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Ground state and excitations of a spin chain with orbital degeneracy
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The one-dimensional Heisenberg model in the presence of orbital degeneracy is studiedS&i(4f)e
symmetric point by means of Bethe ansatz. Following Sutherland’s previous work on an equivalent model, we
discuss the ground state and the low-lying excitations more extensively in connection to the spin systems with
orbital degeneracy. We show explicitly that the ground stateS$Jé4) singlet. We study the degeneracies of
the elementary excitations and the spectra of the generalized magnons consisting of these excitations. We also
discuss the complex 2-strings in the context of the Bethe ansatz solJi0163-18209)00238-9

[. INTRODUCTION the generalized magnon modes in Sec. V. A brief summary
is given in Sec. VI.

There has been much interest recently in spin Hamilto-
nians with orbital degeneracy. The orbital degre(é:;ec;sf1L freedom Il. SYMMETRY CONSIDERATION
may be relevant to many transitional-metal oxides. Ex- . . . . . .
amples of such systems in one dimension include quasi—ont(aj—eg\;\gra‘(;:rc;‘rg‘;'/'Cj,fnr dtr\]/(:itzp;l)nefigzlig g{;ﬂ:]%saxtg%or{%g orbital
dimensional tetrahis-dimethylamino-ethylen@ DAE)-Cg,
(Ref. 12 and artificial quantum dot array3.Recently, we N
discussed these systethwithin the framework of eSU(4) H= E J
theory. A quantum disordered ground state in two dimen- =1

sions was proposed to pe relevan_t tolthe.e>_<perimentally OtQ/'vhere S and T, are the spin and orbital operators respec-
served unusual magnetic properties in LiNiO'here have ! !

also been numerical studies of the one-dimensional moderaly on thejth site, and are each generators &(2) Lie
agebra. Clearly, in addition to the permutation symmektty (

for these systems:® co=n e der th ¢ ri 41 foralli's) th

In the present paper, we use the Bethe ansatz method 1[%|nvar|€;1]nt un ertliérans ormat@mjl +b Ior allj’s), t ed
study theSU(4) symmetric Heisenberg spin chain with two- sysFem as an expl U(2)®SU(2) glo .a s.ymmet.ry .an
fold orbital degeneracy. This model is equivalent to the@ biSymmetryS;—T;. Actually the Hamiltonian(1) is in-
model studied by Pokrovskii and Uimifi,and to one of a variant under a globabU(4) transformation, which is gen-
class of models that has been solved by Sutherdrgk-  erated by S*=3;S%, T*=%;T{, and Y*¥=3Tios/
panding on Sutherland’s work, we study the ground state antt.8=1.2,3). These operators satisfy the following commu-
low-lying excitations more extensively by considering holestation relations:
and 2-strings in the thermodynamics limit, and in connection " - "
to the spin systems with orbital degeneracy. We show explic- [s*,$°]=ie"?7s?, [S,TP]=0,
itly that the ground state is 8U(4) singlet, consistent with
the generalized Lieb-Mattis theorem of Affleck and Léb.

L. 1
28-St 5| -1, @

I |
2T Tjiat 3

[T, TP]=ie*PrT7, [T YR =ie*PrY7?,

We discuss the degeneracies of the elementary excitations [S%,Y 8] =i exBry oy
and the spectra of the generalized magnons resulting from ' '
such excitations. We also discuss the complex 2-strings in [Y ok, YBV] =i e¥BY SHVSY + | ehP 5%BTP 2

the context of the Bethe ansatz solutions. The paper is orga-

nized as follows. In Sec. Il, we introduce the model andSuch a symmetry was noticed by Wigner in the study of
discuss its symmetry. In Sec. lll, we present the Bethe ansatauclei a long time agd® Since the grous U(4) is of rank 3,
solution following Sutherland’s approach. We discuss thethere are three conserved quantum numbers in general. It is
ground state in Sec. IV, and the elementary excitations andseful to write the above commutation relations in terms of
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Chevalley basis, i.e., three generators in the Cartan subalge- M”
bra of SU(4) (precisely, the A; Lie algebra H, |y = > wxy:nll E-.(z0
—EN Ha(J) (n=1, 2,3 which can be dlagonallzed S|mul— {xiHyjHzd 3

taneously, and the other 12 generaths==; 71Ea(j) (a
denotes root vectorsThe local generatordn(J) andE_(j)
are related to the spin and orbital operators by

M’

xH E_a2<y,>H E o, 0)LL---1), (®

) where  x:=(X1,X2, ... Xu), y==(y1,y2, ce ,yM,), z
S, =(21,2Z, .. . Zyr);  IsSX<X< ... <Xy=N; <y,
Yol <YM S XM, VIS zl<22< B AN yM/; and

1z C{y;} C{xi}. We may define the Welghts as the eigen-
values of the global operatét,, indicated by H,,H,,H3).
L The eigenvalues of the Ioca!é opeiatdﬂq(j),Hz(j),Hg(j)

z T acting on the four local statés);, |*);, |1 );, and|); are
Ha(1)=(1=2THS], Eo )= ( Ti )S (10.0). 110), (0—1.1). and (0.0-1). respectively.
We shall focus on the state with the highest weight. The
other states in the same irreducible representation can then
be obtained by using the corresponding lowering operators
E_. . In the present model, the irreducible representation of

) (1 the SU(4) group of aN-site system is labeled by
— Z
Ea2+a3(1)_Tj E_SJ ’

1
S+T]

Hy())=(1+2THS}, Eu()=|5

Ho()=(T?-S), E, (D=T/S/,

) 1
Eal+a2(1):Tj+(§+st y

(N+M’'—=2M,M+M"=2M' M’ —2M"). (6)
Eal+a2+a3(j):Tj+Sj+ ’ (3)

where a1, «@,, and a3 denote the simple roots o&; Lie
algebra?! The generators corresponding to the negative root
are given byE_a(j)=EZ(j). One can verify that these op-
erators satisfy the standard commutation relation8ptie
algebra, and Eq.1) can be rewritten as

IIl. THE BETHE ANSATZ SOLUTION

The permutation and theU(4) symmetries in the Hamil-
fonian enable us to seek the eigenstate of both the cyclic
permutation operator and the generators of the Cartan subal-
gebra ofAj. The invariance of the cyclic permutation im-
poses a periodic boundary condition on the wave function
#(x,y,2). The present model is solvabfé,and the Bethe
H=">, [h(j,j+1)—3/4], ansatz equations for the spectra are

]

N2 NN e A2

M . M! . MH .
) ) Hy— N +i12 B My— ppti vp— p,+il2
*E EL(DE-o(j+1), 1] s w77 S | Moyt § | Ry 774
where A denotes the set of roots of the Lie algebra. We Mo Yi M 4
denote the spin components by up @nd down (), and the el Bpm e BT %)
orbital components by top and bottom. Then the four pos- p=1 Ve~ pp—il2 b=1 V¢~ Vp— |
sible states on each site are where j1=12,...M: By=12,...M' and b,c
1) =|! V=|1/2,1/2 =1,2,... M". These are secular equations for the spectra of
- B SU(4) rapidities\, u, andv. The energy spectrum is given
12):=|Ly=|-1/2,1/2, by
M
3):=|;)=|1/2,— 1/2), 8
13)=7)=| ) g(mzﬂz ®
|4):=|)=[-1/2-1/2). The momentum defined by the translation of the system

The local lowering/raising operatorEmn(j) relate those along the chain is given by

four states on th¢th site as follows: 1 M N +i2

M
P==1n I1:[1 >\|—i/2:|2‘1 [m—2tan }(2\)].  (9)

E_o (DIn)j—[n+1);,
Note thatP in Eq. (9) is determined up to mod ¢2), and the
Ean(j)|n+1>j—>|n>j , n=1,2,3. (4)  inverse trigonometric function is defined in the main branch.
We have included explicitly ther term in Eq.(9), which is
In terms of those operators, a general state can be written asually neglected in the study of pure spin Heisenberg
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models?® In the SU(4) model, there are three types of el-

ementary excitations as we will discuss below, and it is con-

venient to include ther term inP to study the magnon types

of composite excitations. We define the momentum of the
elementary excitations as the momentum relative to the

ground staté® By taking the logarithm of Eq(7), a set of
coupled transcendental equations are obtained,

12 (R
®1/2()‘i)_ﬁgl 1(7\j—7\|)—N% Oy g\

2
N

M M/ MH
Zl 1/2(,U~y—)\|)—ﬂzl 1(/vLy—,U~/3)_bZl O vy—py)

=2’7TJ7,

M/ M//
ﬁ; ®1,2(vc—ﬂﬁ)—b§l O(ve—vp)=27K,, (10

where 0 ,(x):=2 tan 1(x/p). The quantum numbdr; is an
integer or half integer depending on whetihér M —M' is
odd or even, and so i&, (or K.) depending on whethevl
—M’'—=M" (or M'—=M") is odd or even. These properties
arise from the logarithm function.

Replacing\;, w,, andv in Eq.(10) by continuous vari-
ables\, w, andv but keeping the summation still over the
solution set of these roots\;,ug,vp}, we can consider the
quantum numbers;, J,, andK, as functionsl(\), J(u),
andK(») given by Eq.(10). Takel (\) as an example. When
I(\) passes through one of the quantum numbersthe
corresponding is equal to one of the roots; . Similarly for
J(m) or K(v). However, there may exist some integers or
half integers for which the correspondiihg (u« or v) is not

in the set of roots. We shall name such a state as a “hole.’

In the thermodynamics limiN—, we may introduce the
density of roots and the density of holé@sdicated by a
subscripth):

o(N)+ap(N)=(LN)dI(N)/dA,

o(p)+ wp(pu)=(IUN)dI(u)/du,
7(v)+ m(v)=(1IN)dK(v)/dv.

By replacing the summations by integrals,

1
lim—

M
B
N & f()\|):ﬁBd)\a()\)f()\),

N—oo

li !
m =
NﬁOCN

M’ B/
3 fup= [° duotwiw.

1 M B”
lim N bgl f(vy)= f_B”dVT(V)f(V),

N—o

Eqg. (9) becomes the coupled integral equations
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B
0(7\)+0h()\):K1/2()\)—J_Bd)\’Kl()\—)\')U()\’)
B/
+J du'KypN=p ('),
B
B
w(M)+wh(M):j_BdA'Kl/z(M_)\’)U(W)
B/
—f_B,dM’Kl(M—M’)w(M’)
+JB

)+ = [ du Ko=)

"

B”dV’Kllz(,U«_ v)r(v'),

—JB” dv'Ky(v—2")7(v'), (11
—-B”

1 2 2 ’ "o
where K (x):=m""p/(p°+x), and B, B’, and B” in the

definite integrals should be determined self-consistently. In

the absence of the complex rootM/N=fEfBa()\)d)\,

M'IN=%, w(u)du, andM"/IN= [, 7(v)dv. Once the
densityo is solved from Eq(11), we have the components
of the total spin and the total orbital:

Sot 1 (8 B B
—=—+ o(pu)du— a(N)d\— (v)dv,
N 2 —-B’ -B _g”
Ty 1 B’
N 2 _B/w(M)dM, (12
the energy

B
, E=—27TNJf Ki(N)o(N)dN,
-B

and the momentum

P

B
—Nf [2 tar }(2\)— 7)o (N )dA.
-B

IV. THE GROUND STATE

The ground state is described by the densitig$\),
wo(r), and 79(v) with no holes and byBy=Bg=Bj— .
This is true because all the states with holes will have higher
energies. In this case, E(L1) can be solved. Let

0

oo(N) ao(q)e 9 dq,

:277 —o

[

1 (=~ |
wo( )= Zf_mwo(q)e"q“dq,

1 (= .
)= 5=| Fo(@e da,

then
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Spectra of the flavorons

oo(0q) =sinh(3q/2)/sinh(2q), s : : .
3.5 AN
wo(q)=sinh(q)/sinh(2q), sk & — |
~ . . 25 i
70(Q) =sinh(g/2)/sinh(2q). e i
Hence from Eq(6), the highest weight labeling the ground 15 - -
state is the null vectofO, 0, 0, and so the ground state is a - /0 4
SU(4) singlet. This agrees to the theorem of Affleck and 05 L 4 i
Lieb,2? a generalization of the spin chain probléft*in that o .
state, the total orbital, the total spin, and their products are all —mf2 —m —3r/2 —2r

momentum p

zero, i.e.,
FIG. 1. The spectra of the three types of quasiparticles.

Tt 1 * 1 - _ - .
N 2 J_ wo(p)du= 5—w0(0)=0, respectively. Theu hole has a six-dimensional representa-
tion, thex andv holes have four-dimensional representation.
, ~ We call these excitations tHeU(4) flavorons. The energies
Sior/ N=1/2+wo(0) ~ 0(0) ~ 7(0) =0, of these elementary excitations are

N
— Jml2
E JZ ]Z : 80’( ): — '
= \J2 costinm/2)— 1
In deriving this result, Eqs3) have been used. The energy

and the momentum of the ground state are &)= 377/2_ ,
3 - coshi mul2)
EO:_NJ<§|n2+Z B In2 )
0 mod 27 forN/4=even s V2 costivm/2)+1’ o
OZ{ 7 mod 27, forN/4=odd. (13 where\, ; and v stand for the positions of holes in the

corresponding rapidity configurations. These excitation ener-
gies vanish when the positions of holes go to infinity in the
thermodynamic limit. Therefore they are gapless modes. The
momenta of the excitations are given by

V. LOW-LYING EXCITATIONS P, (N)=2 tan Y[ (\2+ 1)tanh(\ 7/4)]— 3 /4,
A. Spectra of elementary excitations

Equation(13) coincides with the result of Sutherlafidafter
correcting for the trivial overall constant shidtN between
the two models.

N 2 tar [ tanh( uw/4)]— w2,
The possible elementary excitation modes are obtained by P ('u) [ r('u 1=

the variation in the sequence of quantum numiggs {J,}, p.(v)=2 tam [ (V2— DtanH v/d)]— w4, (16)
or {K.} from the ground state. We can assuBe B’ =B" P-

— oo for the low-lying excitations. The simple modes will be Eliminating the rapidities in Eq¢15) and (16), we have
solved by placing holes in the rapidity configurations. If we

let o(N) =0o(N) +1(N)/N, w(u)=we(u)+w(w)/N and eg(Py)= [\/§C0$p0+3ﬂ'/4)+l]

7(v) = 79(v) + 7(¥)IN, then the excitation energy and mo-

mentum,

" £,(Py)= cos(p,,,+w/2)
AE:—szf KN og(N)dX,

§ e.(p,) wi cogp,+ /4~ 1], (17)
—f [2tan Y(2N)— 7)oy (N)dN, (14

—w wherep, e[ —3#/2,0], p,e[— 0], p,e[ —m/2,0].

We are now in the position to relate the elementary exci-
tations to the spin and orbital in the original model, Eb.
The quadruplet$l, 0, O or (0, 0, 1 are flavorons carrying
on(A)=8(A—N)/N, on(p)=8(p—p)IN or m(v)=6(v  poth spin 1/2 and orbital 1/2 with energies or e,, the
—)/N, respectively, one finds that there are three types ohexaplet(0, 1, O describes flavorons carrying either spin 1
elementary excitation modes. A hole in theconfiguration,  or orbital 1 with energy,, . The spectra of these three types
w configuration, orv configuration § hole, u hole, andv  of excitations are plotted in Fig. 1. In comparison to Suther-
hole, respectively, hereaffecreates aSU(4) multiplet la-  land’s results, Eq(17) differs only in that each mode is
beled by the highest weigltt, 0, 0, (0, 1, 0, or (0, 0, 1,  shifted by a different constant in momentum arising from the

and AM=[o(\)d\, AM’'=[wi(u)dw, and AM”
=Jmi(v)dv. After solving the integral Egs(11) with
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Excitation: 15-fold multiplet or singlet Excitation: 45-fold multiplet
45
iL T T ]
3.5 -
3 — —
E/g L 1 B
L5 1
1+ .
0.5 1~ -
0 . 0
-n/2 —-m  =3n/2 2 /2 - =3n/2 -2z
momentum P momentum P
Excitation: 20-fold multiplet Exc?tation: 35-fold multilplet
3 L T T ] 14 | "
25 |- . 1 Il |
2| 1wy sl ||
E[T 451 . ol H
1 T 4 ll i {l
I THHTH
05 ] : eI A
|

—w/2 —r =37/2 =2x

momentum P

|
—7/2 -7 =3r/2 =2r

momentum P

FIG. 2. The dispersions for various types of the generalized magioasd P stand for the the correspondilge andAP in Sec. V C.

7 term in Eq.(9). It seems more convenient to use the Similar results are found for the 2-strings in theand u
present version, Eq17), to study the spectra of the magnon- configurations. The equations foraconfiguration are given

type excitations in Sec. V C. by
B. The complex roots an(M) =0,
Because of the existance of the complex rota the op(n)=—Ky(u—vy)/N,
solution set of the Bethe ansatz E¢8), we must consider
their contributions, particularly from the 2-strings. In this Th(v)=[Kap(v—vg) + Ky v—1rg) ]/N,

case we need to rederive the integral Edd). We obtain

the same equation formally but now the inhomogeneougnd'\/I =NJf7(v)dv+2. By solvingo;(2)=0, we obtain

terms o, (N), wp(w), and 7,(v) include also the contribu-

tions from the complex roots. A 2-string in theconfigura- AE= —ZWJf K101 (N)dA=0.

tion, A =\g*i/2, introduces additional terms in E¢L1).

As a result, we have And the equations for a 2-string in the configuration are
given by

(M) =[Kgp(A=Ng) + KA =Ng) /N,
on(N)=—Ki(A=puo)/N,

op(p)=—=Ki(m—=No)/N,

mh(v)=0. (18

on(p) =Ky = o) + Kgl e — o) I/N,

Th(v)=—Ky(v—pue)/N,

The energy is given b
gyis g y and M'=Nfw(u)du+2, we obtaing(A\)=0 and hence

o _ AE=0. Although these three types of the 2-strings do not
AE= —ZwJJ Kyp(N) o (N)dN—27I[Kyo(Ngt+i/2) contribute to the energy, they do contribute to the quantum
- numbers of spin and orbital, and to the highest weight of the

+ Ky ho—i/2)], (19  SU(4) representations.

and the integral equation leads to C. Generalized magnon-type excitations

1(q)=—exp(igho—1ql/2). The flavoron_s o_Iiscussed in the previous subsection are
elementary excitations of the system. These flavorons may
Our calculation shows a complete cancellation in BEd®). combine to form composite excitations similar to the mag-
Therefore a 2-string in th& configuration does not change non excitations in the one-dimensional spin cHaimhich
the energy. We also finll = N[o(N)dN +2, whereo(\) is  are of interest to experiments and numerical simulations. In
the density of the real roots. such a construction, the structure of the decomposition of the
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direct product of the&sU(4) fundamental representation must | | T T ! T T 1 T T i T T
be taken into account. Let us considé+4n, the decompo- - -
sition brings about a direct sum of a series of irreducible
representations, i.e(0,0,0, (1,0,2, (0,2,0, (2,1,0, (4,0,0,

etc. The composite excitation states include both the singlet
(0,0,0 and the multiplets of 15-fold(1,0,7), of 20-fold e [ PE— = _
(0,2,0, and of 45-fold (2,1,0, or of 35-fold (4,00, etc. L L pifil Ly pil Lyt by
Those multifold excitations are the generalization of magnon . T

excitations to the spin systems with orbital degeneracy. One S B - —

\ hole and onev hole together create a 15-fold multiplet 1 * | | ll iy ll iy @
with excitation energy and momentum,

_.
-
—I
_.l
=
=
-
—I
_.|
=
-
_.|
=
—
—1
_.|

- i — o R (b)

—
-—

AEggy=s,(N) +2.(3), Thrniib byl b bril
AP(15)=Py (M) + (), HLLTTIL LT
which is a pair of flavorons of type andr type. Two u _
holes create a 20-fold multiplet with FIG. 3. (8@ A (S;T;) staggeringly ordered state to demonstrate

the ground state, thBU(4) singlet,(b) flavorons of oner type and
one 7 type compounded symmetrically to form a 15-fold multiplet,
and (c) compounded antisymmetrically to form a singléd) The
— — 20-fold multiplet being compounded of two flavoronswtype. (€)
A P20)= Pu(1) +Po(p2). The 45-fold multiplet being compounded of two flavoronssafype

The 45-fold multiplet is a three-hole state created by o 2nd one flavorons ob type. (f) The 35-fold multiplet being com-
holes and onex hole, for which the excitation energy and pounded of four flavorons af type.
momentum are

AE 0= £ (1) + 8 0(12),

In Fig. 3, we illustrate these generalized magnon types of
AEusy=e4(A1)+8,(\p) T eu(p), composite low-lying excited states. We start with a typical
configuration of the ground state in FigaB and the various
I N — generalized magnon excitations are created from the ground
AP 5= Po(M) TPy (A2) +Pu(p). state by introducing two or more flavorons as shown in Figs
Four\ holes create a 35-fold multiplet with 3(b)—(f), which arise from various possible flips of spin or
orbital or both. The flavoron indicated by the dashed box in

4 Fig. 3 moves in the background of ti&dJ(4) singlet carry-

AE(35)=JZ1 eg(Nj), ing both energy and the quantum numbers. Thiype (fla-
voron) excitation mode is a moving quaduplet wi{h) being
4 the local highest weight state. Tlaetype excitation mode is
AP(35)=J§=:1 p.()). a moving hexaplet with" ' )—|* 1) being the local highest

weight state. The-type excitation mode is a moving quadu-
plet with |11 )= T L)+ LTy [L1 Sy | Ty =i

The singlet itation is obtained by placing\ahole, i . :
e singlet excitation is obtained by placing\ahole, av being the local highest weight state.

hole, and three 2-strings iR, u, and v configurations, re-
spectively. The singlet is degenerate with the 15-fold multip-

let in energy, i.e., VI. SUMMARY

AE(1)=80(T)+8T(7)- In this paper we have used the Bethe ansatz method to
o o o discuss extensively the ground state and various types of the

In the above equationg,,(\), €,(u), ande,(v) are given low-lying excited states of a Heisenberg spin chain with two-
by Eq.(15), andp,(\), p,,(x), andp.(v) are given by Eq. fold orbital degeneracy in the limit 06U(4) symmetry.
(16). The energy-momentum dispersion of various magnori nere are three types of elementary excitations in the present
types of excitations are plotted in Fig. 2. In the spectrummodel. Two of them carry spin 1/2 and orbital 1/2, and both
calculations, we have used the periodicity in momenfym are fourfold degenerate. The third one carries either spin 1 or
so thatAE(P+2)=AE(P). For instance, for the 45-fold Orbital 1, and is sixfold degenerate. We have constructed
degenerate  statesAE 45)(P) = €,(01) + €,(0,) + €,(qs), ~ Magnon types of composite excitations and calculated their
whereP =g+ q,+qs, with modula 2. In a recent paper in  SPectra.
Ref. 15, the lower-lying excitations of mod@l) were calcu-
lated numerically for finite systems. Their results are consis-
tent with ours in Fig. 2. In particular, both the numerical
calculations and the present Bethe ansatz solutions show the Y.Q.L. acknowledges Grant Nos. NSFC-19675030 and
following feature: as the momentup| increases from 0 to NSFZ-198024 and support from the Y. Pao & Z. Pao Foun-
7, the lowest excitations are changed from the 15-fold dedation. The work is supported in part by DOE Grant No.
generate states to the 45-fold degenerate statd? atm/2. DE/FG03-98ER45687. We thank G. S. Tian for a reference.
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