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We investigate full dynamical behaviors of the spin-Peierls transitio=ir1/2 Heisenberg antiferromag-
netic chains by means of two-time Green'’s functions. The effect of temperature-dependent lattice displace-
ments is incorporated self-consistently. Depending on temper@tarel transfer wave numbéy the imagi-
nary part of the dynamical susceptibilify, (k,w) shows rich structures: AT=0, it is nonvanishing in the
frequency regiof) (k) <Q (=hw/J)<Qy(k). Qu(k) denotes a lower edge of a triplet magnetic excitation
continuum, and is finite ak=0 due to lattice distortion. The upper edfg,(k) increases ak=0 is ap-
proached, which is completely different from the feature without lattice distortion. An asymmetric line shape
of x7(k,w) is found with a peak at the frequency slightly higher tHap (k). At 0<T<Tgp (spin-Peierls
transition point there appears another structure due to thermal fluctuations in the lower-frequency region, 0
<Q<Q (k). SinceQ (k)<Qpu(k), the forbidden band always exists B Tgp. Above Tsp, xi/K, o)
reduces to a smooth curve characterized by a single broad maximum. These features in dynamics are system-
atically explained in terms of different quasiparticle scattering processes proper to the spin-Peierls phase. The
results are compared with recent experimental data of neutron scattering for the inorganic compoung. CuGeO
[S0163-182609)06441-3

[. INTRODUCTION material’ The neutron-scattering experiments on this com-
pound provide us various new features of its spin
The spin-Peierlgs-P transition is known as a magnetic dynamics®*3
analogue of the Peierls instability in electron-phonon In such circumstances, we studied the dynamical behav-
systems-? coupling of the S=1/2 spin chain to three- iors of s-P phase accompanied Bydependent lattice dis-
dimensional phonons of the crystal lattice induces spontane?lacements(T) in the case of 1IXY antiferromagnéf that
ously a lattice distortion such that the nearest-neighboringllows a rigorous analysis. To understand the properties of
magnetic ions move alternately closer and further apart. Thighe real s-P magnets like CuGgChowever, the dynamics
leads to a formation of a lattice of singlet pairs, where theshould be considered on the basis of the isotropic Heisenberg
first excited state is separated from the ground state by amodel.
energy gap. Major theoretical investigations on the spin- In this paper, we deal with the 1D Heisenberg model, and
Peierls transition were carried out for the quasi-onednvestigate theoretically the effect @{(T) in the s-P phase
dimensional (1D) organic compounds TTF-CuBDT and on its dynamic properties. We shall not take the bosonization
TTF-AuBDT, etc.? more than two decades ago. At that time, or phase-Hamiltonian approathwhose validity is not well-
theoretical studies concentrated on the thermodynamic progustified in describing the dynamics covering all wave num-
erties, for instance, temperature dependence of the lattice dibers at all temperatures. The generalized susceptibility
tortion, specific heat, and anomalous behavior of the unifornx(k, ) for the s-P phase is calculated by having recourse to
susceptibility. These results are described in an excellent réhe two-time Green’s functiotf. In contrast to theXY
view article* Except for exact numerical analyses of “fi- model, rigorous calculations are not available for the dis-
nite” spin chains, however, only a few theoretical effortstorted Heisenberg model because of the coupling term
have been devoted to the systematic analysis of dynamicdlS,ZSjZ. With the help of the Hartree-Fock approximation for
susceptibilities of the system with temperature-dependertiigher-order Green’s functions derived from the equations of
lattice distortions. While the dynamic correlation functions atmotion, however, we can evaluatgk,w) self-consistently
the limiting temperature$ =0 and>= were calculated for the by solving a set of equations for relevant quantities.
1D antiferromagnet o5=1/2 spins with ‘T-independent” The paper is organized as follows: In Sec. Il we introduce
alternating exchange interactiohi,is essential that, at finite the model and describe a gap equation. In Sec. lll we de-
temperatures, lattice spacings should be determined selelop our theory of the generalized longitudinal susceptibil-
consistently to derive the accurafedependence of dynamic ity by means of two-time Green’s functioh%In Sec. IV the
properties. numerical calculation of the susceptibility is carried out for
More recently, experimental reports are growing in num-arbitrary transfer wave numbky frequencyw, and tempera-
ber since the characteristic feature of s-P transition was firdure T. Besides anomalous temperature dependence of the
observed by Haseetal. for the inorganic compound uniform susceptibility, we shall show various features of
CuGeQ,® which is suggested to be a quasi-1D spin-Peierlsoth static and dynamic susceptibilities that have not so far
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Jj-th unit cell The phase factof¢,} has emerged in our moving to new
JI Jz‘ fermions «, ,7y, via the canonical transformation in Eqg.
(A4).
-+ S, \.\Sy i1 i+l To deal with the four-fermion terms in E2), we have
recourse to the Hartree-Fock approximation:

— 1+ -5

FIG. 1. Thejth unit cell containing two spins located at odd
(j,1) and even(,2) sites, respectively. Alternating lattice spacings
are|(j,1)—(j,2)|=1—€ and|(j,2)—(j + 1,1)|=1+¢, taking a lat-
tice constant as unity. where n=(a]a,) and nY=(y!y,). Equation(2) is then

rewritten as
been analyzed theoretically. Rich structures of the imaginary
part of the dynamical susceptibility will be explained sys-

alakal,ak,E —ngng, + nﬁal,ak, + ng,alak,

t T ~ b4 T y .t
e YkYier Yir =~ NG+ N0 Y0 Vi TG ViV

__ = a T YA,
tematically in terms of different quasiparticle scattering pro- Hup=—5JIN+ ; [exarar+elnn]
cesses proper to the s-P phase. The obtained results are com-
pared with recent experimental data for the compound + N(le§+J2p§)/4+ Ncé?, (5)

CuGeQ.2*3The paper concludes with summary and discus- N ) o
sions in Sec. V. whereey ande) are the quasiparticle spectra,

1
Il. MODEL AND GAP EQUATIONS X =[IN)[+ 5 J1p1 COgN (1= )+ ]

Taking the adiabatic approximation that suppresses a ki- 1
netic energy of the nuclei, the Hamiltonian for the 1D quan- + = J,p, COA(1+ 8)— by ]
tum Heisenberg model of N spins of S=1/2 with lattice 2
displacement is written as — g} ©6)

N with p; andp, defined as
H:jgl [Jlsj’r Sj,2+ JZS]',Z' Sj+1’]:|+ NCEZ, (1) ! 2

—n 1 a
whereSy, 1 =Sy 1. Thej summation runs oveN unit cells p1=N 2;4 CogN(1=0)+H](n{—ny), (78
with each containing a pair of spins as shown in Fig. 1. The
last term on the right-hand sidehs) of Eq. (1) represents the .
elastic energy with elastic constadtand lattice distortiore. po=N g CogN(1+9) = J(n{—ny).  (7b)
Alternating exchange interactiordg(>0) andJ,(>0) are
assumed linearly dependent on the static distortion amplitud&hus, the free energy of the system is given by
as

_ 2 -1 a
3,=3(1+8), I,=3(1-5), F=—JN/2+Ncs®—28 ; In[2 costiBe}/2)]

vyhere 5=ne(<l) wi_th Jn(>0) denoting the spatial_ de- +N(J1p%+,p2)/4, (8)
rivative of exchange integral. Below, the scaled elastic con-
stantc=C/»? will be employed. where 8=1/kgT. p; and p, are order parameters arising
The fermionic representation of the Hamiltoniain Eq.  from the Hartree-Fock treatment of the Heisenberg antiferro-
(1) is given by(see Appendix A magnet exhibiting the alternating coupling. By minimizing
the free energy in E(8) with respect tos, p;, andp,, we
_ N T 1 obtain the gap equations, which determine the temperature
7‘(—2;4 [IN)[[ayar—rnl+(2N) MH;AﬁM dependence of these three parameters:

XJI(Ng—Np)exdi — .+ — b, )2 JF N _[ 1 1]
(T4 J:) FIT (¢)\; ¢)\2 ¢)\3 ¢)\4) ] a_pl:EJl-pl_ N ; co$N(1—8)+ ¢, Jtan EBS)‘ -
X(axl_’)’)\1)(“)\2"")’)\2)(“)\3""7’)\3)(51)\4_')’)\4) o (9a)
+Ncé?, (2) ) ]
) oF N, 1 s N 1
where o, 2 2.p2 N4 cog N (1+ )~ ¢y ]tanh 5 Bey _
IO = %(Jle—ix(l—a)JrJzen\(ua)) 3) =0, (9b)
JF 1 dey  NJ
and Z _ Tgea| SN TN g2 2y
—5=2Ncs ; tan)—(z,BsA) 5+ (Pi-pp)=0.

¢, =\ 6— arctari Stan\ ). (4) (90
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1 ' ' ' ' {(TH—kD|TAk,t")))
wa 1
B = 2 exd—ik( =TT 1))
L L1’
i ‘.~“'~.‘
0.5t 2./ S , ,
=2 2 {({al(mayDlaj(t)a, (1))
5 + explik(1=8)J((b] (Db, _y(D]al(t )a, (1))
0 | + exg —ik(1-96)]
0 1 2 3 4 5 + +
i X ((ay(t)ay_(t)[b,(t")b, . (t")))
FIG. 2. Temperature dependence &f p;, and p, with ¢/J +{(b](t)by () [bI(t)b, 4 (1))} (13
=2.35. This value for théscaled elastic constant is used through-
out in the following figures. In deriving the result in Eq(13), we have exploited the

fermion transformations in Eq§A1l) and their Fourier trans-

We note that Eqs(9a) and (9b) are consistent with defini- formations. The phase factors ¢xpk(1— )] in Eq. (13) are
tions of p; andp, in Egs.(7a and(7b), respectively. Using responsible for alternating lattice spacings in the s-P phase.
c/J=2.35, we shall solve Eq$9). Using Egs.(A4) in Eq. (13), the longitudinal dynamical

The result of numerical analysis for the gap equations isusceptibility reduces to the expression described in terms of
shown in Fig. 2, which shows the followingl) 6(T) be-  four kinds of Green’s functions:
comes nonvanishing below the s-P transition temperature
Tsp (i.e., in the s-P phageand grows with decreasing tem- g%u?

perature. This behavior of(T) accords with the previous XZZ(k’w):_W > ( cos-- +co

h1 ¢2+2k(1_5)}
S—

result’’ (2) p,(T) and p,(T), which are degenerate above voA 2 2
Tgp, Sshow a clear bifurcation belowgp. By using the X{<<ala>\—k|a1av+k>>w
quantitiesp4(T), p»(T), and&(T), the quasiparticle spectra

in Eq. (6) are evaluated. While the formalism in E¢8)—(7) Y V) ok

is constructed for the s-P phase where the first Brillouin zone

b1 ¢>2+2k(1—5)}
COS- — COS———

is halved, it can also describe the phase abbyg after a I
2 2

slight modification(see the next sectignAll these results
will be used as inputs in the following sections.

X{al - Yoo

I1l. DYNAMICAL SUSCEPTIBILITY t +
. . H{nar-d @y ol | (14
In order to study the dynamical behavior of the s-P phase,

let us first introduce block spin per unit céflee Fig. 1 as
where ¢1E ¢V+k_ ¢V_ ¢}\+ ¢)\—k and ¢ZE ¢V+k_ ¢V

TH(1) = SIZ’1+ 32,21 (10) ;Jr(fét;)r?X7k. In Eq. (14), the frequency-dependent Green'’s
whv_arel =1,2,... N. Then the retarded Green'’s function is
fefned s A= | dit-thexint—t)I(ADIBI)Y,
(T[T 1))y = =10t =t (T*(,H T*(1",t") (15)

T THLY), (19) satisfies the equation of motion
whered(t) is the step function an¢) stands for the thermo-
dynamic average. In Eq§10) and(11), indicesl andl’ run fio({A|B)),=([A,B]_)+{{[A;H]_|B)),. (16)
over unit cells.

Experimentally relevant information is available from the The second term on the rhs of E@.6) is a new Green's
frequency- and wave-number-dependent longitudinal comfunction obeying another equation of motion.
plex susceptibilityy,{k, ). This is related to Fourier trans-  In the present system, the equation of motion is, typically,
form of the retarded Green’s function as follows:

g2u? (= ' hoX (el dala,d)e=2 (lafay .afa,]-)
XzAK w)=— N J dit—t")exdio(t—t")] ® B

X (T~ k)| T2k, t))), (12 +§ ([afan - H]-|aha, ).

where (17
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The new Green’s function on the rhs of Ed7) can now be Using the solution for Eqs21), the dynamical suscepti-
expressed in terms of the original Green’s functions througlbility in Eq. (14) is eventually expressed in termsXf* and
the following decoupling procedusee., in the Hartree-Fock YW (n=1,2 andu,v=« or y) as

approximation:

1
<<allal2ak3ak4| a;r\la)\2>>0) XZZ(k, w) - EQZMZ[: aa(k, w) + : ’y’Y(k, w) + = ’ya(k, w)

=n {((af, o] a) @ ) wdi, k, +E%k0)], (23)

_<<al201k4|a11“x2>>w5k1,k3} with

@ EWV(k,w)=—{1% codk(1—8)]}X}V+{1+ cogk(1
+nk2{<<allak4|alla)\z»mﬁkl,ks (kw)=—{ gk VXL cogk(

— )Y+ siMk(1—68)1(X5 = YY), (29
_<<“E101k3|allax2>>w5k2,k3}, 2_ 2 !
The upper and lower signs on the rhs of E24) are taken
for the diagonal (=v) and off-diagonal (#v) cases, re-

Tt T
o o a, o . . . S .
« ky Yy k37/k4| M AZ» spectively. In the practical calculatioN, 1=, is replaced by

—1rml2
=—n} ((al o]l o\ Nubiyk, (18 T 0N
K Tk Tl T TR0 Tk K It should also be noted that for the case of no coupling
Wherenﬁ«(y):1/(eﬁsg(y)+1)_ with lattice displacements, which corresponds to the dase

To facilitate the calculation of the dynamical susceptibil- =~ Tsp» EG- (21) reduces to the ;t%ee component equations
ity in Eq. (14), we shall deal with a set of the equations of derived by To(gi)anl and Kawasaki,where the dynamical
motion for the(decoupledl Green’s functions multiplied by ~Susceptibilityy;;’(k,») for the uniform(nondimered phase
the phase factors. To be explicit, let us define the variable$ given by

XV} and{Y}'} with 1<n=6 for each of four combinations
gf ?vjo fer;{‘nign}su v=a or y: XDk, w)=—F(k,0){I-V(KF(kw)}, (253

1 with
XEVE N EV EVQn(k; V), (199 F(k,w)=Tgo—2
1 X(1+2F2,o)rg,1+(1+zro,z)ri,o_ AT ol 0411
Y=y 2 hi'Ry(k;v), n=1.2,...,6, (19b) (1+20,0)(1+200p) —4I'2, ’
wherefY(v) andh,"(v) are linear combinations of Green’s (250
functions: 3 n—n
i . Con== > sin™ codx %. (250
w 1 + + 7 N ﬁw-i—sg\)—sg\,)k
k (V):E COSE(¢}L+k_ ¢/.L) <<UVVV7K|V/J,U/J,+k>>w1
K . ! (208 In Eq. (250, £{*, defined in the original first Brillouin zone
(—7<\=m), is written as
huv _2 1 _ T t 2J
Kk (V)= = Sln_z((b,ﬁk— ¢M)_<<UVVy7k|V,LU,L+k>>w- e{9=J(cosn—1)+ N > [1-cogv—N)]n,.
Coefficients{Q,} and{R,} in Egs.(19) are defined in Ap- ) ) .

: : Contrary tox{?) in the unif Eq. (24) con-
pendix B. As shown therdX""} and{Y"'} prove to satisfy ~_Contrary tox;;' in the uniform casey., in Eq. (24) con
the algebraic equations sists of four kinds of quasiparticle scattering processes.

AWXW=CW, (219 IV. NUMERICAL RESULTS
AUVYUY — quv (21b) A. Static susceptibility (w=0)

. oy v oy i ) Before analyzing the dynamical properties, we shall
The coefficients{A™}, {C™}, and {S"} defined in Eqs. pefly describe the wave-number-dependent static suscepti-
(B4) and (BS) are commonly determined by means of the iy "\ (k w=0) available from Eq(23). Special interest
core” Green’s function, lies in the uniform modé=0: As shown in Fig. 3y,,(0,0)
Uy drops exponentially towards zero at temperatures below
G\ = M~ Mk 22) Tsp, which is consistent with experiments on CuGEO
K hw_8X7k+8)L:' This is due to the formation of singlet pairs in the s-P phase
that causes both the excitation gap and the complete suppres-
Thereforex"¥ andY"" are also determined b§,'(\) in Eq.  sion of the zero-point fluctuation. By contrast, the corre-
(22). sponding susceptibility calculated by Bonner and FiSher
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FIG. 3. Static susceptibility,(k,0) as a function ofT for k . . . L
=0 and m/2. For reference, the temperature dependence of the FIG. 5. Schematic illustration of four kinds of quasiparticle scat-

Bonner-Fisher resultRef. 19 for “finite” chain is indicated by a  (€1ng processes. For instance, scattering progessy implies a
dotted line. particle-hole creation with absorption energy*?(\;k) and trans-

fer wave numbelk, while opposite procese— y means energy

for a “finite” chain without lattice displacement remains €M'SSIon:

constant atT=0 as indicated by a dotted line in Fig. 3,

because of the gapless low-lying excitatiore., Goldstone In the above equatio\(k) denotes a form factor character-
mode. The static susceptibility is illustrated also for a non-ized by the transfer wave numblkr=|ky,—k,|, and absorp-
uniform mode, for instance&k= /2 in Fig. 3. AtT<Tsp, tion (or emission energy is given byhw=E,—E;= (k3
x:Ak,0) shows a drastic decay in the temperature depen-k3)/(2m), where the initial and final states of the neutron
dence as in the case k£ 0, but its values are finite &=0. have the wave numbeks, andk,, respectively.

XzAk,0) is shown as a function df in Fig. 4 for three The functiony’(k,w) in Eq. (23) consists of four kinds
cases ofT/Tgp=0, 0.71, and 1.42. It is interesting to note of terms, each corresponding to its proper quasiparticle scat-
that, atT/Tsp<1, x,Ak,0) displays a single broad maxi- tering process as illustrated in Fig. 5. This interpretation is
mum atk=m/2, i.e., the zone boundar{ZB) of the s-P  acceptable because each téfY in Eq. (23) is described by
phase due to doubling of the unit cell, whereasTéfsp  the Green’s functiori'(\) in Eq. (22) whose imaginary
>1, its maximum moves tar, i.e., ZB of the uniform phase. part is proportional tos(fiw—e!_ +&Y). The first two

terms with superscripte&ea and yy on the rhs of Eq(23)
B. Dynamical susceptibility (e # 0)

The dynamical susceptibility in E¢23) is written as 3 (@) k=12 ]

x(k @)= x' (k@) =i x"(k o), (26) L~ L5
where y' (k,w) and x”(k,w) mean the real and imaginary L. ke QR
part of y(k,w), respectively. Experimental information con- 11 /" “ Ve
cerning the dynamical properties of the system is analyzed “\ Ve \.\ 4

: ; ; " 20 ; ; i 0 M- o
by investigation ofy”(k,w),“” which is related directly to 3_(b)k=31'c/8

the neutron-scattering spectrum as

i
)

=
howp &:
_ o 5
S(k'w) 7A(k) ehwﬁ_ 1Xzz(k,(1)). (27) 3 1P, Raga N R
=2 v, // ", e
\\ j \'\ o"'
N S -, 7
0.4 : —— 0—% st
.:::T/Ep=l.42 3 | (¢) k=m/8
o 03] "
e 2|
202 T/Te=0.71 | 1
tay
0.1t _ o<
Te=0 /2
0 n L L
0 /2 n

k FIG. 6. Reduced transfer ener@y(\ ;k) versus wave number
at T/Tgp=0.007 for several transfer wave numbe@:k= =/2; (b)
FIG. 4. Static susceptibility,k,0) versus wave numbde at k=3m/8; (c) k= /8. These features are almost identical to those at
temperaturesT/Tgp=0 and 0.71(solid lineg and T/Tgp=1.42 T=0 because lattice distortion is almost saturated /at5p<0.5
(dotted ling. (see Fig. 2
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;L
/i
X

0 /2 o
k

FIG. 7. Dispersion curves fof), (k), Qy(k), and Qy(k) at
T/Tgp=0.007. Lower- and upper-frequency absorptions are al-
lowed in the region denoted by hatched and dotted areas, respec-
tively. For reference, the des Cloizeaux—Pearson spin-wave disper-
sion (wr/2J|sink|) and the upper edge of the magnetic continuum
[wJ|sin(k/2)|] without coupling to lattice displacement are demon-
strated by dashed and dotted-dashed lines, respectively.

imply the quasiparticle scattering within each of the upgper
and lowery bands, respectively, and the third term describes
the scattering fromy to « band or the creation of a pair of
particles (in @ band and hole(in y band. The last term
represents the reversed scattering franto y band, giving
no contribution toy,(k, ), since the energy conservation is
not satisfied in the absorption process=0).

To evaluatey,(k,w), coefficientsA, C, S andT in Egs.
(B4) and (B5) should be obtained. With use of the identity

U(x-+iz)=P(Lx) ~im3(x), the integrations oGE'(\) IN 5140 hw(nik)]= S ‘df“ﬂ()\?k) s
Egs.(B4) and(B5) are facilitated by resorting to the formula ’ ] dx - I
2 : : :
15 (a) where{\;} are determined by
1t 2
(@
0.5+ 1.5}
+ 1 L
1 2 ® 0.5
1t 0 {L —
oL (b)
&0 0.5} 15}
3 0 1}
S 1.5 © T 0.5
B 5t 50
B! s o0 {L —
) ©
0.5 3 1.5}
0 = 1t
(@
1.5/ 05 J, L
1 | I' + ’
o
0.5} 15|
0 - 1}
0 1 2 3
IX0YAS 0.5f
FIG. 8. Imaginary part of dynamical susceptibilip},(k, ») for 0 “ .

T/Tgp=1.07. For referenceys'V(k,») without lattice coupling is
also illustrated by a dotted line in caés.

2
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FIG. 9. The same as in Fig. 8 but flar=37/8.

FIG. 10. The same as in Fig. 8 but fer 7/8.
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o—w(\;k)=0. (29 than Q\(K), and its spectrum is bounded Ky (k)<Q
_ =<Qu(k). This is explained as follows: In the limf—0,
In the case oti—v scattering, for example, tanh(Be/2) reduces to the step functio®(s) because
O v U n“(\)—0 andn?(A)—1 . So, only the third term on the rhs
ho(hK)=ho™ (A K)=e\ e (30 of Eq. (23) arising from the particle-hole creation contributes

Obviously, x”(k,») is nonvanishing in the» region, where 10 x;k,®). In other words, the triplet§=1) magnon ex-
density of statesiIn/dw(\;k) survives. citation formed via interbandy— «) transition constitutes a

In  Fig. 6 the reduced absorption energy continuum with the lower and upper edgedy(k) and
QW K) (=hw™/J) with k= /2, 3x/8, and=/8 are de- Q4(k), respectively. The same argument applies to cases of
picted against wave numbarfor all three kinds of absorp- K=37/8 and/8 in Figs. 92) and 1Qa), respectively. Ak
tion processes af/Tsp=0.007. We shall define the maxi- departs fromm/2, however£y (k) is decreased an@y (k)

mum and minimum of the upper bran€v“(\;k) asQy(k) EsstitiL]fergatsheedSs%ien?vl\?;vle:i%.igi)grgieci)nesr\]\%spcfzo\?(y,\jI((I)()7}??-

and_QM(k), respectively. Sim"‘"‘ﬂ'&“L(k) Is defined as the and exhibits a finite gap &=0. This should be compared

maximum of the lower branc®™(\ k) (for u=a or y).  \up “ihe gapless des Cloizeaux—Pearson spin-wave

Their wave-number-dependent curves are plotted in Fig. 7 ac]ispersioﬁl fiw(K)=(/2)J|sink. Moreover, the increase

T/Tsp=0.007. ., o of Q (k) ask—0 is in marked contrast with the behavior of
Structures of the functiory; (k,w) are shown in Figs. the upper edge of the magnetic continufimi|sin(k/2)|] in

8-10, for several fixed temperatures and wave numkers the case of no coupling with lattice displacem@nt.

First, let us focus on the limiting caSe—0 [see Figs. &), As shown in Figs. 5 and 6, the nonvanishing width of the

9(a), and 1@a)]. In the case ok= /2 in Fig. 8a), x;(k,w)  triplet magnon continuumAQ(K)[ =Q4(k)—Qu(K)] is

is composed of a single peak at the frequency slightly highegiven by

2(eg—e2,,)=23(1-68)(1+p,) atthe zone centdr=0

AQ(K) = 1

28l ,—e2,—eg=J \/E—(1+5)(1+p1)+\/E{pl(1+25)+p2(1—25)} at the zone boundatky= 7/2.

(31)

ThusAQ(0)>AQ(7/2). If the system is free from the lat- =2.98.[Note the exact valu& i.e., AQ°(7/2)=2.85] The
tice distortion, the opposite relatiah°(0)<AQ°(7/2) is  completely differentk dependence oAQ (k) between the
obtained: In fact, the present approach yiel®°(0)=0  cases with and without coupling to the lattice dispacement is
and  AQO%(7/2)=2(1+ 2/m)(|sin(m/4)| — (1/2)|sin(m/2)|) due to the bifurcation of the quasienergy spectra in the
. . . . dimerized casésee Fig. 7.
6l (@ ] The Fourier transform of the dynamical correlation func-
] ] tion S,(k=w/2,w) at zero temperature computed in the
i present approach is compared with Uhrig and Schyl2S)
\ ] result®[see Fig. 1(a)] and with Muler, Beck, and Bonner’s
\ 1 (MBB) form?? [see Fig. 1(b)] in the cases with and without
T lattice displacement, respectively. For convenience, each
N 1 spectral function is normalized so as to have the integrated
: . . area to be in unity. US’s calculation was based on a con-
| (b ] tinuum approximation for a fermionic model with constant
lattice displacement. From Fig. (&, we find our spectrum
well resembles that of US in the line shape. The difference in
the frequency range should be attributed to the different
magnitude of lattice distortions, i.ed(ours)/5(US)=10. In
fact, our spectrum can move toward the lower frequency
side, recovering US’s result even in the frequency range, by
increasing the elastic constantand thus by decreasing
S(ours) [see Figs. 8)—-8(c)]. On the other hand, from Fig.
w/J 11(b), we find the ratios of the upper and lower frequency
FIG. 11. Comparison 0B, (k=m/2,0) at T=0 between the €dges are the same in both of our and MBB'’s cases, i.e.,
present(solid line) and previous theoreticftiotted-dashed line for  w(upper)k(lower)=|coseck/2)|. Some different behav-
US (Ref. 23 and dashed line for MBERef. 22] results:(a) case  iors, however, are found. One is the frequency region of the
with coupling to lattice displacementl) case without coupling to  spectrum, as described before, i£Q°(7/2)=2.98 for our
lattice displacement. case versus 2.85 for MBB'’s case. Another is the line shape in

N

N
P

(=]

S.(k,®) (arb. units)
»

IS

N
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the vicinity of the two band edges. In contrast to the diver- N the'ory ' '
gent behavior at the lower edge and an abrupt cutoff at the = expefiment
upper edge in MBB’s case, our result shows smooth band 1

edges. To resolve this discrepancy, further intensive theoret-
ical studies would be necessary.

We shall proceed to the case of finite temperatures below 0
Tsp[see Figs. &), 9(b), and 1@b) and Figs. &), 9(c), and
10(c)], in which Fermi distributions become diffuse so that L
other two intraband scattering processes{a and y— v) 0 /4 T2
also give nonvanishing contributiong, (k,w) here has two k

nc_mov_erlapping structures: Besides the high-frequency part -5 15 \wave number dependence @f, (solid liney and
lying in Qy((k)=Q=<Qy(k), the low-frequency part ex- theoretical peak positionsymbolsA). J/kg=94 K. Symbols (*)
tending to() =0 appears, which is limited by a very singular imply experimental peak positior®ef. 8 at T=4 K.

peak at the upper edde, (k) [<Qy(k)]. While the former

is responsible for the triplet magnon continuum excitationstinuum, resembles the observed asymmetric line shape in a
the latter is caused by thermal fluctuations. As the temperasense thaB(k,w) abruptly rises af) just above() (k) and

ture is raised from zero, the peak position dg (k) of the  gradually decreases &%, (k) is approached(3) The unfa-
high-frequency part move to a lower-energy side, whereasiliar dispersion ofQ (k) as in Fig. 7 has not yet been
Q, (k) moves in an opposite way. For referengégo)(k,w) found experimentally. Araet al*? pointed out a “rampart”
without lattice couplind is also illustrated by a dotted line Of ridge of scattering surrounding a vallegt k=0) in the

at just belowTgp in Figs. §c), 9(c), and 10c). At T>Tg, ~ Magnon continuum. This tendency is expected to reflect the
(i.e., in the uniform phade x’(k,®) bears only a single n_onvamshmg width of the magnon continuumkat 0 pre-
broad peak with a tail extending towards=0 [see Figs. dicted above(4) In the uniform phase T>Tsp), S(k,)

8(d), 9(d), and 10d)]. In this way, rich structures of the accords with the observed S|_ngle broad _hump, Fhough a mu-
dynamic susceptibility can be interpreted systematically irfu@! discrepancy cannot be disregarded in the high-frequency

terms of various quasiparticle scattering processes proper {§9i0n. (5) The peak at(}, (k) would not be actually ob-
s-P phase. served because of its extremely singular nature. On the con-

Recently, several prominent features of spin dynamicdra’y, the variation of the broad peak lying just abdvg (k)
were revealed from intensive neutron-scattering experiment§hould be captured when temperature crodsgs although
especially for the compound CuGe® ™2 (1) In s-P phase th.e observed peak position seems to remain unchanged.
(T<Tsp) a gap ofA=2.1 meV in the magnetic excitation Since the present prediction is inevitable as long as the qua-
spectrum was observed at the zone cerker@) 3°12This siparticle energy spectrum bifurcates 4oand y branches

gap is called a “triplet gap” because its formation is causeddue to the lattice distortion, we hope future experiments to

by reducing a singlet dimer into a delocalized tripk A Verify it.

well-defined magnonlike mode is observed with a peak lo-

cated athw, (=16 meV)=A at ZB (k=n/2). The asym- V. SUMMARY AND DISCUSSION
metric line shape is responsible for the magnon continttim. . . . . .
(3) Besides the “triplet gap,” another gap is observed at the In_ this paper, we hgye theor§t|cally |nyest|gated spin dy-
frequency higher than the peak position, whichn At al3 namics of s-P transition by incorporating the effect of

conjectured as “solitonic gap.(4) At T>Tgp the gapless temp_e;atL;re—dep_tla_Rdent laitice ?'St%r]t'm-r) |n|_a ds<|a|f— i
spin-wave continuum appearsthough diffused, and the consistent way. 1he expression for the generaiized longitu-

line shape shows a broad maximum. dinal susceptibilityy,{k,w) is derived by means of two-

The above experimental results accord qualitatively withime _Gre_en’s functions  within - the  Hartree-Fock
the present theoretical issue, but the following facts shoulfPProximation.
be noted(1) The so-called “triplet-gap” ak=0 is also seen 06
in the dispersion curves for bof, (k) and the peak posi- @ | Theon| @) | TS
tion of the “theoretical” high-frequency structure at—0 i T 1
(see Fig. 12 Its value, which is slightly larger than the ob- 0.4
served one al =4 K, can be improved by noting the tem-
perature dependence @f(T) (see Fig. 2 However, the
“solitonic gap” by Ain et al*® is not found in our Hartree-
Fock approximation. To obtain this, more sophisticated treat- B °th& Te 1
ment should be demanded2) The theoretical neutron- i
scattering spectrum given by E@7) is also computed and
compared with the observed result for CuGe@® Fig. 13.
The forbidden band between the higher- and lower- G, 13. Comparison between calculated spectfaatid line)
frequency parts predicted theoretically should be observeghd experimental datéRef. 12 (¢). J/kg=94 K: (@) T/Tsp
by nonpolarized neutron-scattering experiments, but has net0.71; (b) T/Tsp=3.57. For convenience, both areas surrounded
yet been reported. However, the line shape of the highby observed spectrum and by theoretical ones are normalized to
frequency part, responsible for the triplet magnon con-unity.

Sk, )

0.2f T 1

0
0 10 20 30 0 10 20 30 40
Energy Transfer [meV ]
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Our main results are as followgt) Below Tgp, the static  of Q) (k) at T—0 describes the triplet low-lying excitation
susceptibility x,,(k,0) drops exponentially with decreasing with a finite gap ak=0, and the width of the magnon con-
temperature, going towards a small but finite value for anytinuum shows an unfamiliar increase las 0 is approached.
wave numberk#0 and to zero fork=0. This means the While the above results agree qualitatively with issues of
zero-point fluctuations are more or less suppressed for alleutron scattering experiments for CuGe®ome discrepan-
nonvanishingk values and the suppression is complete forcies between them require us to reexamine the present sim-
k=0. (2) When the temperature crossksy from above, the plified model from the following points of view(i) It is
first Brillouin zone becomes halved, and the quasienergyecently argued the next-nearest-neighbofiNyIN) interac-
spectrum bifurcates into a pair of and y energy branches, tion is important due to the lattice structuffe2°If both NN
for any small value of at T<Tgp. Consequently, four qua- and NNN couplings are antiferromagnetic, the intrachain
siparticle scattering processes predomingtgk,) in vari-  frustration is essential. Castilkzt al?* attempted to describe
ous ways depending on temperatu(d@) At 0<T<Tgp, the temperature dependence of the uniform susceptibility by
xa{k,0) splits into the high-frequency part ifty, (k) <Q considering both interactionsii) As pointed out by Hirota
<04 (k) and the low-frequency part in0Q<Q, (k), with €t aI..,9 CuGeg_is not an ideal 1D system, so thg effect of
O, (K)<Qu(K). No structure appears in the inteng@| (k) the interchain interaction .shou.Id be mcorporaFed.) We
<Q<Qpy(k) owing to the violation of the energy conserva- s'ho_uld. go beyond thg ad[abatlc treatment by mcIu'dmg the
tion in the quasiparticle scattering. Asis decreased from V|br|on_|c effect of lattice dlspllacements. The study in these
Tsp, the low-frequency part tends to disappear, and théeWw directions will be made in due course.
broad peak of the high-frequency part moves to a higher-
energy side. AfT>Tgp, xo/{K,») reduces to only a single
broad maximum with a tail extending towards=0, consis-
tent with the earlier resulf (4) The high-frequency part is We are grateful to N. Maya for useful discussions. K.N.
responsible for the triplet low-lying excitations arising from thanks A. Terai and K. Kakurai for valuable comments. This
the particle-hole scattering process, while the low-frequencyork was supported by a Grant-in-Aid for Scientific Re-
part is caused by thermal fluctuation due to two intrabandearch from the Ministry of Education, Science and Culture
(a— a and y— 7y) scattering processetb) The dispersion of Japan, No. 07640479.
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APPENDIX A: FERMIONIC HAMILTONIAN WITH LATTICE DISTORTION

Applying the standard transformation,

i—1 i
S;l:s)z(l'f"S)z/l:b; eXF{'W(JEl b;]b21+]§1 a;_lagj_1>},

i i1
+ _ X QY _ At : T 1
SZi+1_52i+1+|82i+1_a2i+1exr{'77(]21 szsz”LJZ1 azj+1azj+1)

z _ At _ 1
Soir1= g 41821 +1 >

z T 1
S2i=baibai— 5, (A1)

the Hamiltonian with lattice distortion in Eq1) reduces t&’
T f i ypta 1 t t 2 oot 2
H=>, [I(M)alb,+I*(Mbla,— = (I, +3,)(alay+blb) [+ = > J(\s—Apb] al a, b, +NCe?, (A2)
) 2 N A +as=hgtrg 1 AT Ry

whereJ(\) is defined in Eq(4). In Eq. (A2), Fourier transformation of,; _1,b,;,

1 .
L= —INrgi—g
A2 m;e T

1

by = N

; e \raip, | (A3)

El

and its Hermitian conjugate are used. The wave numlisrdetermined by the periodic boundary conditioasmp/N with
—N/2=sp=N/2—-1.
By use of new fermions, , 7y, via the canonical transformation
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a}\:

1
E) (ay+y)expi¢/2),

1
bﬁ(ﬁ)(ax—h)exp(—i%@), (A4)

with a phase factor in Eq4), H in Eqg. (A2) reduces to the fermionic Hamiltonian in E@).

APPENDIX B: DERIVATION OF EQ. (21) AND RELATED COEFFICIENTS

The decoupled equations of motion for Green'’s functions multiplied by phase factors are given by

<<0‘Iax—k|alaﬂ+k>>w

(hw—ey_,+ sf)% eXF{IE((ﬁ,ﬁk_ bu)

i 1 1
= exr{%m—mk) (=) + (=Nl g 2 2 5(Wi—Wy)
“ v

(ata,—dala, i)y, (B1)

i
X eXF{E(d’;ﬁk_ d’,u,)

where

1 1
Wi=J; COS{ —k(1=9)+ 5 (k= bt k= b)) | +I2 CO{ K(1+8)+ 5 (dr—k— bt by dm)}.

1 1
Wo=J; CO{-O\— V(1=8)+ 5(dy= drit dprk—h\) |+ 2 CO{(K— V)(1+8)+ 5 (d—k— bt bk (b}\)}-

(B2)

A set of equations in EqgB1) and (B2) can be rewritten more elegantly by introducing the variabdeand Y in Eq. (19),
whereQ andR are defined as

1
Ql(ki)\):COS{E(Qﬁx—k_ ¢>\)}.
1
Qs(kﬂ\):COi{?\(l_ o)+ E(d’x—k*‘ ¢>\)}

1
Qs(k;)\):COﬁ{_Ml"’ O+ 5(dr-it ¢x)}

and

1 1
Ri(kih)=J, COS{—k(l—5)+ 5 (Dr—k= b)) |+ COS{k(lJF O+ 5(dr-k— ¢>\)}1

1
Ra(k;k)=J1cos{Ml—5)+ §(¢>H+ dn)}
1
Rs(k;x)=ch0ﬁ{—>\(l+6)+ §(¢H+¢x)} (B3)

Q,, Q4, Qg, Ry, R4, Rg are given by replacing “cos” by “sin” in the above definitions f@,, Qs3, Qs, R;, R3, Rs,
respectively. We easily have the algebraic equations in(EL}, whose coefficients are given by
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1 uv uv uv uv uv uv

-1y 1,2 1,3 1,4 15 16
-T3% 1+T3% 2% 3% s 2%
-I'3) 52 1+1'5% 34 35 26
Auial IS VRS VS VA S VR A S VY (B43)
T4 rs% r's% rgy 1+T55 I's%
—T'g1 6.2 63 6.4 65 1+TGgg
(uv=aa,yy),
1+T77  -T1% 13 14 15 16
po1-TY T TR, TR TE
ST LeTy, TR T TH
SR S YRS ¥ & R0 S VAR ¥ AR ¥ (B4b)
51 —I's5 I'53 Iy, 1+T5% 56
X 63 6.4 65 1+Tg%
(uv=ay,ya)
with
=2 S 2R (k) QuNGE () (B4o)
mn— N = 2 mu™s nihy k .

On the rhs of Eq(21), C and S are defined by

1 1
=g cos{ng ¢H)}9L’V(A)Qn(k:>\),
A

|1
S=y 2 sw{zm—%«)}gﬁv(mn(km)- (BS)
N

The Green’s functiog;"(\) in Egs.(B4) and(B5) is given in Eq.(22).
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