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Fast-sum method for the elastic field of three-dimensional dislocation ensembles
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The elastic field of complex shape ensembles of dislocation loops is developed as an essential ingredient in
the dislocation dynamics method for computer simulation of mesoscopic plastic deformation. Dislocation
ensembles are sorted into individual loops, which are then divided into segments represented as parametrized
space curves. Numerical solutions are presented as fast numerical sums for relevant elastic field @ariables
displacement, strain, stress, force, self-energy, and interaction gn&ayssian numerical quadratures are
utilized to solve for field equations of linear elasticity in an infinite isotropic elastic medium. The accuracy of
the method is verified by comparison of numerical results to analytical solutions for typical prismatic and slip
dislocation loops. The method is shown to be highly accurate, computationally efficient, and numerically
convergent as the number of segments and quadrature points are increased on each loop. Several examples of
method applications to calculations of the elastic field of simple and complex loop geometries are given in
infinite crystals. The effect of crystal surfaces on the redistribution of the elastic field is demonstrated by
superposition of a finite-elemeithage forcefield on the computed resultsS0163-182809)02625-9

[. INTRODUCTION that the distribution of plastic strain in materials is funda-
mentally heterogeneods!® Because of the complexity of

Because the internal geometry of deforming crystals islislocation arrangements in materials during plastic defor-
very complex, a physically based description of plastic deimation, an approach which is based on direct numerical
formation can be very challenging. The topological complex-simulations for the motion and interactions between disloca-
ity is manifest in the existence of dislocation structurestions is now being vigorously pursued. One of the earliest
within otherwise perfect atomic arrangements. Dislocatiorattempts to study the interaction between dislocations and
loops delineate regions where large atomic displacements al@rdening obstacles by computer simulations is due to
encountered. As a result, long-range elastic fields are set Upormant! In this method, a single dislocation loop was lim-
in response to such large, localized atomic displacements. Ated to move on glide planes between successive equilibrium
the external load is maintained, the material deforms plastieonfigurations. However, the idea of computer simulation for
cally by generating more dislocations. Thus, macroscopicallghe interaction between dislocation ensembles is a recent
observed plastic deformation is a consequence of dislocatioone. During the past decade, the approach of cellular au-
generation and motion. A closer examination of atomic potomata was proposed by Lepinoux and KuBiand that of
sitions associated with dislocations shows that large disdislocation dynamics by Ghoniem and Amodéd? These
placements are confined only to a small region around thearly efforts were concerned with simplifying the problem
dislocation line(i.e., the dislocation corg The majority of by considering only ensembles of infinitely long, straight dis-
the displacement field can be conveniently described as elakcations. The method was further expanded by a number of
tic deformation. Even though one utilizes the concept of distesearcher$ 2% showing the possibility of simulating rea-
location distributions to account for large displacementssonable, albeit simplified dislocation microstructure. To un-
close to dislocation lines, a physically based plasticity theoryderstand more realistic features of the microstructure in crys-
can paradoxically be based on the theory of elasticity. talline solids, Kubin, Canova, DeVincre, and co-workers?

The properties and interactions of simplified dislocationhave pioneered the development of three-dimensi@3ia)
geometries have been the subject of intensive investigatiorattice dislocation dynamics. In this work, dislocation lines
for the past few decadé€. The strength, mechanical, and are discretized into linear straight segments which can oc-
some physical properties have been rationalized as a consedpy specified crystalline lattice sites. Dislocation line seg-
guence of the dislocation behavior in materials. Methods foments are limited to either screw or edge character for their
the evaluation of the elastic field of dislocations in materialsBurgers vector. Recent advances made by Zbib, Hirth, and
are largely based on analytical solutions for special geomRheé®% and the work of Schwarz and co-work&s?
etries of single dislocation lines, circular dislocation loops,have contributed significantly to our understanding of com-
or finite straight segment4. Interaction forces and energies plex dislocation reactions in crystalline 3D geometries.
between dislocations are also available in closed analyticabtraight line segments of arbitrary Burgers vector are consid-
forms for simplified dislocation line geometries, which in- ered in these developments.
volve series summations over Bessel functoos elliptic The study of dislocation configurations at short range can
integralé ", be quite complex, because of large deformations and recon-

Recently, a surge in interest in understanding the physicdiguration of dislocation lines during their interaction. Thus,
nature of plastic deformation has developed. This interest iadaptive gridding methods and more refined treatments of
motivated by extensive experimental evidence which showself-forces have been found to be necess$&rf In some
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special cases, however, simpler topological configurations Segment 2

are encountered. For example, long straight dislocation seg- P / B

ments are experimentally observed in materials with high e

Peierel’s potential barrien®.g., covalent material®r when

large mobility differences between screw and edge compo- /

nents existe.g., some bcc crystals at low temperatukdn- i P

der conditions conducive to glide of small prismatic loops on ?\ o> _p_p

glide cylinders or the uniform expansion of nearly circular ] e P / Y

loops, changes in the looghapeare nearly minimal during

its motion. Also, helical loops of nearly constant radius are 2

sometimes observed in quenched or irradiated materials un-

der the influence of point defect fluxes. It is clear that, de- 1

g(nagdvlvnoguIgnb;h?nt%?ggt:gldairna;f‘)llg(?glc()a nma;tﬂo%hzvsr:?c?r: zgzaé:; FIG. 1. A space dislocation loop discretized into a finite number
. . . of curved segments\,.

ture the essential physics at a reasonable computational cosI.

A consequence of the long-range nature of the dislocation . . . : N

elastic field is that the computational effort per time step isCroSS-SliP, which require out-of-plane dislocation line curva-

proportional to the square of the number of interacting segt"®: _ . . .

ments. It is therefore advantageous to reduce the number of Although the_ theoretical foundations of d|slocat|o.n. theory

interacting segments within a given computer simulation o€ well-establishede.g., Refs. 1,2, and 40-A2efficient

to develop more efficient approaches to computations of th§0MPutational methods are still in a state of development
Iong-rang?e field424.34 PP P e.g., Refs. 30,34 and 4#30ther than a few cases of perfect

In this work, we aim at enhancing the current computa-symmetry and special conditiofi4;? the elastic field of 3D

tional efforts on 3D dislocation dynamig®D) (e.g., Ref. dislocations of arbitrary geometry is not analytically avail-

25-39. We present here a numerical method for the deter@Ple. The field of dislocation ensembles is likewise analyti-
mination of a key ingredient in DD computer simulations, cally unattamable_. We plan, therefore, to present th? main
that is, the elastic field of topologically complex dislocation elements of 3D dislocation theory such that the restrictions

ensembles. The main impetus for the present work is thémd limitations of the present computational method are

need to describe the complex 3D topology of dislocationdariﬁed' The main steps in deriving equations for all field

; : ; ; iables will thus be given, while the interested reader can
loops in the most flexible way. A wide spectrum of disloca- varia D
tion line deformations, ranging from highly curved to rigid find more helpful detalls in Refs. 7, 42, and 4,4' In Sgc. Il, we
body translations, arise within the same computational simuPr€sent the differential geometry of space dislocation loops,

lation. Existing methods are based on differential equation£OIIOWed by a self-_sufficier_lt outline of the calculation proce-
dure for the elastic field in Sec. Ill. Several test cases for

field, theconnectivityof the segments must be reestablished,energies of dislocation loops with those of known analytical
nd numerical solutions. Finally, conclusions from the work

resulting in a number of possible complications. The increas8M9 N ]
in the self-energy of the dislocation line has to be accounte@'® discussed in Sec. V.
for.2” Additionally, when we consider forces on straight seg-
ments, we must necessarily deal with singular values of these || DIFFERENTIAL GEOMETRY OF DISLOCATION
forces at connectivity nod& Thus, problems of conver- LOOPS
gence as the segment length is decreased would naturally
arise, because of the inherent numerical errors of computa- The core of an arbitrary-shape, 3D dislocation loop can be
tions. Computations of the self-force on a straight dislocatiorfeduced to a continuous line. Assume that the dislocation
segment are also difficult, because of the need to descridihe is segmented intoNs) arbitrary curved segments, la-
local curvature, even though the segment is straight to begiReled (1=<i<N)., as shown in Fig. 1. For each segment, we
with.*® A modification of the Brown proceduféhas been definer(u)=P(u) as the position vector for any point on the
suggested to deal with this difficulty. Thus, the motivationsegment,T(u)=Tt as the tangent vector to the dislocation
behind the current work can be stated as follows: line, andN(u)=Nn as the normal vector at any poigee

(1) To reduce the computational burden by providing aFig. 2). The space curve is then completely described by the
high degree of flexibility in the selection d@ioth length and  parametew, if one defines certain relationships which deter-

shapeof a dislocation segment. - _ _ miner(u). Note that the position of any other point in the
_ 2 To av0|d.numer|.cal problems arising from singulari- medium (Q) is denoted by its vector, and that the vector
ties at intersecting straight segments. connecting the source poift to the field point isR; thus

(3) To calculate the self-force on dislocation segments, =~ - . .
with a high degree of accuracy. sR—r r. In the following developments, we restrict the pa-

(4) To provide a flexible tool which sheds more light on rameter Gsu=1, although we map it later on the interval

the physics of close-range interactions involving in-plane~ 1=u=<1 and u=2u—1 in the numerical quadrature

(5) To effectively deal with the physics of climb and  To specify a parametric form for(u), we will now
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B(0) B. Linear parametric segments

The majority of 3D dislocation dynamics developments
are based on analytic solutions to the elastic field of linear
segmentg>—38

Sometimes it is just as convenient to use a purely numeri-
cal method, without any loss of computational speed or
accuracy®® Under these conditions, thehape functions
N;(u) and their derivativesV; , take the form

7(0)

1 T Ni=1-u, MN,=u (2.7
FIG. 2. Basic elements of a space curve representing one dislcSe-md
ti t.

caton segmen vau: _1' szu: 1. (28)

choose a set of generalized coordinaisfor each segment The available degrees of freedom fofrae or unconnected

(j), which can be quite general. If one defines a set of basinear segmentj) are just the position vectors of the begin-

functions \V;(u), whereu is a parameter, and allows for in- ning(j) and end [+ 1) nodes. Thus,

dex sums to extend also over the basis $etl(2,...])), . ' ' _
the equation of the segment can be written as gy =P, and q{)=PU*V. (2.9
r(”(u)zqi(”/\/i(u). 2.9 C. Cubic spline parametric segments
Or in compact componenk] form, this can be put as The self-force on a dislocation segment can be approxi-
S (i — (i) mated as a simple function of its curvat&_r%‘.m'lfo allow for
Xi(U) =g’ N (u). (22 continuity of the self-force along the entire dislocation loop
Thus, the components of the displacement vector are giveﬁ”d to capture n_onIinear deformation_s of the dislocgtion line
by itself during, a higher-order parametric representation is de-
sired. For cubic spline segments, we use the following set of
sxN(uy=sqPNi(u). (2.3  shape functions, their parametric derivatives, and their asso-
ciated degrees of freedom, respectively:
At this point, we must specify the form of parametric
description for the dislocation line. Although this step is Ni=203=-3u%+1, Np=-2u®+3U%
open to pure computational convenience, we present here
those parametric forms which we use later in this work. Para- Nz=ul-2u?+u, and MN,=u®-u?  (2.10
metric dislocation representations discussed below are also
sufficient to describe the majority of experimentally ob- N1,u=6u2—6u, N2,u=—6u2+6u2,

served dislocation line geometry.
N3y=3u?—4u+1, and MN,,=3u?-2u, (2.1)
A. Circular, elliptic, and helical loops

Small prismatic loops of circularor nearly elliptig
shapes are observed in many materials under deformation,

oerEs . " ; —T(+1
irradiation and quenching conditiofisHelical loops of un- and qiR=T¢"Y. (212
usual regularity have also been experimentally observed un-

der large vacancy supersaturatfGrTherfore, it seems natu- D. Quintic spline parametric segments

ral to use a simple representation for such loops, where the

shape functions are given by A greater degree of flexibility can be achieved if one con-

siders even higher-order representations. The special case of
N;=cog2mu), No=sin(2m7u), Nz=u. (2.4 continuous quintic splines is rather interesting. The available
degrees of freedom can be increased to include variations in
And their parametric derivatives, which we use later in de+the normal vectorl, as well as the positioR and tangenT
termining the arc length, are simply given by vectors. So in passing from linear to cubic and then to quin-
Nom -2, N2, Nl (@9 e e LT T
Note that in this case the description is not in Cartesian cotrolled and out-of-plane dislocation motion can be simulta-

ordinates and that the generalized degrees of freedom apgously followed with glide events. The equations for shape
given by functions, their parametric derivatives, and available degrees

of freedom for quintic splines are given by
g.=a, g,=b and qgz=c. (2.6

. L . - Ni=—-6u’+15u*—10u+1, N,=6u’—15u*
Loop motion is described in terms of the time variations of

the generalized coordinatesb, andc. +10u®, Nz=-3u®+8u*-6ud+u, (2.13
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1
Ny=—3uS+7u*—4u3, N5=§( —uS+3u*-3u3+u?),

and Dislocation
Surface §
1
/\/6=§(u5—2u4+ ud), (2.14
Nio=30—u*+2u3—u?), Ao =—Ny,, .
Dislocation J linking curve y
N3y=—15u%+32u%—-18u%+ 1, (2.19 line C
Nao=—15u%+28u%— 1202, "
)
1 4 3 2 + -
N5,u=§(—5u +12u°—9u“+2u), b
® T
and c
N6u=1(5u4—8u3+3u2) (2.16 FIG. 3. Creation of a dislocation by a cut on the surfagg (
) 2 d '
and |dID|=(dIPdIP) 2= (xDxD)Yedu  (2.19
a=P. a=p{"Y, =T}, U
" :(qp]kNp,uqust,u) du. (2.20
A =T4 D =N,
and IIl. ELASTIC FIELD VARIABLES AS FAST SUMS
qgk):N(kHl)_ (2.17 As our main objective is to develop a computational

method for numerical simulation of complex dislocation in-

The total number of available degrees of freedom for deractions, we need first to outline relevant theoretical foun-
dislocation segment requires careful consideration. Evefations. In this section, we present a reasonably self-
though more flexibility, and hence accuracy, is achieved byonsistent discussion of isotropic elastic theory which leads
higher-order splines, it is still desirable to reduce the numbeto the present fast-sum computational implementation. A
of degrees Kpg) of freedom from a computational stand- number of equivalent formulations are available in the
point. For afree, or discretesegmentNp is thus equal to  literature?~*" However, because the present development is
the number of components in the Cartesian vequr, i.e., Mainly computatiqnal, we follow the tensor index formula-
Npr=6, 12, and 18, for linear, cubic, and quintic splines,tion of deWit, Kréner;' and Kroupd. For detailed deriva-
respectively. Howevelp can be greatly reduced on physi- tions related to this section and its appendixes, the reader
cal and geometric grounds. Since all segments must be cofay consult Ref. 44.
nected on the loop, only one node is associated with each
segment instead of two. Loop boundary conditions can be
used to defindor fix) specific degrees of freedofdF) on
certain nodes. Thus, for @ntinuousrepresentationNpr is The dislocation is formed by cutting over an arbitrary
reduced by a factor of 2. Moreover, if the motion is that of surfaceS, followed byrigid translation of the negative side
pure glide on the slip plane, appropriate coordinate transforof (S™), while holding the positive sideS") fixed, as illus-
mations can be used to assilpeal DF in two dimensions. trated in Fig. 3. Define the dislocation line vectoas the
Thus, planar loop motion can be describedl‘ﬂi%a'= 2,46 tangentto the di_slocation Iine_. The Burg_e_rs vedias pre-
for the three parametric cases we consider here. Additiondicribed as the displacement jump condition across the sur-
physical and geometric constraints can still be imposed t&ace (). The elastic field is based on the Burgers equéffon,
reduceNpg even further. which defines the distribution of elastic displacements

Forces and energies of dislocation segments are given p&found dislocgtion Ioo_ps. The ;train tensor can be_ obtain_ed
unit length of the curved dislocation line. Also, line integrals from deformation gradients, while the stress tensor is readily
of the elastic field variables are carried over differential linedccessible through linear constitutive relations. Once the
elements. Thus, if we express the Cartesian differential in th&tress and strain tensors are found, the elastic self-energy and

A. Displacement field

parametric form interaction energy can be obtained. Referring to Fig. 3, we
define the dislocation loop by cutting over the surf&and
d'ﬁj):%ﬁ%du:qgﬁf\/&udu, (2.19 translating the negative side by the veckprwhile holding

the positive side fixed. Along arinking curvey, the closed
the arc length differential for segmepts then given by line integral of the displacement vectorbs Thus,
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b= 35du or b= fﬁui,,—dxj. (3.2) Jé(Tabc_..,mdé—Tabc.._,ldsnF fﬁceklmTabc.._dlk_
Y Y

. (3.9
For a given force distributioffi,(r) in the medium, the dis-

placement vector is given by The first integral in Eq(3.5) is the fraction of the solid angle

) o () subtended by the loop times the Burgers ve¢sare Ap-
U(r)= Upm(r— 1) fm(r)dr, (3.2 pendix A), while utilization of Eq.(3.6) can reduce the sec-
all space ond and third terms to their line integral form. Therefore, a
convenient form for the displacement vector components is
given by

b0 1;;
YT a7 Tar T

whereR=|RIl, u and\ are Lameconstants. For the volume 3.7

V, bounded by the surfacg, and upon utilization of the
divergence theorem for any rank tensdr:[T ;dv ~ Equation(3.7) determines the displacement field of a single
=[3TdS, we obtain dislocation loop. For a loop ensemble, one can use the prop-
erty of linear superposition. Thus, the line integral in Eq.
N - n A (3.7) can be converted into a fast numerical sum over the
Un(r) = f Uim(r=D)fi(HdV— Lui(r)cijklukm,l(r_r)dg following set: quadrature points Qa<Q,,,) associated
with weighting factors {,b), loop segments (£B8=<Njy),
- A n and number of ensemble loops<ly<N,,,,). Therefore, a
* fguim(r—r)aij(r)d% ' (33 computational form for the displacement ’\]/)ector is

whereU,(r—r) are the isotropic elastic Green’s functions,
given by

7\+,u
SR pp™ N+2u

_ 1
Ukn(R)= 8 €ibR ppt EfkmnbnR,mi dly.

The second and third terms in E®.3) account for displace-
Nloop Ng Qmax

ment and traction boundary conditions on the surfépee- B 1 2 E 2
spectively. Assuming that body forces are absent in the me- T AT —b; Q+ Wq
dium, as well as any zero traction and rigid displacembnts

across the surfac%, we obtain

ﬁla—

€y nb R' i |~
GiklblR,pp+ %Vm”) Xk,u} . (38)
=—b J'écijk|Ukm,|(r—F)d51 : (3.4

In Appendix A, we list successive derivatives for the

For an elastic isotropic medium, the fourth-rank elasticmodulus of the radius vectdr, surface and line integral
constant tensor is given in terms of Lameonstantsu and  forms of the solid angl€), and its derivatives. Detailed deri-

A, and thusCij; =\ &;; 6+ (i 65 + 6 9j) . Substituting  vation steps in the equation sequence can be reviewed in Ref.
in Eq.(3.4) and rearranglng terms, the displacement vector igi4.
given by
“ B. Strain and stress fields
=—-— R yoi . ) . . .
Um(") 87-rf:c,bm PpidS Once the displacement field is determined, the strain and
stress fields can be readily obtained. If we denote the defor-
if (bR ,défn—b-R mdéq) mation gradient tensor by, ;, the strain tensog;; in infini-
PP PP tesimal elast|C|ty is its symmetric decomposition; ;

z(u,J+u] |)+2(U.J Uj ) =6+ wjj, where w;; is the

1 7 f - A P J
+——— | (bR bR mdS). rotation tensor. Taking the derlvatlves of E§.7) yields the
4w N+2un)s oS~ DR yanidS deformation gradient tensor
(3.9
Equation(3.5) can be converted to a line integral, if one U= b Q
recalls Stokes’ theorem, extended to any rank tedscex- bl 477
pressed asfs€ijk Tapc. . .,idSc=$cTape ..dlj . Noting the re- 1 1
!atlonshlp bet&veen the Kronecker and permutation tensors, + = fﬁ €1abIR ppit = €xmebnR mij |l
..,  €jjk€kim=0ii6jm— Simdj, allows us to write 8w Jc 1-v

Stokes’ theorem  as [g(8i0jm— 6imdj) Tane...,jdS

=$c€mjTanc..dlj. Using the substitution property of the

Kronecker delta, Stokes’ theorem can also be expressed in

the coordinates with a caret in the following form: from which the following strain tensor is obtained:

(3.9
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biQ ;+b;Q
8

N 1 § 1
8w Jc|2
EkmnbnR,mij

1-v

eij:_

(bR + bR j) pp

dly. (3.10

The derivatives of the solid ang{e are given by Eq(A2) in
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resulting from the stress field of one loop, acting on the
strain field of the other, as given below:

E = f oPelPay, (3.19
\

Whereafll) is the elastic stress field from the first dislocation
loop ande{” is the elastic strain tensor originating from the
second one After a lengthy derivation, de{Mirovided a

simple double line integral formulation for the interaction

Appendix A, which can now be used to derive the strain€nergy as

tensor components as line integrals:

1
eij:_

1
oy _E(Ejk|biR,|+€ik|bjR,|

ekmnbnR,mij

—€bRj— 1—5

ejklblR,i),pp dlk

(3.1)

Similar to Eq.(3.98), the fast-sum equivalent of E8.11)
is now given by

1 Nloop Ns  Qmax

1
Z > W( S(€imbiR |+ bR

&=
! 87T'y 1 4=1 a=1

€y nb R‘ i |~
—€inbRj—€bR;) ppt %)Xku-

(3.12

To deduce the stress tensor, we use the isotropic stress-strain

b(l)b(Z)
E| = §
c Jc®@

+id|_(2)d|(l)
I

kk( di?diM

2
+ 7 (Rij— &R AIZdID .

(3.19

In Eq. (3.16), the line integral is carried over the two space
curvesC™) andC®). Thus, the corresponding fast sum for
the interaction energy reads

b W N o o,

Bi=—-—%, D22 2 WaWw,e
™ =1 p@=1 o(M=1 4)=1

X

2v
)3 2
R,kk( XX+ x( )x(l))

1— 5 hulu

(3.17

2 (11
+1—,(Rij—4 Ry)XEXE)

relations of linear elasticity. First, the dilatation is obtained Tne self-energy of a single dislocation loop can be calcu-

by lettingi=j=r in Eq. (3.11) above:

1 1-2v
87 1—uv Ekmnbn mrr

Using the stress-strain relations;=2ue;;+\e, d;, we
can readily obtain the stress tensor

€=

uby,
T 4

mpp(fjmndl +€|mnd| )+ ékmn(lem

R,ppm)dlk (3-13)

lated as half the interaction energy between two identical
dislocation loops separated by a distamge The contribu-
tion to the self-energy from the dislocation core can be esti-
mated from atomistic calculations, and is usually on the or-
der of 5-10% of the self-enerdy.However, the core
contribution can be incorporated by adjusting the valug,of

In a fairly rough evaluation, we may take the core energy
into account by settingg=Db/2. (cf. Ref. 7).

IV. RESULTS AND METHOD VALIDATION

In this section, we discuss several test cases which both
illustrate the utility of the fast-sum method and validate its
accuracy. We will first present results of computations for

The computationalfast sum for the stress tensor is given the elastic field of isolated circular shear and prismatic dis-
below in compact form, while explicit representations arelocation loops. Since some analytical solutions are available

listed in Appendix B:

Nloop Ng Qmax
gij= . 2 bnw[ ,mpp(EjmnXi,u+€iman,u)
T y=1p=1a

(3.19

1 “
+ 1—» €xmn( R,ijm_ 5ij R,ppm)xk,u .

C. Interaction energy and self-energy

for these cases, we will compare the results of the fast-sum
method to analytical results. The issues of numerical conver-
gence and accuracy are also discussed. In the latter part of
this section, we present results of calculations of the elastic
field of typical complex-shape loops, representing familiar
Frank-Read dislocation sources in crystalline materials.

A. Stress field of simple loops

1. Circular slip loop

The mutual interaction between two dislocation loops can We consider here the stress distribution in the vicinity of
be obtained by a volume integration of the energy densitya shear(slip) loop in a bcc crystal. The circular loop has a
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FIG. 4. Normal stress isosurfaes; in the local loop coordi- FIG. 6. Shear stress isosurfagg; in the local loop coordinates,
nates, where the one-axis is ff@0] direction and the three-axis is Where the one-axis is tH®10] direction and the three-axis is the
the [110]direction. [110] direction.

: fo The | o f ; lifi.e. quadra_ture integration points is inqreaééd‘.he issue of the
radius of 20(b| € loop is oriented for primary siifi.e., numerical accuracy of the method is addressed next, by com-

(110)/z {11L]. In the figures shown in this section, all dis- arison to one of the few available analytical solutions in the
tances are given in units ¢|, while stress values are rela- |iterature.

tive to u. In the local coordinates of the (110) plane, Figure
4 shows an isosurface for the normal stress around the dis- 2. Circular prismatic loop

location loop. It is clear that the stress surface has an orien- 56 deri . . :
tational dependence on tl&11)-slip direction. On the glide K_roup v d_enved analytlcgl SOIUUOD for the stress field Qf
R prismatic circular dislocation loop in an infinite isotropic

plane itself, the normal stress vanishes, while the stress su ) _ T ;
face is symmetric with respect to the loop center. The sheamed'ur.n' His explicit out-of-plane normal stress in the loop
stress components;, ando,; are displayed in Figs. 5 and 6. plane(i.e., z=0)o, reads

While o1, shows a characteristic “lope” structure of the

isosurface,o,; displays a crescent shape. The maximum Ozz _ 2 (i) (OS §<1>
width of the crescent is for pure edge, while the stress van- ub/27R(1-v) 1-(x/R)2 \R R '
ishes for the screw component of the loop. 4.0

The convergence and computational speeds of the fast-
sum method are demonstrated in Ref. 43. The dependence of
the numerical results on the number of segments, segment
spline type, and quadrature indicates that the method is nu-
merically convergent, as the number of segments and/or

(o _2R
ubl2nR(1—v) “x

&ty
K|—|—-————E| =
X/ 1—(R/Ix)®> \X

e
R>1 , (4.2
whereK andE are the complete elliptic integrals of the first
and second kinds, respectively,is the distance from loop
center, andR is the loop radius.

In order to evaluate the accuracy of the present fast-sum
method, a comparison between Kroupa's analytical solution
for the normal stress componem, of a circular prismatic
loop and our numerical calculations is shown in Fig. 7. It can
be seen that the error in the value of the normal stress de-
pends on the number of segments and on the distance be-
tween the field point and the dislocation core. The normal
stress shows the characteristic asymmetric singularity at the
dislocation line, where the stress field decays to zero at large
distances from the core, while it remains finite at the loop
center. A more quantitative measure of the error is shown in
Fig. 8, where the percent error between the numerical and

FIG. 5. Shear stress isosurfagg, in the local loop coordinates, ~analytical solutions is shown as a function of distance along
where the one-axis is tH®10] direction and the three-axis is the the x axis on the loop plane. It is seen that the numerical
[110] direction. accuracy is below 4% for only four cubic spline segments,
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FIG. 7. A comparison between numeri¢alirrent methopand FIG. 9. A comparison between numeri¢alirrent methogland
exact analyticalKroupa solutions for the normal stress component analytical (dewit) results for the interaction energy between two
o, of a circular prismatic loop. prismatic loops.

except very close to the dislocation core. The number ofions to be pure prismatic coaxial circular loops of equal

quadrature integration points is kept at 16 for all cases studadius and of the same Burgers vector. In such a case, the

ied in the figure. The highest err@velow 9% is manifest at ~ exact analytical result is available from Ref. 7 as

distances less than 1t from the dislocation core, when the E

number of segments is less than 8. However, the maximum L [K(k)—E(x)
. . 2mR bZ 2 1— L (K) (K ]l

error is less than 0.3% at such close distances, when the TR m(1-v)

number of segments is increased to 16. It is important to notg, \vhich x=1[1+ (d/2R)2]*2 andd is the normal distance
that sugh high accuracy is need.ed in galculg\;ons of the selfsetween the two parallel loop planes. Figure 9 shows the
force via the Brown formul3a9_ or its variants™® When the  reqyits of our calculations, as compared with exact analytical
stress field is averaged at distancestof from the disloca- regyits. The interaction energy is shown as a function of
tion core, the singularity is removed and a convergent, finitgjistance between the two loop planes. While the number of
self-force is obtained. Thus, the accuracy of field evaluationy agrature integration points in these calculations is kept at
IS apparent. 128, the interaction energy is convergent as the number of

segments is increased. This is particularly important at close

B. Interaction energy and self-energy distances, as can be seen from the figure.

To demonstrate the capability of our fast-sum calculation Furthermore, Hirth and Lotffeprovided an explicit ex-
of the interaction energyH|), we specify the two disloca- Pression for the self-energy of a circular slip loop as

10 Es  2-v i P15 cos”
’ 27Rub? Ba(1—v)| | 2aR) % %R
—e— 4 Segments (4.4)
—&— 8 Segments
—>— 16 Segments wherep is the dislocation core size and is taken agidl/2as
suggested by deWftFigure 10 shows the dependence of the
6 self-energy on the loop radius, computed numerically, and
compared to the analytical solutiohdhe percent error be-
tween the numerical and analytical results is shown in Fig
11. It is interesting to note that, even for four cubic spline
segments, the error is rather sm@lfew percent when the
loop radius is in the tens to hundreds|bf. However, it is
clearly demonstrated that more spline segments are neces-
sary for larger size loops, and that the error can generally be
brought down below 1%.

4.3

Error (%)

C. Complex loop geometries

xR

. . 1. Single Frank-Read source
FIG. 8. Dependence of the error between numerical and analyti- g !

cal (Kroupa normal stress results on the distance from loop center, In typical dislocation dynamics computer simulations,
for various number of segments. heavy initial dislocation microstructure is introduced, and its
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FIG. 10. A comparison between numeri¢alirrent methogand
analytical (Hirth-Lothe) results for the self-energy of a slip loop. FIG. 12. Normal stress isosurfa¢é86 MPa o, for a single

Frank-Read source in molybdenum.
subsequent evolution is followed by solving appropriate
equations of motion. Visualization of the stress field associthe crystal surface by two rigid threading dislocations. Figure
ated with the evolving microstructure requires additional12 shows the normal stress isosurface of 186 MPa associated
techniques to mask specific features; otherwise the 3D conwith the FR loop. The isosurface shows orientational depen-
puter image is hopelessly complicated to be useful. Nonethedence on the Burgers vector, as well as symmetry with re-
less, it is instructive to investigate the nature of the elastigpect to the(111) plane. Note the “dimples” in the stress
field resulting from reasonably complex loop configurations.surface which result from the deviation of the FR loop from
In this section, we present results for two common dislocaperfect circular symmetry, as investigated in the earlier sec-
tion problems: an isolated Frank-RedeR) dislocation loop tion.
and two interacting such sources in a molybdenum single So far, we have assumed that the crystal is elastically
crystal. An initial straight edge dislocation segment, lying onisotropic and of infinite dimensions. The solution method
the (111) plane, is subjected to an applied stress. The pinnetelies on the existence of analytic forms for the elastic
ends of the segment are locatedxat +10Qb| from the  Green’s functions, and those are not available for finite me-
plane center of the crystal. The expansion of the dislocatioflia. Recently, Cleveringa, Van der Giessen, and
segment results in the dislocation loop, shown in Fig. 12Needlemaf? have proposed a superposition method to sat-
before annihilation of the two opposite screw componentdsfy the boundary conditions of crystals under external con-

takes place. The pinned ends of the source are connected 3tFaints. First, the surface traction resulting from the interac-
tion of the dislocation loop with the crystal surface is

20 computed. Once this is achieved, a finite-element method
(FEM) is used to calculate the stress field resulting from the
1817 —e— 4 Segments same traction, with a reversed siggo-called image traction
16 —a— 8 Segments in addition to other externally_applied forces. T_he case of_a
1l —— 16 Segments free crystal is sqmewhat speC|_aI, because only image traction
boundary conditions can be imposed at the surface. Thus,
12 - since a full dislocation loop is mechanically balanced, only
rigid body displacements need to be carefully eliminated. We
T 107 choose here to use the threading dislocation arms, which
:’ 8 | intersect the surface at two points, to eliminate rigid body
o rotation and translation. To show the effects of crystal
' 7 boundaries, we follow the FEM approach, as suggested by
4 Cleveringaet al*® Figure 13 shows the results of FEM cal-
. culations for the normal stress component on the crystal sur-
face, resulting from image traction. It is clear that the FR
0~ source is pulling on the upper surface and that additional

stress concentrations on tlez surface are associated with
the rigid arms of the threading dislocation. The image shear
stresso3 is also shown in Fig. 14, where the surface dis-
FIG. 11. Dependence of the error between numerical and andlacements of the crystal are scaled to show the shape of a
lytical solutions in Fig 10 above on the loop radius and number offree crystal which contains a FR source. Note the symmetry
cubic spline segments. with respect to the (111) plane of positive and negative
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FIG. 15. Normal stress isosurface- (30 MPa), o33, for two
FIG. 13. Normal stress distribution resulting from the interac-interacting Frank-Read sources in molybdenum.

tion of the single FR source with the surface of a molybdenum
single crystal. rotating the initial segmenti.e., length=150b| with an

angle of #=220° and#=100° for the first and second FR
shear, and the high shear stress around the end points of tReurces, respectively.

threading dislocation. The normal stresgr3;=—130 MPa is shown in Fig 15,
while the stress isosurface;;= —2000 MPa is shown in
2. Interacting FR dislocation loops Fig. 16. The stressra; isosurface shows a split about the

When FR sources are activated on the same or neighbof}-l]llt)j,p:ane’. bUtI bec?use 0; the initial Ia;:k of.s%!l\me.try of
ing slip planes, very complex patterns can eméfgaterac- the dislocation loop lines, the stress surface is likewise un-

tion of FR sources appears to be one of the main mechanisns¥ymmetric. However, Fig. 16 shows an interesting mirrorlike

which control complex dislocation patterns. For this reasonSYmmetry of the stress,, isosurface and the original geom-

we study the stress field of two such FR sources, which argtry Of the FR sources. This observation is only seen at high
both located on the (I'U) plane. The length of each initial levels of stress, where there is nearly no overlap between the

straight edge segment is taken as[b500ne pinned end of stress fields of various segments of the dislocation micro-
4 . ) structure. In any event, going beyond the configurations pre-
the first FR source is located at=225b| and atx= y going >ey J D

X sented here would introduce additional complexities, which
— 2250 for the second source. The other end is located b%lre best utilized in computations of Peach-Kohler forces on

dislocation segments.

FIG. 14. Shear stress distribution resulting from the interaction
of a single FR source with the surface of a molybdenum single FIG. 16. Normal stress isosurface-2000 MPa) o, for two
crystal. interacting Frank-Read sources in molybdenum.
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V. CONCLUSIONS

The fast-sum method, which is based on a combination of
dislocation loop geometry parametrization and numerical
guadrature integrations along parametrized curves, is shown
to be computationally feasible and highly accurate. All cal-
culations involve simple algebraic operations, which can be
systematically carried out by straightforward computer pro- 3
gramming. Although we useebRTRAN-90 to implement the
results of calculations, even spreadsheets on personal com-
puters can be effectively utilized. The method is as efficient
as analytical solutions. The index structure associated with
tensor notation simplifies computer programming of the
equation. However, because analytical solutions are avail- 0
able only for a limited nhumber of special cases, the present
approach can be used for calculations involving complex F|G. 17. Representation of the solid angleat a field point(Q)

loop geometries. The present method is primarily intendedway from the dislocation loop line containing the set of poilfts.
for applications in dislocation dynamics computer simula-

tions, where the need for accuracy is critical in close-range

) : . e-dS X;dS§ 1

dislocation encounters. Moreover, one may consider the Q:f dQ:f :f_az__f RppidS,
present method as an extension of the FEM technique in s R? s R 2Js

continuum mechanics. A variety of parametrized elements (A1)

can thus be chosefin much the same way as in the FEM \yhere e= R/IR=sefe]} is a unit vector alongR=se{X;},
approach to handle special dlslocathn dgformatlon prob- sndRr opi=—2X /R3. The solid angle can be computed as a
lems. The method may also be exploited in crack problemsine integral, by virtue of Stokes’ theorem. A vector potential
where dislocation distributions can be used to represent COMK(R) is introduced by deWit to satisfy the differential equa-
plex crack surfaces. _tion €A p(R)=X;R™3. The solution is given B A (R)

To handle the effects of free crystal surfaces on the redis- e Xis; [[R(R+R-s)], wheres s an arbitrary unit vector.

tribution of the elastic field inside the crystal, and hence onrpic results in a nonuniqueness of the displacement field
computed Peach-Kohler forces, the superposition method ofjihqugh it can be arbitrarily symmetriz&tThe solid angle

Cleveringaet al. is extended to 3D applications. While only ¢ then given as a line integral (R) = -A(R)dI, . Taking

2D problems have been solved so far by their method, W, o Jerivatives of) in Eq. (A1) and applving Eq(3.6). we
show that 3D problems can also be successfully imple'gbtain vatv in Eq. (A1) plying Eq(3.6), w

mented. However, the simple problem shown here require
almost 30000 degrees of freedom and the utilization of 3D 1 1

(27-node brick elements. Other methofls.g., the boundary Q,j=§f (RppndS—R ppijdS) =3 jg kR ppidly -
integral methoflmay be more appropriate for 3D computer S ¢ (A2)
simulations, since the stress field should be updated very
frequently during dislocation dynamics computer simula-  Successive derivatives of the vectrare given by the
tions. following set of equations:

X; X;
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The third-rank tensoR j;, has only ten nonvanishing terms,
APPENDIX A: RADIUS VECTOR AND SOLID ANGLE and these are given below for convenience:
o . . o _ 2 _ 2
As shown in Fig. 17, the solid angle differenti# is the Ri=3ey(ef-1)/R?, R =ex(3ei—1)/R?,

ratio of the projected area elemea$ to the square oR 5 5
Thus, R115—=€3(3e1—1)/R7, (A7)
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Roo=€1(365—1)/R?, R z,=3e,(e5—1)/R?, R a35=3e;3(e5— 1)/R?, (A9)
R 05— €3(365—1)/R?, (A8)
Raz;=€1(3e3—1)/R?, Rg3,=3e,(3e3—1)/R?, R 105= 316,65 /R2. (A10)

APPENDIX B: STRESS TENSOR COMPONENTS

For one loop, explicit fast-sum forms of the three-dimensional stress tensor components are given below. The inner sum is

extended over the number of quadrature points assigned in the intetvali<1. Q,.is typically 8—16 for accurate results,
although cases witlp 5, up to 300 have been tested. The outer sum is over the number of loop segments, which is typically
in the range 10-30. For an arbitrary number of loops of defined parametric geometry, a third sum over the loop humber must
additionally be included:

NIoop Ng Qmax

m
TJ11=—
g }/21 B=1 a=1

2v 2v “
W, [b2< 2R, 115 —— 1— (R 2231+ Ri339) | + 03| 2R, 115~ _V(R-zzz+ Rassz)) X1u

2 “
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