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Localized modes in two-dimensional square anisotropic ferromagnets with a hole
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By using the path-integral method withS1J(2) coherent-state basis, two-dimensional anisotropic Heisen-
berg ferromagnets bearing a fixed magnetic hole are investigated with particular attention paid to interplaying
between the intrinsic nonlinearity and the extrinsic structural disorder due to hole doping. Detailed numerical
calculations are made farlike localized modes to determine their eigenfrequencies and profiles as a function
of a nonlinearity parameter and various anisotropic exchange parameters. A localized magnetic vortex is found
in the neighborhood of a hole. Analytical and numerical analyses on their time evolution show two kinds of
localized modes separately; one is mobile under certain conditions and intrinsic due to the nonlinearity, and the
other is immobile and extrinsic due to the fixed magnetic h@©163-182009)01634-3

[. INTRODUCTION guantitative study on the interplay between intrinsic nonlin-
earity and extrinsic spatial discreteness due to hole doping
The effect of dilute impurities on the spin-wave spectrumduring the formation of the localized mode and consider the
of ferromagnetic insulators was studied by one of the presenelation between the appearance of the localized mode and
authorst and Wolfram and Callaway in 1963jndepen- magnetic disorder. We are actually concerned here with
dently. They established the existence of the localized impumoving localized modes as well as the stationary ones for a
rity state lying outside of the spin wave. Since then, thetwo-dimensional2D) Heisenberg ferromagnet containing a
subject relating to the localized modes has been extensiveljxed magnetic hole. As for the antiferromagnetic case, we
developed in several fields, e.g., the antiferromagnéttsm will discuss that in a subsequent paper.
and the lattice vibrations, etc. The localized mode con-  The present authors have previously formulate82)
cerned so far is due to the extrinsic entities, i.e., spatial incoherent state path-integral theory of nonlinear self-localized
homogeneity, such as impurity spins or atoms and change icollective modes® As mentioned before, this formalism has
mass, etc. the following features(i) No assumption is made on the
Recent theoretical development in nonlinear physicssmallness of spin deviation from the ordered state to make
however, reveals the existence of the classical and quantufall inclusion of the intrinsic nonlinearity in the magnon sys-
nonlinear localized modes even in the pure crystal. Anhartem. (ii) To derive a nonlinear differential-difference equa-
monic lattice localized modés}® which are typical ex- tion for collective modes, a stationary-phase approximation
amples for the classical case, appear above the top of the employed. In this sense, the formalism corresponds to the
harmonic frequency band of a pure lattice. The quantuntlassical approachiii) No continuum approximation for the
nonlinear localized modes are investigated intensively in théattice is allowed. By employing this formulation to 1D an-
Heisenberg magneté=?* They are characterized by the isotropic Heisenberg ferro- and antiferromagnets, which are
eigenfrequency lying below the bottom of the linear spinspatially homogeneous, we showed interesting features of
wave. nonlinear self-localized modé$:162123Therefore our task
Since the recent discovery of hidgh- superconductor here is an extension of the theory to 2D magnon system to
phenomend’ the problem of impurityhole) effect has been treat both extrinsic and intrinsic factors simultaneously. This
revived and received a great deal of attention. As is welpaper is organized as follows: In the next section, a brief
known, the parent compounds of high-materials are, in account is given oSU(2) coherent-state path-integral for-
general, antiferromagnetic insulators with considerable higlmulation to derive discrete and nonlinear differential-
Tn (=the room temperatuyeBy increasing hole concentra- difference equations for complex spin-deviation field vari-
tion, Ty decreases dramatically, and finally the magnetic orables. In Sec. lll, the eigenvalue equation of the stationary
dering is completely suppressed when the concentration execalized mode is derived for 2D square ferromagnets con-
ceeds a certain critical value. On the other hand, theaining a fixed hole. By introducinging two different magnon
superconducting appears at the opposite condition. Namelygreen’s functions, one of which is associated with the pure
the magnetic ordered phase and the superconducting phasgstem without nonlinear effect and the other with a linear
never coexist. So, it becomes now one of the most importarttut spatially inhomogeneous system, the energy eigenvalue
problems how the phase transition occurs from magnetic oris obtained numerically. The profiles of the stationary local-
dered phase to superconducting phasee versa via hole ized modes are also examined. In Sec. IV, numerical calcu-
doping. lation with the Runge-Kutta-Jill meth8lis carried out for
It is the purpose of this paper to make a detailed andhe time-evolution equation for the localized modes, and two
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kinds of localized modes are illustrated separately, i.e., one is
intrinsic due to nonlinearity and mobile under certain condi- <Af|eXF[_iH(tf_ti)/h“Ai):f D(A)exp(iS/f), (6)
tions, and the other is extrinsic due to fixed magnetic hole
and immobile. The last section is devoted to concluding rewith
marks of results obtained in this paper.

t t . .
szf detEf LA AL A% A%, )
Il. SU(2) COHERENT-STATE PATH-INTEGRAL {i ti
FORMULATION AND STATIONARY PHASE in which
APPROXIMATION
*
~ We consider Heisenberg ferromagnets on a 2D square lat- £ — d'“” — wifh } (AJH|A).
tice with the lattice constard=1. The Hamiltonian can be n 1+|,un|2 dt dt
written in the form 8

The functional integration involving the symbB{ A) in Eq.
=—> Jn,m)[ 7(S, S,+S, S +S:SH],  0<#9<1, (6) means a sum over all paths moving forward in timan
(nm) @ explicit expression fo(A|H|A) in Eq. (8) is given by

where the symbak ,,; indicates palrs of nearest neighbors. (AJH|A)= _322 J(n,m)
The quantityS%(a=x,y,z) with S; =S'+iS), is thea com-
onent of thenth site spin operator situated on the lattice
B tor bin op 27t et ppe) + (Lol *) (1= | o)

(1+|Mn|2)(1+|ﬂ“m|2)

N=n;e;+nNye. (2 ©

As a first-order approximation to the exact path-integral for-
nmallsm described above, we employ the saddle-point ap-
@rommaﬂon to Eq.(6):

Here,n; (j=1 or 2) takes an integer value agddenotes an
unit vector ofjth component. The quantitiggn,m)>0 and
7 are the exchange interaction constant between neighbori
sitesn andm and its anisotropic parameter, respectively.

Let |S,M), be angular-momentum eigenstates of a single 85S=68S(A,A*)=0, (10)
spin S, with spin magnitudeS where M(=—-S,—S ) ]
+1,...5-19) is the eigenvalue of%. Then,SU(2) co- then the Lagrange equations are obtained as
herent state associated with the spif§, are defined
by?7 -2 $#in) PiB, d| oL aL
gt (9— — P =0 andc.c. (12)
Mn n
=(1+]|wp|?) ~Sex 1S, —S)n, 3
[en) = (3% [0l PpnSn)| In ® Combining Eq.(8) with Eqg. (11) gives
where theu,'s are complex magnon field variables. The
diagonal coherent-state representations of the spin operator  dun (1+]|mnl®? H{AIH|A)
S, are given b [ = andc.c. (12
9 y dt 2S out
Mn
Inserting Eq. (9) into Eq. (12, we obtain nonlinear
N
(mnl Sy lpny =28 ﬂ differential-difference equation:
n
. =SS Jn m)[un— Dbt M= ool il ]
_ Mn n— ! 2
S, lun)=25——"—, m 1+ | pnl
</~Ln| n |Mn> 1+|Mn|2 (13)
) This is a modified version of the nonlinear Scttirger
S )= 1—| 4 equatior? in which intrinsic nonlinearity of the spin system
(el Sil )= 1+|:“n|2. (4) has been included to all orders. However, corrections to the

saddle-point approximation by considering quantum fluctua-
The coherent stat\) of the whole spins constituting this tions around the stationary point would be required when we
ferromagnet is defined as consider the cas8=1/2, because this approximation works
better forS>1.

|A>_1;I | n)- (5) I1l. NONLINEAR EIGENVALUE EQUATIONS
FOR STATIONARY SELF-LOCALIZED
As is well known in the path-integral theo?9f,31 the func- MODES WITH A FIXED MAGNETIC
tional integral representation for the matrix element of the HOLE
evolution operator exp{iHt/%) between an initial state
|Ai)=|A(t))) and a final statgA ;)=[A(t;)) can be written Let us seek the stationary mode solutions to @8). As

in the forn?®3! an illustration, we first consider a pure 2D ferromagnet with
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nearest-neighbor coupling constalfh,m)=J for all nand  where the exchange interactidhbetween an impurity at the

m. This amounts to seeking the solution in the form origin and its nearest-neighbor sites differ frdramong host
spin sites. When nonlinear effect is discarded, combining Eqg.

(19 with Eq. (15) gives

A
=——=&(n)exp —iwt), 14 [ =
Mn \/2_85( )exp( ) (14 (i) for n=0,
2
- , . 1
where the quantitie® and&(n)’s are the eigenfrequency of 0)— = e)+ &(—e)l=WI(E0)): 20
the stationary modes to be studied and the envelope func- e¢(0) 2 121 L&) +&(—a)] (£(0)); 20

tions which are scaled by the amplitudé\/2S and assumed (i) for n=+e
to be time independent, respectively. Then substituting Eq. 1
(14) into Eq. (13) leads to

s&(= e,)—— 2 [é(=e+eg)+é(zg—e)]

ji'=1

e£(n)— 5 2 [&(n+e)+én—e)]=5 ms(n))

=W(¢(*g)), (21)
(15
where
where
[2q0-Lts re—ey| DY
4ST-Fw W(£(0))= 775(0) P [é(e)+é(—e)]] 5
J
and W(E(+e))= ( f(xe)+a g(O)) (23
UE(N)) with
N2 _ 2 ' )\ 3
-y 2&(n)é(n+e)°— plé(N)“E(n+ )+ &(n+g)°) AJ=I-7: (24)
j 1+X\é(n+eg)?
(iii) for other cases,
2£(n)é(n—g)2— p{é(n)?é(n—g) +&(n—g) 3} )
1+\é(n—eg)? sf(n)—ig[f(n+ej)+§(n—ej)]=0. (25)
17

It is understood that we eventually take the lidit—0 to
Here, the parametex defined by get the magnetic system with the hole. In such a case Egs.
(22) and(23) take the form
A=A?/2S (18

2
characterizes the nonlinearity of the spin system. W(£(0))=—¢(0)— > 2 [é(g)+é(—e)], (26
We are now concerned with stationary nonlinear modes in K =1
a 2D ferromagnet containing a hole. As a preliminary step
for obtaining nonlinear lattice equations for this case, we W(g(ie-))=i§(+e-)+ 35(0). (27)
consider a 2D ferromagnet containing an impurity spin lo- ! !
cated at the origim=0. As shown in Fig. 1, there exist two

kinds of coupling constants: Our objective of obtaining stationary mode in the 2D fer-
romagnet with a hole can be achieved by introducing two
if n=0 and m==xe, linear operatord, andL’:

N

otherwise

\]7
J(m,n)=J(n,m)={J

1
(19 Los(m=e£(n)~5 2, [¢(n+e)+&n-e)] (28
with
E=to (29
and
L' &) =W(E(n)). (30

Namely, L, is the operator for pure lattice ard’ is the
perturbation term due to the existence of a hole. By using
these operatiors a generalized-version of @§) takes in the
FIG. 1. Ferromagnetic system with a hole fixed at the origin. form
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)\ 2 ®
(Lo—L’)é(n)=5U(§(n))- (31 ‘
1sW)nt

We observe that the effect of the hole and intrinsic nonlin- / A spinvave betom
earity of magnon excitations are incorporated into the factors

L' and \/27)U £(n)]. In studying solution to Eqg31), we .
introduce a magnon Green’s functigfn) associated with gl
linear magnons of the pure system defined by 1r

g

1 2
Log(m=s9(n)~5 2, [g(n+8)+g(n-)]=A(n).

(32)
Symbolically,g(n) is written as
0 '
g(n=Ly". (33 0 05 1
An explicit expression fog(n) takes the form . .
FIG. 2. 5 dependence of the energy eigenvak@"®" for
1 glan linear localized mode with the hole effect. This eigenvalue is lying
9=y > —. (34)  below spin-wave botton&{s" without hole effect.
Y -2 codqe)
’ £0)] [0
The quantityg(n) can be reduced, after lengthy, but straight- D &e)| 0] (42)

forward, calculations:
where

g(n)=@1(—n)=f0 dte ! (D14, (1), (39 5 5
1-—g(0)+29(e;)  29(0)— —g(ey)
wherel’s are Bessel functions of imaginary argument. The p— K K
eigenvalueE(S"W) (=% w) of the linear spin-wave spectrum 2 N 142 &
for the pure system is determined by the equation ng(el) g(eye g(e) ng(el)
42

& —(cosgy+cosqy)=0. (36) . 42

Thus the energy eigenval&'"®2" of linear localized mode

Inserting Eq.(16) into Eq. (36), the bottom of the spin en- ity the hole effect is generated by determinantal equation

ergy bande{*" is obtained as follows: ID[=0-
EgSW) B
—1— (27—€)g(0)+1=0. (43)
asy 177 37

The value ofE("®a" s obtained numerically and its de-
From the definition of the Green’s functigof. Eq.(32)],  pendence is plotted in Fig. 2. We recognize low lying
the envelope function of linear localized mode arising from ag(linean (< E(SW)  and increments of mutual energy gap

magnetic hole is described as with decreasingy, i.e., the system tends to the Ising type.
Thus the self-localized mode can be identified due to the
é(n)= 2 g(n—DHW(E()) lowering of energy level for existence of a hole even though
[

the system is linear.
So far our treatment is limited with the linear localized
= g(N)W(&(0)+ >, g(n—e)W(&(e)) mode. We are now at the position to seek their nonlinear
j effect. Here, we introduce another two-site-dependent mag-
non Green'’s functiors(n;m), which satisfies the following

For the present case, arlike mode having the following
symmetry with respect to the origin is physically acceptable: (Lo—L")G(n;m)=A(m). (44)
Ee)=&(—e)=&e)=E&(—8)). (39) By using the same procedure as before, the envelope func-

_ . o . tion of nonlinear self-localized mode is expressed in terms of
Thus the following symmetric relation is also derived from theseG'’s as

Eq. (17):
UEN))=U(E(—n)). (40 &(n)= 2)‘—77 > G(n;mUE(m)). (45)

Based on thiss-like mode assumption, Eq38) yields the
compact matrix form equation Equation(44) yields the Green’s functios(n;m) to be
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G(n;m)=Lgy*+Ly L' G(n;m)
:L51+2| Lo *W(G(1;m)), (46)

where

2 1
W(G(0m)=_G(0m) ~ 5 2 {G(g;m)+G(—g;m)},

(47)

1 1
W(G(e,-;m))=ﬂG(ej;m)+§G(0;m), (48)
W(G(I;m))=0 for |I|>1. (49

In writing the above Eq(46), Eq. (30) is used. Using of Eq.
(33), G(n;m) are written by

G(n;m)=g(nh—m)+ G(0;m)

E n)+A(n)
ng( (

1
+5- 2 {[g(n—e)—79(n)1G(e;;m)
/A

+[g9(n+¢)—ng(nN)]G(—¢g;m)}. (50

It is instructive to remark tha®(n;m) is dependent on sites
n and m and is expressed in terms g{n—m), G(0;m),
G(*xe;;m), and G(xe,;m), while g(n,m)=g(n—m) de-
pends only on their relative distance.

Puttingn=0 andn= *¢ in Eq. (50), we obtain a %5

matrix form equation with respect to five magnon Green’s

functionsG(0;m), G(xe;;m), andG(*e,;m),

Fg(m) ]
g(m—ey)
g(m+e)
g(m—e)
L g(m+ey) |
r—Eg(0) A A A AITGOmM) T
C B D F F|| G(e;m)
= C D B F F|| G(—e;m)]|,
C F F B D|| G(e;m)
| C F F D BJ[LG(—e&;m)]
(51)
where

A=—SJXg(e)—79(0)),
B=1-SXg(0)— ng(ey)),
C=-Eg(e),
D=-SXg(2e;)— n9(e1)),

F= —SJ(g(eﬁ- ez)_ 779(31))

Therefore these five magnon Green'’s functions are solved awonlinear
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FG(Om) ]
G(e;;m)
G(—e;;m)
G(ey;m)
L G(—&;;m) ]
T—Eg(0) A A A Al lrgim
C B D F F g(m—e)
= C D B F F g(m+e)
C F F B D g(m—e,)
| C F F D B] L[Lg(mte)]

(52)

Thus we can finally evaluat®(n;m) for general sites and
m from Eq. (50) with Eqgs.(34) and(52).

Since the profile functiog(n)’s are scaled by the ampli-
tude A/\/2S as described before, let us regaft- g) as
unity, which are ones at the nearest neighbors to the hole
positionn=(0,0). This normalization condition can be then
written as

A
f(xe)=5_ 2 G(remuEm)=1. (53
As a result, Eq(45) is rewritten as
2, G(mm)U(E(m)
&(n)= for n#0. (549

; G(e ;mUE(mM))

In seeking the relations among the energy eigenvajuen-
linear parametex, and&(n)’s, Egs.(53) and(54) are treated
numerically under the following proceduré) The numeri-
cal value of the anisotropy factor is chosen withip» %
>0. (ii) For each value ofy, the trial values\ and &(n)’s
for 10=n,=n,=2 are provided(iii) For a given parameter
g, the successive approximate calculations are performed on
Egs. (53) and (54). The numerical calculations are carried
out only forn;=n,=1, because of the symmetric properties
of the s-like mode.(iv) The pth approximate solutiong®(n)
and AP for &(n) and \, respectively, are truncated if the
relative truncating error, for instanc&(n)—&°~1(n), be-
comes less than 16. Sufficient convergence of the succes-
sive approximation was attained @t 15 on the average.

In Fig. 3(a), the energy eigenvalug of the self-localized
slike nonlinear mode is plotted againstfor various values
of . The increment of the nonlinear parametebrings the
lowering of E. The differenceE(0)—E(\), which indicates
the nonlinear effect becau&f0) corresponds to that of the
linear self-localized mode under hole contribution, becomes
relatively large for small value of (Ising-like). In Fig. 3b),
it is illustrated for »=0.3 how the eigenvaluk is lowered
under two effects, i.e., the intrinsic nonlinearity and the ex-
trinsic hole doping. In addition t&{") andE("ea) the\
dependence oE(PU"9()\) is also shown there for reference,
which is the energy eigenvalue for the pure system including
effect (see the Appendjx We can esti-
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. . ‘ 5
1.5 %%\ n=0.1 E(A) A
(@n=03 0
-5
-5 ] 5
5
. . , ®n=05 0
Isw)
1.4 [ Ly E6
™ hole effects without the )
nonlmevarlty plinear)
-5
ter nonl\inea‘g effects i S 0 5
R oure) FIG. 4. The projection of spin profile of aslike self-localized
T T E (A modeS, on axy plane.(a) »=0.3 with E=0.90 and\ =0.58 (b)
Tr ole effects with the . 1 7=0.5 with E=0.90 and\ =0.10.
nonlinearity
08 n=0.3 1 . . . . . _—
E(A) magnitude around a hole site=0 with the direction indi-
s . cated by arrows. Thus we find a localized magnetic vortex.
(b)o 05 ;L 1.5 2 This implies that spins in the neighborhood of a hole un-

dergo a large excursion, while the deviation from ferromag-
netic state is very small for rest ones. This localized mag-
netic vortex seems to be a peculiarity in 2D nonlinear spin

X ) 3 ) ) systems associated with a hole, and is in contrast with the
ous anisotropic exchange Interactions par.""m.e@g"usn.""t'on.()f spin-wave case, in whic8, propagates over all lattice sites.
energy reduction under two effects, i.e., intrinsic nonlinearity and

extrinsic hole doping in a case g=0.1. The solid line i€(\) and A.S the system shifts to thg Heisenberg type, the vqrtex re-
the dashed line is thE®PUr()). gion spreads out surrounding the hole but the magnitudes of

S, become smaller than the former case, as shown in Fig.
4(b).

mate the energy reduction originated in the hole effect as

E(sW—Eg(inean  for the linear system N=0) and

E(PUr®(\)—E(\) for nonlinear system, respectively. With

increasing the nonlinearity parameter, the hole existence V. TIME EVOLUTION FOR MOVING NONLINEAR

stimulates lowering of the enerdy as seen in Fig. ®). SELF-LOCALIZED MAGNONS

Since th_e d@agor)al coherent-state r_epreser?tation of spin In this section we discuss the time evolution for the mov-

operators, is given in terms of the profile functiof(n) as 4 nonjlinear self-localized magnons, with particular atten-

tion to interplaying between the intrinsic nonlinearity and the

FIG. 3. (@ The energy eigenvalu&(\) of an slike self-
localized mode as a function of nonlinearity parameteor vari-

(nlSaen)  VNE(N) structural disorder due to the existence of a hole. We look for
= coswt and i i
S 1+ N&(n)? solutions to Eq(13) in the form
<Mn|8¥|ﬂn> VAE(N) . A .
=— sinwt, 55 = expif,)=—x(n)exp(if,), (56)
S 1+)\§(n)2 w (59 Mn |/an| pi6,) \/Z—SX( i 6,)

the projection ofS,, on the 2D square lattice plane, denoted

S, » can be evaluated. In Fig. 4 the obtained results are drawwhere the quantitieg(n) and 6, are time-dependent enve-
for two cases(a) »=0.3 and(b) »=0.5, with given values lope function for the complex field variab}e, and its phase
of A andE. In the case ofp=0.3, S, appear largely in the factor, respectively. Thus it reduces to
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(57)

m

We take the phase fact@®, to be of the form

0,=k-n—ot+a,. (58)

The quantityk is not a so-called wave vector but should be
treated as a parametric vector, because the periodicity of the
system with a magnetic hole is not allowed, and the quantity
of a,, is a phase-shift function. Insertion of E&8) into Eq.

(57) leads to a pair of equations:

fix(n)=— 7SI L+Ax(n)?]

. x(n+e)
x; Slr{kj+a(n+ej)_a(n)]m
. x(n—g)
_slr'[kj+a(n)—a(n—ej)]m),
(59
and
fiwx(n)—fa(n)x(n)
1-\x(n+g)®> 1-Ax(n—g)?
=SJ
; (1+)\X(n+ej)2 1+\x(n—g)? x(n)

- n[l—)\x(n)z](co{kj+a(n+ej)—a(n)]

x(n+g)

Xm‘f‘COikj‘Fa’(n)_a’(n_q‘)]

x(n—g)

_— . 60
1+Ax(n—g)? (60

Equations(59) and (60), which are to be treated simulta-

1+ X x(m)?

2x(n)x(n+g)? . 2x(n)x(n—g)?

1+Ax(n+€)?  1+ix(n—eg)?

Ux(n)=2,

J

— 7;( cogkj+a(n+eg)—a(n)]

XX(”)ZX(n+ej)+X(n+ej)3

L rg(nte)? +cogk;+ a(n)
i

X(MZx(n—g)+x(n—g)°
—a(n—g)] >
1+Ax(n—¢g)

DY

{La(n+g)—a(n)]x(n+eg)

. (62

+[a(n)_a(n_ej)])((n_ej)})

Equation(61) reduces to Eq(15 whenk=0 and a,=0.
The initial phasex,’s are determined by energy minimiza-
tion conditiondw/da,=0:

: x(n+g)
; Slr[kj+a(n+ej)—a(n)]m

x(n—g)
1+nx(n—g)?
(63)

Since the mathematical scheme of Eg{l) is completely
the same as that of Eql5), except for involving constant
factors cos() and a's determined by Eq(63), it can be
solved under the same procedure for treatment of (Eg).
After lengthy, but straightforward, numerical calculation, the
s-like self-localized nonlinear mode is obtained for arbitrary
k value, and we used it as the initial state for its time evolu-
tion.

For the equation of motion gf(n) in Eq.(59), numerical
analysis is performed by using Runge-Kutta-Jill metAdd.
The time evolution of the profile of the self-localized mode

=sink;+a(n)—a(n—g)]

neously, do not appear exactly solvable. The former deWith k;=k;=0.1 is shown for the system witly=0.1 in
scribes the time evolution of the self-localized magnonFig. 5@ and#»=0.5 in Fig. §b), respectively. The propaga-

mode, and the latter determines its eigenfrequancy,ié

tion of a moving localized mode leaving behind the fixed

of a,=0, Eq.(60) is rewritten
1 A
ex(m) =5 2 cotky)[x(n+8)+x(n-&)1= 5 Ul(n),
(61)

where

in both cases. Namely, we can see two kinds of localized
modes, one is intrinsic due to the nonlinearity, being in prin-
ciple mobile, and the other is extrinsic due to the hole, being
immobile. As the anisotropy parameterdecreases, i.e., it
becomes Ising-like, they are more separable from each other
for the same elapsed time, because the intrinsic nonlinear
self-localized mode propagates with getting trapped at a par-
ticular lattice site, i.e., its locality becomes stronger for
smaller values ofy. In contrast with this case, with increas-
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(an=01 E=1442,1=0.152  (b)p=05 E =091, A =0.159

t=0 t=0

100

t=1000 =200 FIG. 5. The time evolution of the self-

localized magnon mode fdk,=k,=0.1. (8 7
=0.1 with E=1.442, A=0.152 at time is O,
1000, 2000 and(b) »=0.5 with E=0.91, A
=0.159 at time is 0, 200, 400.

t=2000 t=400

ing 7 the interplaying of the moving localized mode and thenatural extension of the conventional spin-wave theory to
fixed localized mode becomes important. As shown in Fignonlinear regime, where wavelike magnons are modulated
5(b), the former propagates with keeping the effect of theby the intrinsic nonlinearity into particlelike self-localized
latter along a line connecting them. Within these areas théenagnons.
ferromagnetism is locally destroyed. Stationary nonlinear self-localized magnons are investi-
These situations are confirmed by comparison with that ofjated by introducing two kinds of magnon Green’s func-
t_he pure system W|thout hole effect. For reference, the Protions, g(n—m) andG(n;m), which are defined in the linear
files of the self-localized modeg,(n) for the pure case are gystem, The former is associated with pure system, and the
illustrated in Figs. €2) and @b) with the samey parameters, |ater js related to a hole existence and rather complicated
to Figs. §a) and §b), respectively. We observe there larger jonendence on two sitesandm. Using the analytical prop-
the propagating velocity of,(n) and wider spread out re- erties of these Green’s functions, the formal expressions of

g'or?"r?f er(n?fir? ;or Ia;gedr Yaluii %f”' "i"_mie 'r?]tr'vnii'c the profile functions of the stationary nonlinear self-localized
onlinear sefi-modes are delocalizedms: .. S MOVING modes are obtained in the spatially inhomogeneous system.
localized mode, however, becomes unstable during the entir . . .
oncretely, numerical calculations are made for $Hike

time interval because of nonintegrability of the system an 4 "
collapse in the spin-wave mode. mode ha\{lng the symmetry respect to the hole position, and
a magnetic vortex is found.
As is well known, if nonmagnetic ions exist in the system,
V. CONCLUDING REMARKS the localized mode appears in spite of a linear systerand

Previously, we formulated $U(2) coherent-state path- the energy eigenvalue is_ reduced below that of linear spin
integral theory of collective mode in one-dimensional aniso-Wave. In the present nonlinear system, such energy reduction
tropic Heisenberg ferromagn&tsnot only for stationary IS enhanced in cooperation with the intrinsic nonlinearity.
modes but also moving ones. In this paper we extend thidhis tendency becomes more prominent for smaller aniso-
theory to two dimensional spatially inhomogeneous ferro{ropic parameter; (Ising-like). Thus the profile function is
magnetic cases, i.e., with doping a fixed hole. A stationaryexpected to be trapped at a few particular lattice sites, i.e.,
phase approximatidi is employed to derive nonlinear localized strongly as;—0. Looking at the projection onto
differential-difference equation for collective mode with no x-y components of spin, it takes vortex shape in the neigh-
assumption on the smallness of spin deviation from the ferborhood of a hole, as shown in Figgatand 4b). We find
romagnetic state and full inclusion of the intrinsic nonlinear-its size decreases ag—0, but the deviations from the fer-
ity in magnon system. The formulation given here leads to aomagnetic state become large as denoted by arrows. This
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(a)p=0.1 F =1483 X = 0.654 (b)n =05 E =0.955 X =0.133

t=0 t=0

100

t=1000 =200 FIG. 6. The time evolution of the self-
localized magnon modég,(t,n) for k,=k,=0.1
in pure lattice.(a) »=0.1 with E=1483 and\
=0.654 at time is 0, 1000, 2000 arid) »=0.5
with E=0.955 and\A =0.133 at time is 0, 200,
400.

t=2000 t=400

implies the ferromagnetism is suppressed strongly but lodirectly treat the quantum spin systen$=1/2) by this

cally. method. This might provide the important clue to the mecha-
The time evolution for the nonlinear self-localized mag- nism of the highT. superconductivity. Information regard-

non is discussed with emphasis on interplaying between thimg this point will be presented elsewhere.

intrinsic nonlinearity and the extrinsic hole existence. We

find the propagation of a moving localized mode leaving )

behind the fixed localized mode in the neighborhood of a APPENDIX: TIME EVOLUTION IN PERFECT SYSTEM

hole. By comparison with the time evolution of nonlinear  |n a perfect system, the equation of motion for nonlinear

localized mode for the pure system it is interpreted as thagelf-localized mode,(n) is obtained by omitting the pertur-

the former is due to the nonlinearity, being, in principle, pation termL’ in Eq. (31),

mobile, and the latter is due to the hole doping and immo-

bile. As the anisotropy parameter decreases, the moving N

localized mode is more separable from the fixed ones for the Loép(n)= Z—L{(gp), (A2)

same elapsed time, because the self-localized mode is solidi- Y

fied as described above. In contrast to so called magnetic

soliton, the localized mode however becomes unstable duyyhereu(gp(n)) 's given in Eq.(17). The envelope function

ing the entire time interval as shown in Figs. 5 and 6. ThisOf the stationary localized mode is described in terms of the

feature is attributed to the nonintegrable property of the Congreen s functiorg(n) defined in Eq(33),
sidered discrete lattice, i.%.%éhe moving localized mode col- \ \
lapses in the magnon modes. -1 _

Before closing this section, it is worthwhile to mention &(n=Lo ﬂu(g)_ﬂ Em: g(n MU(gp(m)).
that (i) although the concept of the intrinsic nonlinear local- (A2)
ized mode is established so faflit has been scarcely re-
ported from experimental side related to these subjects. So, lquation (57) governs the time evolution of the localized
is demanded urgently to observe this kind of localized modenode x(t,n) for the pure system too. Regarding the solu-
by means of the infrared-absorption measureméras. (i) tion of Eq.(A2) as the initial stategyp,(0,n), numerical calcu-
Under a similar treatment, we can analyze the localizedation is carried out for Eq(57) under the similar procedure
mode for the antiferromagnet with a hole doping. Howeverdescribed in the text. But the boundary condition is changed
to take account of quantum fluctuation the fermion coherenthere asy,(0,0)=1. As a result, the time evolutiop,(t,n) is
state path-integral formulatioffsare useful, because one can evaluated.
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