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Ground state and excitations of a spin chain with orbital degeneracy
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The one-dimensional Heisenberg model in the presence of orbital degeneracy is studied at theSU(4)
symmetric point by means of Bethe ansatz. Following Sutherland’s previous work on an equivalent model, we
discuss the ground state and the low-lying excitations more extensively in connection to the spin systems with
orbital degeneracy. We show explicitly that the ground state is aSU(4) singlet. We study the degeneracies of
the elementary excitations and the spectra of the generalized magnons consisting of these excitations. We also
discuss the complex 2-strings in the context of the Bethe ansatz solutions.@S0163-1829~99!00238-6#
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I. INTRODUCTION

There has been much interest recently in spin Hami
nians with orbital degeneracy. The orbital degree of freed
may be relevant to many transitional-metal oxides.1–11 Ex-
amples of such systems in one dimension include quasi-
dimensional tetrahis-dimethylamino-ethylene~TDAE!-C60
~Ref. 12! and artificial quantum dot arrays.13 Recently, we
discussed these systems14 within the framework of aSU(4)
theory. A quantum disordered ground state in two dim
sions was proposed to be relevant to the experimentally
served unusual magnetic properties in LiNiO2. There have
also been numerical studies of the one-dimensional mo
for these systems.15,16

In the present paper, we use the Bethe ansatz metho
study theSU(4) symmetric Heisenberg spin chain with tw
fold orbital degeneracy. This model is equivalent to t
model studied by Pokrovskii and Uimin,17 and to one of a
class of models that has been solved by Sutherland.18 Ex-
panding on Sutherland’s work, we study the ground state
low-lying excitations more extensively by considering ho
and 2-strings in the thermodynamics limit, and in connect
to the spin systems with orbital degeneracy. We show exp
itly that the ground state is aSU(4) singlet, consistent with
the generalized Lieb-Mattis theorem of Affleck and Lieb22

We discuss the degeneracies of the elementary excita
and the spectra of the generalized magnons resulting f
such excitations. We also discuss the complex 2-string
the context of the Bethe ansatz solutions. The paper is o
nized as follows. In Sec. II, we introduce the model a
discuss its symmetry. In Sec. III, we present the Bethe an
solution following Sutherland’s approach. We discuss
ground state in Sec. IV, and the elementary excitations
PRB 600163-1829/99/60~18!/12781~7!/$15.00
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the generalized magnon modes in Sec. V. A brief summ
is given in Sec. VI.

II. SYMMETRY CONSIDERATION

We consider the spin chain ofN sites with twofold orbital
degeneracy and with periodic boundary condition6

H5(
j 51

N

JF S 2TW j•TW j 111
1

2D S 2SW j•SW j 111
1

2D21G , ~1!

whereSW j and TW j are the spin and orbital operators respe
tively on thej th site, and are each generators of aSU(2) Lie
algebra. Clearly, in addition to the permutation symmetryH
is invariant under the transformationj→ j 11 for all j ’s!, the
system has an explicitSU(2)^ SU(2) global symmetry and
a bisymmetrySW j↔TW j . Actually the Hamiltonian~1! is in-
variant under a globalSU(4) transformation, which is gen
erated by Sa5( jSj

a , Ta5( jTj
a , and Yab5( jTj

a
^ Sj

b

(a,b51,2,3). These operators satisfy the following comm
tation relations:

@Sa,Sb#5 i eabgSg, @Sa,Tb#50,

@Ta,Tb#5 i eabgTg, @Ta,Ybd#5 i eabgYgd,

@Sa,Ydb#5 i eabgYdg,

@Yam,Ybn#5 i eabgdmnSg1 i emnrdabTr. ~2!

Such a symmetry was noticed by Wigner in the study
nuclei a long time ago.19 Since the groupSU(4) is of rank 3,
there are three conserved quantum numbers in general.
useful to write the above commutation relations in terms
12 781 ©1999 The American Physical Society
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12 782 PRB 60LI, MA, SHI, AND ZHANG
Chevalley basis, i.e., three generators in the Cartan suba
bra of SU(4) ~precisely, the A3 Lie algebra! Hn

5( j 51
N Hn( j ) (n51, 2, 3! which can be diagonalized simu

taneously, and the other 12 generatorsEa5( j 51
N Ea( j ) (a

denotes root vectors!. The local generatorsHn( j ) andEa( j )
are related to the spin and orbital operators by

H1~ j !5~112Tj
z!Sj

z , Ea1
~ j !5S 1

2
1Tj

zDSj
1 ,

H2~ j !5~Tj
z2Sj

z!, Ea2
~ j !5Tj

1Sj
2 ,

H3~ j !5~122Tj
z!Sj

z , Ea3
~ j !5S 1

2
2Tj

zDSj
1 ,

Ea11a2
~ j !5Tj

1S 1

2
1Sj

zD ,

Ea21a3
~ j !5Tj

1S 1

2
2Sj

zD ,

Ea11a21a3
~ j !5Tj

1Sj
1 , ~3!

where a1 , a2, and a3 denote the simple roots ofA3 Lie
algebra.21 The generators corresponding to the negative ro
are given byE2a( j )5Ea

†( j ). One can verify that these op
erators satisfy the standard commutation relations ofA3 Lie
algebra, and Eq.~1! can be rewritten as

H5(
j

@h~ j , j 11!23/4#,

h~ j , j 11!5(
m,n

gmnHm~ j !Hn~ j 11!

1 (
aPD

Ea~ j !E2a~ j 11!,

where D denotes the set of roots of the Lie algebra. W
denote the spin components by up (↑) and down (↓), and the
orbital components by top and bottom. Then the four p
sible states on each site are

u1&ªu2
↑ &5u1/2,1/2&,

u2&ªu2
↓ &5u21/2,1/2&,

u3&ªu↑
2&5u1/2,21/2&,

u4&ªu↓
2&5u21/2,21/2&.

The local lowering/raising operatorsE6an
( j ) relate those

four states on thej th site as follows:

E2an
~ j !un& j→un11& j ,

Ean
~ j !un11& j→un& j , n51,2,3. ~4!

In terms of those operators, a general state can be writte
e-

ts

-

as

uc&5 (
$xi %$yj %$zk%

c~x;y;z!)
k51

M9

E2a3
~zk!

3)
j 51

M8

E2a2
~yj !)

i 51

M

E2a1
~xi !u2

↑
2
↑
•••2

↑ &, ~5!

where xª(x1 ,x2 , . . . ,xM), yª(y1 ,y2 , . . . ,yM8), z
ª(z1 ,z2 , . . . ,zM9); 1<x1,x2, . . . ,xM<N; x1<y1
,y2, . . . ,yM8<xM , y1<z1,z2, . . . ,zM9<yM8 ; and
$zk%,$yj%,$xi%. We may define the weights as the eige
values of the global operatorHn , indicated by (H1 ,H2 ,H3).
The eigenvalues of the local operatorsH1( j ),H2( j ),H3( j )
acting on the four local statesu2

↑ & j , u2
↓ & j , u↑

2& j , andu↓
2& j are

(1,0,0), (21,1,0), (0,21,1), and (0,0,21), respectively.
We shall focus on the state with the highest weight. T
other states in the same irreducible representation can
be obtained by using the corresponding lowering opera
E2an

. In the present model, the irreducible representation

the SU(4) group of aN-site system is labeled by

~N1M 822M ,M1M 922M 8,M 822M 9!. ~6!

III. THE BETHE ANSATZ SOLUTION

The permutation and theSU(4) symmetries in the Hamil-
tonian enable us to seek the eigenstate of both the cy
permutation operator and the generators of the Cartan su
gebra ofA3. The invariance of the cyclic permutation im
poses a periodic boundary condition on the wave funct
c(x,y,z). The present model is solvable,18 and the Bethe
ansatz equations for the spectra are

S l j1 i /2

l j2 i /2D
N

52)
l 51

M
l j2l l1 i

l j2l l2 i )b51

M8 mb2l j1 i /2

mb2l j2 i /2
,

)
l 51

M
mg2l l1 i /2

mg2l l2 i /2
52 )

b51

M8 mg2mb1 i

mg2mb2 i )
b51

M9 nb2mg1 i /2

nb2mg2 i /2
,

)
b51

M8 nc2mb1 i /2

nc2mb2 i /2
52 )

b51

M9 nc2nb1 i

nc2nb2 i
, ~7!

where j ,l 51,2, . . . ,M ; b,g51,2, . . . ,M 8 and b,c
51,2, . . . ,M 9. These are secular equations for the spectra
SU(4) rapiditiesl, m, andn. The energy spectrum is give
by

E52(
l 51

M
J

~1/2!21l l
2

. ~8!

The momentum defined by the translation of the syst
along the chain is given by

P5
1

i
ln )

l 51

M
l l1 i /2

l l2 i /2
5(

l 51

M

@p22 tan21~2l l !#. ~9!

Note thatP in Eq. ~9! is determined up to mod (2p), and the
inverse trigonometric function is defined in the main bran
We have included explicitly thep term in Eq.~9!, which is
usually neglected in the study of pure spin Heisenb



l-
on
s
th
th

s

e

o

le

. In

her

PRB 60 12 783GROUND STATE AND EXCITATIONS OF A SPIN . . .
models.20 In the SU(4) model, there are three types of e
ementary excitations as we will discuss below, and it is c
venient to include thep term inP to study the magnon type
of composite excitations. We define the momentum of
elementary excitations as the momentum relative to
ground state.20 By taking the logarithm of Eq.~7!, a set of
coupled transcendental equations are obtained,

Q1/2~l j !2
1

N (
l 51

M

Q1~l j2l l !2
1

N (
b

M8

Q1/2~mb2l j !

5
2p

N
I j ,

(
l 51

M

Q1/2~mg2l l !2 (
b51

M8

Q1~mg2mb!2 (
b51

M9

Q1/2~nb2mg!

52pJg ,

(
b51

M8

Q1/2~nc2mb!2 (
b51

M9

Q1~nc2nb!52pKc , ~10!

whereQr(x)ª2 tan21(x/r). The quantum numberI j is an
integer or half integer depending on whetherN2M2M 8 is
odd or even, and so isJg ~or Kc) depending on whetherM
2M 82M 9 ~or M 82M 9) is odd or even. These propertie
arise from the logarithm function.

Replacingl j , mg , andnc in Eq. ~10! by continuous vari-
ablesl, m, andn but keeping the summation still over th
solution set of these roots$l l ,mb ,nb%, we can consider the
quantum numbersI j , Jg , andKc as functionsI (l), J(m),
andK(n) given by Eq.~10!. TakeI (l) as an example. When
I (l) passes through one of the quantum numbersI j , the
correspondingl is equal to one of the rootsl j . Similarly for
J(m) or K(n). However, there may exist some integers
half integers for which the correspondingl (m or n) is not
in the set of roots. We shall name such a state as a ‘‘ho
In the thermodynamics limitN→`, we may introduce the
density of roots and the density of holes~indicated by a
subscripth):

s~l!1sh~l!5~1/N!dI~l!/dl,

v~m!1vh~m!5~1/N!dJ~m!/dm,

t~n!1th~n!5~1/N!dK~n!/dn.

By replacing the summations by integrals,

lim
N→`

1

N (
l 51

M

f ~l l !5E
2B

B

dls~l! f ~l!,

lim
N→`

1

N (
b51

M8

f ~mb!5E
2B8

B8
dm v~m! f ~m!,

lim
N→`

1

N (
b51

M9

f ~nb!5E
2B9

B9
dnt~n! f ~n!,

Eq. ~9! becomes the coupled integral equations
-

e
e

r

.’’

s~l!1sh~l!5K1/2~l!2E
2B

B

dl8K1~l2l8!s~l8!

1E
2B8

B8
dm8K1/2~l2m8!v~m8!,

v~m!1vh~m!5E
2B

B

dl8K1/2~m2l8!s~l8!

2E
2B8

B8
dm8K1~m2m8!v~m8!

1E
2B9

B9
dn8K1/2~m2n8!t~n8!,

t~n!1th~n!5E
2B8

B8
dm8K1/2~n2m8!v~m8!

2E
2B9

B9
dn8K1~n2n8!t~n8!, ~11!

where Kr(x)ªp21r/(r21x2), and B, B8, and B9 in the
definite integrals should be determined self-consistently
the absence of the complex roots,M /N5*2B

B s(l)dl,

M 8/N5*2B8
B8 v(m)dm, and M 9/N5*2B9

B9 t(n)dn. Once the
densitys is solved from Eq.~11!, we have thez components
of the total spin and the total orbital:

Stot
z

N
5

1

2
1E

2B8

B8
v~m!dm2E

2B

B

s~l!dl2E
2B9

B9
t~n!dn,

Ttot
z

N
5

1

2
2E

2B8

B8
v~m!dm, ~12!

the energy

E522pNJE
2B

B

K1/2~l!s~l!dl,

and the momentum

P52NE
2B

B

@2 tan21~2l!2p#s~l!dl.

IV. THE GROUND STATE

The ground state is described by the densitiess0(l),
v0(m), and t0(n) with no holes and byB05B085B09→`.
This is true because all the states with holes will have hig
energies. In this case, Eq.~11! can be solved. Let

s0~l!5
1

2pE2`

`

s̃0~q!e2 iqldq,

v0~m!5
1

2pE2`

`

ṽ0~q!e2 iqmdq,

t0~n!5
1

2pE2`

`

t̃0~q!e2 iqndq,

then
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12 784 PRB 60LI, MA, SHI, AND ZHANG
s̃0~q!5sinh~3q/2!/sinh~2q!,

ṽ0~q!5sinh~q!/sinh~2q!,

t̃0~q!5sinh~q/2!/sinh~2q!.

Hence from Eq.~6!, the highest weight labeling the groun
state is the null vector~0, 0, 0!, and so the ground state is
SU(4) singlet. This agrees to the theorem of Affleck a
Lieb,22 a generalization of the spin chain problem.23,24In that
state, the total orbital, the total spin, and their products are
zero, i.e.,

Ttot
z

N
5

1

2
2E

2`

`

v0~m!dm5
1

2
2ṽ0~0!50,

Stot
z /N51/21ṽ0~0!2s̃0~0!2 t̃0~0!50,

(
j 51

N

Tj
zSj

z50.

In deriving this result, Eqs.~3! have been used. The energ
and the momentum of the ground state are

E052NJS 3

2
ln 21

p

4 D
P05H 0 mod 2p for N/45even

p mod 2p, for N/45odd.
~13!

Equation~13! coincides with the result of Sutherland18 after
correcting for the trivial overall constant shiftJN between
the two models.

V. LOW-LYING EXCITATIONS

A. Spectra of elementary excitations

The possible elementary excitation modes are obtaine
the variation in the sequence of quantum numbers$I j%, $Jg%,
or $Kc% from the ground state. We can assumeB5B85B9
→` for the low-lying excitations. The simple modes will b
solved by placing holes in the rapidity configurations. If w
let s(l)5s0(l)1s1(l)/N, v(m)5v0(m)1v1(m)/N and
t(n)5t0(n)1t1(n)/N, then the excitation energy and mo
mentum,

DE522pJE
2`

`

K1/2~l!s1~l!dl,

DP52E
2`

`

@2 tan21~2l!2p#s1~l!dl, ~14!

and DM5*s1(l)dl, DM 85*v1(m)dm, and DM 9
5*t1(n)dn. After solving the integral Eqs.~11! with
sh(l)5d(l2l̄)/N, vh(m)5d(m2m̄)/N or th(n)5d(n
2 n̄)/N, respectively, one finds that there are three types
elementary excitation modes. A hole in thel configuration,
m configuration, orn configuration (l hole, m hole, andn
hole, respectively, hereafter! creates aSU(4) multiplet la-
beled by the highest weight~1, 0, 0!, ~0, 1, 0!, or ~0, 0, 1!,
ll

by

f

respectively. Them hole has a six-dimensional represen
tion, thel andn holes have four-dimensional representatio
We call these excitations theSU(4) flavorons. The energie
of these elementary excitations are

«s~l̄ !5
Jp/2

A2 cosh~ l̄p/2!21
,

«v~m̄!5
Jp/2

cosh~pm̄/2!
,

«t~ n̄ !5
Jp/2

A2 cosh~ n̄p/2!11
, ~15!

where l̄, m̄, and n̄ stand for the positions of holes in th
corresponding rapidity configurations. These excitation en
gies vanish when the positions of holes go to infinity in t
thermodynamic limit. Therefore they are gapless modes.
momenta of the excitations are given by

ps~ l̄ !52 tan21@~A211!tanh~ l̄p/4!#23p/4,

pv~m̄!52 tan21@ tanh~m̄p/4!#2p/2,

pt~ n̄ !52 tan21@~A221!tanh~ n̄p/4!#2p/4. ~16!

Eliminating the rapidities in Eqs.~15! and ~16!, we have

«s~ps!5
Jp

2
@A2 cos~ps13p/4!11#,

«v~pv!5
Jp

2
cos~pv1p/2!,

«t~pt!5
Jp

2
@A2 cos~pt1p/4!21#, ~17!

wherepsP@23p/2,0#, pvP@2p,0#, ptP@2p/2,0#.
We are now in the position to relate the elementary ex

tations to the spin and orbital in the original model, Eq.~1!.
The quadruplets~1, 0, 0! or ~0, 0, 1! are flavorons carrying
both spin 1/2 and orbital 1/2 with energieses or et , the
hexaplet~0, 1, 0! describes flavorons carrying either spin
or orbital 1 with energyev . The spectra of these three type
of excitations are plotted in Fig. 1. In comparison to Suth
land’s results, Eq.~17! differs only in that each mode is
shifted by a different constant in momentum arising from t

FIG. 1. The spectra of the three types of quasiparticles.
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FIG. 2. The dispersions for various types of the generalized magnons.E andP stand for the the correspondingDE andDP in Sec. V C.
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the
p term in Eq. ~9!. It seems more convenient to use t
present version, Eq.~17!, to study the spectra of the magno
type excitations in Sec. V C.

B. The complex roots

Because of the existance of the complex roots25 in the
solution set of the Bethe ansatz Eqs.~7!, we must consider
their contributions, particularly from the 2-strings. In th
case we need to rederive the integral Eqs.~11!. We obtain
the same equation formally but now the inhomogene
termssh(l), vh(m), and th(n) include also the contribu
tions from the complex roots. A 2-string in thel configura-
tion, l65l06 i /2, introduces additional terms in Eq.~11!.
As a result, we have

sh~l!5@K3/2~l2l0!1K1/2~l2l0!#/N,

vh~m!52K1~m2l0!/N,

th~n!50. ~18!

The energy is given by

DE522pJE
2`

`

K1/2~l!s1~l!dl22pJ@K1/2~l01 i /2!

1K1/2~l02 i /2!#, ~19!

and the integral equation leads to

s̃1~q!52exp~ iql02uqu/2!.

Our calculation shows a complete cancellation in Eq.~19!.
Therefore a 2-string in thel configuration does not chang
the energy. We also findM5N*s(l)dl12, wheres(l) is
the density of the real roots.
s

Similar results are found for the 2-strings in then andm
configurations. The equations for an configuration are given
by

sh~l!50,

vh~m!52K1~m2n0!/N,

th~n!5@K3/2~n2n0!1K1/2~n2n0!#/N,

andM 95N*t(n)dn12. By solvings1(l)50, we obtain

DE522pJE K1/2s1~l!dl50.

And the equations for a 2-string in them configuration are
given by

sh~l!52K1~l2m0!/N,

vh~m!5@K1/2~m2m0!1K3/2~m2m0!#/N,

th~n!52K1~n2m0!/N,

and M 85N*v(m)dm12, we obtains1(l)50 and hence
DE50. Although these three types of the 2-strings do n
contribute to the energy, they do contribute to the quant
numbers of spin and orbital, and to the highest weight of
SU(4) representations.

C. Generalized magnon-type excitations

The flavorons discussed in the previous subsection
elementary excitations of the system. These flavorons m
combine to form composite excitations similar to the ma
non excitations in the one-dimensional spin chain,26 which
are of interest to experiments and numerical simulations
such a construction, the structure of the decomposition of
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12 786 PRB 60LI, MA, SHI, AND ZHANG
direct product of theSU(4) fundamental representation mu
be taken into account. Let us considerN54n, the decompo-
sition brings about a direct sum of a series of irreduci
representations, i.e.,~0,0,0!, ~1,0,1!, ~0,2,0!, ~2,1,0!, ~4,0,0!,
etc. The composite excitation states include both the sin
~0,0,0! and the multiplets of 15-fold~1,0,1!, of 20-fold
~0,2,0!, and of 45-fold ~2,1,0!, or of 35-fold ~4,0,0!, etc.
Those multifold excitations are the generalization of magn
excitations to the spin systems with orbital degeneracy. O
l hole and onen hole together create a 15-fold multiple
with excitation energy and momentum,

DE(15)5«s~l̄ !1«t~ n̄ !,

DP(15)5ps~ l̄ !1pt~ n̄ !,

which is a pair of flavorons ofs type andt type. Two m
holes create a 20-fold multiplet with

DE(20)5«v~m̄1!1«v~m̄2!,

DP(20)5pv~m̄1!1pv~m̄2!.

The 45-fold multiplet is a three-hole state created by twol
holes and onem hole, for which the excitation energy an
momentum are

DE(45)5«s~l̄1!1«s~l̄2!1«v~m̄!,

DP(45)5ps~ l̄1!1ps~ l̄2!1pv~m̄!.

Four l holes create a 35-fold multiplet with

DE(35)5(
j 51

4

«s~l̄ j !,

DP(35)5(
j 51

4

ps~ l̄ j !.

The singlet excitation is obtained by placing al hole, an
hole, and three 2-strings inl, m, andn configurations, re-
spectively. The singlet is degenerate with the 15-fold mult
let in energy, i.e.,

DE(1)5«s~l̄ !1«t~ n̄ !.

In the above equations,es(l̄), ev(m̄), andet( n̄) are given
by Eq. ~15!, andps(l̄), pv(m̄), andpt( n̄) are given by Eq.
~16!. The energy-momentum dispersion of various magn
types of excitations are plotted in Fig. 2. In the spectr
calculations, we have used the periodicity in momentumP,
so thatDE(P12p)5DE(P). For instance, for the 45-fold
degenerate states,DE(45)(P)5es(q1)1es(q2)1ev(q3),
whereP5q11q21q3, with modula 2p. In a recent paper in
Ref. 15, the lower-lying excitations of model~1! were calcu-
lated numerically for finite systems. Their results are con
tent with ours in Fig. 2. In particular, both the numeric
calculations and the present Bethe ansatz solutions show
following feature: as the momentumupu increases from 0 to
p, the lowest excitations are changed from the 15-fold
generate states to the 45-fold degenerate states atuPu5p/2.
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In Fig. 3, we illustrate these generalized magnon types
composite low-lying excited states. We start with a typic
configuration of the ground state in Fig. 3~a!, and the various
generalized magnon excitations are created from the gro
state by introducing two or more flavorons as shown in F
3~b!–~f!, which arise from various possible flips of spin o
orbital or both. The flavoron indicated by the dashed box
Fig. 3 moves in the background of theSU(4) singlet carry-
ing both energy and the quantum numbers. Thes-type ~fla-
voron! excitation mode is a moving quaduplet withu2

↑ & being
the local highest weight state. Thev-type excitation mode is
a moving hexaplet withu2

↑
2
↓ &2u2

↓
2
↑ & being the local highes

weight state. Thet-type excitation mode is a moving quadu
plet with u2

↑
2
↓

↑
2&2u2

↑
↑
2

2
↓ &1u2

↓
↑
2

2
↑ &2u2

↓
2
↑

↑
2&1u↑

2
2
↑

2
↓ &2u↑

2
2
↓

2
↑ &

being the local highest weight state.

VI. SUMMARY

In this paper we have used the Bethe ansatz metho
discuss extensively the ground state and various types o
low-lying excited states of a Heisenberg spin chain with tw
fold orbital degeneracy in the limit ofSU(4) symmetry.
There are three types of elementary excitations in the pre
model. Two of them carry spin 1/2 and orbital 1/2, and bo
are fourfold degenerate. The third one carries either spin
orbital 1, and is sixfold degenerate. We have construc
magnon types of composite excitations and calculated t
spectra.
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FIG. 3. ~a! A ^SjTj& staggeringly ordered state to demonstra
the ground state, theSU(4) singlet,~b! flavorons of ones type and
onet type compounded symmetrically to form a 15-fold multiple
and ~c! compounded antisymmetrically to form a singlet.~d! The
20-fold multiplet being compounded of two flavorons ofv type.~e!
The 45-fold multiplet being compounded of two flavorons ofs type
and one flavorons ofv type. ~f! The 35-fold multiplet being com-
pounded of four flavorons ofs type.
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