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The existence of a distribution of relaxation times has been widely used to describe the relaxation function
versus frequency in glass-forming liquids. Several empirical distributions have been proposed and the usual
method is to fit the experimental data to a model that assumes one of these functions. Another alternative is to
extract from the experimental data the discrete profile of the distribution function that best fits the experimental
curve without anya priori assumption. To test this approach a Monte Carlo algorithm using the simulated
annealing is used to best fit simulated dielectric loss déftay), generated with Cole-Cole, Cole-Davidson,
Havriliak-Negami, and Kohlrausch-Williams-WatikWW) functions. The relaxation times distribution,
G(In(7)), is obtained as an histogram that follows very closely the analytical expression for the distributions
that are known in these cases. Also, the temporal decay functif(}y, are evaluated and compared to a
stretched exponential. The method is then applied to experimental datadolyvinylidene fluoride over a
temperature range 233 KT=<278 K and frequencies varying from 3 MHz to 0.001 Hz. These data show the
existence of two relaxation processes: the fast segmegtptocess associated with the glass transition and a
a. mode, which is slower and due to changes in conformation that can occur in the crystalline regions. The
experimental curves are fitted by the simulated annealing direct signal analysis procedure, and the relaxation
times distributions are calculated and found to vary with temperature. The decay function is also evaluated and
it shows clearly its bimodal character and a good agreement with a KWW function with a temperature
dependenp for each mode. The relaxation plots are drawn for each mode and the Vogel-Tammann-Fulcher
and Arrhenius parameters are found. The fragility parameter for polyvinylidene flq@iéF) is found to be
87, which characterizes this polymer as a relatively structurally strong ma{&@il63-18209)13641-5

[. INTRODUCTION asymmetric profile. The Havriliak-Negami distribution func-
tion has been the most widely used not only to interpret
In experimental studies on polymer dynamics with broad-dielectric spectroscopydata but also in the case of quasi-
band dielectric spectroscogpS) the variation of the real, €lastic neutron-scattering détdt describes the relaxation
', and imaginary partg”, of the dielectric constant as a function with three adjustable parameters,y, the mean
function of temperatureT, and angular frequencyy, is ob- ~ relaxation time value, andr and y, which represent the
tained. Many attempts have been made to explain the broatfidth and skewness of the dielectric loss when represented
frequency range of”(w). In the case of glass-forming lig- 2S @ functlon of logp). In Table | we have summ'a}nzed the
uids, the experimental behavior has been described by a§XPressions corresponding to the different empirical models

suming a distribution function for the relaxation times con-for e* (), 8”.(“.’)' and G(In(7)). On the other hand, the
tributing to each relaxation process. The general approac ,ohlraus<_:h-'W|II|ams—Watfé(KWW), the so-called stretched
widely used to describe the experimental data, has been %xponentlal.
assume an exponential decay function together with an em- t \8
pirical distribution function,G(In(7)), which describes the qﬁ(t)—exp{—( ) }
superposition of exponentially damped processes and to best

fit the parameters that define this function to the experimenpas peen widely used and fits well the experimental data in a
tal data’™® wide variety of experimental techniques, such as dielectric
Several empirical functions have been used in glassand mechanical relaxations, light scattering, and NMR. The
forming polymeric materials to describe the variation of theoretical justification for this nonexponential decay has
e* (w), such as the Cole-Cofethe Davidson-Colé,and the  been found either in the simplest version of Ng4i'sou-
Havriliak-Negamf relaxation functions. From these expres- pling model or in the most recent version of the maodel,
sions the distribution of relaxation times can be analyticallywhich adds an inhomogeneous distribution of primitive re-
found. When the parameters that characterize the width anldxation times.
skewness, if any, are equal to 1 all these expressions result in An alternative to the approaches briefly listed above is a
the Debye equation. The first one is a symmetric distributiordirect numerical determination of the distribution function,
function, while the second and third are characterized by aG(In(7)), from the experimental data* (w), which with the

@
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TABLE I. Analytical expressions of* (), €"(w), andG(In 7) for the theoretical models most used for the complex dielectric constant

(e*=g'—ie" andAe=gg—¢.,).

Model e*(w)— e, &"(w) G(In(7)
Debye Ae Ae wry -
1+iw7'0 1+((U’To)2
Cole- Ae Ae(wp)® sin(mral?2) 1 ( sin(7a) )
Cole 1+(iwm)® 1+ 2(wro)® cOSmal2) + (7o) 2 27| cosh(a In(1/7)) + cog ma)
sin(ym)[ 7 \”
. Ae . ( ) , T<Ty
Davidson- e Ae(cos)” sin(ye) T\ T
Cole (1+iwTg) 0 >
with g=tan *(w 7o)
Ae Ae sin(ye) (sin(y6))l 7
Havriliak- A+(l07)®)? (1+2(w 7o) cos(ral2) + (we) )2 (1+2(7/70)* cog mal2) + (7/79)>*) "
Negami o
9 , | (wTp) ¥ sin(mal2) oo _,[ (10! 7)*+cogma)
1+(wr)* co8 mal2) sin(ma)
do(t)] 1 (=
Ae f T ﬂ}e"“dt — J e e U costhsiu sin(B)]dx
0 dt T Jo
with > x7\ B
Kohlrausch- Ae J e sin(wrx)dx with u= —T)
Williams- 0 To
Watts B(t) =exp(— (t/70)*) 1

T \2 — 1147 f _1
m e s or ﬁ—z

new advances in dielectric instrumentation can be measurddc spectra of glass-forming materials by using the simulated
in a broad frequency band. The first attempt in this directiorannealing Monte Carlo proceddfetogether with the direct
was made by Imanishit al,’2 who calculated the relaxation signal analysi¥ in order to decompose the relaxation spec-
spectrumG(In(7)) by using the histogram method; it consists trum into true Debye components, which contribute to the
of fitting the experimental curve with an histogram of relax- Spectrum according to the relaxation times distribution. To
ation times, the height of each bar being the contribution ofheck the validity of the procedure it is first applied to com-
the mode with thatr to the whole relaxation spectrum. The Puter generate@”(w) curves based on known distribution
method was applied to the analysis of the master curves ofrofiles whose analytical expressions are kndsee Table
tained for bulk and concentrated solutions dfis- I.)' Then, the method is apphed to find the temperature varia-
polyisoprene for both the segmental and the normal modedo" Qf . the fe'?‘xa“on times d|str|but|on_ for
The conTIN procedure of Provenchérwas then applied to a-polyvinylidene flouride @-PVDF) (Ref. 18 obtained

: ; . over a wide frequencies range. It is shown that the computer
the dielectric data of poljnydroxy ether of bisphenol-Ab . . :
Alvarez et al” and Kaeaggoet §|_14 in the cage of the Béi- procedure proposed here is able to capture the fine details of

electric normal mode in diblock polymers. Recently, Seha G(In(7)) that best fit the experimental data. Previous results

on « or B polymorph of PVDF were made by DS on the

15 H
et al> have proposed a different method to extract the Congomewhat restricted frequency range that was available at

tinuous distribution of relaxation times from the compleX ihat timd®2° and showed the presence of two relaxation
dielectric spectra by solving a Fredholm integral equationygqes: then, mode, which is related to the glass transition
using the Tikhonov regularization technique with self- occurring in the amorphous zones and thethat is origi-
consistent choice of the regularization parameter. They apyated in the crystalline zones of the polymer. The quantita-
plied the procedure to simulated curves using two or foutjye results on the relaxation times involved in thg relax-
slightly Gaussian broadened overlapping processes, anglion reported in these previous works, differ from the more
found an acceptable agreement between the extract@dcent determinations made by two-dimensiof@D) ex-
G(In(7) and that used in the simulation of the complex specchange deuteron NMR by Hirschinget al?* More recent
trum. Experimental curves obtained with salol adsorbed omleterminations of the relaxation plots ghPVDF and the
microporous glass were also fitted with this procedure aneffect of high pressure have been made by Safhéa the
interesting results were obtained f8(In(7)) as a function of  «, mode. The variation of both the, and o, modes with
temperature. frequency and temperature are reported here in a broader
In this paper we present an approach for extracting thérequency range, and the simulated annealing direct signal
distribution of relaxation times from the broad-band dielec-analysis(SSADSA) procedure is applied to extra@(In(7)) at
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each temperature together with the decay functigt) and  with Ae=¢y— ¢, and the normalization condition
the relaxation plots for this important material.

IIl. EXPERIMENT f:G(ln(T))d In(7)=1. (6)

A. Materials Then the real and imaginary part of the complex permittivity
The polyvinylidene fluoride(PVDF) used in this work are given by:
was from Solvay Cie(SolefX8N). Its structure corresponds
to the nonferroelectric, nonpiezoelectrccrystalline form +>G(In(7))
of this polymer. Films were compression molded from pel- 8,(“"T):8w+A8£w md In(7), @)
lets at 503 K and 5000 psi. Their average thickness is
150 wm. After molding, the samples were slowly cooled to
room temperature and gold electrodes were sputtered to im- "( T)=A8f+mG(ln(T))wTd In(7) ®
prove the contacts with the gold-plated electrodes of the cell. ' —w 14 w2 '
The degree of crystallinityX., is determined from the area
of the melting peak obtained by differential scanning calo- From these expressions it appears that the distribution
rimetry in a Perkin-Elmer DSC-7 and found to be 50%; thisfunction can be calculated numerically from the dielectric
value is calculated using 6.7 kJ/mole as the heat of fusion fogata. In the next section the SADSA algorithm used to per-

a 100% crystalline PVDF. form this task is explained in detail.
Now, if one wants to switch to the time domain, the decay
B. Broad-band dielectric spectroscopy function ¢(t) can also be calculated by a numerical integra-

The broad-band dielectric-spectrometer is a Concep‘ijon if the distribution of relaxation times is known:
Twelve from Novocontrol forf<3x10° Hz. The sample . t
resid_es between two gold-plated electrodes 30 mm in diam- ¢(t)=J' G(In(r))ex;{ _(_>
eter in a cryostat in a cold nitrogen-gas stream. The measure- — T
ments of the reak’, and imaginary part”, of the dielectric . . . . . .
constant as a function of angular frequeney,are obtained ﬁw\f/l\llsdpomt,f Whe_n¢(t)d|shobtalneddlt can be flttecfi_ toda
at each temperatur@, by using a Solartron S1-1260 imped- ecay function and theyww and parameters fitted.
ance analyzer and a Quatro temperature controller. The 37
frequencies range from 16 to 3x10° Hz and the tempera- IV. DATA ANALYSIS
tures used here go from 223 K to 313 K in 2.5 K steps. The

S The distribution of relaxation times can be found from Eq.
temperature stabilization is better than 0.1 K and the resolu(—s) if the complex dielectric constant is known. by solvin
tion in tan & better than 10%. For higher frequencies an b o4 g

HP4291A RF impedance analyzer is used in a coaxial IinethIS integral equation forG(In(7)). Several methods are

reflectometry setup for % 10PHz= f<1.8x 10°Hz. a\lallab.le to per_form this operfat_|on. If an expression for
£*(w) is known in closed form, it is possible to calculate an

analytical expression o6(In(7)) by means of the inverse
Stieltjes transform? as follows:

The frequency-dependent complex dielectric constant de- Cim -
e* © —g* e
T T

fined as:

Equation(10) has been applied to the most common empiri-
cal equations ofe*(w) and the results are shown in the
fourth column of Table I. It is worth mentioning that the

(3) result shown here for the Havriliak-Negami distribution
function somewhat differs from expressions previously pub-
where 7 is a single-valued, temperature-dependent, relaxlished. For example, Bteher and Bordewijk’ and more re-
ation time following an Arrhenius or a Vogel-Tammann- cently Havriliak and Havriliak* both show expressions that
Fulcher(VTF) expression: can lead to negative values Gf(In(7)) for a certain combi-
nation of the Havriliak-Negami parameters. This can be seen
E Evre from the expression given for the andbe by Havriliak and
(M =7moexp 5|, Tvre(T) =10, €X KT—To)|" Havriliak?* [their Eq.(3)], where for values o&>0.5 there
) o will always be a range ot/ ry for which ®<0. Upon sub-
If we assume that the relaxation function is made by thestituting this negative® value in the expression for the dis-
superposition oM independent Debye-like processes with atripution function [their Eq. (2)] a negative value for
continuous normalized distribution of relaxation times G(In(7) results. The problem is not solved by taking the
G(In(7) then absolute value of as suggested by Alvarezt al’ as the
= G(In(1) obtgined distribution profile is'stilll not qorrect. Instead,' by
8*(a),T)=8w+A8f : din(7), (5) takmg thg com_p_lement dad as |n_d|c§1ted in Table | the dis-
—w 1tioT tribution is positive for all combinations of parameters over

din(7). 9)

IIl. THEORETICAL BACKGROUND

1

e*=¢'—ig", 2

has the following expression for a Debye process:
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the wholer range. This modification has already been notedstead, here the sum of the square residuals among the
by Bertelsen and Lindge?® and by Schohals?® observed and calculated is minimized to optimize the ex-
As one of the objectives for obtainin@(In(7)) is to de-  pression:
duce the decay correlation functiog(t), with Eq. (9) in
order to switch to the time domain, this can be done by ) N , , )
fitting the experimentat”(w) data to the Havriliak-Negami X :;1 [£opd i) —&cal i) ]7, (12)
expression and then using tleand y parameters obtained
to evaluateG(In(7)) with the theoretical expression given in wherew; are the experimental angular frequencies Anig
Table I. Nevertheless, this method is based on the assumghe number of data points. This optimization could be done
tion that the distribution of relaxation times is indeed using standard linear least squares methods such as singular
Havriliak-Negami, and it is also very difficult to apply when value decompositiof since the problem is linear in th@,
the experimental curves are made of overlapping modes. parameters; this method does not guarantee that alGthe
When dealing with experimental data fof (»), itis nec-  will be positive as required. Another approach is to use non-
essary to use numerical methods in order to ob®&(im(7)).  linear least squaregMarquardt-Levenbeng(Ref. 33, con-
One way is the use of the inverse Fourier transform of Egstraining the parameters to be positive. This method is highly
(8) as suggested by Franklin and de Bfiand later im-  sensitive to the choice of initial parameters and there is not a
proved by Liedermann and Loidf. This method has the guarantee that the minimum reached would be the global one
usual problems of discrete Fourier transforms: truncationthat is sought. Usually one obtains a local minimum and
aliasing and computing rounding error effects, noisy dataseveral runs must be made with different initial parameters to
and the need of the data points to be available at frequenciessure that the best fit has been reached. To avoid these
located at equidistant short intervals on a logarithmic scaleproblems, we use the simulated annealing optimization
Another approach is the use of th@NTIN program of  method of Kirkpatrick et all® appropriately modified to
Provencher’ as suggested by Alvareat al.” and Karatasos handle continuous functions, to optimize EG.2). Even
et al'* More recently, Scffer et al. * have extracted the though this algorithm is now well known and widely used in
continuous distribution of relaxation times from complex di- all kinds of optimization problem® we will briefly describe
electric spectra using the Tikhonov regularization techniquét and explain the particulars of its application in this work.
with the self-consistency method of Honerkamp and At the heart of the SADSA method is the so-called Me-
Weese®* Finally, Eq. (8) can be inverted by discretizing tropolis criterion®* a simulated thermodynamic system is as-
the distribution function into a sum d¥l contributions or symed to change its configuration from enekjyto energy
bins, each characterized by a pair (G,). The dielectric  E, with probability p=exf (E,—E,)/T]. If E,<E, the prob-
loss can then be written as: ability is arbitrarily assigned a valye= 1, so downhill steps
are always taken. But iE,>E; then an uphill step is taken
M GioT sometimes depending on the temperature. In the SADSA, the
g"(0)=2, — . (11)  function to be minimized is the value gf* from Eq. (12
k=1 1+ w7y and the “temperature” is a control parameter with the same
units asy?. At any given “temperature” the values of the
Colonomos and Gorddhused this concept along with the parameters being adjusted are changed by randomly explor-
Simplex method of optimization for analyzing experimentaling the parameters space agtlis calculated anew; the new
dielectric data from isoamyl bromide. Imanishi et‘alith  values are accepted or rejected according to the Metropolis
the histogram method, find the distribution of relaxationcriterion. Each of these trials is called a Monte Carlo step
times by discretizing it and using an iterative method in or-and a large number of these are performed until the mean
der to minimize the differences between the observed andalue of y? reaches a stable value or a predetermined limit-
calculated values o£”(f;) where f; are the measurement ing number of steps is done. The variation of the parameters
frequencies and choosing the discrete relaxation times as is controlled via an adaptive factor recalculated evisky
=1/2xf;. Monte Carlo steps in a way that at every “temperature” the
In this work we propose the use of the simulated annealnumber of accepted steps is roughly equal to the number of
ing direct signal analysi§SADSA) method®?> which has rejected steps following the recipe of Coraztaal >° We start
been successfully used in the analysis of relaxation curveat some “high temperature” and after “thermal equilibra-
from thermally stimulated depolarization current experi-tion” the “temperature” is lowered, usually by a factor be-
ments. The algorithm has been properly modified for theween 0.95 and 0.99, and the Monte Carlo steps are repeated
analysis of experimental dielectric loss curves as a functiomt the new “temperature.” This annealing schedule corre-
of frequency. Each relaxation peak is decomposed Mto sponds to what is called in the literature the fast simulated
elementary modes, i.e., Debye relaxation processes, whicnnealing®® The process is stopped at a “temperature” low
contributes to the whole spectrum an amo@qt;, then, all  enough where no more significant improvements can be ex-
the contributions are summed as expressed in(Ef. Itis  pected for they? value.
to be noted that the procedure is applicable if the relaxation The number of parameters to be fitted, that is, the
mode can be decomposed in a sum of Debye processes. Thamber of bins of the histogram is in principle arbitrary. One
applicability of such a forced-fitting method is in each casenormally chooses the minimum necessary to approach satis-
justified by the quality of the results, but the initial assump-factorily the distribution function. More important is the
tion might not be true in some cases. The method is somezhoice of the range ofy. It must be sufficiently broad to
what similar to the histogram method of Imanishi, but in- cover all the relaxation times that will contribute to the ex-
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FIG. 1. SADSA results for a computer generatddw) with a
Cole-Cole function &=0.5): (a) (O) generated points, — fitted
curve; (b) Gy histogram,G(In(7)) from analytical expression.

FIG. 2. SADSA results for a computer generatddw) with a
Davidson-Cole function ¥=0.5): (a) (O) generated points, —
fitted curve;(b) G, histogram,G(In(7)) —— from analytical ex-
perimental relaxation curve but not too narrow to minimizepression.
edge effects, that is, the extreme bins contributing in excess

of what they should. Usually after two or three runs of theino sum of square residuai@=9.4x 10"°. In Fig. 1(b) the

progl;am, fog_e gets a clearfidea of the mfop;rfqp_riate rhange ar?‘qulting relaxation-time distribution function is plotted as a
lr]um er ?. oINS necessary” orda suticess.u |ttr|]ngle ese pr‘?ﬁstogram, the height of each bar representing the contribu-
Iminary fittings are usually done lowering the “tempera- i, of thig particular Debye process to the complex curve.

tﬁre; using a red“ction faCtoL_th(:'g' In thhe ciefinitive UNS, it now, G(In(7)) is analytically calculated from the expres-
the factor is usually 0.975, which lowers the “temperature sion given in the third row of the last column of Table I, the

slower than before. The set @f are selected equally spaced continuous curve in Fig. (b) is obtained. The agreement

in logarithm space, that is, a constadlIn(n))=In(n:1)  found between the numerically discretized distribution func-
—In(7), and in practice we found thai(In(n))=1 was suf- s and the analytical one ensures the validity of our proce-
ficient to extract the distribution function in most cases. They,;re. The same calculations are carried out in the case of the
initial values of theGy were all the same, i.e., & box-shaped p,yigson-Cole distribution function with=0.5. The results
_d|str|b_ut|on, and the dlsc_:rete mmal _(_j|str|but|on is normal— plotted on Fig. 2a) show again a very satisfactory agreement
ized, i.e.,G=1/M, Vk. Finally tzh_e initial “temperature™ is  (,2_5 0x 10-7). Also, the continuous distribution function
usually taken as 10_@ whereyg is the initial value of the - cajcylated analytically is very near to the discrete one repre-
sum of square residuals. The program was .carefully Vf"‘“'sented by the histogram in Fig(®. The typical features of
dated using computer-generated curves as will be explainegis gistribution function are readily observed, i.e., an asym-
in the next section. metric relaxation function due to a steep cutoffG{In(z))
for 7= 7.

On going to the fifth row of Table I, the widely used
Havriliak-Negam‘? distribution function is found. In Fig.(&)
the asymmetric function resulting from the computer gener-

The proposed method for determination®(In(7)) was atede”(w) is represented for=0.6 andy=0.3. Here again
first investigated using computer-generated curvegfdior  the agreement is of high quality?=7.7x10"8, and the
the models listed in Table I. All the curves were generatechistogram is very close to the continuous curve generated
with Ae=1 and the characteristic relaxation timg=1 s.  with the analytical expression written in column 4, row 5 of
For the Cole-Cole distribution function the shape parametetable |.
is taken as:«=0.5 and anwry range corresponding to Finally, the KWW function is tested. The curves for 0.1
—30=< In(w7p)=<30. The &¢"(w) curve is fitted with the <B<1 are generated numerically by integrating the expres-
SADSA procedure and in Fig(d) the generated curd®pen  sion in column 3, row 6. It is worth mentioning that there are
circles together with the best fiicontinuous curveare rep- a number of approximations to this expression in the
resented. The agreement is excellent and it is quantified biteraturé*’~3%as an alternative to brute-force numerical in-

V. RESULTS AND DISCUSSION

A. Computer-generated curves
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FIG. 3. SADSA results for a computer generatédw) with a
Havriliak-Negami function &=0.6, y=0.3): (a) (O) generated
points, —— fitted curveyb) G, histogram,G(In(7)) —— from
analytical expression.

FIG. 4. SADSA results for a computer generatéddw) with a
KWW function (8=0.3): (a8 (O) generated points, — fitted
curve;(b) G, histogram,G(In(7)) from analytical expression.

satisfactory, which is to be expected as the skewness of the

tegration. All these expressions are used and compared aRde is absent in the symmetric Cole-Cole distribution. For
the result is that the computer-generated curves do not showe Davidson-Cole distribution, the best fit @(t) to a

any significant differences with the approximations citedKWW is obtained for3=0.719, r —0556 s the dif-
above. The curve generated wig=0.3 is represented in tarance in the shape pérarr{eteg%vim(l).?lé and,y:O.S

Fig. 4(3) (open _symbols the continuous curve is the_ result ghows that the KWW broadens the profiles more effectively
of the SADSA fitting. The asymmetry of the dielectric func- than the Davidson-Cole with its steep cutoff.

tion is readily observed; here the quality of the fitting is
again measured by the sum of square residuals which is nov' 1
x2=1.4x10’. The discretizeds(In(7)) obtained from the ‘
best SADSA fit is represented in Fig(b} as an histogram
and the continuous curve is calculated by using the analytica g [
expression foiG(In(7)) given in the last cell of Table I. L
Once the validity of our fitting procedure has been proved
the next step is to go from the frequency to the time domain ¢ [
by using the SADSA determined normalized distribution
function, G(In(7), to numerically evaluate the decay func- ©-
tion, ¢(t), by means of expressid®). In Fig. 5 the results 0.4
for the numerical calculation of(t) are plotted as a func-
tion of In(t/7xww) for the four distribution functions used
above. The parametety is defined as the time where the 0.2
decay function reaches a value oél1The curves smoothly

a Cole B =
Cole Teww = L 8ls A

e Davidson B =0.719 -
Cole Teww = 0.556s

o Havriliak B =0.245

decay from 1 to 0, and their shape strongly depends on the I Negami T, =0.072s

parameters used for the simulation. For the three curves witt oo L ., [\
a single shape parameter, i.e., Cole-Cole, Davidson-Cole 20 -15 -10 -5 0 5 0 15 20
and KWW, the value of this parameter used in the simulation In(t/7._ )

is 0.5 but it leads to different curve profiles. The fastest de- Kww

cay corresponds to the Davidson-Cole and the slowest to the g 5 pecay function calculated from Eq9) with the

Cole-Cole. The KWW decay function is intermediate. Thegin()) obtained with SADSA for a Cole-Cole functior& 0.5),
continuous curves on this figure are the fittings of these depayidson-Cole function £=0.5), Havriliak-Negami function 4
cay functions to a KWW stretched exponential written in EQ.=0.6, y=0.3) and KWW function §=0.5); —— Fitted curves
(1). The fitting to a KWW of the(t) resulting from the  to KWW functions, the resultingg and 7 are indicated in the
Cole-Cole distribution §=0.373, 7xww=1.881 s),isnot legend.
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FIG. 6. ¢"(T) for a-PVDF, for frequencies 1mHzf<1 MHz. FIG. 7. &"(f) for a-PVDF, for temperatures 233 KT
The lines are drawn to guide the eye. <313 K. The lines are drawn to guide the eye.

The Havriliak-Negami decay function fit to a KWW gives . . . .
B=0.245. 7euu=0.072 s as compared to the shape pa_tensny of the dielectric loss is observed. The presence of a

rameters used in the simulation= 0.6 —03 —1s relaxation labeledr. on the high-temperature side of thg
e O YTUS - ToT S mode affects the intensity of this latter peak at very low
and quantitatively the sum of square residuals is higher thaﬂequencies {=10"! Hz). For frequencies below 10 Hz the

in the case of Fhe Qawdson—CoIe function. A comparison can = ode is observed and is more intense thandpenode.
be made at this point among our results and those present%ﬁ Fig. 7 &"(f) is represented for 233 KT<313 K for 1

by Alvarezet al*° These authors sought the interconnection >3
between Havriliak-Negami and KWW functions. They usex10 HZ.SfSl'SX 10° H.Z' The presence of the.a anq
a. modes is clearly seen in the frequency domain. Higher

the Imanishiet al.  algorithm to obtain among other things temperatures are not shown as the conductivity component
the three-dimensional and contour plots of fheralues ob- P . Y P
) . X . becomes important and the results are too affected to be used
tained for the different pairs at andy. Our results fit well . . . ;
in any of the precise analysis that are intended here. The

in the corresponding contour. ) . .
: . . SADSA procedure is then applied to the ten curves obtained
Finally, for the KWW decay function the continuous with 5 K steps in the range 233 KeT=278 K and

curve represents the fitting to E@.) and obviously gives an 103 Hz =f=1x1C° Hz, where thea, and a, relax-

excellent agreement and £=0.500, 7iww=1.001 s, as ations are complete and most suitable for analyzing it with
expected, and a sum of least squares residuals three orderstéf SADSA fitt?n rocedure. The contributiony of gthe dc
magnitude less than above. gp :

As a conclusion for this section on the results obtaine onductivity was subtracted from the experimental data at

with the SADSA procedure when extracting the distribution_lc_)k\:\é f::gjﬁ;g?fhgsﬁ?ﬂ:\erzrévgﬁisvﬁxgsres;ﬁg li‘lfj%/ Z(L)J(;)v'es in
of relaxation timesG(In(7)) from the computer-generated Fig. 8. the svmbols bei?l the experimental points. As usual
curves using the different empirical relaxation functions g.f_ ' d y foll 9 | ? h P! : | | N
listed in Table I, we have checked that the program indeegu;e ftted curve follows very closely the experimental results;

finds a discrete distribution that follows very nearly the ana-thg f)l(a)é?itl'ﬁr?gntgizgjg'brgt'?Q?errisetélt:?]ggironygfebgﬁgwnoﬁn
lytical distribution, which is known in those cases. Also the P P 9-

interconnection of the Havriliak-Negami decay function with F;lg. 9 fcl)r SIIX oﬁthe t_en tempefratl{)lres gh?zgn hsref' The ][esults
a KWW stretched exponential is also demonstrated. show ¢ ea_ryt e existence of a bimoda 'Stf' ution, a faster
asymmetrical one, the segmental, relaxation, and the
slower symmetrier, mode. The distribution for the, mode
becomes narrower as the temperature increases and its mean
The relaxation spectra af-PVDF as a function of tem- value shifts to lowerr’s. The intensity of highr extreme
perature at different frequencies is shown in Fig. 6. At verybins in each case is due to the edge effects inherent to nu-
low temperature a weak bump, not shown in the figuremerical calculations when the tails of the curve are not com-
arises from the local dipolar modes. The dielectric manifespletely defined, which is the case for tllg mode at low
tation of the glass transition originated by cooperative dipotemperatures as seen in Fig. 8. The results obtained for
lar motions in the amorphous phase, usually labeled agthe G(In(7)) from the dielectric loss curves are also used to
or the a, relaxation, is the first intense peak that appears asimulates’ (w) according to Eq(7) in the temperature range
the temperature increases. In this figure, it is clearly seen thatudied here, and the agreement with the experimental data is
the a, mode shifts in temperature as the frequency increase$pund to be excellent. Additionally, and for the first time for
additionally, a broadening and enhancement of the peak ina-PVDF, with the knowledge o&(In(7)), the decay function

B. PVDF relaxation spectra
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-5 0 5 10 15 FIG. 9. G, histograms extracted with the SADSA procedure
In(w/rad S'l) from the &"(f) for «-PVDF, for temperatures 238 KT

<278 K.
FIG. 8. &¢"(w) for a-PVDF, for temperatures 238 KT
<278 K. The symbols are the experimental poifwithout the dc  ting. In the inset of this figure the variation of thieparam-
conductivity), the continuous curves correspond to the results of theeter with temperature for the two different modes is plotted
SADSA procedure. and shown to be significant for this material. A linear depen-
dence in the temperature range explored here is found to be
¢(t) can be calculated at temperatures 233<KT for both B, and 8. KWW parameters:

=278 K and the results are represented in Fig. 10. The ex- o
istence of two relaxation processes is also clearly seen here Ba=—122+6.16x10 °T; B,=1.46-4.08

and each decay curve has been fitted to a KWW stretched X107 3T, 233 K=T=313 K.

exponential with satisfactory results as can be seen in this

latter figure from the good agreement among the symbols The increasing value found here for tjg exponent as

and the continuous curves, which result from the KWW fit-the temperature increases is explained as a consequence of

1-0 T ] I 1 T 1 T I 1
| J— T Raaamani .
- a h
. - ( 14
" N W
o, 11
0.6 0.0 L [ Lo L Lo ] .
230 240 250 260 270 280 FIG. 10. Decay function for
B (K) a-PVDF calculated from Eq(9)
- | with the G,(In(7)) shown in Fig.
9 for temperatures 238 K<T
i <278 K. The continuous curves
04 | are the fittings to KWW decay
R functions. The inset shows the
| ® variation of the KWW B param-
a eters with temperature.
02 | A
| v
*
i A
0.0 |
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m= > (13
- (IN10)(1—Ty/Ty)
i wherem is an indication of the steepness of the variation of
the material properties, i.e., viscosity, relaxation timeTgas
is reached. A highm value defines a very fragile material
whereas a strong one will be characterized by small value for
m. Bohmeret al** compared different types of glass-forming
materials, among them several amorphous polymers. The
m(T,) values tabulated range from 4polyisobutyleng to
191 (polyvinylchloride. The m(Ty) value calculated with
the VTF parameters found in this work farPVDF is equal
E to 87, determined at the glass transition temperature taken as
T Iy ST — the temperature where the relaxation time is equal to 100 s.
1057 (K This fragility parameter indicates that PVDF is not a very
K" . . -
fragile material as compared with the polymers reported by
FIG. 11. Relaxation plots fora, and o, modes for these authors. The value of the KWW paramegg(T,) is
a-PVDF, 7ww=f(10°/T). The continuous curves are the fitting estimated to be 0.14, which does not agree with the general
to VTF and Arrhenius expressions, respectively. trend of the reported values in the cited work by Bohmer
et al*® This low B value was to be expected due to the wide

the reduction in size of the cooperative rearranging region§istribution found at low temperatures, which may be attrib-
(CRR) introduced in the molecular kinetic theory proposeduted to the existing strong chain interactions due to the elec-
by Adam and Gibb&! Ngai et al*2 have proposed an exten- tronegativity of the fluorine atoms. Also, the low fragility of
sion of this model that takes into account the coupling be_a—'PVDF can be associated to the semicrystalline nature of
tween the CRR in a more complete theory for glass-forminghis polymer. o

liquids. They predict the behavior of theparameter, which The same analysis is now made for thig mode and the

is related to, B=1—n, to be dependent on the siz¥,, results are shown for the variation gf on Fig. 10 and for

of the CRR and to increase witti . The increase ofi as the the relaxation plot shown in Fig. 11. The parameggris
temperature decreases is predicted. These authors apply thBfW @ decreasing function of temperature and the relaxation
theory to low-molecular weight glass-forming liquids and Plot shows an Arrhenius dependence #¢) with the fol-

find the expected behavior fororthoterphenyl and lowing values for the pre-exponential and the energy factor:
3-bromopenthane, while for glycerol there is no variation
with decreasing temperature. The reported increas@.of

with temperature found here, is understood by considering This &, mode is associated with molecular motions origi-
Cc

that as the temperature increases the mode approaches a De- '~ . X oo ;
b . . . . nated in the crystalline regions and it shifts very rapidly to-
ye behavior because the interaction between relaxing ent\'/(/ards higher temperatures as the frequency increases. Naka-
ties is not significant as the size of the CRR is reduced. The 9 P q Y j

e . . . gawa and Ishidd have explained the origin of this high-
varla.tlon ofn or W'th tempera.\ture s to be related with the temperature relaxation as the result of molecular motions in
fragility of the material, which is measured in the relaxation

plots 7(T) = f(1/T). The more fragile the material the more the chain folds of the crystalline lamellas in addition to those

is its deviation from an Arrhenius dependence. From the fitn the interior of the crystals. These authors conclude that the

ting of the calculated(t) to 2 stretched exponentials, the folded chain is relatively mobile, while the motion of the

KWW relaxation time is obtained in the temperature inter alchains inside the lamellas is restricted to rotations around the
233 K <'I)'(<I313IK 'Irhe relsultslof these Ealcu?atiolns a\llremain chain axis. They found Arrhenius enthalpies in the
shown on Fig. 11, where the curvature of #agplot is very range of 21 to 25 kcal/mol€0.89 to 1.08 eV, which are

; ; 20
apparent. The fit of these poinfspen circles to a Vogel- much higher than the values found here. Miyametal.

. FulchetVTF) . ) ; tiofd) interpreted the Arrhenius behavior for this relaxation as be-
ammann-ruichetv EXpression given in equatl ing originated by a two-site jump motion through the confor-
results in the following parameters: =

mational changeTGTG—GTGT. They report a free
Arrhenius energy of less than 1 kcal/mole and interpret the
Eyrr=0.09 eV, T,=185.2 K, TOVTF:5'2X 1012 g, observed anisotropy of the. relaxation in«-PVDF as a
change in conformation with internal rotation that can occur
in the crystalline phase, with defects in the crystalline re-
These VTF parameters agree very well to a previous degions playing an important role in this mode.
termination made by 48 by applying the SADSA to ther- Recently, sensitive NMR experimeft®n a-PVDF have
mally stimulated depolarization curves and DS in a muchconfirmed that the only molecular motion consistent with
more restricted frequency range. Also, these values compatmth dielectric and NMR measurements is the one initially
well to those determined by Samdraat a pressure of 1 bar. proposed by Miyamotet al?° The only discrepancy resides
Another consequence of the numbers obtained here by fittinop the time scale of the motion, which is found to be in the
the VTF relaxation plot is the calculation of the fragility NMR studies as equal to 20 ms at 370 K, while the previous
parameterm, as defined by Bohmeet al*3 dielectric studies place it in the range of 0.1 to 1 ms. Hirsch-

10 |
101
102
0f

wawaa ’ wawac

104L
105L

10}

70=4.3x10"° s; E=0.49 eV.
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inger et al?! attributed these differences in time scale to thegenerated curves follow very closely a decay described by a
effect of chemical defectéhead-head or tail-tail junctions stretched exponential provided that the distribution functions
on the position of the loss maximum. If one calculates theare asymmetric. The KWWB parameter can then be related
relaxation time at 370 K from the Arrhenius parametersto the « and y parameters and the results found here agree
found in this work, one finds 20.3 ms in excellent agreementery well with those of Alvarezt al*° reached by a quite
with the most recent studies. The agreement found here belifferent procedure. The SADSA method is a powerful tech-
tween NMR and DS discards the need to invoke the defectsique to ensure that the fit is the best one and that a global
influence and simplifies the interpretation. Referring to theminimum has been reached independently of the choice of
variation of theB. parameter with temperature, the only de- the initial parameters set. The discretization of the distribu-
termination of the variation with temperature of the param-tion function avoids the use of Fourier transforms, without
eters that characterize the distribution of relaxation times foimplying too long computing times. A typical fitting of
a mode originated in the crystalline regions is, to the best ot”(w) at one temperature with 37 points will consume typi-
our knowledge, in lightly oxidized high-density cally 2 h in a SunUltra 1 work station. There are many
polyethylene’* The author reports a linear dependence withproblems where this technique can be applied as processes,
temperature, with positive slope, for the Cole-Cole paramawhich cannot be described by a single relaxation time and
eter. This is attributed to the presence of point defects, whosenat are better understood if a summation of Debye contribu-
effect is expected to be significant due to their high populations is assumed, are abundant in the literature.
tion. In the sine-Gordon soliton model studied by this author The results of the analysis of the relaxation spectra of
the B, value predicted for a polar polymer is 0.74 and inde-PVDF at different temperatures in a wide frequency range
pendent of temperature, which does not correspond to owhowed the presence of thg and a, relaxation modes and
determination. These variations could be due to the conforthe variation of the corresponding distribution of relaxation
mational differences between-PVDF and polyethylene al- times with temperature was found. When switching to the
ready noted by the author who suggested that the modéime domain, the decay function was calculated following
should be tested in zigzag planar polar polymers such athe procedure described above and fitted to two overlapping
B-PVDF. stretched exponentials. The observed variation of@hex-
ponents with temperature for both modes explains why the
VI. CONCLUSIONS master curves in a broad frequency range are not a good
_ approximation as the shape parameters vary. The variation of
Wg havg presentgd an altgrnat|ve_method to extract fro.qhe relaxation time with temperaturex,w(T), follows a
the dielectric relaxation function obtained by broad-band di/Tg dependence for the mode corresponding to the segmen-
electric spectroscopy the distribution function of relaxationig| motion in the amorphous phase of the material, while an
times. The advantages of our approach is that the profile oArhenius dependence is found for the relaxation due to the
the distribution has not to be assumegriori, the resulting  conformational changes proposed in the pioneer dielectric
quality of the fitting being much higher than by starting from ok of Miyamotoet al2° and recently confirmed by Hirsch-
analytical known expressiqns. In this way, hidden peaks Cathgeret al?! by precise NMR experiments. The discrepancy
be detected and overlapping modes can be treated. The I ihe estimated relaxation times at 370 K noted by the latter
sults with computer-generated curves whose distributioyoes not exist when estimated from our work where a wider

function is analytically known, give a discretized distribution frequency range and further numerical analysis are used.
of relaxation times, which follows extremely well the ex-

pected behavior for the symmetric Cole-Cole function as
well as for the asymmetric Davidson-Cole, Havriliak- ACKNOWLEDGMENT
Negami, and KWW distribution functions.
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