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Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated
annealing: Application to a-PVDF
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The existence of a distribution of relaxation times has been widely used to describe the relaxation function
versus frequency in glass-forming liquids. Several empirical distributions have been proposed and the usual
method is to fit the experimental data to a model that assumes one of these functions. Another alternative is to
extract from the experimental data the discrete profile of the distribution function that best fits the experimental
curve without anya priori assumption. To test this approach a Monte Carlo algorithm using the simulated
annealing is used to best fit simulated dielectric loss data,«9(v), generated with Cole-Cole, Cole-Davidson,
Havriliak-Negami, and Kohlrausch-Williams-Watts~KWW! functions. The relaxation times distribution,
G„ln(t)…, is obtained as an histogram that follows very closely the analytical expression for the distributions
that are known in these cases. Also, the temporal decay functions,f(t), are evaluated and compared to a
stretched exponential. The method is then applied to experimental data fora-polyvinylidene fluoride over a
temperature range 233 K<T<278 K and frequencies varying from 3 MHz to 0.001 Hz. These data show the
existence of two relaxation processes: the fast segmentalaa process associated with the glass transition and a
ac mode, which is slower and due to changes in conformation that can occur in the crystalline regions. The
experimental curves are fitted by the simulated annealing direct signal analysis procedure, and the relaxation
times distributions are calculated and found to vary with temperature. The decay function is also evaluated and
it shows clearly its bimodal character and a good agreement with a KWW function with a temperature
dependentb for each mode. The relaxation plots are drawn for each mode and the Vogel-Tammann-Fulcher
and Arrhenius parameters are found. The fragility parameter for polyvinylidene flouride~PVDF! is found to be
87, which characterizes this polymer as a relatively structurally strong material.@S0163-1829~99!13641-5#
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I. INTRODUCTION

In experimental studies on polymer dynamics with broa
band dielectric spectroscopy~DS! the variation of the real,
«8, and imaginary part,«9, of the dielectric constant as
function of temperature,T, and angular frequency,v, is ob-
tained. Many attempts have been made to explain the b
frequency range of«9(v). In the case of glass-forming liq
uids, the experimental behavior has been described by
suming a distribution function for the relaxation times co
tributing to each relaxation process. The general appro
widely used to describe the experimental data, has bee
assume an exponential decay function together with an
pirical distribution function,G„ln(t)…, which describes the
superposition of exponentially damped processes and to
fit the parameters that define this function to the experim
tal data.1–3

Several empirical functions have been used in gla
forming polymeric materials to describe the variation
«* (v), such as the Cole-Cole,4 the Davidson-Cole,5 and the
Havriliak-Negami6 relaxation functions. From these expre
sions the distribution of relaxation times can be analytica
found. When the parameters that characterize the width
skewness, if any, are equal to 1 all these expressions res
the Debye equation. The first one is a symmetric distribut
function, while the second and third are characterized by
PRB 600163-1829/99/60~18!/12764~11!/$15.00
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asymmetric profile. The Havriliak-Negami distribution fun
tion has been the most widely used not only to interp
dielectric spectroscopy7 data but also in the case of quas
elastic neutron-scattering data.8 It describes the relaxation
function with three adjustable parameters,tHN , the mean
relaxation time value, anda and g, which represent the
width and skewness of the dielectric loss when represen
as a function of log(v). In Table I we have summarized th
expressions corresponding to the different empirical mod
for «* (v), «9(v), and G„ln(t)…. On the other hand, the
Kohlrausch-Williams-Watts9 ~KWW!, the so-called stretched
exponential:

f~ t !5expF2S t

tKWW
D bG ~1!

has been widely used and fits well the experimental data
wide variety of experimental techniques, such as dielec
and mechanical relaxations, light scattering, and NMR. T
theoretical justification for this nonexponential decay h
been found either in the simplest version of Ngai’s10 cou-
pling model or in the most recent version of the mode11

which adds an inhomogeneous distribution of primitive
laxation times.

An alternative to the approaches briefly listed above i
direct numerical determination of the distribution functio
G„ln(t)…, from the experimental data«* (v), which with the
12 764 ©1999 The American Physical Society
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TABLE I. Analytical expressions of«* (v), «9(v), andG(ln t) for the theoretical models most used for the complex dielectric cons
(«* 5«82 i«9 andD«5«02«`).

Model «* (v)2«` «9(v) G„ln(t)…

Debye D«

11 ivt0

D« vt0

11(vt0)2

———

Cole-
Cole

D«

11( ivt0)a
D«(vt0)a sin(pa/2)

112(vt0)a cos(pa/2)1(vt0)2a

1

2p S sin~pa!

cosh„a ln~t/t0…!1cos~pa!D

Davidson-
Cole

D«

(11 ivt0)g
D«„cos(w)…g sin(gw) Hsin~gp!

p S t

t02tD
g

, t,t0

0, t.t0

with w5tan21(vt0)

Havriliak-
Negami

D«

„11( ivt0)a
…

g
D« sin(gw)

„112(vt0)a cos(pa/2)1(vt0)2a
…

g/2

~sin~gu!!/p

„112~t/t0!a cos~pa/2!1~t/t0!2a
…

g/2

with w5tan21S ~vt0!a sin~pa/2!

11~vt0!
a cos~pa/2!

D with u5
p

2
2tan21S ~t0 /t!a1cos~pa!

sin~pa! D

Kohlrausch-
Williams-
Watts

D«E
0

`F2 df~t!

dt Ge2ivtdt
1

p E0

`

e2xe2u cos(pb)sin@u sin~pb!#dx

with
D«E

0

`

e2xsin~vt0x
1/b!dx with u5S xt

t0
D b

f(t)5exp„2(t/t0)b
… S t

4pt0
D

1
2

e2t/4t0, for b5
1
2
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new advances in dielectric instrumentation can be meas
in a broad frequency band. The first attempt in this direct
was made by Imanishiet al.,12 who calculated the relaxatio
spectrumG„ln(t)… by using the histogram method; it consis
of fitting the experimental curve with an histogram of rela
ation times, the height of each bar being the contribution
the mode with thatt to the whole relaxation spectrum. Th
method was applied to the analysis of the master curves
tained for bulk and concentrated solutions ofcis-
polyisoprene for both the segmental and the normal mo
The CONTIN procedure of Provencher13 was then applied to
the dielectric data of poly~hydroxy ether of bisphenol-A! by
Alvarez et al.7 and Karatasoset al.14 in the case of the di-
electric normal mode in diblock polymers. Recently, Scha¨fer
et al.15 have proposed a different method to extract the c
tinuous distribution of relaxation times from the compl
dielectric spectra by solving a Fredholm integral equat
using the Tikhonov regularization technique with se
consistent choice of the regularization parameter. They
plied the procedure to simulated curves using two or f
slightly Gaussian broadened overlapping processes,
found an acceptable agreement between the extra
G„ln(t)… and that used in the simulation of the complex sp
trum. Experimental curves obtained with salol adsorbed
microporous glass were also fitted with this procedure
interesting results were obtained forG„ln(t)… as a function of
temperature.

In this paper we present an approach for extracting
distribution of relaxation times from the broad-band diele
ed
n

f
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tric spectra of glass-forming materials by using the simula
annealing Monte Carlo procedure16 together with the direct
signal analysis17 in order to decompose the relaxation spe
trum into true Debye components, which contribute to t
spectrum according to the relaxation times distribution.
check the validity of the procedure it is first applied to com
puter generated«9(v) curves based on known distributio
profiles whose analytical expressions are known~see Table
I!. Then, the method is applied to find the temperature va
tion of the relaxation times distribution fo
a-polyvinylidene flouride (a-PVDF) ~Ref. 18! obtained
over a wide frequencies range. It is shown that the comp
procedure proposed here is able to capture the fine detai
G„ln(t)… that best fit the experimental data. Previous resu
on a or b polymorph of PVDF were made by DS on th
somewhat restricted frequency range that was availabl
that time19,20 and showed the presence of two relaxati
modes; theaa mode, which is related to the glass transitio
occurring in the amorphous zones and theac that is origi-
nated in the crystalline zones of the polymer. The quant
tive results on the relaxation times involved in theac relax-
ation reported in these previous works, differ from the mo
recent determinations made by two-dimensional~2D! ex-
change deuteron NMR by Hirschingeret al.21 More recent
determinations of the relaxation plots onb-PVDF and the
effect of high pressure have been made by Samara22 for the
aa mode. The variation of both theac and aa modes with
frequency and temperature are reported here in a bro
frequency range, and the simulated annealing direct sig
analysis~SADSA! procedure is applied to extractG„ln(t)… at
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each temperature together with the decay functionf(t) and
the relaxation plots for this important material.

II. EXPERIMENT

A. Materials

The polyvinylidene fluoride~PVDF! used in this work
was from Solvay Cie.~SolefX8N!. Its structure correspond
to the nonferroelectric, nonpiezoelectrica-crystalline form
of this polymer. Films were compression molded from p
lets at 503 K and 5000 psi. Their average thickness
150 mm. After molding, the samples were slowly cooled
room temperature and gold electrodes were sputtered to
prove the contacts with the gold-plated electrodes of the c
The degree of crystallinity,Xc , is determined from the are
of the melting peak obtained by differential scanning ca
rimetry in a Perkin-Elmer DSC-7 and found to be 50%; th
value is calculated using 6.7 kJ/mole as the heat of fusion
a 100% crystalline PVDF.

B. Broad-band dielectric spectroscopy

The broad-band dielectric-spectrometer is a Conc
Twelve from Novocontrol forf <33106 Hz. The sample
resides between two gold-plated electrodes 30 mm in di
eter in a cryostat in a cold nitrogen-gas stream. The meas
ments of the real,«8, and imaginary part,«9, of the dielectric
constant as a function of angular frequency,v, are obtained
at each temperature,T, by using a Solartron S1-1260 imped
ance analyzer and a Quatro temperature controller. The
frequencies range from 1023 to 33106 Hz and the tempera
tures used here go from 223 K to 313 K in 2.5 K steps. T
temperature stabilization is better than 0.1 K and the res
tion in tan d better than 1024. For higher frequencies a
HP4291A RF impedance analyzer is used in a coaxial
reflectometry setup for 13106Hz< f <1.83109Hz.

III. THEORETICAL BACKGROUND

The frequency-dependent complex dielectric constant
fined as:

«* 5«82 i«9, ~2!

has the following expression for a Debye process:

«* 5«`1
« 02« `

11 ivt
, ~3!

where t is a single-valued, temperature-dependent, re
ation time following an Arrhenius or a Vogel-Tamman
Fulcher~VTF! expression:

t~T!5t0 expF E

kTG , tVTF~T!5t0VTF
expF EVTF

k~T2T0!G . ~4!

If we assume that the relaxation function is made by
superposition ofM independent Debye-like processes with
continuous normalized distribution of relaxation tim
G„ln(t)… then

«* ~v,T!5«`1D«E
2`

1`G„ln~t!…

11 ivt
d ln~t!, ~5!
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with D«5«02«` and the normalization condition

E
2`

`

G„ln~t!…d ln~t!51. ~6!

Then the real and imaginary part of the complex permittiv
are given by:

«8~v,T!5«`1D«E
2`

1`G„ln~t!…

11v2t2
d ln~t!, ~7!

«9~v,T!5D«E
2`

1`G„ln~t!…vt

11v2t2
d ln~t!. ~8!

From these expressions it appears that the distribu
function can be calculated numerically from the dielect
data. In the next section the SADSA algorithm used to p
form this task is explained in detail.

Now, if one wants to switch to the time domain, the dec
function f(t) can also be calculated by a numerical integ
tion if the distribution of relaxation times is known:

f~ t !5E
2`

1`

G„ln~t!…expF2S t

t D Gd ln~t!. ~9!

At this point, whenf(t) is obtained it can be fitted to a
KWW decay function and thetKWW andb parameters fitted.

IV. DATA ANALYSIS

The distribution of relaxation times can be found from E
~5! if the complex dielectric constant is known, by solvin
this integral equation forG„ln(t)…. Several methods are
available to perform this operation. If an expression
«* (v) is known in closed form, it is possible to calculate a
analytical expression ofG„ln(t)… by means of the inverse
Stieltjes transform5,23 as follows:

G„ln~t!…5
1

2p i F«* S e2 ip

t D2«* S eip

t D G . ~10!

Equation~10! has been applied to the most common emp
cal equations of«* (v) and the results are shown in th
fourth column of Table I. It is worth mentioning that th
result shown here for the Havriliak-Negami distributio
function somewhat differs from expressions previously pu
lished. For example, Bo¨ttcher and Bordewijk23 and more re-
cently Havriliak and Havriliak24 both show expressions tha
can lead to negative values ofG„ln(t)… for a certain combi-
nation of the Havriliak-Negami parameters. This can be s
from the expression given for the angleQ by Havriliak and
Havriliak24 @their Eq.~3!#, where for values ofa.0.5 there
will always be a range oft/t0 for which Q,0. Upon sub-
stituting this negativeQ value in the expression for the dis
tribution function @their Eq. ~2!# a negative value for
G„ln(t)… results. The problem is not solved by taking th
absolute value ofQ as suggested by Alvarezet al.7 as the
obtained distribution profile is still not correct. Instead,
taking the complement ofQ as indicated in Table I the dis
tribution is positive for all combinations of parameters ov
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the wholet range. This modification has already been no
by Bertelsen and Lindga˚rd25 and by Scho¨nhals.26

As one of the objectives for obtainingG„ln(t)… is to de-
duce the decay correlation function,f(t), with Eq. ~9! in
order to switch to the time domain, this can be done
fitting the experimental«9(v) data to the Havriliak-Negam
expression and then using thea andg parameters obtaine
to evaluateG„ln(t)… with the theoretical expression given
Table I. Nevertheless, this method is based on the assu
tion that the distribution of relaxation times is indee
Havriliak-Negami, and it is also very difficult to apply whe
the experimental curves are made of overlapping modes

When dealing with experimental data for«* (v), it is nec-
essary to use numerical methods in order to obtainG„ln(t)….
One way is the use of the inverse Fourier transform of
~8! as suggested by Franklin and de Bruin27 and later im-
proved by Liedermann and Loidl.28 This method has the
usual problems of discrete Fourier transforms: truncati
aliasing and computing rounding error effects, noisy da
and the need of the data points to be available at frequen
located at equidistant short intervals on a logarithmic sc
Another approach is the use of theCONTIN program of
Provencher13 as suggested by Alvarezet al.7 and Karatasos
et al.14 More recently, Scha¨fer et al. 15 have extracted the
continuous distribution of relaxation times from complex d
electric spectra using the Tikhonov regularization techniq
with the self-consistency method of Honerkamp a
Weese.29,30 Finally, Eq. ~8! can be inverted by discretizin
the distribution function into a sum ofM contributions or
bins, each characterized by a pair (tk ,Gk). The dielectric
loss can then be written as:

«9~v!5 (
k51

M
Gkvtk

11v2tk
2

. ~11!

Colonomos and Gordon31 used this concept along with th
Simplex method of optimization for analyzing experimen
dielectric data from isoamyl bromide. Imanishi et al.12 with
the histogram method, find the distribution of relaxati
times by discretizing it and using an iterative method in
der to minimize the differences between the observed
calculated values of«9( f i) where f i are the measuremen
frequencies and choosing the discrete relaxation times at i
51/2p f i .

In this work we propose the use of the simulated anne
ing direct signal analysis~SADSA! method,32 which has
been successfully used in the analysis of relaxation cu
from thermally stimulated depolarization current expe
ments. The algorithm has been properly modified for
analysis of experimental dielectric loss curves as a func
of frequency. Each relaxation peak is decomposed intoM
elementary modes, i.e., Debye relaxation processes, w
contributes to the whole spectrum an amountGk ; then, all
the contributions are summed as expressed in Eq.~11!. It is
to be noted that the procedure is applicable if the relaxa
mode can be decomposed in a sum of Debye processes
applicability of such a forced-fitting method is in each ca
justified by the quality of the results, but the initial assum
tion might not be true in some cases. The method is so
what similar to the histogram method of Imanishi, but i
d
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stead, here the sum of the square residuals among
observed and calculated«9 is minimized to optimize the ex-
pression:

x25(
i 51

N

@«obs9 ~v i !2«cal9 ~v i !#
2, ~12!

wherev i are the experimental angular frequencies andN is
the number of data points. This optimization could be do
using standard linear least squares methods such as sin
value decomposition,33 since the problem is linear in theGk
parameters; this method does not guarantee that all theGk
will be positive as required. Another approach is to use n
linear least squares~Marquardt-Levenberg! ~Ref. 33!, con-
straining the parameters to be positive. This method is hig
sensitive to the choice of initial parameters and there is n
guarantee that the minimum reached would be the global
that is sought. Usually one obtains a local minimum a
several runs must be made with different initial parameter
ensure that the best fit has been reached. To avoid t
problems, we use the simulated annealing optimizat
method of Kirkpatrick et al.16 appropriately modified to
handle continuous functions, to optimize Eq.~12!. Even
though this algorithm is now well known and widely used
all kinds of optimization problems,33 we will briefly describe
it and explain the particulars of its application in this wor

At the heart of the SADSA method is the so-called M
tropolis criterion:34 a simulated thermodynamic system is a
sumed to change its configuration from energyE1 to energy
E2 with probability p5exp@(E22E1)/T#. If E2,E1 the prob-
ability is arbitrarily assigned a valuep51, so downhill steps
are always taken. But ifE2.E1 then an uphill step is taken
sometimes depending on the temperature. In the SADSA,
function to be minimized is the value ofx2 from Eq. ~12!
and the ‘‘temperature’’ is a control parameter with the sa
units asx2. At any given ‘‘temperature’’ the values of th
parameters being adjusted are changed by randomly ex
ing the parameters space andx2 is calculated anew; the new
values are accepted or rejected according to the Metrop
criterion. Each of these trials is called a Monte Carlo s
and a large number of these are performed until the m
value ofx2 reaches a stable value or a predetermined lim
ing number of steps is done. The variation of the parame
is controlled via an adaptive factor recalculated everyNs
Monte Carlo steps in a way that at every ‘‘temperature’’ t
number of accepted steps is roughly equal to the numbe
rejected steps following the recipe of Coranaet al.35 We start
at some ‘‘high temperature’’ and after ‘‘thermal equilibra
tion’’ the ‘‘temperature’’ is lowered, usually by a factor be
tween 0.95 and 0.99, and the Monte Carlo steps are repe
at the new ‘‘temperature.’’ This annealing schedule cor
sponds to what is called in the literature the fast simula
annealing.36 The process is stopped at a ‘‘temperature’’ lo
enough where no more significant improvements can be
pected for thex2 value.

The number of parameters to be fitted,M, that is, the
number of bins of the histogram is in principle arbitrary. O
normally chooses the minimum necessary to approach s
factorily the distribution function. More important is th
choice of the range oftk . It must be sufficiently broad to
cover all the relaxation times that will contribute to the e
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perimental relaxation curve but not too narrow to minimi
edge effects, that is, the extreme bins contributing in exc
of what they should. Usually after two or three runs of t
program, one gets a clear idea of the appropriate range
number of bins necessary for a successful fitting. These
liminary fittings are usually done lowering the ‘‘temper
ture’’ using a reduction factor of 0.9. In the definitive run
the factor is usually 0.975, which lowers the ‘‘temperatur
slower than before. The set oftk are selected equally space
in logarithm space, that is, a constantD„ln(tk)…5 ln(tk11)
2ln(tk), and in practice we found thatD„ln(tk)…51 was suf-
ficient to extract the distribution function in most cases. T
initial values of theGk were all the same, i.e., a box-shap
distribution, and the discrete initial distribution is norma
ized, i.e.,Gk51/M , ;k. Finally the initial ‘‘temperature’’ is
usually taken as 100x0

2, wherex0
2 is the initial value of the

sum of square residuals. The program was carefully v
dated using computer-generated curves as will be expla
in the next section.

V. RESULTS AND DISCUSSION

A. Computer-generated curves

The proposed method for determination ofG„ln(t)… was
first investigated using computer-generated curves for«9 for
the models listed in Table I. All the curves were genera
with D«51 and the characteristic relaxation timet051 s.
For the Cole-Cole distribution function the shape parame
is taken as:a50.5 and anvt0 range corresponding to
230< ln(vt0)<30. The «9(v) curve is fitted with the
SADSA procedure and in Fig. 1~a! the generated curve~open
circles! together with the best fit~continuous curve! are rep-
resented. The agreement is excellent and it is quantified

FIG. 1. SADSA results for a computer generated«9(v) with a
Cole-Cole function (a50.5): ~a! (s) generated points, —— fitted
curve; ~b! Gk histogram,G„ln(t)…—— from analytical expression.
ss

nd
e-

’

e
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ed

d

r

by

the sum of square residualsx259.431029. In Fig. 1~b! the
resulting relaxation-time distribution function is plotted as
histogram, the height of each bar representing the contr
tion of this particular Debye process to the complex cur
If, now, G„ln(t)… is analytically calculated from the expres
sion given in the third row of the last column of Table I, th
continuous curve in Fig. 1~b! is obtained. The agreemen
found between the numerically discretized distribution fun
tion and the analytical one ensures the validity of our pro
dure. The same calculations are carried out in the case o
Davidson-Cole distribution function withg50.5. The results
plotted on Fig. 2~a! show again a very satisfactory agreeme
(x255.031027). Also, the continuous distribution functio
calculated analytically is very near to the discrete one rep
sented by the histogram in Fig. 2~b!. The typical features of
this distribution function are readily observed, i.e., an asy
metric relaxation function due to a steep cutoff inG„ln(t)…
for t5t0.

On going to the fifth row of Table I, the widely use
Havriliak-Negami6 distribution function is found. In Fig. 3~a!
the asymmetric function resulting from the computer gen
ated«9(v) is represented fora50.6 andg50.3. Here again
the agreement is of high quality,x257.731028, and the
histogram is very close to the continuous curve genera
with the analytical expression written in column 4, row 5
Table I.

Finally, the KWW function is tested. The curves for 0
,b,1 are generated numerically by integrating the expr
sion in column 3, row 6. It is worth mentioning that there a
a number of approximations to this expression in t
literature9,37–39as an alternative to brute-force numerical i

FIG. 2. SADSA results for a computer generated«9(v) with a
Davidson-Cole function (g50.5): ~a! (s) generated points, ——
fitted curve;~b! Gk histogram,G„ln(t)… —— from analytical ex-
pression.
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tegration. All these expressions are used and compared
the result is that the computer-generated curves do not s
any significant differences with the approximations cit
above. The curve generated withb50.3 is represented in
Fig. 4~a! ~open symbols!, the continuous curve is the resu
of the SADSA fitting. The asymmetry of the dielectric fun
tion is readily observed; here the quality of the fitting
again measured by the sum of square residuals which is
x251.431027. The discretizedG„ln(t)… obtained from the
best SADSA fit is represented in Fig. 4~b! as an histogram
and the continuous curve is calculated by using the analy
expression forG„ln(t)… given in the last cell of Table I.

Once the validity of our fitting procedure has been prov
the next step is to go from the frequency to the time dom
by using the SADSA determined normalized distributi
function, G„ln(t)…, to numerically evaluate the decay fun
tion, f(t), by means of expression~9!. In Fig. 5 the results
for the numerical calculation off(t) are plotted as a func
tion of ln(t/tKWW) for the four distribution functions use
above. The parametertKWW is defined as the time where th
decay function reaches a value of 1/e. The curves smoothly
decay from 1 to 0, and their shape strongly depends on
parameters used for the simulation. For the three curves
a single shape parameter, i.e., Cole-Cole, Davidson-C
and KWW, the value of this parameter used in the simulat
is 0.5 but it leads to different curve profiles. The fastest
cay corresponds to the Davidson-Cole and the slowest to
Cole-Cole. The KWW decay function is intermediate. T
continuous curves on this figure are the fittings of these
cay functions to a KWW stretched exponential written in E
~1!. The fitting to a KWW of thef(t) resulting from the
Cole-Cole distribution (b50.373, tKWW51.881 s), is not

FIG. 3. SADSA results for a computer generated«9(v) with a
Havriliak-Negami function (a50.6, g50.3): ~a! (s) generated
points, —— fitted curve;~b! Gk histogram,G„ln(t)… —— from
analytical expression.
nd
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satisfactory, which is to be expected as the skewness of
curve is absent in the symmetric Cole-Cole distribution. F
the Davidson-Cole distribution, the best fit off(t) to a
KWW is obtained forb50.719, tKWW50.556 s; the dif-
ference in the shape parameters,b50.719 and g50.5,
shows that the KWW broadens the profiles more effectiv
than the Davidson-Cole with its steep cutoff.

FIG. 4. SADSA results for a computer generated«9(v) with a
KWW function (b50.3): ~a! (s) generated points, —— fitted
curve;~b! Gk histogram,G„ln(t)… —— from analytical expression

FIG. 5. Decay function calculated from Eq.~9! with the
G„ln(t)… obtained with SADSA for a Cole-Cole function (a50.5),
Davidson-Cole function (g50.5), Havriliak-Negami function (a
50.6, g50.3) and KWW function (b50.5); —— Fitted curves
to KWW functions, the resultingb andtKWW are indicated in the
legend.
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The Havriliak-Negami decay function fit to a KWW give
b50.245, tKWW50.072 s as compared to the shape p
rameters used in the simulationa50.6, g50.3, t051 s,
and quantitatively the sum of square residuals is higher t
in the case of the Davidson-Cole function. A comparison c
be made at this point among our results and those prese
by Alvarezet al.40 These authors sought the interconnect
between Havriliak-Negami and KWW functions. They u
the Imanishiet al.12 algorithm to obtain among other thing
the three-dimensional and contour plots of theb values ob-
tained for the different pairs ofa andg. Our results fit well
in the corresponding contour.

Finally, for the KWW decay function the continuou
curve represents the fitting to Eq.~1! and obviously gives an
excellent agreement and ab50.500, tKWW51.001 s, as
expected, and a sum of least squares residuals three ord
magnitude less than above.

As a conclusion for this section on the results obtain
with the SADSA procedure when extracting the distributi
of relaxation timesG„ln(t)… from the computer-generate
curves using the different empirical relaxation functio
listed in Table I, we have checked that the program ind
finds a discrete distribution that follows very nearly the an
lytical distribution, which is known in those cases. Also t
interconnection of the Havriliak-Negami decay function w
a KWW stretched exponential is also demonstrated.

B. PVDF relaxation spectra

The relaxation spectra ofa-PVDF as a function of tem-
perature at different frequencies is shown in Fig. 6. At ve
low temperature a weak bump, not shown in the figu
arises from the local dipolar modes. The dielectric manif
tation of the glass transition originated by cooperative di
lar motions in the amorphous phase, usually labeled as thb
or theaa relaxation, is the first intense peak that appears
the temperature increases. In this figure, it is clearly seen
theaa mode shifts in temperature as the frequency increa
additionally, a broadening and enhancement of the peak

FIG. 6. «9(T) for a-PVDF, for frequencies 1mHz< f <1 MHz.
The lines are drawn to guide the eye.
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tensity of the dielectric loss is observed. The presence
relaxation labeledac on the high-temperature side of theaa
mode affects the intensity of this latter peak at very lo
frequencies (f <1021 Hz). For frequencies below 10 Hz th
ac mode is observed and is more intense than theaa mode.
In Fig. 7 «9( f ) is represented for 233 K<T<313 K for 1
31023 Hz< f <1.83109 Hz. The presence of theaa and
ac modes is clearly seen in the frequency domain. Hig
temperatures are not shown as the conductivity compon
becomes important and the results are too affected to be
in any of the precise analysis that are intended here.
SADSA procedure is then applied to the ten curves obtai
with 5 K steps in the range 233 K<T<278 K and
1023 Hz < f <13106 Hz, where theaa and ac relax-
ations are complete and most suitable for analyzing it w
the SADSA fitting procedure. The contribution of the d
conductivity was subtracted from the experimental data
low frequencies as a term whose expression iss5s0 /e0v.
The results of the fitting are shown as continuous curves
Fig. 8, the symbols being the experimental points. As us
the fitted curve follows very closely the experimental resu
the relaxation times distributions resulting from the best fit
the experimental results represented in Fig. 8 are show
Fig. 9 for six of the ten temperatures chosen here. The res
show clearly the existence of a bimodal distribution, a fas
asymmetrical one, the segmentalaa relaxation, and the
slower symmetricac mode. The distribution for theaa mode
becomes narrower as the temperature increases and its
value shifts to lowert ’s. The intensity of hight extreme
bins in each case is due to the edge effects inherent to
merical calculations when the tails of the curve are not co
pletely defined, which is the case for theac mode at low
temperatures as seen in Fig. 8. The results obtained
G„ln(t)… from the dielectric loss curves are also used
simulate«8(v) according to Eq.~7! in the temperature rang
studied here, and the agreement with the experimental da
found to be excellent. Additionally, and for the first time fo
a-PVDF, with the knowledge ofG„ln(t)…, the decay function

FIG. 7. «9( f ) for a-PVDF, for temperatures 233 K<T
<313 K. The lines are drawn to guide the eye.
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f(t) can be calculated at temperatures 233 K<T
<278 K and the results are represented in Fig. 10. The
istence of two relaxation processes is also clearly seen
and each decay curve has been fitted to a KWW stretc
exponential with satisfactory results as can be seen in
latter figure from the good agreement among the symb
and the continuous curves, which result from the KWW

FIG. 8. «9(v) for a-PVDF, for temperatures 238 K<T
<278 K. The symbols are the experimental points~without the dc
conductivity!, the continuous curves correspond to the results of
SADSA procedure.
x-
re

ed
is
ls
-

ting. In the inset of this figure the variation of theb param-
eter with temperature for the two different modes is plott
and shown to be significant for this material. A linear depe
dence in the temperature range explored here is found t
for both ba andbc KWW parameters:

ba521.2216.1631023T; bc51.4624.08

31023T, 233 K<T<313 K.

The increasing value found here for theba exponent as
the temperature increases is explained as a consequen

e

FIG. 9. Gk histograms extracted with the SADSA procedu
from the «9( f ) for a-PVDF, for temperatures 238 K<T
<278 K.
e

FIG. 10. Decay function for
a-PVDF calculated from Eq.~9!
with the Gk„ln(tk)… shown in Fig.
9 for temperatures 238 K<T
<278 K. The continuous curves
are the fittings to KWW decay
functions. The inset shows th
variation of the KWWb param-
eters with temperature.
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the reduction in size of the cooperative rearranging regi
~CRR! introduced in the molecular kinetic theory propos
by Adam and Gibbs.41 Ngai et al.42 have proposed an exten
sion of this model that takes into account the coupling
tween the CRR in a more complete theory for glass-form
liquids. They predict the behavior of then parameter, which
is related tob, b512n, to be dependent on the size,z* ,
of the CRR and to increase withz* . The increase ofn as the
temperature decreases is predicted. These authors apply
theory to low-molecular weight glass-forming liquids an
find the expected behavior forortho-terphenyl and
3-bromopenthane, while for glycerol there is no variati
with decreasing temperature. The reported increase ofba
with temperature found here, is understood by conside
that as the temperature increases the mode approaches
bye behavior because the interaction between relaxing e
ties is not significant as the size of the CRR is reduced.
variation ofn or b with temperature is to be related with th
fragility of the material, which is measured in the relaxati
plots t(T)5 f (1/T). The more fragile the material the mor
is its deviation from an Arrhenius dependence. From the
ting of the calculatedf(t) to 2 stretched exponentials, th
KWW relaxation time is obtained in the temperature inter
233 K <T<313 K. The results of these calculations a
shown on Fig. 11, where the curvature of theaa plot is very
apparent. The fit of these points~open circles! to a Vogel-
Tammann-Fulcher~VTF! expression given in equation~4!
results in the following parameters:

EVTF50.09 eV, T05185.2 K, t0VTF
55.2310212 s.

These VTF parameters agree very well to a previous
termination made by us18 by applying the SADSA to ther-
mally stimulated depolarization curves and DS in a mu
more restricted frequency range. Also, these values com
well to those determined by Samara22 at a pressure of 1 bar
Another consequence of the numbers obtained here by fi
the VTF relaxation plot is the calculation of the fragilit
parameter,m, as defined by Bohmeret al.43

FIG. 11. Relaxation plots foraa and ac modes for
a-PVDF, tKWW5 f (103/T). The continuous curves are the fittin
to VTF and Arrhenius expressions, respectively.
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m5
EVTF /kTg

~ ln10!~12T0 /Tg!2
, ~13!

wherem is an indication of the steepness of the variation
the material properties, i.e., viscosity, relaxation time, asTg
is reached. A highm value defines a very fragile materia
whereas a strong one will be characterized by small value
m. Bohmeret al.43 compared different types of glass-formin
materials, among them several amorphous polymers.
m(Tg) values tabulated range from 46~polyisobutylene! to
191 ~polyvinylchloride!. The m(Tg) value calculated with
the VTF parameters found in this work fora-PVDF is equal
to 87, determined at the glass transition temperature take
the temperature where the relaxation time is equal to 10
This fragility parameter indicates that PVDF is not a ve
fragile material as compared with the polymers reported
these authors. The value of the KWW parameterba(Tg) is
estimated to be 0.14, which does not agree with the gen
trend of the reported values in the cited work by Bohm
et al.43 This low b value was to be expected due to the wi
distribution found at low temperatures, which may be attr
uted to the existing strong chain interactions due to the e
tronegativity of the fluorine atoms. Also, the low fragility o
a-PVDF can be associated to the semicrystalline nature
this polymer.

The same analysis is now made for theac mode and the
results are shown for the variation ofbc on Fig. 10 and for
the relaxation plot shown in Fig. 11. The parameterbc is
now a decreasing function of temperature and the relaxa
plot shows an Arrhenius dependence fort(T) with the fol-
lowing values for the pre-exponential and the energy fac

t054.331029 s; E50.49 eV.

This ac mode is associated with molecular motions orig
nated in the crystalline regions and it shifts very rapidly
wards higher temperatures as the frequency increases. N
gawa and Ishida19 have explained the origin of this high
temperature relaxation as the result of molecular motion
the chain folds of the crystalline lamellas in addition to tho
in the interior of the crystals. These authors conclude that
folded chain is relatively mobile, while the motion of th
chains inside the lamellas is restricted to rotations around
main chain axis. They found Arrhenius enthalpies in t
range of 21 to 25 kcal/mole~0.89 to 1.08 eV!, which are
much higher than the values found here. Miyamotoet al.20

interpreted the Arrhenius behavior for this relaxation as
ing originated by a two-site jump motion through the confo
mational changeTGTḠ↔ḠTGT. They report a free
Arrhenius energy of less than 1 kcal/mole and interpret
observed anisotropy of theac relaxation ina-PVDF as a
change in conformation with internal rotation that can occ
in the crystalline phase, with defects in the crystalline
gions playing an important role in this mode.

Recently, sensitive NMR experiments21 on a-PVDF have
confirmed that the only molecular motion consistent w
both dielectric and NMR measurements is the one initia
proposed by Miyamotoet al.20 The only discrepancy reside
in the time scale of the motion, which is found to be in t
NMR studies as equal to 20 ms at 370 K, while the previo
dielectric studies place it in the range of 0.1 to 1 ms. Hirs
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inger et al.21 attributed these differences in time scale to t
effect of chemical defects~head-head or tail-tail junctions!
on the position of the loss maximum. If one calculates
relaxation time at 370 K from the Arrhenius paramete
found in this work, one finds 20.3 ms in excellent agreem
with the most recent studies. The agreement found here
tween NMR and DS discards the need to invoke the def
influence and simplifies the interpretation. Referring to
variation of thebc parameter with temperature, the only d
termination of the variation with temperature of the para
eters that characterize the distribution of relaxation times
a mode originated in the crystalline regions is, to the bes
our knowledge, in lightly oxidized high-densit
polyethylene.44 The author reports a linear dependence w
temperature, with positive slope, for the Cole-Cole para
eter. This is attributed to the presence of point defects, wh
effect is expected to be significant due to their high popu
tion. In the sine-Gordon soliton model studied by this auth
the bc value predicted for a polar polymer is 0.74 and ind
pendent of temperature, which does not correspond to
determination. These variations could be due to the con
mational differences betweena-PVDF and polyethylene al
ready noted by the author who suggested that the m
should be tested in zigzag planar polar polymers such
b-PVDF.

VI. CONCLUSIONS

We have presented an alternative method to extract f
the dielectric relaxation function obtained by broad-band
electric spectroscopy the distribution function of relaxati
times. The advantages of our approach is that the profil
the distribution has not to be assumeda priori, the resulting
quality of the fitting being much higher than by starting fro
analytical known expressions. In this way, hidden peaks
be detected and overlapping modes can be treated. Th
sults with computer-generated curves whose distribu
function is analytically known, give a discretized distributio
of relaxation times, which follows extremely well the e
pected behavior for the symmetric Cole-Cole function
well as for the asymmetric Davidson-Cole, Havrilia
Negami, and KWW distribution functions.

When switching to the time domain, the decay functio
are obtained from the knowledge of the distribution fun
tions. These decay functions calculated from the compu
m
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generated curves follow very closely a decay described b
stretched exponential provided that the distribution functio
are asymmetric. The KWWb parameter can then be relate
to thea andg parameters and the results found here ag
very well with those of Alvarezet al.40 reached by a quite
different procedure. The SADSA method is a powerful tec
nique to ensure that the fit is the best one and that a glo
minimum has been reached independently of the choice
the initial parameters set. The discretization of the distrib
tion function avoids the use of Fourier transforms, witho
implying too long computing times. A typical fitting o
«9(v) at one temperature with 37 points will consume typ
cally 2 h in a SunUltra 1 work station. There are man
problems where this technique can be applied as proces
which cannot be described by a single relaxation time a
that are better understood if a summation of Debye contri
tions is assumed, are abundant in the literature.

The results of the analysis of the relaxation spectra
PVDF at different temperatures in a wide frequency ran
showed the presence of theaa andac relaxation modes and
the variation of the corresponding distribution of relaxati
times with temperature was found. When switching to t
time domain, the decay function was calculated followi
the procedure described above and fitted to two overlapp
stretched exponentials. The observed variation of theb ex-
ponents with temperature for both modes explains why
master curves in a broad frequency range are not a g
approximation as the shape parameters vary. The variatio
the relaxation time with temperature,tKWW(T), follows a
VTF dependence for the mode corresponding to the segm
tal motion in the amorphous phase of the material, while
Arrhenius dependence is found for the relaxation due to
conformational changes proposed in the pioneer dielec
work of Miyamotoet al.20 and recently confirmed by Hirsch
inger et al.21 by precise NMR experiments. The discrepan
in the estimated relaxation times at 370 K noted by the la
does not exist when estimated from our work where a wi
frequency range and further numerical analysis are used
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