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Spin dynamics of the spin-Peierls transition in a quantum Heisenberg antiferromagnetic chain
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We investigate full dynamical behaviors of the spin-Peierls transition inS51/2 Heisenberg antiferromag-
netic chains by means of two-time Green’s functions. The effect of temperature-dependent lattice displace-
ments is incorporated self-consistently. Depending on temperatureT and transfer wave numberk, the imagi-
nary part of the dynamical susceptibilityxzz9 (k,v) shows rich structures: AtT50, it is nonvanishing in the
frequency regionVM(k),V ([\v/J),VH(k). VM(k) denotes a lower edge of a triplet magnetic excitation
continuum, and is finite atk50 due to lattice distortion. The upper edgeVH(k) increases ask50 is ap-
proached, which is completely different from the feature without lattice distortion. An asymmetric line shape
of xzz9 (k,v) is found with a peak at the frequency slightly higher thanVM(k). At 0,T,TSP ~spin-Peierls
transition point! there appears another structure due to thermal fluctuations in the lower-frequency region, 0
,V,VL(k). SinceVL(k),VM(k), the forbidden band always exists atT,TSP. Above TSP, xzz9 (k,v)
reduces to a smooth curve characterized by a single broad maximum. These features in dynamics are system-
atically explained in terms of different quasiparticle scattering processes proper to the spin-Peierls phase. The
results are compared with recent experimental data of neutron scattering for the inorganic compound CuGeO3.
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I. INTRODUCTION

The spin-Peierls~s-P! transition is known as a magnet
analogue of the Peierls instability in electron-phon
systems;1,2 coupling of the S51/2 spin chain to three
dimensional phonons of the crystal lattice induces sponta
ously a lattice distortion such that the nearest-neighbo
magnetic ions move alternately closer and further apart. T
leads to a formation of a lattice of singlet pairs, where
first excited state is separated from the ground state by
energy gap. Major theoretical investigations on the sp
Peierls transition were carried out for the quasi-on
dimensional ~1D! organic compounds TTF-CuBDT an
TTF-AuBDT, etc.,3 more than two decades ago. At that tim
theoretical studies concentrated on the thermodynamic p
erties, for instance, temperature dependence of the lattice
tortion, specific heat, and anomalous behavior of the unifo
susceptibility. These results are described in an excellen
view article.4 Except for exact numerical analyses of ‘‘fi
nite’’ spin chains, however, only a few theoretical effor
have been devoted to the systematic analysis of dynam
susceptibilities of the system with temperature-depend
lattice distortions. While the dynamic correlation functions
the limiting temperaturesT50 and` were calculated for the
1D antiferromagnet ofS51/2 spins with ‘‘T-independent’’
alternating exchange interactions,5 it is essential that, at finite
temperatures, lattice spacings should be determined
consistently to derive the accurateT dependence of dynami
properties.

More recently, experimental reports are growing in nu
ber since the characteristic feature of s-P transition was
observed by Haseet al. for the inorganic compound
CuGeO3,6 which is suggested to be a quasi-1D spin-Peie
PRB 600163-1829/99/60~18!/12874~12!/$15.00
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material.7 The neutron-scattering experiments on this co
pound provide us various new features of its sp
dynamics.8–13

In such circumstances, we studied the dynamical beh
iors of s-P phase accompanied byT-dependent lattice dis
placementd(T) in the case of 1DXY antiferromagnet14 that
allows a rigorous analysis. To understand the properties
the real s-P magnets like CuGeO3, however, the dynamics
should be considered on the basis of the isotropic Heisen
model.

In this paper, we deal with the 1D Heisenberg model, a
investigate theoretically the effect ofd(T) in the s-P phase
on its dynamic properties. We shall not take the bosoniza
or phase-Hamiltonian approach,15 whose validity is not well-
justified in describing the dynamics covering all wave nu
bers at all temperatures. The generalized susceptib
x(k,v) for the s-P phase is calculated by having recourse
the two-time Green’s function.16 In contrast to theXY
model, rigorous calculations are not available for the d
torted Heisenberg model because of the coupling te
JSi

zSj
z . With the help of the Hartree-Fock approximation f

higher-order Green’s functions derived from the equations
motion, however, we can evaluatex(k,v) self-consistently
by solving a set of equations for relevant quantities.

The paper is organized as follows: In Sec. II we introdu
the model and describe a gap equation. In Sec. III we
velop our theory of the generalized longitudinal susceptib
ity by means of two-time Green’s functions.16 In Sec. IV the
numerical calculation of the susceptibility is carried out f
arbitrary transfer wave numberk, frequencyv, and tempera-
ture T. Besides anomalous temperature dependence of
uniform susceptibility, we shall show various features
both static and dynamic susceptibilities that have not so
12 874 ©1999 The American Physical Society
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PRB 60 12 875SPIN DYNAMICS OF THE SPIN-PEIERLS . . .
been analyzed theoretically. Rich structures of the imagin
part of the dynamical susceptibility will be explained sy
tematically in terms of different quasiparticle scattering p
cesses proper to the s-P phase. The obtained results are
pared with recent experimental data for the compou
CuGeO3.8–13The paper concludes with summary and disc
sions in Sec. V.

II. MODEL AND GAP EQUATIONS

Taking the adiabatic approximation that suppresses a
netic energy of the nuclei, the Hamiltonian for the 1D qua
tum Heisenberg model of 2N spins of S51/2 with lattice
displacement is written as

H5(
j 51

N

@J1Sj ,1•Sj ,21J2Sj ,2•Sj 11,1#1NCe2, ~1!

whereSN11,15S1,1. The j summation runs overN unit cells
with each containing a pair of spins as shown in Fig. 1. T
last term on the right-hand side~rhs! of Eq. ~1! represents the
elastic energy with elastic constantC and lattice distortione.
Alternating exchange interactionsJ1(.0) andJ2(.0) are
assumed linearly dependent on the static distortion amplit
as

J15J~11d!, J25J~12d!,

where d5he(!1) with Jh(.0) denoting the spatial de
rivative of exchange integral. Below, the scaled elastic c
stantc[C/h2 will be employed.

The fermionic representation of the Hamiltonian17 in Eq.
~1! is given by~see Appendix A!

H5(
l

uJ~l!u@al
†al2gl

†gl#1~2N!21 (
l11l25l31l4

3J~l42l1!exp@ i ~fl1
2fl2

1fl3
2fl4

!/2#

3~al1

† 2gl1

† !~al2

† 1gl2

† !~al3
1gl3

!~al4
2gl4

!

1Ncd2, ~2!

where

J~l!5
1

2
~J1e2 il(12d)1J2eil(11d)! ~3!

and

fl5ld2arctan~dtanl!. ~4!

FIG. 1. The j th unit cell containing two spins located at od
( j ,1) and even (j ,2) sites, respectively. Alternating lattice spacin
areu( j ,1)2( j ,2)u512e andu( j ,2)2( j 11,1)u511e, taking a lat-
tice constant as unity.
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The phase factor$fl% has emerged in our moving to ne
fermions al ,gl via the canonical transformation in Eq
~A4!.

To deal with the four-fermion terms in Eq.~2!, we have
recourse to the Hartree-Fock approximation:

ak
†akak8

† ak8>2nk
ank8

a
1nk

aak8
† ak81nk8

a ak
†ak ,

gk
†gkgk8

† gk8>2nk
gnk8

g
1nk

ggk8
† gk81nk8

g gk
†gk ,

where nl
a5^al

†al& and nl
g5^gl

†gl&. Equation ~2! is then
rewritten as

HHF52
1

2
JN1(

l
@«l

aal
†al1«l

ggl
†gl#

1N~J1p1
21J2p2

2!/41Ncd2, ~5!

where«l
a and«l

g are the quasiparticle spectra,

«l
a5uJ~l!u1

1

2
J1p1 cos@l~12d!1fl#

1
1

2
J2p2 cos@l~11d!2fl#

52«l
g , ~6!

with p1 andp2 defined as

p1[N21(
l

cos@l~12d!1fl#~nl
g2nl

a!, ~7a!

p2[N21(
l

cos@l~11d!2fl#~nl
g2nl

a!. ~7b!

Thus, the free energy of the system is given by

F52JN/21Ncd222b21(
l

ln@2 cosh~b«l
a/2!#

1N~J1p1
21J2p2

2!/4, ~8!

where b51/kBT. p1 and p2 are order parameters arisin
from the Hartree-Fock treatment of the Heisenberg antife
magnet exhibiting the alternating coupling. By minimizin
the free energy in Eq.~8! with respect tod, p1, andp2, we
obtain the gap equations, which determine the tempera
dependence of these three parameters:

]F

]p1
5

N

2
J1Fp12

1

N (
l

cos@l~12d!1fl#tanhS 1

2
b«l

aD G
50, ~9a!

]F

]p2
5

N

2
J2Fp22

1

N (
l

cos@l~11d!2fl#tanhS 1

2
b«l

aD G
50, ~9b!

]F

]d
52Ncd2(

l
tanhS 1

2
b«l

aD ]«l
a

]d
1

NJ

4
~p1

22p2
2!50.

~9c!
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We note that Eqs.~9a! and ~9b! are consistent with defini
tions of p1 andp2 in Eqs.~7a! and~7b!, respectively. Using
c/J52.35, we shall solve Eqs.~9!.

The result of numerical analysis for the gap equations
shown in Fig. 2, which shows the following.~1! d(T) be-
comes nonvanishing below the s-P transition tempera
TSP ~i.e., in the s-P phase! and grows with decreasing tem
perature. This behavior ofd(T) accords with the previous
result.17 ~2! p1(T) and p2(T), which are degenerate abov
TSP, show a clear bifurcation belowTSP. By using the
quantitiesp1(T), p2(T), andd(T), the quasiparticle spectr
in Eq. ~6! are evaluated. While the formalism in Eqs.~2!–~7!
is constructed for the s-P phase where the first Brillouin z
is halved, it can also describe the phase aboveTSP after a
slight modification~see the next section!. All these results
will be used as inputs in the following sections.

III. DYNAMICAL SUSCEPTIBILITY

In order to study the dynamical behavior of the s-P pha
let us first introduce block spin per unit cell~see Fig. 1! as

T z~ l !5Sl ,1
z 1Sl ,2

z , ~10!

where l 51,2, . . . ,N. Then the retarded Green’s function
defined as

^^T z~ l ,t !uT z~ l 8,t8!&&52 iu~ t2t8!^T z~ l ,t !T z~ l 8,t8!

2T z~ l 8,t8!T z~ l ,t !&, ~11!

whereu(t) is the step function and̂& stands for the thermo
dynamic average. In Eqs.~10! and~11!, indicesl and l 8 run
over unit cells.

Experimentally relevant information is available from th
frequency- and wave-number-dependent longitudinal co
plex susceptibilityxzz(k,v). This is related to Fourier trans
form of the retarded Green’s function as follows:

xzz~k,v!52
g2m2

N E
2`

`

d~ t2t8!exp@ iv~ t2t8!#

3^^T z~2k,t !uT z~k,t8!&&, ~12!

where

FIG. 2. Temperature dependence ofd, p1, and p2 with c/J
52.35. This value for the~scaled! elastic constant is used through
out in the following figures.
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^^T z~2k,t !uT z~k,t8!&&

5
1

N (
l ,l 8

exp@2 ik~ l 2 l 8!#^^T z~ l ,t !uT z~ l 8,t8!&&

5(
n

(
l

$^^al
†~ t !al2k~ t !uan

†~ t8!an1k~ t8!&&

1 exp@ ik~12d!#^^bl
†~ t !bl2k~ t !uan

†~ t8!an1k~ t8!&&

1 exp@2 ik~12d!#

3^^al
†~ t !al2k~ t !ubn

†~ t8!bn1k~ t8!&&

1^^bl
†~ t !bl2k~ t !ubn

†~ t8!bn1k~ t8!&&%. ~13!

In deriving the result in Eq.~13!, we have exploited the
fermion transformations in Eqs.~A1! and their Fourier trans-
formations. The phase factors exp@6ik(12d)# in Eq. ~13! are
responsible for alternating lattice spacings in the s-P pha

Using Eqs.~A4! in Eq. ~13!, the longitudinal dynamical
susceptibility reduces to the expression described in term
four kinds of Green’s functions:

xzz~k,v!52
g2m2

2N (
n

(
l

H Fcos
f1

2
1cos

f212k~12d!

2 G
3$^^al

†al2kuan
†an1k&&v

1^^gl
†gl2kugn

†gn1k&&v%

1Fcos
f1

2
2 cos

f212k~12d!

2 G
3$^^al

†gl2kugn
†an1k&&v

1^^gl
†al2kuan

†gn1k&&v%J , ~14!

where f1[fn1k2fn2fl1fl2k and f2[fn1k2fn

1fl2fl2k . In Eq. ~14!, the frequency-dependent Green
function

^^AuB&&v[E
2`

`

d~ t2t8!exp@ iv~ t2t8!#^^A~ t !uB~ t8!&&,

~15!

satisfies the equation of motion

\v^^AuB&&v5^@A,B#2&1^^@A,H#2uB&&v . ~16!

The second term on the rhs of Eq.~16! is a new Green’s
function obeying another equation of motion.

In the present system, the equation of motion is, typica

\v(
m

^^al
†al2kuam

† am1k&&v5(
m

^@al
†al2k ,am

† am1k#2&

1(
m

^^@al
†al2k ,H#2uam

† am

~17!
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The new Green’s function on the rhs of Eq.~17! can now be
expressed in terms of the original Green’s functions throu
the following decoupling procedure~i.e., in the Hartree-Fock
approximation!:

^^ak1

† ak2

† ak3
ak4

ual1

† al2
&&v

>nk1

a $^^ak2

† ak3
ual1

† al2
&&vdk1 ,k4

2^^ak2

† ak4
ual1

† al2
&&vdk1 ,k3

%

1nk2

a $^^ak1

† ak4
ual1

† al2
&&vdk1 ,k3

2^^ak1

† ak3
ual1

† al2
&&vdk2 ,k3

%,

^^ak1

† gk2

† ak3
gk4

ual1

† al2
&&v

>2nk2

g ^^ak1

† ak3
ual1

† al2
&&vdk2 ,k4

, ~18!

wherenk
a(g)51/(eb«k

a(g)
11).

To facilitate the calculation of the dynamical susceptib
ity in Eq. ~14!, we shall deal with a set of the equations
motion for the~decoupled! Green’s functions multiplied by
the phase factors. To be explicit, let us define the variab
$Xn

uv% and$Yn
uv% with 1<n<6 for each of four combinations

of two fermionsu,v5a or g:

Xn
uv[

1

N (
n

f k
uvQn~k;n!, ~19a!

Yn
uv[

1

N (
n

hk
uvRn~k;n!, n51,2, . . . ,6, ~19b!

wheref k
uv(n) andhk

uv(n) are linear combinations of Green
functions:

f k
uv~n!5(

m
cosF1

2
~fm1k2fm!G^^un

†vn2kuvm
† um1k&&v ,

~20a!

hk
uv~n!5(

m
sinF1

2
~fm1k2fm!G^^un

†vn2kuvm
† um1k&&v .

~20b!

Coefficients$Qn% and $Rn% in Eqs. ~19! are defined in Ap-
pendix B. As shown there,$Xn

uv% and$Yn
uv% prove to satisfy

the algebraic equations

AuvXuv5Cuv, ~21a!

AuvYuv5Suv. ~21b!

The coefficients$Auv%, $Cuv%, and $Suv% defined in Eqs.
~B4! and ~B5! are commonly determined by means of t
‘‘core’’ Green’s function,

G k
uv~l!5

nl
u2nl2k

v

\v2«l2k
v 1«l

u
. ~22!

ThereforeXuv andYuv are also determined byG k
uv(l) in Eq.

~22!.
h

s

Using the solution for Eqs.~21!, the dynamical suscepti
bility in Eq. ~14! is eventually expressed in terms ofXn

uv and
Yn

uv (n51,2 andu,v5a or g) as

xzz~k,v!5
1

2
g2m2@Jaa~k,v!1Jgg~k,v!1Jga~k,v!

1Jag~k,v!#, ~23!

with

Juv~k,v!52$16 cos@k~12d!#%X1
uv1$17 cos@k~1

2d!#%Y2
uv1 sin@k~12d!#~X2

uv2Y1
uv!. ~24!

The upper and lower signs on the rhs of Eq.~24! are taken
for the diagonal (u5v) and off-diagonal (uÞv) cases, re-
spectively. In the practical calculation,N21(l is replaced by
p21*2p/2

p/2 dl.
It should also be noted that for the case of no coupl

with lattice displacements, which corresponds to the casT
.TSP, Eq. ~21! reduces to the three component equatio
derived by Todani and Kawasaki,18 where the dynamica
susceptibilityxzz

(0)(k,v) for the uniform~nondimered! phase
is given by

xzz
(0)~k,v!52F~k,v!/$J2V~k!F~k,v!%, ~25a!

with

F~k,v!5G0,022

3
~112G2,0!G0,1

2 1~112G0,2!G1,0
2 24G1,0G0,1G1,1

~112G2,0!~112G0,2!24G1,1
2

,

~25b!

Gm,n5
J

N (
l

sinml cosnl
nl2nl2k

\v1«l
(0)2«l2k

(0)
. ~25c!

In Eq. ~25c!, «l
(0) , defined in the original first Brillouin zone

(2p<l<p), is written as

«l
(0)5J~cosl21!1

2J

N (
n

@12 cos~n2l!#nn .

~25d!

Contrary toxzz
(0) in the uniform case,xzz in Eq. ~24! con-

sists of four kinds of quasiparticle scattering processes.

IV. NUMERICAL RESULTS

A. Static susceptibility „v50…

Before analyzing the dynamical properties, we sh
briefly describe the wave-number-dependent static susc
bility xzz(k,v50) available from Eq.~23!. Special interest
lies in the uniform modek50: As shown in Fig. 3,xzz(0,0)
drops exponentially towards zero at temperatures be
TSP, which is consistent with experiments on CuGeO3.6

This is due to the formation of singlet pairs in the s-P pha
that causes both the excitation gap and the complete sup
sion of the zero-point fluctuation. By contrast, the cor
sponding susceptibility calculated by Bonner and Fishe19
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for a ‘‘finite’’ chain without lattice displacement remain
constant atT50 as indicated by a dotted line in Fig. 3
because of the gapless low-lying excitation~i.e., Goldstone
mode!. The static susceptibility is illustrated also for a no
uniform mode, for instance,k5p/2 in Fig. 3. At T<TSP,
xzz(k,0) shows a drastic decay in the temperature dep
dence as in the case ofk50, but its values are finite atT50.

xzz(k,0) is shown as a function ofk in Fig. 4 for three
cases ofT/TSP50, 0.71, and 1.42. It is interesting to no
that, at T/TSP,1, xzz(k,0) displays a single broad max
mum at k5p/2, i.e., the zone boundary~ZB! of the s-P
phase due to doubling of the unit cell, whereas, atT/TSP
.1, its maximum moves top, i.e., ZB of the uniform phase

B. Dynamical susceptibility „vÞ0…

The dynamical susceptibility in Eq.~23! is written as

x~k,v!5x8~k,v!2 ix9~k,v!, ~26!

where x8(k,v) and x9(k,v) mean the real and imaginar
part ofx(k,v), respectively. Experimental information con
cerning the dynamical properties of the system is analy
by investigation ofx9(k,v),20 which is related directly to
the neutron-scattering spectrum as

S~k,v!5A~k!
e\vb

e\vb21
xzz9 ~k,v!. ~27!

FIG. 3. Static susceptibilityxzz(k,0) as a function ofT for k
50 and p/2. For reference, the temperature dependence of
Bonner-Fisher result~Ref. 19! for ‘‘finite’’ chain is indicated by a
dotted line.

FIG. 4. Static susceptibilityxzz(k,0) versus wave numberk at
temperaturesT/TSP50 and 0.71~solid lines! and T/TSP51.42
~dotted line!.
n-

d

In the above equation,A(k) denotes a form factor characte
ized by the transfer wave numberk5uk02k1u, and absorp-
tion ~or emission! energy is given by\v5E02E15(k0

2

2k1
2)/(2m), where the initial and final states of the neutro

have the wave numbersk0 andk1, respectively.
The functionxzz9 (k,v) in Eq. ~23! consists of four kinds

of terms, each corresponding to its proper quasiparticle s
tering process as illustrated in Fig. 5. This interpretation
acceptable because each termJuv in Eq. ~23! is described by
the Green’s functionG k

uv(l) in Eq. ~22! whose imaginary
part is proportional tod(\v2«l2k

v 1«l
u). The first two

terms with superscriptsaa and gg on the rhs of Eq.~23!

e FIG. 5. Schematic illustration of four kinds of quasiparticle sc
tering processes. For instance, scattering processg→a implies a
particle-hole creation with absorption energy\vag(l;k) and trans-
fer wave numberk, while opposite processa→g means energy
emission.

FIG. 6. Reduced transfer energyV(l;k) versus wave numberl
at T/TSP50.007 for several transfer wave numbers:~a! k5p/2; ~b!
k53p/8; ~c! k5p/8. These features are almost identical to those
T50 because lattice distortion is almost saturated atT/TSP<0.5
~see Fig. 2!.
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imply the quasiparticle scattering within each of the uppea
and lowerg bands, respectively, and the third term describ
the scattering fromg to a band or the creation of a pair o
particles ~in a band! and hole~in g band!. The last term
represents the reversed scattering froma to g band, giving
no contribution toxzz9 (k,v), since the energy conservation
not satisfied in the absorption process (v>0).

To evaluatexzz9 (k,v), coefficientsA, C, S, andG in Eqs.
~B4! and ~B5! should be obtained. With use of the identi
1/(x1 i«)5P(1/x)2 ipd(x), the integrations ofG k

uv(l) in
Eqs.~B4! and~B5! are facilitated by resorting to the formul

FIG. 7. Dispersion curves forVL(k), VM(k), and VH(k) at
T/TSP50.007. Lower- and upper-frequency absorptions are
lowed in the region denoted by hatched and dotted areas, res
tively. For reference, the des Cloizeaux–Pearson spin-wave dis
sion (p/2Jusinku) and the upper edge of the magnetic continuu
@pJusin(k/2)u# without coupling to lattice displacement are demo
strated by dashed and dotted-dashed lines, respectively.

FIG. 8. Imaginary part of dynamical susceptibilityxzz9 (k,v) for
k5p/2: ~a! T/TSP50; ~b! T/TSP50.71; ~c! T/TSP50.95; ~d!
T/TSP51.07. For reference,xzz9

(0)(k,v) without lattice coupling is
also illustrated by a dotted line in case~c!.
s

d@\v2\v~l;k!#5(
j

Ud\v~l;k!

dl U
l5l j

21

d~l2l j !, ~28!

where$l j% are determined by

l-
ec-
er-

FIG. 9. The same as in Fig. 8 but fork53p/8.

FIG. 10. The same as in Fig. 8 but fork5p/8.
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12 880 PRB 60KOUZUKI, KAWASAKI, AND NAKAMURA
v2v~l;k!50. ~29!

In the case ofu→v scattering, for example,

\v~l;k!5\vuv~l;k!5«l2k
v 2«l

u . ~30!

Obviously,xzz9 (k,v) is nonvanishing in thev region, where
density of statesdl/dv(l;k) survives.

In Fig. 6 the reduced absorption energ
Vuv(l;k)([\vuv/J) with k5p/2, 3p/8, andp/8 are de-
picted against wave numberl for all three kinds of absorp
tion processes atT/TSP50.007. We shall define the max
mum and minimum of the upper branchVga(l;k) asVH(k)
andVM(k), respectively. SimilarlyVL(k) is defined as the
maximum of the lower branchVuu(l;k) ~for u5a or g).
Their wave-number-dependent curves are plotted in Fig.
T/TSP50.007.

Structures of the functionxzz9 (k,v) are shown in Figs.
8–10, for several fixed temperatures and wave numberk.
First, let us focus on the limiting caseT→0 @see Figs. 8~a!,
9~a!, and 10~a!#. In the case ofk5p/2 in Fig. 8~a!, xzz9 (k,v)
is composed of a single peak at the frequency slightly hig
-

at

r

than VM(k), and its spectrum is bounded byVM(k)<V
<VH(k). This is explained as follows: In the limitT→0,
tanh(b«/2) reduces to the step functionu(«) because
na(l)→0 andng(l)→1 . So, only the third term on the rh
of Eq. ~23! arising from the particle-hole creation contribut
to xzz9 (k,v). In other words, the triplet (S51) magnon ex-
citation formed via interband (g→a) transition constitutes a
continuum with the lower and upper edges,VM(k) and
VH(k), respectively. The same argument applies to case
k53p/8 andp/8 in Figs. 9~a! and 10~a!, respectively. Ask
departs fromp/2, however,VM(k) is decreased andVH(k)
is increased~see also Fig. 7!. k dependence ofVM(k) con-
stitutes the spin-wave dispersionvSW(k) @[JVM(k)/\#,
and exhibits a finite gap atk50. This should be compare
with the gapless des Cloizeaux–Pearson spin-w
dispersion21 \v(k)5(p/2)Jusinku. Moreover, the increase
of VH(k) ask→0 is in marked contrast with the behavior o
the upper edge of the magnetic continuum@pJusin(k/2)u# in
the case of no coupling with lattice displacement.21

As shown in Figs. 5 and 6, the nonvanishing width of t
triplet magnon continuumDV(k)@5VH(k)2VM(k)# is
given by
DV~k!5H 2~«0
a2«p/2

a !52J~12d!~11p2! at the zone centerk50

2«p/4
a 2«p/2

a 2«0
a5JFA22~11d!~11p1!1

1

A2
$p1~112d!1p2~122d!%G at the zone boundaryk5p/2.

~31!
t is
the

c-
e

t
ach
ted
on-
nt

in
ent

cy
, by
g
.
cy
i.e.,

the

e in
ThusDV(0).DV(p/2). If the system is free from the lat
tice distortion, the opposite relationDV0(0),DV0(p/2) is
obtained: In fact, the present approach yieldsDV0(0)50
and DV0(p/2)52(112/p)(usin(p/4)u2(1/2)usin(p/2)u)

FIG. 11. Comparison ofSzz(k5p/2,v) at T50 between the
present~solid line! and previous theoretical@dotted-dashed line for
US ~Ref. 23! and dashed line for MBB~Ref. 22!# results:~a! case
with coupling to lattice displacement;~b! case without coupling to
lattice displacement.
.2.98. @Note the exact value,22 i.e., DV0(p/2).2.85.# The
completely differentk dependence ofDV(k) between the
cases with and without coupling to the lattice dispacemen
due to the bifurcation of the quasienergy spectra in
dimerized case~see Fig. 7!.

The Fourier transform of the dynamical correlation fun
tion Szz(k5p/2,v) at zero temperature computed in th
present approach is compared with Uhrig and Schulz’s~US!
result23 @see Fig. 11~a!# and with Müller, Beck, and Bonner’s
~MBB! form22 @see Fig. 11~b!# in the cases with and withou
lattice displacement, respectively. For convenience, e
spectral function is normalized so as to have the integra
area to be in unity. US’s calculation was based on a c
tinuum approximation for a fermionic model with consta
lattice displacement. From Fig. 11~a!, we find our spectrum
well resembles that of US in the line shape. The difference
the frequency range should be attributed to the differ
magnitude of lattice distortions, i.e.,d(ours)/d(US).10. In
fact, our spectrum can move toward the lower frequen
side, recovering US’s result even in the frequency range
increasing the elastic constantc and thus by decreasin
d(ours) @see Figs. 8~a!–8~c!#. On the other hand, from Fig
11~b!, we find the ratios of the upper and lower frequen
edges are the same in both of our and MBB’s cases,
v(upper)/v(lower)5ucosec(k/2)u. Some different behav-
iors, however, are found. One is the frequency region of
spectrum, as described before, i.e.,DV0(p/2)52.98 for our
case versus 2.85 for MBB’s case. Another is the line shap
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the vicinity of the two band edges. In contrast to the div
gent behavior at the lower edge and an abrupt cutoff at
upper edge in MBB’s case, our result shows smooth b
edges. To resolve this discrepancy, further intensive theo
ical studies would be necessary.

We shall proceed to the case of finite temperatures be
TSP @see Figs. 8~b!, 9~b!, and 10~b! and Figs. 8~c!, 9~c!, and
10~c!#, in which Fermi distributions become diffuse so th
other two intraband scattering processes (a→a andg→g)
also give nonvanishing contributions.xzz9 (k,v) here has two
nonoverlapping structures: Besides the high-frequency
lying in VM(k)<V<VH(k), the low-frequency part ex
tending toV50 appears, which is limited by a very singul
peak at the upper edgeVL(k) @,VM(k)#. While the former
is responsible for the triplet magnon continuum excitatio
the latter is caused by thermal fluctuations. As the temp
ture is raised from zero, the peak position andVM(k) of the
high-frequency part move to a lower-energy side, wher
VL(k) moves in an opposite way. For reference,xzz9

(0)(k,v)
without lattice coupling18 is also illustrated by a dotted lin
at just belowTSP in Figs. 8~c!, 9~c!, and 10~c!. At T.TSP

~i.e., in the uniform phase!, xzz9 (k,v) bears only a single
broad peak with a tail extending towardsv50 @see Figs.
8~d!, 9~d!, and 10~d!#. In this way, rich structures of the
dynamic susceptibility can be interpreted systematically
terms of various quasiparticle scattering processes prop
s-P phase.

Recently, several prominent features of spin dynam
were revealed from intensive neutron-scattering experime
especially for the compound CuGeO3.8–13 ~1! In s-P phase
(T!TSP) a gap ofD.2.1 meV in the magnetic excitatio
spectrum was observed at the zone center (k50).8,10,12This
gap is called a ‘‘triplet gap’’ because its formation is caus
by reducing a singlet dimer into a delocalized triplet.~2! A
well-defined magnonlike mode is observed with a peak
cated at\vp (.16 meV)>D at ZB (k5p/2). The asym-
metric line shape is responsible for the magnon continuum12

~3! Besides the ‘‘triplet gap,’’ another gap is observed at
frequency higher than the peak position, which Aı¨n et al.13

conjectured as ‘‘solitonic gap.’’~4! At T.TSP the gapless
spin-wave continuum appears,12 though diffused, and the
line shape shows a broad maximum.

The above experimental results accord qualitatively w
the present theoretical issue, but the following facts sho
be noted:~1! The so-called ‘‘triplet-gap’’ atk50 is also seen
in the dispersion curves for bothVM(k) and the peak posi
tion of the ‘‘theoretical’’ high-frequency structure atT→0
~see Fig. 12!. Its value, which is slightly larger than the ob
served one atT54 K, can be improved by noting the tem
perature dependence ofd(T) ~see Fig. 2!. However, the
‘‘solitonic gap’’ by Aı̈n et al.13 is not found in our Hartree-
Fock approximation. To obtain this, more sophisticated tre
ment should be demanded.~2! The theoretical neutron
scattering spectrum given by Eq.~27! is also computed and
compared with the observed result for CuGeO3 in Fig. 13.
The forbidden band between the higher- and low
frequency parts predicted theoretically should be obser
by nonpolarized neutron-scattering experiments, but has
yet been reported. However, the line shape of the hi
frequency part, responsible for the triplet magnon co
-
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tinuum, resembles the observed asymmetric line shape
sense thatS(k,v) abruptly rises atV just aboveVM(k) and
gradually decreases asVH(k) is approached.~3! The unfa-
miliar dispersion ofVH(k) as in Fig. 7 has not yet bee
found experimentally. Araiet al.12 pointed out a ‘‘rampart’’
or ridge of scattering surrounding a valley~at k.0) in the
magnon continuum. This tendency is expected to reflect
nonvanishing width of the magnon continuum atk50 pre-
dicted above.~4! In the uniform phase (T.TSP), S(k,v)
accords with the observed single broad hump, though a
tual discrepancy cannot be disregarded in the high-freque
region. ~5! The peak atVL(k) would not be actually ob-
served because of its extremely singular nature. On the c
trary, the variation of the broad peak lying just aboveVM(k)
should be captured when temperature crossesTSP, although
the observed peak position seems to remain unchan
Since the present prediction is inevitable as long as the q
siparticle energy spectrum bifurcates toa and g branches
due to the lattice distortion, we hope future experiments
verify it.

V. SUMMARY AND DISCUSSION

In this paper, we have theoretically investigated spin d
namics of s-P transition by incorporating the effect
temperature-dependent lattice distortiond(T) in a self-
consistent way. The expression for the generalized long
dinal susceptibilityxzz(k,v) is derived by means of two
time Green’s functions within the Hartree-Foc
approximation.

FIG. 12. Wave number dependence ofVM ~solid lines! and
theoretical peak positions~symbolsn). J/kB594 K. Symbols (*)
imply experimental peak positions~Ref. 8! at T54 K.

FIG. 13. Comparison between calculated spectrum~solid line!
and experimental data~Ref. 12! (L). J/kB594 K: ~a! T/TSP

50.71; ~b! T/TSP53.57. For convenience, both areas surround
by observed spectrum and by theoretical ones are normalize
unity.
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Our main results are as follows:~1! Below TSP, the static
susceptibilityxzz(k,0) drops exponentially with decreasin
temperature, going towards a small but finite value for a
wave numberkÞ0 and to zero fork50. This means the
zero-point fluctuations are more or less suppressed fo
nonvanishingk values and the suppression is complete
k50. ~2! When the temperature crossesTSP from above, the
first Brillouin zone becomes halved, and the quasiene
spectrum bifurcates into a pair ofa andg energy branches
for any small value ofd at T,TSP. Consequently, four qua
siparticle scattering processes predominatexzz9 (k,v) in vari-
ous ways depending on temperature.~3! At 0,T,TSP,
xzz9 (k,v) splits into the high-frequency part inVM(k)<V
<VH(k) and the low-frequency part in 0<V<VL(k), with
VL(k),VM(k). No structure appears in the intervalVL(k)
,V,VM(k) owing to the violation of the energy conserv
tion in the quasiparticle scattering. AsT is decreased from
TSP, the low-frequency part tends to disappear, and
broad peak of the high-frequency part moves to a high
energy side. AtT.TSP, xzz9 (k,v) reduces to only a single
broad maximum with a tail extending towardsv50, consis-
tent with the earlier result.18 ~4! The high-frequency part is
responsible for the triplet low-lying excitations arising fro
the particle-hole scattering process, while the low-freque
part is caused by thermal fluctuation due to two intraba
(a→a and g→g) scattering processes.~5! The dispersion
y

ll
r

y

e
r-

y
d

of VM(k) at T→0 describes the triplet low-lying excitatio
with a finite gap atk50, and the width of the magnon con
tinuum shows an unfamiliar increase ask50 is approached.

While the above results agree qualitatively with issues
neutron scattering experiments for CuGeO3, some discrepan-
cies between them require us to reexamine the present
plified model from the following points of view:~i! It is
recently argued the next-nearest-neighboring~NNN! interac-
tion is important due to the lattice structure.24–26 If both NN
and NNN couplings are antiferromagnetic, the intrach
frustration is essential. Castillaet al.24 attempted to describe
the temperature dependence of the uniform susceptibility
considering both interactions.~ii ! As pointed out by Hirota
et al.,9 CuGeO3 is not an ideal 1D system, so the effect
the interchain interaction should be incorporated.~iii ! We
should go beyond the adiabatic treatment by including
vibrionic effect of lattice displacements. The study in the
new directions will be made in due course.
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APPENDIX A: FERMIONIC HAMILTONIAN WITH LATTICE DISTORTION

Applying the standard transformation,

S2i
15S2i

x 1 iS2i
y 5b2i

† expF ipS (
j 51

i 21

b2 j
† b2 j1(

j 51

i

a2 j 21
† a2 j 21D G ,

S2i 11
1 5S2i 11

x 1 iS2i 11
y 5a2i 11

† expF ipS (
j 51

i

b2 j
† b2 j1(

j 51

i 21

a2 j 11
† a2 j 11D G ,

S2i 11
z 5a2i 11

† a2i 112
1

2
,

S2i
z 5b2i

† b2i2
1

2
, ~A1!

the Hamiltonian with lattice distortion in Eq.~1! reduces to17

H5(
l

FJ~l!al
†bl1J* ~l!bl

†al2
1

2
~J11J2!~al

†al1bl
†bl!G1

2

N (
l11l25l31l4

J~l42l1!bl1

† al2

† al3
bl4

1NCe2, ~A2!

whereJ(l) is defined in Eq.~4!. In Eq. ~A2!, Fourier transformation ofa2i 21 ,b2i ,

a2i 215
1

AN
(
l

e2 ilr 2i 21al ,

b2i5
1

AN
(
l

e2 ilr 2ibl , ~A3!

and its Hermitian conjugate are used. The wave numberl is determined by the periodic boundary condition asl5pp/N with
2N/2<p<N/221.

By use of new fermionsal , gl via the canonical transformation
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al5S 1

A2
D ~al1gl!exp~ ifl/2!,

bl5S 1

A2
D ~al2gl!exp~2 ifl/2!, ~A4!

with a phase factor in Eq.~4!, H in Eq. ~A2! reduces to the fermionic Hamiltonian in Eq.~2!.

APPENDIX B: DERIVATION OF EQ. „21… AND RELATED COEFFICIENTS

The decoupled equations of motion for Green’s functions multiplied by phase factors are given by

~\v2«l2k
a 1«l

a!(
m

expF i

2
~fm1k2fm!G^^al

†al2kuam
† am1k&&v

5 expF i

2
~fl2fl2k!G~nl

a2nl2k
a !1~nl

a2nl2k
a !

1

N (
m

(
n

1

2
~W12W2!

3expF i

2
~fm1k2fm!G^^an

†an2kuam
† am1k&&v , ~B1!

where

W15J1 cosF2k~12d!1
1

2
~fl2k2fn1fn2k2fl!G1J2 cosFk~11d!1

1

2
~fl2k2fn1fn2k2fl!G ,

W25J1 cosF2~l2n!~12d!1
1

2
~fn2fl2k1fn2k2fl!G1J2 cosF ~l2n!~11d!1

1

2
~fl2k2fn1fn2k2fl!G .

~B2!

A set of equations in Eqs.~B1! and ~B2! can be rewritten more elegantly by introducing the variablesX andY in Eq. ~19!,
whereQ andR are defined as

Q1~k;l!5cosF1

2
~fl2k2fl!G ,

Q3~k;l!5cosFl~12d!1
1

2
~fl2k1fl!G ,

Q5~k;l!5cosF2l~11d!1
1

2
~fl2k1fl!G ,

and

R1~k;l!5J1 cosF2k~12d!1
1

2
~fl2k2fl!G1J2 cosFk~11d!1

1

2
~fl2k2fl!G ,

R3~k;l!5J1cosFl~12d!1
1

2
~fl2k1fl!G ,

R5~k;l!5J2cosF2l~11d!1
1

2
~fl2k1fl!G . ~B3!

Q2 , Q4 , Q6 , R2 , R4 , R6 are given by replacing ‘‘cos’’ by ‘‘sin’’ in the above definitions forQ1 , Q3 , Q5 , R1 , R3 , R5,
respectively. We easily have the algebraic equations in Eq.~21!, whose coefficients are given by
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Auv5S 12G1,1
uv G1,2

uv G1,3
uv G1,4

uv G1,5
uv G1,6

uv

2G2,1
uv 11G2,2

uv G2,3
uv G2,4

uv G2,5
uv G2,6

uv

2G3,1
uv G3,2

uv 11G3,3
uv G3,4

uv G3,5
uv G3,6

uv

2G4,1
uv G4,2

uv G4,3
uv 11G4,4

uv G4,5
uv G4,6

uv

2G5,1
uv G5,2

uv G5,3
uv G5,4

uv 11G5,5
uv G5,6

uv

2G6,1
uv G6,2

uv G6,3
uv G6,4

uv G6,5
uv 11G6,6

uv

D ~B4a!

~uv5aa,gg!,

Auv5S 11G1,1
uv 2G1,2

uv G1,3
uv G1,4

uv G1,5
uv G1,6

uv

G2,1
uv 12G2,2

uv G2,3
uv G2,4

uv G2,5
uv G2,6

uv

G3,1
uv 2G3,2

uv 11G3,3
uv G3,4

uv G3,5
uv G3,6

uv

G4,1
uv 2G4,2

uv G4,3
uv 11G4,4

uv G4,5
uv G4,6

uv

G5,1
uv 2G5,2

uv G5,3
uv G5,4

uv 11G5,5
uv G5,6

uv

G6,1
uv 2G6,2

uv G6,3
uv G6,4

uv G6,5
uv 11G6,6

uv

D ~B4b!

~uv5ag,ga!

with

Gm,n
uv [

1

N (
l

1

2
Rm~k;l!Qn~k;l!G k

uv~l!. ~B4c!

On the rhs of Eq.~21!, C andS are defined by

Cn
uv[

1

N (
l

cosF1

2
~fl2fl2k!GG k

uv~l!Qn~k;l!,

Sn
uv[

1

N (
l

sinF1

2
~fl2fl2k!GG k

uv~l!Qn~k;l!. ~B5!

The Green’s functionG k
vu(l) in Eqs.~B4! and ~B5! is given in Eq.~22!.
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