic field nonlinear magnetization depends essentially on two param-
eters: its center moves with a constant velocity, while its shape changes with another constant velocity; its
amplitude and width vary periodically with time, while its shape is also dependent on time and is unsymmetric
with respect to its center. The orientation of the nonlinear magnetization in the plane orthogonal to the
anisotropy axis changes with an external magnetic field. The total magnetic momentum and the integral of the
motion coincident with itsz component depend on time. The mean number of spins derivated from the ground
state in a localized magnetic excitations is dependent on time. The asymptotic behavior of multisoliton solu-
tions, the total displacement of center, and the phase shift of thej th peak are also analyzed.
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I. INTRODUCTION

Nonlinear magnetization dynamics of the classical fer
magnet with two single-ion anisotropies in an external m
netic field can provide an approximative description of va
ous kinds of behavior of magnetic materials as well as
natural starting point for analyzing the anomalous hydro
namical behavior of low-dimensional magnetic system
Such fascinating nonlinear dynamic problem exhibits b
coherent and chaotic structures depending on the natur
the magnetic interactions, and it is of considerable inte
from the point of view of condensed-matter physics, stati
cal physics, and soliton theory.

Nonlinear magnetization dynamics of the classical fer
magnet can be described by the Landau-Lifschitz equati1

special solutions of which have been derived by many
thors: Makamura and Sasada2 found analytic expressions fo
the permanent profile solitary waves and periodic wa
trains; Laksmanan, Ruijgrok, and Thompson3 discussed the
spin-wave spectrum and derived also the solitary wave s
tion. Tjon and Wright4 found that a single-solitary wave i
stable with respect to small perturbations and that two c
liding ones preserve their identity, thus providing eviden
that the solitary wave is a bona fide soliton. Kosevic
Ivanov, and Kovalev5 found a solution by reducing the equ
tion to an appropriate form. Mikeska6 obtained a solution by
reducing the equation of motion to a sine-Gordon equa
PRB 600163-1829/99/60~18!/12893~19!/$15.00
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for a ferromagnet with an easy plane. Long and Bisho7

proposed another solution which does not tend to the w
known solution of an isotropic ferromagnet when an anis
ropy parameter vanishes. Zakharov and Takhtajan8 found the
equivalence of a nonlinear Schrodinger equation a
Landau-Lifschitz equation of an anisotropic ferromagn
Ivanov, Kosevich, and Babich9 obtained a solution by taking
into account only the first-order approximation. Using t
Hirota method, Bogdan and Kovalev10 attempted to construc
exact multisoliton solutions of an anisotropic ferromagn
Svendsen and Fogedby11 derived the complete spectrum o
the Landau-Lifshitz equation by the Hirota method. Usi
the variation method, Nakumura and Sasada12 obtained a so-
lution which does not satisfy the equation if it is substitut
into the equation of motion.13 By separating variables in
moving coordinates, Quispel and Capel14 obtained a solution
of the Landau-Lifschitz equation of a ferromagnet with
easy plane. Potemina15 and Kivshar16 elaborated on the per
turbation theory for the Landau-Lifschitz equation describi
a biaxial anisotropic ferromagnet.

The general solution of Landau-Lifschitz equation for t
special initial condition has been considered by several
vestigators. Lakshmann17 shown that the energy and curre
densities are given by the solutions of a completely in
grable nonlinear Schrodinger equation. Takhtajan18 con-
cluded that the Landau-Lifschitz equation admits a Lax r
resentation and, consequently, falls within the scope of
12 893 ©1999 The American Physical Society
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inverse scattering transformation. Fogedby19 reviewed the
permanent profile solutions of a continuous classical Heis
berg ferromagnet and expounded on the application of
inverse scattering transformation. Sklyanin20 and Borisov21

found the Lax pair of Landau-Lifschitz equations for a co
plete anisotropic ferromagnet, respectively. Mikhailov22 and
Rodin23 reduced the problem to the Riemann boundary-va
problem on a torus, then obtained some results which
expressed by the elliptic functions. Borovik and Kulinich24,25

derivated the Marchenko equation by an inverse scatte
transformation. Pu, Zhou, and Li26 reported the multisoliton
solutions of the Landau-Lifschitz equation in an isotrop
ferromagnet in a magnetic field. Chen, Huang, and Li27

obtained soliton solutions of the Landau-Lifschitz equat
for a spin chain with an easy axis. Yue, Chen, and Huan28

investigated solitons of the Landau-Lifschitz equation fo
spin chain with an easy plane. By means of the Darbo
transformation, Huang, Chen, and Liu29 found the soliton
solutions of the Landau-Lifschitz equation for a spin cha
with an easy plane. Liuet al.30 studied solitons in a uniaxia
Heisenberg spin chain with Gilbert damping in an exter
magnetic field. Using the method of the Riemann probl
with zeros, Yue and Huang31 investigated solitons for a spi
chain with an easy plane.

There are some difficulties in the study of nonlinear ma
netization dynamics of a ferromagnet with an anisotropy
an external magnetic field. Its equations of motion, wh
differ from those of an isotropic ferromagnet, could not
solved by the method of separating variables in mov
coordinates.4 Then, this equation could also not solved by
usual form of inverse scattering transformation since
double-valued function of the spectral parameter is requ
to introduce a Riemann surface. The reflection coefficien
the edges of cuts in the complex plane could not be negle
even in the case of nonreflection. Thirdly, it is impossible
use Darboux transformation to include the contribution d
to the continuous spectrum of the spectral parameter. If
consider the exact solutions of the Landau-Lifschitz equa
under various external actions such as an external field in
present paper, a general theory with terms of the continu
spectrum as a starting point is necessary. Finally, an exte
magnetic field will affect the integrability of the system. Th
field will change the initial condition of the Landau-Lifschit
equation of a ferromagnet with an anisotropy. It would
instructive if the effect of a magnetic field is discussed.
troducing the coherent-state ansatz, the time-depen
variational principle, and the method of multiple scales, L
and Zhou investigated the equation of motion and obtai
multisolitons in the pure32 and the biaxial33 anisotropic anti-
ferromagnets in an external field. Up to date, the effect of
external magnetic field for magnetic systems with anisotro
is treated as various perturbations. The exact solutions o
Landau-Lifschitz equation of the classical ferromagnet w
two single-ion anisotropies in an external field have not b
obtained yet. On the experimental side,34,35 a ferromagnet
with an easy plane in a symmetry-breaking external tra
verse field has received continuing interest, though most
oretical treatments have been based on the approxim
mapping6 to a sine-Gordon equation.

This paper focuses on the integrability and nonlinear m
netization dynamics of the classical ferromagnet with t
n-
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single-ion anisotropies in an external magnetic field. This
an important problem which has been treated to a large
tent for the vanishing magnetic field by Sklyanin in a f
mous, but unpublished preprint, cited in Ref. 20. For ma
netic fields with rotational symmetry~an easy-plane or an
easy-axis case!, the analysis of Ref. 20 can be generalized
transformation to a rotating coordinate frame. For the gen
direction of the magnetic field the results will be genera
investigated in the following content. The plan of this pap
is as follows. In Sec. II by using stereographic projection
the unit sphere of the magnetization vector onto a comp
plane for the equations of motion, the effect of a magne
field for integrability of the system will be discussed. The
though introducing transformations other than the Riema
surface, the properties of the Jost solutions and the scatte
of data will be investigated in detail. In Sec. III will be de
rived the Gel’fand-Levitan-Marchenko equation to constru
solutions from the scattering data. The exact multisoliton
lutions will be investigated by means of the Binet-Cauc
formula. The total magnetic momentum and itsz component
will be obtained. Section IV will be devoted to th
asymptotic behavior of multisoliton solutions as well as t
total displacement of center and the phase shift of thej th
peak. Finally, Sec. V will given our concluding remarks.

II. THE EQUATIONS OF MOTION

When we use a macroscopic description, dynamics of
classical ferromagnet is determined by giving at each po
of the magnetization vectorM5(Mx ,M y ,Mz). The energy
of a ferromagnet in this approach called, generally, mic
magnetism, is written as the magnetization function. T
magnetic energyE of the classical ferromagnet with tw
single-ion anisotropies in an external magnetic field, inclu
ing an exchange energyEex, an anisotropic energyEan, and
a Zeeman energyEZ can be written as

E5Eex1Ean1EZ

5
1

2
aE (

k

]M

]xk

]M

]xk
d3x2

1

2
bxE Mx

2d3x

2
1

2
bzE Mz

2d3x2mBE M–Bd3x, ~1!

wheremB is the Bohn magneton. Equation~1! has an integral
of motion ^M2&[M0

25const. In the ground state, the qua
tity M0 coincides with a so-called spontaneous magnet
tion M05(2mBS)/a3, whereS is the atomic spin anda is the
interatomic spacing. In the limitbx50, a biaxial anisotropic
ferromagnet reduces into an uniaxial anisotropic ferromag
with an anisotropy axis coincident with thez axis: whenbz
.0, an anisotropy is of an easy-axis type and its magnet
tion vector in the ground state is directed along thez axis;
whenbz,0 it is of an easy-plane type, its vectorM in the
ground state lies in the easy plane in the absence of an
ternal magnetic field and can be directed arbitrarily in t
plane. IfEan50, a crystal is called an isotropic ferromagne

As a function of space coordinates and time, the mag
tization vector of the classical ferromagnetM (x,t) is a solu-
tion of the Landau-Lifschitz equation
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]M

]t
5

2mB

\
M3

dE

dM
. ~2!

If we measure the space coordinatex and timet in unit of
l 05(a/bz)

1/2 andv05(2mBbzM0)/\, respectively, then ac
cording to Eqs.~1! and ~2!, we can obtain the following
equation of motion:

]M

]t
5M3F ]2M

]x2
1JM1mBBG , ~3!

where the matrixJ5diag(Jx ,Jy ,Jz) is related to the aniso
tropic constants. Equation~3! with B50 is exactly integrable
by Sklyanin in a famous, but unpublished paper@20#. The
additional terms on the right-hand side of Eq.~3! describes
various external actions, e.g., a magnetic field in the pre
paper, magnetic impurities, dissipative loses, etc. When
cillations of the magnetization vectorM are localized near an
easy planeyz, Eq.~3! with B50 could be transformed into
sine-Gordon equation in the limitJx!Jy,Jz . Similarly, this
equation withB50 also becomes a nonlinear Schroding
equation in the limitJx'Jy!Jz when oscillations of the
magnetization vectorM are localized in the vicinity of the
vacuum stateM (x,t)5(0,0,M0). In the special casebz50,
an isotropic ferromagnet in an external magnetic field is a
completely integrable.26 When a magnetic field is zero, Eq
~3! is equivalent to a nonlinear Schrodinger equation.8 Thus
Eq. ~3! is the most general equation describing the class
ferromagnet with two single-ion anisotropies in an exter
magnetic field, but its exact solutions have not been obtai
so far because the additional terms such as an external
netic field in the present paper on the right-hand side of
~3! are determined by various perturbations.33

We first consider the effect of an external magnetic fi
on integrability of the system. For magnetic fields with ro
tional symmetry~an easy-plane or an easy-axis case!, the
analysis of Ref. 20 can be generalized by going over t
rotating coordinate frame. For the general direction of
magnetic field, we first use a stereographic projection of
unit sphere of magnetization vector onto a complex plane17,36

P~x,t !5
Mx1 iM y

11Mz
. ~4!

Substituting Eq.~4! into Eq. ~3!, we can find

~12P* 2!Fx~P,P* !2~12P2!Fx* ~P,P* !50,

2 i ~11P* 2!Fy~P,P* !2 i ~11P2!Fy* ~P,P* !50, ~5!

P* Fz~P,P* !2PFz* ~P,P* !50,

whereFx , Fy andFz can be written as

F i~P,P* !5 i ~11uPu2!
]P

]t
1~11uPu2!

]2P

]x2
22P* S ]2P

]x2 D 2

12DJi P~12uPu2!1mB~11uPu2!

3F1

2
Bx~12P2!1

1

2
iBy~11P2!2BzPG , ~6!
nt
s-

r

o

al
l
d

ag-
q.

-

a
e
e

where i 5x,y,z, DJx5Jz2Jy , DJy5Jx2Jz , DJz5Jy
2Jx , respectively.

The consistency of Eq.~6! implies F i(P,P* )50 and
F i* (P,P* )50, therefore the evolution equation for the st
reographic projectionP(x,t) in the presence of the gener
direction of an external magnetic field becomes

i ~11uPu2!
]P

]t
1~11uPu2!

]2P

]x2
22P* S ]2P

]x2 D 2

12DJi P~12uPu2!1mB~11uPu2!

3F1

2
Bx~12P2!1

1

2
iBy~11P2!2BzPG50. ~7!

According to Eq.~7!, we can analyze the effect of an exte
nal magnetic field on the integrability of the system. Wh
an external field is directed along an anisotropic axis, e
B5@0,0,Bz(t)#, the magnetic field term in Eq.~7! can be
removed by the following gauge transformationP→ P̃
5P exp@imB*dtBz(t)#, and the system becomes integrab
However, if the magnetic field is transverse, e.g.,B
5@0,By(t),0#, the magnetic field term is not removable b
previous gauge transformation and none of the magnetiza
components remain conserved quantities. Consequently
combined Galilean plus gauge invariance of the Land
Lifschitz equation is broken, no Lax pairs seem to exist, a
the system appears to be nonintegrable.

The influence of the magnetic field on the classical fer
magnet with an easy axis amounts to a change of the pre
sion frequency of the magnetization vectorM by vB5mBB.
Therefore, if we can introduce an angular variablew̃5w
2vBt in the polar coordinates (u,w), then in terms of the
angular variablesu and w̃ Eq. ~3! will not depend onB.

However, the magnetization dynamics of the classical f
romagnet with an easy plane is very sensitive to an exte
magnetic field. Even a weak magnetic field alters the ch
acter of the ground state and therefore the form of locali
solutions. When an external magnetic field is perpendicu
to an easy plane, it does not alter the axial symmetry as
ciated with thez axis, and the form of the ground state d
pends on the strength of an external field. The critical va
is Bc5@(Jx2Jz)M #/mB . When an external magnetic fiel
Bz,Bc the magnetization vectorM in the ground state de
viates from an easy plane, and it is characterized by an
clinationu5u0 to thez axis, whereu05arccos(Bz/Bc). The
anglew remains arbitrary. For brevity, such a ground state
referred to as an easy cone. As an external magnetic
increases, the angular opening of the easy cone beco
smaller, especially in the case ofBz@Bc , and the magneti-
zation vectorM in a nonexcited ferromagnet with an ea
plane lies along thez axis.

In the context of the experiments,34,35 the situation where
an external magnetic field lies in an easy plane, e.g.B
5@Bx(t),0,0#, or B5@0,By(t),0#, seems quite topical. In ex
periments on samples of a ferromagnet with an easy pla
CsNiF3 and (C6H11NH3)CuBr3, an external field is applied
as a rule in an easy plane. The presence of an external fi
which lies in an easy plane, makes finding soliton solutio
of the Landau-Lifschitz equation essentially more difficu
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The magnetic-field term in Eq.~7! is not removable by pre
vious gauge transformation. Thus, we can conclude th
ferromagnet with a uniaxial anisotropy in a transverse m
netic field is, in general, nonintegrable and becomes in
grable only in the absence of either an anisotropic interac
or an external field.

Equation~3! may be represented as a compatibility co
dition ] tL2]xA1@L,A#50 of two equations for 232 ma-
tricesC(x,t;m,l):
,

-

ic

na
a
-
-
n

-

]C~x,t;m,l!

]x
5L~m,l!C~x,t;m,l!,

]C~x,t;m,l!

]t
5A~m,l!C~x,t;m,l!, ~8!

while
L~m,l!52 irns~m,l!Mxsx2 irds~m,l!M ysy2 ircs~m,l!Mzsz ,

A~m,l!5 i2r2ds~m,l!cs~m,l!Mxsx1 i2r2ns~m,l!cs~m,l!M ysy1 i2r2ns~m,l!ds~m,l!Mzsz2 irns~m,l!

3S M y

]Mz

]x
2Mz

]M y

]x Dsx2 irds~m,l!S Mz

]Mx

]x
2Mx

]Mz

]x Dsy2 ircs~m,l!S Mx

]M y

]x
2M y

]Mx

]x Dsz , ~9!
-
n of
nn

t a

di-
e
lly
ith
in

s

s

-

tor
ne
where s i( i 5x,y,z) are the Pauli metrics
ns(m,l),ds(m,l), and cs(m,l) are elliptical functions,
while m and r are defined asm5(JyM2JxM )1/2/2r, r
51/2(JzM2JxM )1/2. The coefficients in the Lax pairs in
clude two parametersm and r instead of the threeJi( i
51,2,3), because adding a constant to all theJi does not
change Eq.~3!. Since the coefficients are double-period
functions of the parameterl, it is sufficient to considerl
inside the rectangleuRelu<2K, uIm lu<2K8, whereK(m)
is a complete elliptic integral of the first kind andK8(m)
5K@(12m2)1/2#.

For an uniaxial anisotropic ferromagnet in an exter
magnetic field, the Lax pairs can be written as

L~m,l!52 imMxsx2 imM ysy2 ilMzsz ,

A~m,l!5 i2mlMxsx1 i2mlM ysy1 i2m2Mzsz

2 imS M y

]Mz

]x
2Mz

]M y

]x Dsx2 imS Mz

]Mx

]x

2Mz

]Mz

]x Dsy2 ilS Mz

]M y

]x
2Mz

]Mx

]x Dsz ,

~10!

where the spectral parametersl andm satisfy the following
relation:

l25H m214r2, for bz,0 ~an easy plane!;

m224r2, for bz.0 ~an easy axis!,
~11!

and wherer is defined as

r5H 1

4
@~Jx2Jz!M #1/2, for bz,0 ~an easy plane!;

1

4
@~Jz2Jx!M #1/2, for bz.0 ~an easy axis!.

~12!
l

If one of two parameters in Eq.~11! is taken as an indepen
dent parameter, then another is the double-value functio
the first, therefore it is necessary to introduce a Riema
surface. In order to avoid the complexity brought abou
Riemann surface, introducing another parameterk called the
affine parameter, we will considerl(k) and m(k) as a
single-valued function ofk,

l55
2r~k211!

k221
,

k22r2

k
,

m55
4rk

k221
, for an easy plane,

k21r2

k
, for an easy axis.

~13!

There are two different types of physical boundary con
tions in Eq. ~3!. The boundary condition of the first typ
corresponds to a breatherlike solution, which is usua
called a magnetic soliton. For the classical ferromagnet w
two single-ion anisotropies in an external magnetic field,
terms of analysis for integrability of Eq.~7!, we will study
soliton solutions of possessing asymptotesM→M0
5(0,0,M0), as x→6`. The corresponding Jost solution
C06(x,k) of Eq. ~8! may be chosen asC06(x,k)→E(x,k)
asx→6`, whereE(x,k)5exp@2ircs(k)M0xsz#, while

C0~x,k!5expH 2 ircs~k!M0Fx2
2rns~k!ds~k!

cs~k!
t GszJ

for Im k50,2K8. There are two independent solution
E1(x,k) andE2(x,k) in E(x,k), with every solution having
two components,

E1~x,k!5S E11~x,k!

E21~x,k!
D , E2~x,k!5S E12~x,k!

E22~x,k!
D .

C01(x,k), C02(x,k), andC0(x,k) have also two indepen
dent solutionsC011(x,k) and C012(x,k), C021(x,k) and
C022(x,k), C01(x,k) andC02(x,k), respectively.

Under an external magnetic field the magnetization vec
M in the ground state of a ferromagnet with an easy pla
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deviates from an easy plane, and it is characterized by
inclination u0 to the z axis andf0 to the x axis, where the
asymptotic magnetization vectorM lies on the surface of an
easy cone. The simplest solution of Eq.~3! can be written as
M→M0 5 (M0 sinu0 cosf0,M0 sinu0 sinf0,M0 cosu0), as
x→6`, the corresponding Jost solutionsC06

p (x,k) of Eq.
~8! may be chosen asC06

p (x,k)→Ep(x,k) as x→6`,
where

Ep~x,k!5expF2 i
2rk

k221
M0 sinu0x cosf0sx

2 i
2rk

k221
M0 sinu0x sinf0sy

2 i
r~k211!

k221
M0 cosu0xszG ,

while

C0
p~x,k!5expH 2 i

2rk

k221
M0 sinu0 cosf0

3Fx2
2r~k211!

k221
tGsx

2 i
2rk

k221
M0 sinu0 sinf0Fx2

2r~k211!

k221
tGsy

2 i
r~k211!

k221
M0 cosu0Fx2

8rk2

k421
tGszJ .

When an external magnetic field increases, magnetiza
will be far from an easy plane, and in the case ofBz@Bc ,
magnetization will lie along thez axis. When a magnetic
fields vanishes, magnetization will lie on an easy plane
can be written asM05(M0cosf0,M0sinf0,0). There are
two independent solutionsE1

p(x,k) andE2
p(x,k) in Ep(x,k),

with every solution having two components,

E1
p~x,k!5S E11

p ~x,k!

E21
p ~x,k!

D ,

E2
p~x,k!5S E12

p ~x,k!

E22
p ~x,k!

D .

The solutionsC01
p (x,k), C02

p (x,k) andC0
p(x,k) have also

two independent solutionsC011
p (x,k) and C012

p (x,k),
C021

p (x,k) and C022
p (x,k), C01

p (x,k) and C02
p (x,k), re-

spectively.
Since thez axis is an easy axis in a ferromagnet, t

boundary condition is chosen asM→M05(0,0,M0) asx→
6`, and the corresponding Jost solutionsC06

a (x,k) of Eq.
~8! may be chosen asC06

a (x,k)→Ea(x,k) as x→6`,
where

Ea~x,k!5expF2 i
k22r2

2k
M0xszG ,
an

n

d

while

C0
a~x,k!5expH 2 i

k22r2

2k
M0Fx2

~k21r2!2

k~k22r2!
tGszJ .

Similarly, Ea(x,k) also has two independent solution
E1

a(x,k) andE2
a(x,k), with every solution having two com

ponents,

E1
a~x,k!5S E11

a ~x,k!

E21
a ~x,k!

D , E2
a~x,k!5S E12

a ~x,k!

E22
a ~x,k!

D .

C01
a (x,k), C02

a (x,k) andC0
a(x,k) have also two indepen

dent solutionsC011
a (x,k) and C012

a (x,k), C21
a (x,k) and

C022
a (x,k), C01

a (x,k) andC02
a (x,k), respectively.

By means of the standard procedures of character
theory, we can obtain the following integral representatio

C1~x,k!5E~x,k!1lE
x

`

dyK1~x,y!E~y,k!,

~14!

C2~x,k!5E~x,k!1lE
2`

x

dyK2~x,y!E~y,k!,

where the kernelsK1(x,y) and K2(x,y) depend function-
ally on magnetizationM (x) but are independent of the e
genvaluel, andK6(x,6`)50.

For a ferromagnet with an easy plane in an external m
netic field, we can also obtain

C1
p ~x,k!5Ep~x,k!1

r~k211!

k221
E

x

`

dyK1
p,d~x,y!Ep~y,k!

1
2rk

k221
E

x

`

dyK1
p,nd~x,y!Ep~y,k!,

C2
p ~x,k!5Ep~x,k!1

r~k211!

k221
E

2`

x

dyK2
p,d~x,y!Ep~y,k!

1
2rk

k221
E

2`

x

dyK2
p,nd~x,y!Ep~y,k!, ~15!

whereK6
p (x,6`)50, the superscriptsd andnd denote the

diagonal and nondiagonal parts of the matrix, respectiv
While for a ferromagnet with an easy axis in an extern
magnetic field,

C1
a ~x,k!5Ea~x,k!1

k22r2

2k E
x

`

dyK1
a,d~x,y!Ea~y,k!

1
k21r2

2k E
x

`

dyK1
a,nd~x,y!Ea~y,k!,

C2
a ~x,k!5Ea~x,k!1

k22r2

2k E
2`

x

dyK2
a,d~x,y!Ea~y,k!

1
k21r2

2k E
2`

x

dyK2
a,nd~x,y!Ea~y,k!, ~16!

whereK6
a (x,6`)50.
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III. SOLITONS

By means of the results obtained in the previous sect
we will investigate soliton solutions. The reconstruction
magnetization, i.e., the ‘‘potential’’M (x,t), from the time-
dependent scattering data is called the ‘‘inverse scatte
problem’’ and is achieved by means of a linear integral eq
tion, the Gel’fand-Levitan-Marchenko equation. It is we
known that the pure soliton solutions correspond to the
flectionless case. In the reflectionless case, the reflecti
coefficient r (k,t)50, the Gel’fand-Levitan-Marchenko
equation can be written as

K11~x,t !1K12~x,t !N9~x,t !50,
~17!

K12~x,t !2G~x,t !2K11~x,t !N8~x,t !50,

whereK11(x,t) andK12(x,t) can be expressed by
n,
f

g
-

-
al

K11~x,t !5 i H det@ I 1N9~x,t !M 8~x,t !#

det@ I 1N9~x,t !N8~x,t !#
21J ,

K12~x,t !5
det@ I 1N9~x,t !N8~x,t !1H~x!TG~x,t !#

det@ I 1N9~x,t !N8~x,t !#
21,

~18!

where M 8(x,t)5N8(x,t)1 iH (x)TG(x,t), while N8(x,t)
andN9(x,t) areN3N matrices.

In order to obtainK11(x,t) and K12(x,t), we will calcu-
late det@ I 1N9(x,t)N8(x,t)#, det@ I 1N9(x,t)M 8(x,t)# and
det@ I 1N9(x,t)M 8(x,t)1H(x)TG(x,t)# by the Binet-
Cauchy formula, respectively.

Setting

G05det~ I 1N9N8!, ~19!

and using the Binet-Cauchy formula, we can obtain
G0511(
r 51

(
1<n1,n2,•••,nr<N

(
1<m1,m2,•••,mr<N

3g0~n1 ,n2 , . . . ,nr ;m1 ,m2 , . . . ,mr !. ~20!

For a ferromagnet with two single-ion anisotropies in an external magnetic field,

g0~n1 ,n2 , . . . ,nr ;m1 ,m2 , . . . ,mr !5~21!r)
n

)
m

)
n,n8

)
m,m8

f nf manam

r2@cs~kn!2cs~kn8!#
2@cs~km!2cs~km8!#

2

@cs~km!2cs~km!#2
, ~21!

where

an5 )
mÞn

cs~kn!2cs~km!

r@cs~km!2cs~km!#@cs~kn!2cs~kn!#
,

f n5)
l 51

N
cs~kl !

cs~kl !
bnHn

2 .

For an uniaxial anisotropic ferromagnet in an external magnetic field, we can find

g0~n1 ,n2 , . . . ,nr ;m1 ,m2 , . . . ,mr !

55
~21!r)

n
)
m

)
n,n8

)
m,m8

f nf manam

4r2km~kn
421!~km

221!~kn8
22kn

2!2~km8
2

2kn
2!2

km~km
2 11!~kn

221!2~kn8
221!2~km8

221!2~km
2 2kn

2!
,

for an easy plane;

~21!r)
n

)
m

)
n,n8

)
m,m8

f nf manam

4r2kn~km
2 11!@kn~kn8

221!2kn8
2~kn

221!#2@km~km8
2

21!2km8~km
2 21!#2

km~kn
211!@kn~km

2 21!2km~kn
221!#2

,

for an easy axis.

~22!

where
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an55 )
mÞn

~kn
221!~kn

221!~km
221!~km

2 2kn
2!

2r~km
2 21!~kn

22kn
2!~km

22kn
2!

;

)
mÞn

~kn
221!~kn

221!~km
221!@kn~km

2 21!2km~kn
221!#

4r~km
2 21!@kn~km

221!2km
2~kn

221!#@kn~kn
221!2kn~kn

221!#
.

f n55 )
l 51

N
~kl

211!~kl
211!

~kl
221!~kl

221!
bnHn

2 , for an easy plane;

)
l 51

N kl~kl
221!

kl~kl
221!

bnHn
2 , for an easy axis.

~23!

Setting

G15det~ I 1N9M 8!, ~24!

thenG1 can be written as

G1511(
r 51

(
1<n1,n2,•••,nr<N

(
1<m1,m2,•••,mr<N

g1~n1 ,n2 , . . . ,nr ;m1 ,m2 , . . . ,mr !. ~25!

For the classical ferromagnet with two single-ion anisotropies in an external magnetic field,

g1~n1 ,n2 ,•••,nr ;m1 ,m2 ,•••,mr !5~21!r)
n

)
m

)
n,n8

)
m,m8

f nf manam

r2cs~km!@cs~kn!2cs~kn8!#
2@cs~km!2cs~km8!#

2

cs~kn!@cs~kn!2cs~km!#2
.

~26!

For an uniaxial anisotropic ferromagnet in an external magnetic field,

g1~n1 ,n2 ,•••,nr ;m1 ,m2 ,•••,mr !

55
~21!r)

n
)
m

)
n,n8

)
m,m8

f nf manam

r2km~kn
221!~kn8

22kn
2!2~km8

2
2km

2 !2

kn~km
2 21!~kn8

221!~km8
2

21!~km
2 2kn

2!2
,

for an easy plane;

~21!r)
n

)
m

)
n,n8

)
m,m8

f nf manam

16r2~km
2 11!~kn

221!@kn~kn8
221!2kn8~kn

221!#2@km~km8
2

21!2km8~km
2 21!#2

~km
2 21!~kn

211!@kn~km
2 21!2km~kn

221!#2
,

for an easy axis.
~27!

Third, in order to obtain det@ I 1N9(x,t)N8(x,t)1H(x)TG(x,t)# in Eq. ~18!, we will introduce aN3(N11) matrixQ9 and
a (N11)3N matrix Q8, Qnm9 5Nnm8 , Qn09 52 iHn, Qnm8 5Nnm8 , Qn09 5 iGn, n,m51,2, . . . ,N, then det(I 1Q9Q8) can be
written as

det~ I 1Q9Q8!511(
r 51

(
1<n1,n2,•••,nr<N

(
0<m1,m2,•••,mr<N

3Q9~n1 ,n2 , . . . ,nr ;m1 ,m2 , . . . ,mr !Q8~m1 ,m2 , . . . ,mr ;n1 ,n2 , . . . ,nr !, ~28!

where the sum is decomposed into two parts: one is extended tom150, the other tom1>1. Except for the same extended
m150, Eq. ~28! is just Eq.~19!, therefore,

det~ I 1Q9Q8!2det~ I 1N9N8!5(
r 51

(
1<n1,n2,•••,nr<N

(
1<m1,m2,•••,mr<N

3Q9~n1 ,n2 , . . . ,nr ;0,m2 , . . . ,mr !Q8~0,m2 , . . . ,mr ;n1 ,n2 , . . . ,nr !. ~29!

Setting

G25det~ I 1Q9Q8!2det~ I 1N9N8!, ~30!
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we can obtain

G25(
r 51

(
1<n1,n2,•••,nr<N

(
1<m1,m2,•••,mr<N

g2~n1 ,n2 , . . . ,nr ;0,m2 , . . . ,mr !. ~31!

For the classical ferromagnet with two single-ion anisotropies in an external magnetic field,

g2~n1 ,n2 , . . . ,nr ;0,m2 , . . . ,mr !

5~21!r 11)
n

)
m

)
n,n8

)
m,m8

f nf manam

r2cs~km!@cs~kn!2cs~kn8!#
2@cs~km!2cs~km8!#

2

cs~kn!@cs~kn!2cs~km!#2
. ~32!

For an uniaxial anisotropic ferromagnet in an external magnetic field,

g2~n1 ,n2 , . . . ,nr ;0,m2 , . . . ,mr !

55
~21!r 11)

n
)
m

)
n,n8

)
m,m8

f nf manam

r2km~kn
221!2~kn8

22kn
2!2~km8

2
2km

2 !2

kn~km
2 21!~kn8

2
21!2~km8

2
21!2~km

2 2kn
2!2

, for an easy plane,

~21!r 11)
n

)
m

)
n,n8

)
m,m8

f nf manam

3
16r2~km

2 11!~kn
221!@kn~kn8

221!2kn8~kn
221!#2@km~km8

221!2km8~km
2 21!#2

~km
2 21!~kn

211!@kn~km
2 21!2km~kn

221!#2
, for an easy axis,

~33!
er
na

ag

i-
si-

er-

ag-

al
nal
where f n can also be written asf n5exp(2F1n1iF2n).
Substituting Eqs.~19!, ~24!, and ~30! into Eq. ~18!, we

can obtainK11 andK12. Using the following relations:

M „x,t…5@ iK ~x,x,t !2sz#sz@ iK ~x,x,t !2sz#
21, ~34!

we can obtain the multisoliton solutions in the classical f
romagnet with two single-ion anisotropies in an exter
magnetic field,

~Mn!x5ReS 2G1G2

uG1u21uG2u2
D ,

~Mn!y5ImS 2G1G2

uG1u21uG2u2D , ~35!

~Mn!z5M02
uG1u22uG2u2

uG1u21uG2u2
.

For an uniaxial anisotropic ferromagnet in an external m
netic field, the multisoliton solutions can be written as

~Mn!x55 M0 sinu0 cosf02ReS 2G1G2

uG1u21uG2u2
D ,

ReS 2G1G2

uG1u21uG2u2D ,

~Mn!y55 M0 sinu0 sinf02ImS 2G1G2

uG1u21uG2u2
D ,

ImS 2G1G2

uG1u21uG2u2
D ,

~36!
-
l

-

~Mn!z55 M0 cosu02
uG1u22uG2u2

uG1u21uG2u2
, for an easy plane,

M02
uG1u22uG2u2

uG1u21uG2u2
, for an easy axis.

Then taking thez axis as the polar axis in the polar coord
nates, we can obtain the multisoliton solutions of the clas
cal ferromagnet with two single-ion anisotropies in an ext
nal magnetic field,

cosu5
2uG2u2

uG1u21uG2u2
,

~37!
w52argG22argG1 .

For an uniaxial anisotropic ferromagnet in an external m
netic field, the multisoliton solutions can be written as

cosu55 cosu02
2uG2u2

uG1u21uG2u2
,

12
2uG2u2

uG1u21uG2u2
,

w5H 2argG22argG1 , for an easy plane,

2argG22argG1 , for an easy axis,
~38!

whereG1 and G2 are expressed by Eqs.~25! and ~31!, re-
spectively.

When n51, the single-soliton solutions of the classic
ferromagnet with two single-ion anisotropies in an exter
magnetic field can be written as
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~M1!x5
ns~k1!92 sinhF1 sinF21ns~k1!82 coshF1cosF2

4ns~k1!82 cosh2 F114ds~k1!92 sinh2 F11cs~k1!92
,

~M1!y5
ds~k1!92 sinhF1cosF22ds~k1!82 coshF1 sinF2

4ns~k1!82 cosh2 F114ds~k1!92 sinh2 F11cs~k1!92
, ~39!

~M1!z5M02
2cs~k1!92

4ns~k1!82 cosh2 F114ds~k1!92 sinh2 F11cs~k1!92
,

where

F152rcs~k1!9~x2V1t2x10!, F252rcs~k1!8~x2V2t2x20!, ~40!

and

V154cs~k1!8, V25
2„cs~k1!822cs~k1!9214r2

…

rcs~k1!8
. ~41!

The single-soliton solutions of a uniaxial anisotropic ferromagnet in an external magnetic field can be written as

~M1!x5M0 sinu0 cosf02
2k19

2@4k18
21uk1

221u2 sin2 F2#

uk1
221u2@k18

2 cosh2 F11k19
2 sin2 F2#

,

~M1!y5M0 sinu0 sinf02
2k18k19@4k18k19 sinhF1 cosF21~ uk1u421! coshF1 sinF2#

uk1
221u2@k18

2 cosh2 F11k19
2 sin2 F2#

,

~M1!z5M0 cosu02
4k18k19@k19~ uk1u211! sinhF1 sinF22k18~ uk1u221! coshF1 cosF2#

uk1
221u2@k18

2 cosh2F11k19
2 sin2 F2#

, for an easy plane, ~42!

and

~M1!x5
16k18

2k19
2 sinhF1 sinF21~ uk1u421!2 coshF1 cosF2

~ uk1u421!2 cosh2 F1116k18
2k19

2 sinh2 F114k19
2~ uk1u211!2

,

~M1!y5
16k18

2k19
2 sinhF1 cosF22~ uk1u421!2 coshF1 sinF2

~ uk1u421!2 cosh2 F1116k18
2k19

2 sinh2 F114k19
2~ uk1u211!2

,

~M1!z5M02
2k19

2~ uk1u211!2

~ uk1u421!2 cosh2 F1116k18
2k19

2 sinh2 F114k19
2~ uk1u211!2

, for an easy axis, ~43!

where

F155
8rk19~ uk1u211!

uk1
221u2

~x2V1t2x10!,

8rk19~ uk1u211!

uk1
221u2

~x2V1t2x10!,

F255
8rk18~ uk1u221!

uk1
221u2

~x2V2t2x20!, for an easy plane,

8rk18~ uk1u221!

uk1
221u2

~x2V2t2x20!, for an easy axis,

~44!

and
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V155
2r@~ uk1u421!14k18

2~ uk1u221!#

uk1
221u2

,

16rk18~ uk1u221!

uk1
221u2

,

V255
2r@~ uk1u221!224k19

2~ uk1u211!#

~ uk1u221!uk1
221u2

, for an easy plane,

2r@4k18
2~ uk1u221!224k19

2~ uk1u211!21uk121u4#

k18~ uk1u221!uk1
221u2

, for an easy axis.

~45!

These results show that under the action of an external magnetic field, the nonlinear magnetization of the classical fer
with an anisotropy depends essentially on two parameters, namely, two velocitiesV1 andV2 in Eqs.~41! and~45!; the center
of nonlinear magnetization moves with a constant velocityV1, while its shape also changes with another velocityV2. Figures
1–4 give some graphical illustrations of the motion of the center and the change of shape of thez component of nonlinear
magnetization (M1)z , expressed by Eq.~42! in a ferromagnet with an easy plane and by Eq.~43! in a ferromagnet with an eas

FIG. 1. Some graphical illustrations of th
motion of the center and the change of shape
the z component of the nonlinear magnetizatio
(M1)z expressed by Eq.~42! in a ferromagnet
with an easy plane, whereu05300, r50.1, k18
50.1, k1950.2, x1050, andx2050.

FIG. 2. Some graphical illustrations of th
motion of the center and the change of shape
the z component of the nonlinear magnetizatio
(M1)z expressed by Eq.~43! in a ferromagnet
with an easy axis, wherer50.1, k1850.1, k19
50.2, x1050, andx2050.



et with

e
of
n

e
of
n

PRB 60 12 903NONLINEAR MAGNETIZATION DYNAMICS OF THE . . .
axis, as an anisotropic parameter. Also, there is an external magnetic field increase fromr50.1 in Figs. 1 and 2 tor50.3 in
Figs. 3 and 4, wherek1850.1, k1950.2, x1050, x2050, u05300.

If we take thez axis as the polar axis in the polar coordinates, the single-soliton solutions of the classical ferromagn
two single-ion anisotropies in an external magnetic field can be written as

cosu512
2cs~k1!92

4ns~k1!82 cosh2 F114ds~k1!92 sinh2 F11cs~k1!92
,

tanw5
ds~k1!92 sinhF1 cosF22ds~k1!82 coshF1 sinF2

ns~k1!92 sinhF1 sinF21ns~k1!82 coshF1 cosF2

. ~46!

The single-soliton solutions of an uniaxial anisotropic ferromagnet in an external magnetic field can be written as

cosu5 cosu02
2@k19~ uk1u211! sinhF1 sinF21k18~ uk1u221! coshF1 cosF2#

uk1
221u2@k18

2 cosh2 F11k19
2 sin2 F2#

,

tanw5
sinu0 sinf028k18k19 sinhF1 cosF222~ uk1u421! coshF1 sinF2

sinu0 cosf022k19
2@4k18

21uk1
221u2 sin2 F2#

, for an easy plane, ~47!

and

FIG. 3. Some graphical illustrations of th
motion of the center and the change of shape
the z component of the nonlinear magnetizatio
(M1)z expressed by Eq.~42! in a ferromagnet
with an easy plane, whereu05300, r50.3, k18
50.1, k1950.2, x1050, andx2050.

FIG. 4. Some graphical illustrations of th
motion of the center and the change of shape
the z component of the nonlinear magnetizatio
(M1)z expressed by Eq.~43! in a ferromagnet
with an easy axis, wherer50.3, k1850.1, k19
50.2, x1050, andx2050.
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cosu512
2k19

2~ uk1u211!2

~ uk1u421!2 cosh2 F1116k18
2k19

2 sinh2 F114k19
2~ uk1u211!2

,

tanw5
16k18

2k19
2 sinhF1 cosF22~ uk1u421!2 coshF1 sinF2

16k18
2k19

2 sinhF1 sinF21~ uk1u421!2 coshF1 cosF2

, for an easy axis. ~48!

We can find the following property:

cos~2x,2t !5 cos~x,t !. ~49!

It means that under the action of an external magnetic field thez component of nonlinear magnetization is a symme
function of space and time, while the orientation of the nonlinear magnetization in the plane orthogonal to the anisotro
changes with an external field, and it will be constant when an external field vanishes.

In order to analyze the feature of the previous soliton solutions, setting the preliminary values as zero in the
coordinates of the soliton, for the classical ferromagnet with two single-ion anisotropies in an external magnetic field,
obtain

cosu512
2cs~k1!92

4ns~k1!82 cosh2@2rcs~k1!9x#14ds~k1!92 sinh2@2rcs~k1!9x#1cs~k1!92
,

tanw5
ds~k1!92 sinh@2rcs~k1!9x# cos@2rcs~k1!8~x2V2t !#2ds~k1!82 cosh@2rcs~k1!9x# sin@2rcs~k1!8~x2V2t !#

ns~k1!92 sinh@2rcs~k1!9x# sin@2rcs~k1!8~x2V2t !#1ns~k1!82 cosh@2rcs~k1!9x# cos@2rcs~k1!8~x2V2t !#
,

~50!

and

cosu5 cosu0

2

2k19~ uk1u211!

uk1u421
sinhF8rk19~ uk1u211!

uk1
221u2

xG tanF8rk18~ uk1u221!

uk1
221u2

~x2V2t !G1
2k18~ uk1u221!

uk1u421
coshF8rk19~ uk1u211!

uk1
221u2

xG
uk1

221u2H k18
2 cosh2F8rk19~ uk1u211!

uk1
221u2

xG1k19
2 sin2F8rk18~ uk1u221!

uk1
221u2

~x2V2t !G J ,

tanw5

sinu0 sinf02
4k18k19

uk1u421
sinhF8rk19~ uk1u211!

uk1
221u2

xG2 coshF8rk19~ uk1u211!

uk1
221u2

xG tanF8rk18~ uk1u221!

uk1
221u2

~x2V2t !G
sinu0 cosf022k19

2H 4k18
21Uk1

221U2 sin2F8rk18~ uk1u221!

uk1
221u2

~x2V2t !G J ,

for an easy plane, ~51!

and

cosu512

2
4k19

2~ uk1u211!2

~ uk1u421!2

cosh2F8rk19~ uk1u211!

uk1
221u2

xG1
16k18

2k19
2

~ uk1u421!2
sinh2F8rk18~ uk1u221!

uk1
221u2

xG1
4k19

2~ uk1u211!2

~ uk1u421!2

,

tanw5

16k18
2k19

2 sinhF8rk19~ uk1u211!

uk1
221u2

xG2~ uk1u421!2 coshF8rk19~ uk1u211!

uk1
221u2

xG tanF8rk18~ uk1u221!

uk1
221u2

~x2V2t !G
16k18

2k19
2 sinhF8rk19~ uk1u211!

uk1
221u2

xG tanF8rk18~ uk1u221!

uk1
221u2

~x2V2t !G1~ uk1u421!2 coshF8rk19~ uk1u211!

uk1
221u2

xG ,

for an easy axis. ~52!
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We can also find that under the action of an external magnetic field the amplitudes and widths of the nonlinear magn
are not constants but vary periodically with time. According to Eqs.~51! and~52!, Fig. 5 shows that the amplitude and sha
of thez component of the nonlinear magnetization (M1)z in a ferromagnet with an easy plane also changes with a velocityV2

and it is not symmetrical with respect to the center. Its shape in a ferromagnet with an easy axis is symmetrical with
to the center by means of Fig. 6, wherer50.2, k1850.1, k1950.2, x1050, x2050, andu05300.

Obviously, when an anisotropic parameterr→0, these soliton solutions in an uniaxial anisotropic ferromagnet reduc
those in an isotropic ferromagnet, for example, the single-soliton solutions~42! and ~43! are transformed to

~M1!x5
2k19

uk1u2
sech2@k19~x24k18t2x10!#H k19 sinh@k19~x24k18t2x10!# sinF k18S x22S k182

k19
2

k18
D t2x20D G

1k18 cosh@k19~x24k18t2x10!# cosF k18S x22S k182
k19

2

k18
D t2x20D G J ,

FIG. 5. Some graphical illustrations of th
change of amplitude and width of thez compo-
nent of the nonlinear magnetization (M1)z ex-
pressed by Eq.~51! in a ferromagnet with an eas
plane, where u05300, r50.2, k1850.1, k19
50.2, x1050, andx2050.

FIG. 6. Some graphical illustrations of th
change of amplitude and width of thez compo-
nent of the nonlinear magnetization (M1)z ex-
pressed by Eq.~52! in a ferromagnet with an eas
axis, wherer50.2, k1850.1, k1950.2, x1050,
andx2050.



e
of
n

12 906 PRB 60WU-MING LIU, WU-SHOU ZHANG, FU-CHO PU, AND XIN ZHOU
~M1!y5
2k19

uk1u2
sech2@k19~x24k18t2x10!#H k19 sinh@k19~x24k18t2x10!# cosF k18S x22S k182

k19
2

k18
D t2x20D G

2k18 cosh@k19~x24k18t2x10!# sinF k18S x22S k182
k19

2

k18
D t2x20D G J ,

FIG. 7. Some graphical illustrations of th
motion of the center and the change of shape
the z component of the nonlinear magnetizatio
(M1)z expressed by Eq.~53! in an isotropic fer-
romagnet, wherer50, k1850.1, k1950.2, x10

50, andx2050.
ls
th
i-
~M1!z5M02
2k19

2

uk1u2
sech2@k19~x24k18t2x10!#. ~53!

These results are equal to Eq.~27a! obtained by the method
of an inverse scattering transformation in Ref. 26. We a
find that under the action of an external magnetic field
center and shape of thez component of nonlinear magnet
zation do not move with the two velocitiesV1 and V2 as
showed by Fig. 7. While taking thez axis as the polar axis in
the polar coordinates, we can obtain
o
e

cosu512
2k19

2

uk1u2
sech2@k19~x24k18t2x10!#,

w5w01k18F x22k18S 12
k19

2

k18
2D t2x20G

1tan21H k19

k18
tanh@k19~x24k18t2x10!#J . ~54!
e

t

FIG. 8. Some graphical illustrations of th
amplitude and width of thez component of the
nonlinear magnetization (M1)z expressed by Eq.
~54! in an isotropic ferromagnet, which do no
change periodically with time, wherer50, k18
50.1, k1950.2, x1050, andx2050.
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FIG. 9. Some graphical illustrations of th
change of thez component of the total magneti
momentumPz expressed by Eq.~56! in a ferro-
magnet with an easy plane, whereu05300, r
50.1, k1850.1, k1950.2, x1050, andx2050.
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It means that the amplitudes and widths of thez component
of the nonlinear magnetization do not also vary periodica
with time. Figure 8 give some graphical illustrations of t
amplitudes and width of thez component of the nonlinea
magnetization (M1)z expressed by Eq.~54! in an isotropic
ferromagnet, wherer50, k1850.1, k1950.2, x1050, and
x2050. Whent→0, these results are equivalent to Eq.~22!
obtained by means of the method of separating variable
moving coordinates shown in Ref. 4.

The total magnetic momentum

P5M0E dx~12 cosu!,w ~55!

depends on time and it is not a constant under the actio
an external magnetic field. The integral of the motion co
cident with thez component of the total magnetic momentu

Pz5M0E dx~12 cosu! ~56!

is also not a constant. Figures 9 and 10 have given s
graphical illustrations of thez component of the total mag
netic momentumPz expressed by Eq.~56! varying periodi-
cally with time in an anisotropic ferromagnet with an ea
plane and with an easy axis, respectively. In the two figu
y

in

of
-

e

s,

we took the following parameters:k1850.1, k1950.2, x10

50, x2050, r50.10, andu05300 for an easy plane, respec
tively. We find that under the action of an external magne
field, Pz depends periodically on time for a ferromagnet w
an easy plane, whilePz in a ferromagnet with an easy ax
will decrease as time increases, wherePz has the sense of th
mean number of spins deviated from the ground state
localized magnetic excitations. This feature did not appea
the study of all other nonlinear problems in magnetis
When an anisotropic parameter vanishes, the ground sta
the isotropic ferromagnet has a constant spin pointing in
z direction and the fixed boundary conditionM→(0,0,M0)
whenx→6`. When an external magnetic field vanishes, t
HamiltonianH, the total magnetic momentumP, and thez
component of the total magnetic momentumPz , i.e., the
three constants of motion associated with the global sym
tries of the time translation, space translation, and spin r
tion, respectively, are in the action angle representa
given by the diagonal expressions. In terms of soliton so
tions ~56!, we find that only in the case of an isotropic fe
romagnet are the Hamiltonian, the total magnetic momen
P, and thez component of the total magnetic momentumPz

constants of motion,E54JM0
2k1914JM0B(k19/uk1u2), P

54M0 sin21(k19/uk1u), and Pz54M0(k19/uk1u2). Tjon and
e
c

FIG. 10. Some graphical illustrations of th
change of thez component of the total magneti
momentumPz expressed by Eq.~56! in a ferro-
magnet with an easy axis, wherer50.1, k18
50.1, k1950.2, x1050, andx2050.



a
s

et
he

a

n
the

x-

12 908 PRB 60WU-MING LIU, WU-SHOU ZHANG, FU-CHO PU, AND XIN ZHOU
Wright4 took advantage of this feature in solving the equ
tion of motion. These properties are important for the clas
cal ferromagnet with an anisotropy in an external magn
field, but they have never been obtained by all the ot
methods.

IV. THE ASYMPTOTIC BEHAVIOR OF MULTISOLITON
SOLUTIONS

Supposing allkn9.0 andk18.k28.•••.kN8 , the vicinity
of x5xin1Vint( i 51,2) is denoted byQn . In the extreme by
large t, these vicinities are separated from left to right
QN ,QN21 , . . . ,Q1. In the vicinityQ j , there are the follow-
ing limits: (x2Vint2xin0)→2`, u f nu→`, if n, j ; (x
2Vimt2xim0)→`, u f mu→`, if m. j , while

G0;g0~1,2, . . . ,j 21;1,2, . . . ,j 21!

1g0~1,2, . . . ,j ;1,2, . . . ,j !,

G1;g1~1,2, . . . ,j 21;1,2, . . . ,j 21!

1g1~1,2, . . . ,j ;1,2, . . . ,j !,
-
i-
ic
r

s

G2;g2~1,2, . . . ,j ;0,1,2, . . . ,j 21!.

Substituting the explicit expressions into Eqs.~19!, ~24!, and
~30!, for the classical ferromagnet with two single-io
anisotropies in an external magnetic field, we can obtain
following relations:

G0;11
cs~kj !ns~kj !

cs~kj !ns~kj !
uF j u2, G1;11

ns~kj !

ns~kj !
uF j u2,

G2;
2cs~kj !9

ns~kj !
F j ,

where

F j5 )
n51

j 21

)
m5 j 11

N
@cs~kj !2cs~kn!#@cs~kj !2cs~km!#

@cs~kj !2cs~kn!#@cs~kj !2cs~km!#
f j .

Similarly, for an uniaxial anisotropic ferromagnet in an e
ternal magnetic field, we can also find
s in an
he
f
traveling
G0;5 11uF j u2
kj~kj

211!

kj~kj
211!

;

11uF j u2
kj~kj

211!

kj~kj
211!

;

G1;5 11uF j u2
~kj

221!~kj
211!

~kj
211!~kj

221!
;

11uF j u2
~kj

211!~kj
221!

~kj
221!~kj

211!
;

G2;5 F j

4kj8kj9~kj
221!

kj ukj
221u2

;

F j

4kj9~kj
221!~ ukj u211!

~kj
211!ukj

221u2
;

F j55 f j )
n51

j 21

)
m5 j 11

N
~km

2 21!~kn
221!~kn

22kj
2!~km

22kj
2!

~kn
221!~km

221!~kn
22kj

2!~km
2 2kj

2!
, for an easy axis,

f j )
n51

j 21

)
m5 j 11

N
~km

2 21!~kn
221!@kj~kn

221!2kn~kj
221!#@kj~km

221!2km~kj
221!#

~kn
221!~km

221!@kj~kn
221!2kn~kj

221!#@kj~km
2 21!2km~kj

221!#
, for an easy axis.

~57!

It can be concluded from the results given above that the classical ferromagnet with two single-ion anisotropie
external magnetic field has multisoliton solutions in a strict sense. Whent→6`, nonlinear magnetization appear to be t
trains ofN separating single solitons. The trains att→2` turn out to be trains att→` after the collision in the duration o
time with the number and shape of solitons unchanged, and the position of center the of mass displaced in the
coordinates. The total displacement of the center of thej th peak in the course fromt→2` to t→` is determined by

Xj5
1

cs~kj !9
H ln)

n51

j 21 Ucs~kj !2cs~kn!

cs~kj !2cs~kn!
U2 ln )

m5 j 11

N Ucs~kj !2cs~km!

cs~kj !2cs~km!
UJ . ~58!
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However, even in the traveling coordinates the angle tanw5arctan(My /Mx) contains a linear term in timet. This shows that
Mx andM y manifest themselves as solitons. The total phase shift of thej th peak can be written as

F j52H argF )
n51

j 21 cs~kj !2cs~kn!

cs~kj !2cs~kn!
G2argF )

m5 j 11

N cs~kj !2cs~km!

cs~kj !2cs~km!
G J . ~59!

For a uniaxial anisotropic ferromagnet in an external magnetic field, the total displacement of the center and the tot
shift of the j th peak in the course fromt→2` to t→` are

Xj55
ukj

221u2

2rkj8kj9
H ln)

n51

j 21 U~kn
22kj

2!~kn
221!

~kn
221!~kn

22kj
2!
U2 ln )

m5 j 11

N U~km
22kj

2!~km
2 21!

~km
2 2kj

2!~km
221!

UJ ;

ukj
221u2

2rkj9~ ukj u211!
F ln)

n51

j 21 U~kn
221!@kj~kn

221!2kn~kj
221!#

~kn
221!@kj~kn

221!2kn~kj
221!#

U2 ln )
m5 j 11

N U~km
221!@kj~km

2 21!2km~kj
221!#

~km
2 21!@kj~km

221!2km~kj
221!#

UG .

F j55 2H argF )
n51

j 21
~kn

22kj
2!~kn

221!

~kn
221!~kn

22kj
2!

G2argF )
m5 j 11

N
~km

22kj
2!~km

2 21!

~km
2 2kj

2!~km
221!

G J , for an easy plane;

2FargS )
n51

j 21
~kn

221!@kj~kn
221!2kn~kj

221!#

~kn
221!@kj~kn

221!2kn~kj
221!#

D 2argS )
m5 j 11

N
~km

221!@kj~km
2 21!2km~kj

221!#

~km
2 21!@kj~km

221!2km~kj
221!#

D G , for an easy axis.

~60!

When an anisotropic parameterr→0, the displacement of the center and the phase shift of thej th peak of an isotropic
ferromagnet in an external magnetic field are

Xj5
1

kj9
S ln)

n51

j 21 Ukn2kj

kn2kj
U2 ln )

m5 j 11

N Ukm2kj

km2kj
U D ,

F j52FargS )
n51

j 21 kn~kn2kj !

kn2kj
D 2argS )

m5 j 11

N km~km2kj !

km2kj
D G , ~61!

These results are equal to Eqs.~28a! and ~28b! obtained by the method of an inverse scattering transformation in Ref. 2

V. CONCLUSION

In this section we will compare the present results with those obtained by other methods, then give some co
remarks. According to Eqs.~39!, ~42!, and ~43!, we can find that under the action of an external magnetic field nonlin
magnetization in a ferromagnet with an anisotropy depends essentially on two parametersV1 andV2 in Eqs.~41! and~45!. The
center of the nonlinear magnetization moves with a constant velocityV1, while its shape also changes with another veloc
V2; the depths and widths of a surface of nonlinear magnetization vary periodically with time, and its shape is unsym
with respect to the center. By means of these features, we find that the soliton solutions in a ferromagnet with an an
in the external magnetic field are not expressed in the form of the product of separated variables in moving coordinate4 Only
when an anisotropic parameterr→0, these soliton solutions in an anisotropic ferromagnet reduce to those in an iso
ferromagnet, for example, the single-soliton solutions~47! in the polar coordinates are equivalent to Eq.~22! obtained by
means of the method of separating variables in the moving coordinates in Ref. 4. Therefore, it is very difficult to inve
the exact soliton solutions in a ferromagnet with an anisotropy in an external magnetic field by means of the me
separating variables.

Reducing the Landau-Lifschitz equations to an appropriate form, Kosevich, Ivanov, and Kovalev5 found a solution. In terms
of Eq. ~47! in the polar coordinates, there exist

tan2S u

2D5

k19
2H uk1

221u2 sin2F8rk19~ uk1u211!

uk1
221u2

~x2V1t2x10!G14k18
2J

k18
2H uk1

221u2 cosh2F8rk18~ uk1u221!

uk1
221u2

~x2V2t2x10!G24k19
2J . ~62!
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If we compared Eq.~62! with an approximate solution give
by Ref. 5, we find that the previous properties of the soli
solutions remain even in the approximation of the order
r2. The solutions of Ref. 5 did not satisfy the Landa
Lifschitz equation for a ferromagnet with an anisotropy ev
in the first order of anisotropy, and there is no reason
consider it as an approximate solution, since all attempt
this approximation were not successful.

Using the Hirota method, Bogdan and Kovalev10 sought
the soliton solutions of the Landau-Lifschitz equation in
ferromagnet with an anisotropy in the form

M x1 iM y5
2 f g

u f u21ugu2
, M z5

u f u22ugu2

u f u21ugu2
, ~63!

where

f 5 (
n50

[N/2]

(
C2n

a~ i 1 , . . . ,i 2n!exp~r i 1
1•••1r i 2n

!,

g* 5 (
m50

[(N21)/2]

(
C2m11

a~ j 1 , . . . ,j 2m11!

3exp~r j 1
1•••1r j 2m11

!, ~64!

a~ i 1 , . . . ,i n!5H (
k, l

(n)

a~ i k ,i l !, for n>2;

1, for n50,1.

where@N/2# is the maximum integer in addition toN/2, Cn
represents the summation over all combinations ofN ele-
ments inn, andr i5(ki1v i t1r i

0). According to the expres
sion of the single-soliton solutions~42! and ~43! in this pa-
per, we find that soliton solutions are difficult to express
the form of the Hirota factorization. Obviously, Bogdan a
Kovalev10 did not obtain the desired results.

We have introduced some transformations in Eq.~13!,
while k5` and 0 correspond tol562r ~or m50) and
v

n
f

n
o
in

m56r ~or l50). In the complexm plane, these two points
are the edges of the cuts. This is important to ensure tha
Jost solution generated satisfies the corresponding Lax e
tions. It indicates that the edges of the cuts in the comp
plane in an inverse scattering transformation must giv
contribution even in the case of nonreflection. Unfortunate
Borovik and Kulinich24,25 did not apparently consider thes
effects. Evidently, they did not obtain any expression of
solution.

In the present paper we have used the stereographic
jection of the unit sphere of the magnetization vector ont
complex plane for the equations of motion in the classi
ferromagnet with two single-ion anisotropies in an exter
magnetic field, and the effect of a magnetic field for integ
bility of the system is discussed. Then, introducing so
transformations instead of the Riemann surface in orde
avoid the double-valued function of the usual spectral
rameter, the properties of the Jost solutions and the scatte
data in detail are obtained. The Gel’fand-Levitan-Marchen
equation is derived. In the case of no reflection the ex
multisoliton solutions are investigated. This method is mo
effective than the Darboux transformation. The asympto
behavior of multisoliton solutions in the long-time limit a
well as the total displacement of the center and the ph
shift of the j th peak are also given. The total magnetic m
mentum and itsz component are obtained. The present
verse scattering transformation method includes the con
butions due to the continuous spectrum of the spec
parameter. They may be useful for further theoretical
search and practical application.
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