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Localized modes in two-dimensional square anisotropic ferromagnets with a hole
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By using the path-integral method with aSU(2) coherent-state basis, two-dimensional anisotropic Heisen-
berg ferromagnets bearing a fixed magnetic hole are investigated with particular attention paid to interplaying
between the intrinsic nonlinearity and the extrinsic structural disorder due to hole doping. Detailed numerical
calculations are made fors-like localized modes to determine their eigenfrequencies and profiles as a function
of a nonlinearity parameter and various anisotropic exchange parameters. A localized magnetic vortex is found
in the neighborhood of a hole. Analytical and numerical analyses on their time evolution show two kinds of
localized modes separately; one is mobile under certain conditions and intrinsic due to the nonlinearity, and the
other is immobile and extrinsic due to the fixed magnetic hole.@S0163-1829~99!01634-3#
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I. INTRODUCTION

The effect of dilute impurities on the spin-wave spectru
of ferromagnetic insulators was studied by one of the pres
authors,1 and Wolfram and Callaway in 1963,2 indepen-
dently. They established the existence of the localized im
rity state lying outside of the spin wave. Since then,
subject relating to the localized modes has been extensi
developed in several fields, e.g., the antiferromagnetis3,4

and the lattice vibrations,5–7 etc. The localized mode con
cerned so far is due to the extrinsic entities, i.e., spatial
homogeneity, such as impurity spins or atoms and chang
mass, etc.

Recent theoretical development in nonlinear phys
however, reveals the existence of the classical and quan
nonlinear localized modes even in the pure crystal. Anh
monic lattice localized modes,8–13 which are typical ex-
amples for the classical case, appear above the top of
harmonic frequency band of a pure lattice. The quant
nonlinear localized modes are investigated intensively in
Heisenberg magnets.14–24 They are characterized by th
eigenfrequency lying below the bottom of the linear sp
wave.

Since the recent discovery of high-Tc superconductor
phenomena,25 the problem of impurity~hole! effect has been
revived and received a great deal of attention. As is w
known, the parent compounds of high-Tc materials are, in
general, antiferromagnetic insulators with considerable h
TN (.the room temperature!. By increasing hole concentra
tion, TN decreases dramatically, and finally the magnetic
dering is completely suppressed when the concentration
ceeds a certain critical value. On the other hand,
superconducting appears at the opposite condition. Nam
the magnetic ordered phase and the superconducting p
never coexist. So, it becomes now one of the most impor
problems how the phase transition occurs from magnetic
dered phase to superconducting phase~vice versa! via hole
doping.

It is the purpose of this paper to make a detailed a
PRB 600163-1829/99/60~18!/12810~10!/$15.00
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quantitative study on the interplay between intrinsic nonl
earity and extrinsic spatial discreteness due to hole dop
during the formation of the localized mode and consider
relation between the appearance of the localized mode
magnetic disorder. We are actually concerned here w
moving localized modes as well as the stationary ones fo
two-dimensional~2D! Heisenberg ferromagnet containing
fixed magnetic hole. As for the antiferromagnetic case,
will discuss that in a subsequent paper.

The present authors have previously formulated aSU~2!
coherent state path-integral theory of nonlinear self-locali
collective modes.15 As mentioned before, this formalism ha
the following features.~i! No assumption is made on th
smallness of spin deviation from the ordered state to m
full inclusion of the intrinsic nonlinearity in the magnon sy
tem. ~ii ! To derive a nonlinear differential-difference equ
tion for collective modes, a stationary-phase approximat
is employed. In this sense, the formalism corresponds to
classical approach.~iii ! No continuum approximation for the
lattice is allowed. By employing this formulation to 1D an
isotropic Heisenberg ferro- and antiferromagnets, which
spatially homogeneous, we showed interesting features
nonlinear self-localized modes.14–16,21,23Therefore our task
here is an extension of the theory to 2D magnon system
treat both extrinsic and intrinsic factors simultaneously. T
paper is organized as follows: In the next section, a b
account is given ofSU(2) coherent-state path-integral fo
mulation to derive discrete and nonlinear differentia
difference equations for complex spin-deviation field va
ables. In Sec. III, the eigenvalue equation of the station
localized mode is derived for 2D square ferromagnets c
taining a fixed hole. By introducinging two different magno
Green’s functions, one of which is associated with the p
system without nonlinear effect and the other with a line
but spatially inhomogeneous system, the energy eigenv
is obtained numerically. The profiles of the stationary loc
ized modes are also examined. In Sec. IV, numerical ca
lation with the Runge-Kutta-Jill method26 is carried out for
the time-evolution equation for the localized modes, and t
12 810 ©1999 The American Physical Society
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PRB 60 12 811LOCALIZED MODES IN TWO-DIMENSIONAL SQUARE . . .
kinds of localized modes are illustrated separately, i.e., on
intrinsic due to nonlinearity and mobile under certain con
tions, and the other is extrinsic due to fixed magnetic h
and immobile. The last section is devoted to concluding
marks of results obtained in this paper.

II. SU„2… COHERENT-STATE PATH-INTEGRAL
FORMULATION AND STATIONARY PHASE

APPROXIMATION

We consider Heisenberg ferromagnets on a 2D square
tice with the lattice constanta51. The Hamiltonian can be
written in the form

H52 (
^nm&

J~n,m!@h~Sn
1Sm

21Sn
2Sm

1!1Sn
zSm

z #, 0,h,1,

~1!

where the symbol(^nm& indicates pairs of nearest neighbor
The quantitySn

a(a5x,y,z) with Sn
65Sn

x6 iSn
y is thea com-

ponent of thenth site spin operator situated on the latti
vector

n5n1e11n2e2 . ~2!

Here,nj ( j 51 or 2) takes an integer value andej denotes an
unit vector of j th component. The quantitiesJ(n,m).0 and
h are the exchange interaction constant between neighbo
sitesn andm and its anisotropic parameter, respectively.

Let uS,M &n be angular-momentum eigenstates of a sin
spin Sn with spin magnitude S, where M (52S,2S
11, . . . ,S21,S) is the eigenvalue ofSz. Then,SU(2) co-
herent statesumn& associated with the spinSn are defined
by27–29

umn&5~11umnu2!2Sexp~mnSn
1!uS,2S&n , ~3!

where themn’s are complex magnon field variables. Th
diagonal coherent-state representations of the spin ope
Sn are given by

^mnuSn
1umn&52S

mn

11umnu2
,

^mnuSn
2umn&52S

mn*

11umnu2
,

^mnuSn
zumn&5S

12umnu2

11umnu2
. ~4!

The coherent stateuL& of the whole spins constituting thi
ferromagnet is defined as

uL&5)
n

umn&. ~5!

As is well known in the path-integral theory,30,31 the func-
tional integral representation for the matrix element of
evolution operator exp(2iHt/\) between an initial state
uL i&[uL(t i)& and a final stateuL f&[uL(t f)& can be written
in the form29,31
is
-
e
-

t-

.

ng

e

tor

e

^L f uexp@2 iH ~ t f2t i !/\#uL i&5E D~L!exp~ iS/\!, ~6!

with

S5E
t i

t f
Ldt[E

t i

t fL~L,L̇,L* ,L̇* !dt, ~7!

in which

L5(
n

S

11umnu2 Fmn* i\
dmn

dt
2mni\

dmn*

dt G2^LuHuL&.

~8!

The functional integration involving the symbolD(L) in Eq.
~6! means a sum over all paths moving forward in timet. An
explicit expression for̂LuHuL& in Eq. ~8! is given by

^LuHuL&52S2 (
^nm&

J~n,m!

3
2h~mn* mm1mnmm* !1~12umnu2!~12ummu2!

~11umnu2!~11ummu2!
.

~9!

As a first-order approximation to the exact path-integral f
malism described above, we employ the saddle-point
proximation to Eq.~6!:

dS[dS~L,L* !50, ~10!

then the Lagrange equations are obtained as

d

dt S ]L
]ṁn

D 2
]L
]mn

50 and c.c. ~11!

Combining Eq.~8! with Eq. ~11! gives

i\
dmn

dt
5

~11umnu2!2

2S

]^LuHuL&

]mn*
and c.c. ~12!

Inserting Eq. ~9! into Eq. ~12!, we obtain nonlinear
differential-difference equation:

i\ṁn5S(
m

J~n,m!
@mn2hmm1hmn

2mm* 2mnummu2#

11ummu2
.

~13!

This is a modified version of the nonlinear Schro¨dinger
equation,32 in which intrinsic nonlinearity of the spin system
has been included to all orders. However, corrections to
saddle-point approximation by considering quantum fluct
tions around the stationary point would be required when
consider the caseS51/2, because this approximation work
better forS@1.

III. NONLINEAR EIGENVALUE EQUATIONS
FOR STATIONARY SELF-LOCALIZED
MODES WITH A FIXED MAGNETIC

HOLE

Let us seek the stationary mode solutions to Eq.~13!. As
an illustration, we first consider a pure 2D ferromagnet w
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12 812 PRB 60MARI KUBOTA, KAZUKO KAWASAKI, AND SHOZO TAKENO
nearest-neighbor coupling constantJ(n,m)5J for all n and
m. This amounts to seeking the solution in the form

mn5
A

A2S
j~n!exp~2 ivt !, ~14!

where the quantitiesv andj(n)’s are the eigenfrequency o
the stationary modes to be studied and the envelope f
tions which are scaled by the amplitudeA/A2S and assumed
to be time independent, respectively. Then substituting
~14! into Eq. ~13! leads to

«j~n!2
1

2 (
j

@j~n1ej !1j~n2ej !#5
l

2h
U„j~n!…,

~15!

where

«[
4SJ2\v

2hSJ
~16!

and

U„j~n!…

5(
j

F2j~n!j~n1ej !
22h$j~n!2j~n1ej !1j~n1ej !

3%

11lj~n1ej !
2

1
2j~n!j~n2ej !

22h$j~n!2j~n2ej !1j~n2ej !
3%

11lj~n2ej !
2 G .

~17!

Here, the parameterl defined by

l[A2/2S ~18!

characterizes the nonlinearity of the spin system.
We are now concerned with stationary nonlinear mode

a 2D ferromagnet containing a hole. As a preliminary s
for obtaining nonlinear lattice equations for this case,
consider a 2D ferromagnet containing an impurity spin
cated at the originn50. As shown in Fig. 1, there exist tw
kinds of coupling constants:

J~m,n!5J~n,m!5H J8 if n50 and m56ej ,

J otherwise
~19!

FIG. 1. Ferromagnetic system with a hole fixed at the origin
c-

q.

in
p
e
-

where the exchange interactionJ8 between an impurity at the
origin and its nearest-neighbor sites differ fromJ among host
spin sites. When nonlinear effect is discarded, combining
~19! with Eq. ~15! gives

~i! for n50,

«j~0!2
1

2 (
j 51

2

@j~ej !1j~2ej !#5W„j~0!…; ~20!

~ii ! for n56ej ,

«j~6ej !2
1

2 (
j 851

2

@j~6ej1ej 8!1j~6ej2ej 8!#

5W„j~6ej !…, ~21!

where

W„j~0!…5S 2

h
j~0!2

1

2 (
j

@j~ej !1j~2ej !# D DJ

J
,

~22!

W„j~6ej !…5S 1

2h
j~6ej !1

1

2
j~0! D DJ

J
, ~23!

with

DJ5J2J8; ~24!

~iii ! for other cases,

«j~n!2
1

2 (
j

@j~n1ej !1j~n2ej !#50. ~25!

It is understood that we eventually take the limitJ8→0 to
get the magnetic system with the hole. In such a case E
~22! and ~23! take the form

W„j~0!…5
2

h
j~0!2

1

2 (
j 51

2

@j~ej !1j~2ej !#, ~26!

W„j~6ej !…5
1

2h
j~6ej !1

1

2
j~0!. ~27!

Our objective of obtaining stationary mode in the 2D fe
romagnet with a hole can be achieved by introducing t
linear operatorsL0 andL8:

L0j~n![«j~n!2
1

2 (
j 51

2

@j~n1ej !1j~n2ej !# ~28!

with

E5\v ~29!

and

L8j~n![W„j~n!…. ~30!

Namely, L0 is the operator for pure lattice andL8 is the
perturbation term due to the existence of a hole. By us
these operatiors a generalized-version of Eq.~15! takes in the
form
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PRB 60 12 813LOCALIZED MODES IN TWO-DIMENSIONAL SQUARE . . .
~L02L8!j~n!5
l

2h
U„j~n!…. ~31!

We observe that the effect of the hole and intrinsic non
earity of magnon excitations are incorporated into the fac
L8 and (l/2h)U@j(n)#. In studying solution to Eqs.~31!, we
introduce a magnon Green’s functiong(n) associated with
linear magnons of the pure system defined by

L0g~n!5«g~n!2
1

2 (
j 51

2

@g~n1ej !1g~n2ej !#5D~n!.

~32!

Symbolically,g(n) is written as

g~n!5L0
21 . ~33!

An explicit expression forg(n) takes the form

g~n!5
1

N (
q

eiq•n

«2(
j

cos~qjej !

. ~34!

The quantityg(n) can be reduced, after lengthy, but straig
forward, calculations:

g~n!5g~2n!5E
0

`

dt e2«tI n1
~ t !I n2

~ t !, ~35!

where I ’s are Bessel functions of imaginary argument. T
eigenvalueE( lsw)([\v) of the linear spin-wave spectrum
for the pure system is determined by the equation

«2~cosqx1cosqy!50. ~36!

Inserting Eq.~16! into Eq. ~36!, the bottom of the spin en
ergy bandE0

( lsw) is obtained as follows:

E0
( lsw)

4SJ
512h. ~37!

From the definition of the Green’s function@cf. Eq. ~32!#,
the envelope function of linear localized mode arising from
magnetic hole is described as

j~n!5(
l

g~n2 l!W„j~ l!…,

5g~n!W„j~0!…1(
j

g~n2ej !W„j~ej !…

1g~n1ej !W„j~2ej !…. ~38!

For the present case, ans-like mode having the following
symmetry with respect to the origin is physically acceptab

j~e1!5j~2e1!5j~e2!5j~2e2!. ~39!

Thus the following symmetric relation is also derived fro
Eq. ~17!:

U„j~n!…5U„j~2n!…. ~40!

Based on thiss-like mode assumption, Eq.~38! yields the
compact matrix form equation
-
rs

-

a

:

DF j~0!

j~e1!
G5F0

0G , ~41!

where

D5F 12
2

h
g~0!12g~e1! 2g~0!2

2

h
g~e1!

2
2

h
g~e1!1g~e1!« 112g~e1!2

«

h
g~e1!

G .

~42!

Thus the energy eigenvalueE( l inear) of linear localized mode
with the hole effect is generated by determinantal equa
iDi50:

~2h2«!g~0!1150. ~43!

The value ofE( l inear) is obtained numerically and itsh de-
pendence is plotted in Fig. 2. We recognize low lyin
E( l inear) (,E0

( lsw)), and increments of mutual energy ga
with decreasingh, i.e., the system tends to the Ising typ
Thus the self-localized mode can be identified due to
lowering of energy level for existence of a hole even thou
the system is linear.

So far our treatment is limited with the linear localize
mode. We are now at the position to seek their nonlin
effect. Here, we introduce another two-site-dependent m
non Green’s functionG(n;m), which satisfies the following
equation:

~L02L8!G~n;m!5D~m!. ~44!

By using the same procedure as before, the envelope f
tion of nonlinear self-localized mode is expressed in terms
theseG’s as

j~n!5
l

2h (
m

G~n;m!U„j~m!…. ~45!

Equation~44! yields the Green’s functionG(n;m) to be

FIG. 2. h dependence of the energy eigenvalueE( l inear) for
linear localized mode with the hole effect. This eigenvalue is lyi
below spin-wave bottomE0

( lsw) without hole effect.
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12 814 PRB 60MARI KUBOTA, KAZUKO KAWASAKI, AND SHOZO TAKENO
G~n;m!5L0
211L0

21L8G~n;m!

5L0
211(

l
L0

21W„G~ l;m!…, ~46!

where

W„G~0;m!…5
2

h
G~0;m!2

1

2 (
j

$G~ej ;m!1G~2ej ;m!%,

~47!

W„G~ej ;m!…5
1

2h
G~ej ;m!1

1

2
G~0;m!, ~48!

W„G~ l;m!…50 for u lu.1. ~49!

In writing the above Eq.~46!, Eq. ~30! is used. Using of Eq.
~33!, G(n;m) are written by

G~n;m!5g~n2m!1FE

h
g~n!1D~n!GG~0;m!

1
1

2h (
j

$@g~n2ej !2hg~n!#G~ej ;m!

1@g~n1ej !2hg~n!#G~2ej ;m!%. ~50!

It is instructive to remark thatG(n;m) is dependent on site
n and m and is expressed in terms ofg(n2m), G(0;m),
G(6e1 ;m), and G(6e2 ;m), while g(n,m)5g(n2m) de-
pends only on their relative distance.

Putting n50 and n56ej in Eq. ~50!, we obtain a 535
matrix form equation with respect to five magnon Gree
functionsG(0;m), G(6e1 ;m), andG(6e2 ;m),

F g~m!

g~m2e1!

g~m1e1!

g~m2e2!

g~m1e2!

G
5F 2Eg~0! A A A A

C B D F F

C D B F F

C F F B D

C F F D B

GF G~0;m!

G~e1 ;m!

G~2e1 ;m!

G~e2 ;m!

G~2e2 ;m!

G ,

~51!

where

A52SJ„g~e1!2hg~0!…,

B512SJ„g~0!2hg~e1!…,

C52Eg~e1!,

D52SJ„g~2e1!2hg~e1!…,

F52SJ„g~e11e2!2hg~e1!….

Therefore these five magnon Green’s functions are solve
s

as

F G~0;m!

G~e1 ;m!

G~2e1 ;m!

G~e2 ;m!

G~2e2 ;m!

G
5F 2Eg~0! A A A A

C B D F F

C D B F F

C F F B D

C F F D B

G 21F g~m!

g~m2e1!

g~m1e1!

g~m2e2!

g~m1e2!

G .

~52!

Thus we can finally evaluateG(n;m) for general sitesn and
m from Eq. ~50! with Eqs.~34! and ~52!.

Since the profile functionj(n)’s are scaled by the ampli
tude A/A2S as described before, let us regardj(6ej ) as
unity, which are ones at the nearest neighbors to the h
positionn5(0,0). This normalization condition can be the
written as

j~6ej !5
l

2h (
m

G~6ej ;m!U„j~m!…51. ~53!

As a result, Eq.~45! is rewritten as

j~n!5

(
m

G~n;m!U„j~m!…

(
m

G~ej ;m!U„j~m!…

for nÞ0. ~54!

In seeking the relations among the energy eigenvalueE, non-
linear parameterl, andj(n)’s, Eqs.~53! and~54! are treated
numerically under the following procedure:~i! The numeri-
cal value of the anisotropy factor is chosen within 1.h
.0. ~ii ! For each value ofh, the trial valuesl and j(n)’s
for 10>n1>n2>2 are provided.~iii ! For a given paramete
«, the successive approximate calculations are performe
Eqs. ~53! and ~54!. The numerical calculations are carrie
out only forn1>n2>1, because of the symmetric properti
of thes-like mode.~iv! Thepth approximate solutionsjp(n)
and lp for j(n) and l, respectively, are truncated if th
relative truncating error, for instancejp(n)2jp21(n), be-
comes less than 1026. Sufficient convergence of the succe
sive approximation was attained atp515 on the average.

In Fig. 3~a!, the energy eigenvalueE of the self-localized
s-like nonlinear mode is plotted againstl for various values
of h. The increment of the nonlinear parameterl brings the
lowering of E. The differenceE(0)2E(l), which indicates
the nonlinear effect becauseE(0) corresponds to that of th
linear self-localized mode under hole contribution, becom
relatively large for small value ofh ~Ising-like!. In Fig. 3~b!,
it is illustrated forh50.3 how the eigenvalueE is lowered
under two effects, i.e., the intrinsic nonlinearity and the e
trinsic hole doping. In addition toE0

( lsw) andE( l inear), thel
dependence ofE(pure)(l) is also shown there for reference
which is the energy eigenvalue for the pure system includ
nonlinear effect ~see the Appendix!. We can esti-
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PRB 60 12 815LOCALIZED MODES IN TWO-DIMENSIONAL SQUARE . . .
mate the energy reduction originated in the hole effect
E0

( lsw)2E( l inear) for the linear system (l50) and
E(pure)(l)2E(l) for nonlinear system, respectively. Wit
increasing the nonlinearity parameter, the hole existe
stimulates lowering of the energyE as seen in Fig. 3~b!.

Since the diagonal coherent-state representation of
operatorSn is given in terms of the profile functionj(n) as

^mnuSn
xumn&

S
5

Alj~n!

11lj~n!2
cosvt and

^mnuSn
yumn&

S
52

Alj~n!

11lj~n!2
sinvt, ~55!

the projection ofSn on the 2D square lattice plane, denot
Sn

' , can be evaluated. In Fig. 4 the obtained results are dr
for two cases,~a! h50.3 and~b! h50.5, with given values
of l andE. In the case ofh50.3, Sn

' appear largely in the

FIG. 3. ~a! The energy eigenvalueE(l) of an s-like self-
localized mode as a function of nonlinearity parameterl for vari-
ous anisotropic exchange interactions parameters.~b! Illustration of
energy reduction under two effects, i.e., intrinsic nonlinearity a
extrinsic hole doping in a case ofh50.1. The solid line isE(l) and
the dashed line is theE(pure)(l).
s

e

in

n

magnitude around a hole siten50 with the direction indi-
cated by arrows. Thus we find a localized magnetic vort
This implies that spins in the neighborhood of a hole u
dergo a large excursion, while the deviation from ferroma
netic state is very small for rest ones. This localized m
netic vortex seems to be a peculiarity in 2D nonlinear s
systems associated with a hole, and is in contrast with
spin-wave case, in whichSn

' propagates over all lattice sites
As the system shifts to the Heisenberg type, the vortex
gion spreads out surrounding the hole but the magnitude
Sn

' become smaller than the former case, as shown in
4~b!.

IV. TIME EVOLUTION FOR MOVING NONLINEAR
SELF-LOCALIZED MAGNONS

In this section we discuss the time evolution for the mo
ing nonlinear self-localized magnons, with particular atte
tion to interplaying between the intrinsic nonlinearity and t
structural disorder due to the existence of a hole. We look
solutions to Eq.~13! in the form

mn5umnuexp~ iun![
A

A2S
x~n!exp~ iun!, ~56!

where the quantitiesx(n) and un are time-dependent enve
lope function for the complex field variablemn and its phase
factor, respectively. Thus it reduces to

d

FIG. 4. The projection of spin profile of ans-like self-localized
modeSn on axy plane.~a! h50.3 with E50.90 andl50.58 ~b!
h50.5 with E50.90 andl50.10.
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i\ẋ~n!2\u̇nx~n!5SJ(
m

x~n!@12lx~m!2#2hx~m!$exp@ i ~um2un!#2lx~n!2 exp@2 i ~um2un!#%

11lx~m!2
. ~57!
be
f t
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We take the phase factorun to be of the form

un5k•n2vt1an . ~58!

The quantityk is not a so-called wave vector but should
treated as a parametric vector, because the periodicity o
system with a magnetic hole is not allowed, and the quan
of an is a phase-shift function. Insertion of Eq.~58! into Eq.
~57! leads to a pair of equations:

\ẋ~n!52hSJ@11lx~n!2#

3(
j

Ssin@kj1a~n1ej !2a~n!#
x~n1ej !

11lx~n1ej !
2

2sin@kj1a~n!2a~n2ej !#
x~n2ej !

11lx~n2ej !
2D ,

~59!

and

\vx~n!2\ȧ~n!x~n!

5SJ(
j

F S 12lx~n1ej !
2

11lx~n1ej !
2

1
12lx~n2ej !

2

11lx~n2ej !
2D x~n!

2h@12lx~n!2#Scos@kj1a~n1ej !2a~n!#

3
x~n1ej !

11lx~n1ej !
2

1cos@kj1a~n!2a~n2ej !#

3
x~n2ej !

11lx~n2ej !
2D G . ~60!

Equations~59! and ~60!, which are to be treated simulta
neously, do not appear exactly solvable. The former
scribes the time evolution of the self-localized magn
mode, and the latter determines its eigenfrequancy, ifan’s
are slowly varying with respect to time. With the assumpti
of ȧn.0, Eq. ~60! is rewritten

«x~n!2
1

2 (
j

cos~kj !@x~n1ej !1x~n2ej !#5
l

2h
U„x~n!…,

~61!

where
he
ty

-

U„x~n!…5(
j

F S 2x~n!x~n1ej !
2

11lx~n1ej !
2

1
2x~n!x~n2ej !

2

11lx~n2ej !
2 D

2hS cos@kj1a~n1ej !2a~n!#

3
x~n!2x~n1ej !1x~n1ej !

3

11lx~n1ej !
2

1cos@kj1a~n!

2a~n2ej !#
x~n!2x~n2ej !1x~n2ej !

3

11lx~n2ej !
2

2
sin~kj !

l
$@a~n1ej !2a~n!#x~n1ej !

1@a~n!2a~n2ej !#x~n2ej !% D G . ~62!

Equation ~61! reduces to Eq.~15! when k50 and an50.
The initial phasean’s are determined by energy minimiza
tion condition]v/]an50:

(
j

sin@kj1a~n1ej !2a~n!#
x~n1ej !

11lx~n1ej !
2

5sin@kj1a~n!2a~n2ej !#
x~n2ej !

11lx~n2ej !
2

.

~63!

Since the mathematical scheme of Eq.~61! is completely
the same as that of Eq.~15!, except for involving constan
factors cos(kj) and a ’s determined by Eq.~63!, it can be
solved under the same procedure for treatment of Eq.~15!.
After lengthy, but straightforward, numerical calculation, t
s-like self-localized nonlinear mode is obtained for arbitra
k value, and we used it as the initial state for its time evo
tion.

For the equation of motion ofx(n) in Eq. ~59!, numerical
analysis is performed by using Runge-Kutta-Jill method26

The time evolution of the profile of the self-localized mod
with k15k250.1 is shown for the system withh50.1 in
Fig. 5~a! andh50.5 in Fig. 5~b!, respectively. The propaga
tion of a moving localized mode leaving behind the fix
localized mode in the neighborhood of a hole site is obser
in both cases. Namely, we can see two kinds of localiz
modes, one is intrinsic due to the nonlinearity, being in pr
ciple mobile, and the other is extrinsic due to the hole, be
immobile. As the anisotropy parameterh decreases, i.e., i
becomes Ising-like, they are more separable from each o
for the same elapsed time, because the intrinsic nonlin
self-localized mode propagates with getting trapped at a
ticular lattice site, i.e., its locality becomes stronger f
smaller values ofh. In contrast with this case, with increas
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FIG. 5. The time evolution of the self
localized magnon mode forkx5ky50.1. ~a! h
50.1 with E51.442, l50.152 at time is 0,
1000, 2000 and~b! h50.5 with E50.91, l
50.159 at time is 0, 200, 400.
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This
ing h the interplaying of the moving localized mode and t
fixed localized mode becomes important. As shown in F
5~b!, the former propagates with keeping the effect of t
latter along a line connecting them. Within these areas
ferromagnetism is locally destroyed.

These situations are confirmed by comparison with tha
the pure system without hole effect. For reference, the p
files of the self-localized modesxp(n) for the pure case are
illustrated in Figs. 6~a! and 6~b! with the sameh parameters,
to Figs. 5~a! and 5~b!, respectively. We observe there larg
the propagating velocity ofxp(n) and wider spread out re
gion of xp(n)Þ0 for larger values ofh, i.e., the intrinsic
nonlinear self-modes are delocalized ash→1. This moving
localized mode, however, becomes unstable during the e
time interval because of nonintegrability of the system a
collapse in the spin-wave mode.

V. CONCLUDING REMARKS

Previously, we formulated aSU(2) coherent-state path
integral theory of collective mode in one-dimensional ani
tropic Heisenberg ferromagnets16 not only for stationary
modes but also moving ones. In this paper we extend
theory to two dimensional spatially inhomogeneous fer
magnetic cases, i.e., with doping a fixed hole. A stationa
phase approximation29 is employed to derive nonlinea
differential-difference equation for collective mode with n
assumption on the smallness of spin deviation from the
romagnetic state and full inclusion of the intrinsic nonline
ity in magnon system. The formulation given here leads t
.
e
e

f
-

ire
d

-

is
-
-

r-
-
a

natural extension of the conventional spin-wave theory
nonlinear regime, where wavelike magnons are modula
by the intrinsic nonlinearity into particlelike self-localize
magnons.

Stationary nonlinear self-localized magnons are inve
gated by introducing two kinds of magnon Green’s fun
tions,g(n2m) andG(n;m), which are defined in the linea
system. The former is associated with pure system, and
latter is related to a hole existence and rather complica
dependence on two sitesn andm. Using the analytical prop-
erties of these Green’s functions, the formal expression
the profile functions of the stationary nonlinear self-localiz
modes are obtained in the spatially inhomogeneous sys
Concretely, numerical calculations are made for thes-like
mode having the symmetry respect to the hole position,
a magnetic vortex is found.

As is well known, if nonmagnetic ions exist in the syste
the localized mode appears in spite of a linear system,1–7 and
the energy eigenvalue is reduced below that of linear s
wave. In the present nonlinear system, such energy reduc
is enhanced in cooperation with the intrinsic nonlineari
This tendency becomes more prominent for smaller an
tropic parameterh ~Ising-like!. Thus the profile function is
expected to be trapped at a few particular lattice sites,
localized strongly ash→0. Looking at the projection onto
x-y components of spin, it takes vortex shape in the nei
borhood of a hole, as shown in Figs. 4~a! and 4~b!. We find
its size decreases ash→0, but the deviations from the fer
romagnetic state become large as denoted by arrows.
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FIG. 6. The time evolution of the self
localized magnon modejp(t,n) for kx5ky50.1
in pure lattice.~a! h50.1 with E51483 andl
50.654 at time is 0, 1000, 2000 and~b! h50.5
with E50.955 andl50.133 at time is 0, 200,
400.
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implies the ferromagnetism is suppressed strongly but
cally.

The time evolution for the nonlinear self-localized ma
non is discussed with emphasis on interplaying between
intrinsic nonlinearity and the extrinsic hole existence. W
find the propagation of a moving localized mode leavi
behind the fixed localized mode in the neighborhood o
hole. By comparison with the time evolution of nonline
localized mode for the pure system it is interpreted as
the former is due to the nonlinearity, being, in princip
mobile, and the latter is due to the hole doping and imm
bile. As the anisotropy parameterh decreases, the movin
localized mode is more separable from the fixed ones for
same elapsed time, because the self-localized mode is so
fied as described above. In contrast to so called magn
soliton, the localized mode however becomes unstable
ing the entire time interval as shown in Figs. 5 and 6. T
feature is attributed to the nonintegrable property of the c
sidered discrete lattice, i.e., the moving localized mode c
lapses in the magnon modes.24

Before closing this section, it is worthwhile to mentio
that ~i! although the concept of the intrinsic nonlinear loc
ized mode is established so far,8–23 it has been scarcely re
ported from experimental side related to these subjects. S
is demanded urgently to observe this kind of localized mo
by means of the infrared-absorption measurements,33 etc.~ii !
Under a similar treatment, we can analyze the localiz
mode for the antiferromagnet with a hole doping. Howev
to take account of quantum fluctuation the fermion cohere
state path-integral formulations34 are useful, because one ca
-

e

a

at
,
-

e
di-
tic
r-

s
-

l-

, it
e

d
,
t-

directly treat the quantum spin system (S51/2) by this
method. This might provide the important clue to the mec
nism of the high-Tc superconductivity. Information regard
ing this point will be presented elsewhere.

APPENDIX: TIME EVOLUTION IN PERFECT SYSTEM

In a perfect system, the equation of motion for nonline
self-localized modejp(n) is obtained by omitting the pertur
bation termL8 in Eq. ~31!,

L0jp~n!5
l

2h
U~jp!, ~A1!

whereU„jp(n)… is given in Eq.~17!. The envelope function
of the stationary localized mode is described in terms of
Green’s functiong(n) defined in Eq.~33!,

jp~n!5L0
21 l

2h
U~j!5

l

2h (
m

g~n,m!U„jp~m!….

~A2!

Equation ~57! governs the time evolution of the localize
modexp(t,n) for the pure system too. Regarding the so
tion of Eq.~A2! as the initial statexp(0,n), numerical calcu-
lation is carried out for Eq.~57! under the similar procedure
described in the text. But the boundary condition is chang
here asxp(0,0)51. As a result, the time evolutionxp(t,n) is
evaluated.
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