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Bound pair states beyond the condensate for Fermi systems belowTc : The pseudogap
as a necessary condition
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As is known, the 1/q2 theorem of Bogoliubov asserts that the mean density of the fermion pair states with
the total momentumq obeys the inequalitynq>C/q2(q→0) in the case of the Fermi system taken at nonzero
temperature and in the superconducting state provided the interaction term of its Hamiltonian is locally gauge
invariant. With the principle of correlation weakening it is proved in this paper that the reason for the
mentioned singular behavior ofnq is the presence of the bound states of particle pairs with nonzero total
momenta. Thus, below the temperature of the superconducting phase transition there always exist the bound
states of the fermion couples beyond the pair condensate. If the pseudogap observed in the normal phase of the
high-Tc superconductors is stipulated by the presence of the electron bound pairs, then the derived result
suggests, in a model-independent manner, that the pseudogap survives belowTc . @S0163-1829~99!14325-X#
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I. INTRODUCTION

At present the pseudogap is well established to be in
spectrum of the elementary excitations of undoped and o
mally doped high-Tc superconductors~for example, see the
review, Ref. 1!. The presence of the pseudogap implies t
the electron subsystem in the normal phase is not the F
liquid and, so, theoretical explanation of the pseudogap
recognized as the key point of understanding the phen
enon of the high-Tc superconductivity.2,3 There are a grea
number of various theoretical approaches of investiga
this problem. Two of them considered below are especi
interesting in the context of this paper.

The pseudogap can be associated with the presence o
local pairing correlations without phase coherence. The i
of this approach assuming the singlet pairing of fermio
without the phase coherence, as applied to the high-Tc su-
perconductivity, has been proposed in Ref. 4. The more r
cal model of Alexandrov and Mott5 operates with, say, pre
formed bosons~bipolarons! existing in the system aboveTc ,
the pseudogap being treated as coming from the binding
ergy of a bipolaron~of the order of a few hundred K!. This
model dates back to the Schafroth’s ideas according to w
the superconductivity is a result of the Bose-Einstein c
densation of the bound pairs of electrons localized in
space and appearing in the system before the condensa6

The concept of a bound state of two particles in a medi
can consistently be formulated with the reduced density
trix of the second order~2 matrix!.7 Indeed, the system o
two particles is a subsystem of that ofN particles. So, its
state is not pure even in the situation when the system
whole has a wave function. In general a subsystem is sp
fied by the density matrix~see, e.g., Ref. 8!. In particular, the
reduced density matrix of the second order is of use whe
noncoherent superposition of the pure states of two parti
is relevant rather than any wave function. If among the
PRB 600163-1829/99/60~2!/1276~7!/$15.00
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states there exist bound ones, then a part of particles of
system involved form bound pair states.9 In the supercon-
ducting phase a macroscopical number of particle pairsN0

occupy the same bound state, i.e., there is the condensa
pairs at which the ratioN0 /V5n0 is constant in the thermo
dynamic limit V→`. In the space-uniform case the conde
sate is formed by the pairs with the zero total moment
q50, the binding energy«b of these pairs being just th
double value of the superconducting gap.10 The bound par-
ticle pairs beyond the condensate are characterized by
continuous distribution over the total momentum of
couple.11 The couple~like these! must also have the finite
binding energy«b(q) that, due to the continuity argumen
should tend to«b whenq→0. If these bound particle pair
are ‘‘hard’’ clusters, like in the theory of Alexandrov an
Mott, then one may consider that the quantity«b(q) is prac-
tically independent ofq. The binding energy«b(q) is just the
double value of the pseudogap, which manifests itself in
normal phase when the bound couples survive atT.Tc .

In BCS theory there are no bound pair states beyond
condensate absolutely7,12 ~see below!, which is a conse-
quence of the violation of the local gauge invariance~see, for
example, Ref. 13!.

In this paper we shall prove in a model-independent m
ner that the existence of the condensate of the bound
states~BCS pairs! implies the presence of bound coupl
beyond the condensate~Schafroth’s pairs!. We emphasize
that we do not specify the size of the pairs. If it is much mo
than the mean distance between particles~the condensate
pairs in the BCS model!, then, following Bogoliubov,7 one
may call these pairs ‘‘quasimolecules.’’ If the radius of th
bound particle couples is of the order of the mean dista
between particles or, even, less~the Schafroth-Alexandrov-
Mott approach!, then one may speak about ordinary mo
ecules. The proof is based on the well-known 1/q2 theorem
of Bogoliubov for the Fermi system7 which is valid in the
1276 ©1999 The American Physical Society
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space-uniform case and under the condition of the lo
gauge invariance of the interaction term of the syst
Hamiltonian.

The present article is organized as follows. In Sec. II
concept of in-medium wave functions of fermion pairs
considered. The properties of the pair condensate are
cussed in the third section. At last, the proof concerning
noncondensed bound pairs of fermions is given in Sec. IV
the paper.

II. THE CONCEPT OF PAIR WAVE FUNCTIONS
FOR FERMIONS

In this section we briefly discuss the concept of the p
wave functions for fermions, for details see Refs. 7,14.

Thus, let us consider a homogeneous Fermi system oN
particles with the spins51/2 at nonzero temperatures. Su
pose that the total momentum and spin of the system
conserved quantities. Let the forces exerted by fermions
each other be described with the two-particle interaction
tential depending on the relative distance between them
may be, on the spin variables like in the case of vario
effective Hamiltonians. A state of the whole system is spe
fied by the density matrix corresponding to the canoni
or grand canonical Gibbs ensemble. In this case th
matrix is represented in the form:15 r2(x18 ,x28 ;x1 ,x2)
5^c†(x1)c†(x2)c(x28)c(x18)&/$N(N21)%, where ^•••&
stands for the statistical average;x5(r ,s) represents the
space coordinatesr and spin z projection s561/2;
c†(x),c(x) are the field Fermi operators. In order to perfor
the thermodynamic limit (V→`,n5N/V5const) it is more
convenient to deal with the pair-correlation functionF2 dif-
fering by a norm fromr2:

F2~x1 ,x2 ;x18 ,x28!5^c†~x1!c†~x2!c~x28!c~x18!&. ~1!

The boundary conditions forF2 ~Ref. 16! follow from the
principle of the correlation weakening at macroscopi
separations:7

^c†~x1!c†~x2!c~x28!c~x18!&→^c†~x1!c†~x2!&

3^c~x28!c~x18!& ~2!

when

r12r25const, r182r285const, ur182r1u→`; ~3!

^c†~x1!c†~x2!c~x28!c~x18!&→^c†~x1!c~x18!&

3^c†~x2!c~x28!&, ~4!

when

r12r185const, r22r285const, ur12r2u→`. ~5!

As the kernel~1! is a non-negative Hermitian operato
acting on the two-particle wave functionsc(x1 ,x2), we can
expand it in the orthonormal set of its eigenfunctio
cn(x1 ,x2) which are called the pair wave functions, or PW
In an equilibrium state the total pair momentumq is a good
quantum number for PWF provided that the total moment
of the whole system is a conserved quantity~see proof in
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Ref. 17!. The same is correct for the total spinSof a particle
pair if there is no magnetic ordering.18 So, the indexn can be
represented asn5(v,q,S), wherev stands for other quan
tum numbers. As to the PWF, they can be written as

cn~x1 ,x2!5cv,q,S~r12r2 ,s1 ,s2!
exp$ iq~r11r2!/2%

AV
.

~6!

Then Eq.~1! can be expressed as

F2~x1 ,x2 ;x18 ,x28!5 (
v,q,S

Nv,q,S

V
cv,q,S* ~r12r2 ,s1 ,s2!

3cv,q,S~r182r28 ,s18 ,s28!

3expH i
q

2
~r181r282r12r2!J . ~7!

If PWF are normalized as(s1 ,s2
*Vd3r ucv,q,S(r ,s1 ,s2)u2

51, then the non-negative quantityNv,q,S can be interpreted
as the mean number of the pairs in the state (v,q,S), any
pair being doubly taken.

The wave functioncv,q,S(r ,s1 ,s2) which can be inter-
preted as the wave function of a particle pair in the cen
of-mass system, is related to either discrete or continu
spectra. In the former case we definev5 i , wherei stands for
the discrete index enumerating the bound pair states. Le
denotecv,q,S(r ,s1 ,s2)5wq,S,i(r ,s1 ,s2), thus

(
s1 ,s2

E
V
d3r uw i ,q,S~r ,s1 ,s2!u251, ~8!

wq,S,i~r ,s1 ,s2!→0, when r→`. ~9!

For the states of the continuous spectrav5(p,mS). These
are ‘‘dissociated,’’ or scattering, pair states corresponding
the relative motion with the momentap. It is convenient to
set by definition cv,q,S(r ,s1 ,s2)5wp,q,S,mS

(r ,s1 ,s2)/AV,
where the following asymptotics takes place

wp,q,S,mS
~r ,s1 ,s2!→xS,mS

~s1 ,s2!wp,S~r ! ~10!

for r→`. Here we denote

wp,S~r !5HA2cos~pr !, S50,

A2sin~pr !, S51,
~11!

and xS,mS
(s1 ,s2) is the spin part of the pair wave functio

~spinor!, mS being thez projection of the total pair spinS:

xS,mS
~s1 ,s2!55

D~s11s2!sgn~s1!/A2, S50, mS50;

Q~2s1!Q~2s2!, S51, mS521;

D~s11s2!/A2, S51, mS50;

Q~s1!Q~s2!, S51, mS51.
~12!

We introduced the functions

D~s!5H 0, sÞ0,

1, s50,
Q~s!5H 1, s>0,

0, s,0,

sgn~S!5Q~S!2Q~2S!.
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We remark that in the situation when the fermion interact
does not depend on spin variables, the spin and space
of the PWF can be separated from one another not only w
r→` but also for anyr .

Now, with the variables

R5~r11r2!/2, r5r12r2 ~13!

and, respectively,R8 and r 8, expression~7! is rewritten as

F2~x1 ,x2 ;x18 ,x28!5 (
q,S,i

Nq,S,i

V
wq,S,i* ~r ,s1 ,s2!

3wq,S,i~r 8,s18 ,s28!exp$ iq~R82R!%

1 (
p,q,S,mS

Np,q,S,mS

V2
wp,q,S,mS

* ~r ,s1 ,s2!

3wp,q,S,mS
~r 8,s18 ,s28!exp$ iq~R82R!%.

~14!

In the thermodynamic limit all the summations over m
menta can be replaced by the corresponding integrals:

F2~x1 ,x2 ;x18 ,x28!5(
S,i

E d3qwS,i~q!wq,S,i* ~r ,s1 ,s2!

3wq,S,i~r 8,s18 ,s28!exp$ iq~R82R!%

1 (
S,mS

E d3pd3qwS,mS
~p,q!

3wp,q,S,mS
* ~r ,s1 ,s2!wp,q,S,mS

~r 8,s18 ,s28!

3exp$ iq~R82R!%. ~15!

Thus, from Eqs. ~14! and ~15! we can see tha
V wS,i(q)d3q is the number of the bound particle pairs wi
the spinS, in the statei and with the total couple momentum
q located in the infinitesimal volumed3q. Respectively,
V2wS,mS

(p,q)d3pd3q stands for the number of the ‘‘dissoc

ated’’ particle pairs in the state (S,mS) with the relative mo-
mentump and total momentumq located in the infinitely
small volumesd3p andd3q.

In the center-of-mass system the replacementp→2p,s1
→s2 ,s2→s1 corresponds to the permutation of particles. S
the following symmetric relation takes place:

wS,mS
~p,q!5wS,mS

~2p,q!. ~16!

As an example, let us consider the expansion ofF2 in
terms of PWF for the BCS model. Taken with an accuracy
the asymptotically small quantities, the Hamiltonian in t
BCS approach is represented as the quadratic form of
Fermi operators19 that can be diagonalized with the Bogoliu
bov transformation. Therefore, one is able to use the theo
of Wick, Bloch, and De Dominicis20
n
rts

en

,

o

he

m

F2~x1 ,x2 ;x18 ,x28!5^c†~x1!c†~x2!c~x28!c~x18!&

5^c†~x1!c†~x2!&^c~x28!c~x18!&

1^c†~x1!c~x18!&^c†~x2!c~x28!&

2^c†~x1!c~x28!&^c†~x2!c~x18!&.

~17!

Further, for the ‘‘normal’’ averages we have

^c†~x1!c~x18!&5^c†~r1 ,s1!c~r18 ,s18!&

5E d3k

~2p!3
n~k!exp$ ik~r182r1!%D~s12s18!,

~18!

where n(k)5^ak,s
† ak,s& gives the distribution of fermions

over momenta. ‘‘Anomalous’’ averages are given by

^c~x1!c~x18!&5^c~r1 ,s1!c~r18 ,s18!&

5E d3k

~2p!3
^ak,s1

a2k,2s1
&

3exp$ ik~r182r1!%D~s11s18!. ~19!

In the BCS model, the quantitŷak,sa2k,2s& can be repre-
sented in the following form:

^ak,sa2k,2s&5An0w~k!
sgn~s!

A2
, ~20!

with w(k) obeying the normalization condition

E d3k

~2p!3
uw~k!u251. ~21!

We remark that one can considerw(k) as a real quantity
because it can be made real with the corresponding ph
transformation of the operatorsak,s and ak,s

† . Now, Eqs.
~18!, ~19!, and ~20! allow us to rewrite Eq.~17! in the fol-
lowing form:

F2~x1 ,x2 ;x18 ,x28!5n0w~r !x0,0~s1 ,s2!w~r 8!x0,0~s18 ,s28!

1 (
S,mS

E d3pd3q

~2p!6
nS q

2
1pDnS q

2
2pD

3wp,S~r !xS,mS
~s1 ,s2!wp,S~r 8!

3xS,mS
~s18 ,s28!exp$ iq~R82R!%, ~22!

wherew(r ) is the Fourier transform ofw(k), and we use the
notations~11! and ~12!.

With Eq. ~21! one can easily be convinced that the no
malization relation~8! is satisfied. Within the BCS mode
wS,i(q)5D(S)D( i )n0d(q)(d(q) is the d function!, i.e., all
the bound particle pairs are condensed.
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III. PROPERTIES OF THE CONDENSATE OF PAIRS

Let us demonstrate in the most general case that if
‘‘anomalous’’ averagê c(x1)c(x2)& is not equal to zero
~off-diagonal long-range order! then the distribution function
wS,i(q) acquires thed-functional singularity correspondin
to some indicesS0 and i 0 or, in other words, the ratio
Nq,S0 ,i 0

/V in the first sum of Eq.~14! does not vanish in the
thermodynamic limit:

wS,i~q!5n0d~q!D~S2S0!D~ i 2 i 0!1w̃S,i~q!, ~23!

where w̃S,i(q) is the regular part of Eq.~23! giving the
bound-pair distribution over nonzero momenta.

To do this, let us take the limit relation~2! and rewrite it
with the variables~13! in the form

F2~x1 ,x2 ;x18 ,x28!→^c†~x1!c†~x2!&^c~x28!c~x18!&

5n0w* ~r ,s1 ,s2!w~r 8,s18 ,s28!, ~24!

where the functionsw* (r ,s1 ,s2) andw(r 8,s18 ,s28) are intro-
duced in such a way that the normalization condition~8!
should be fulfilled. This can always be done because acc
ing to the principle of correlation weakening7

^c~x1!c~x2!&→^c~x1!&^c~x2!&50

when r→` ~see Ref. 21!. Expression~24! is exactly the
contribution of the first singular term of Eq.~23! into Eq.
~15!. The contribution of the regular part of Eq.~23! and that
of the dissociated pair states into Eq.~15! are infinitely small
in the situation of Eq.~3! according to the Riemann’
theorem22 because

uR82Ru5Ur181r28

2
2

r11r2

2
U→`.

We remark that the pair distribution over the scatter
states~16! does not containd-functional terms. Indeed, in th
opposite case they would lead to the condensate of the
particle states like in the situation of the Bose liquid,17 which
is impossible for the Fermi systems.

Equation~24! allows us to treat the anomalous averag
as the wave functions of the condensed pairs of fermions~of
course, with an accuracy to the normalizing factor!. For the
density of the pairs like these, Eqs.~8! and ~24! gives

n05
Nq50,S0 ,i 0

V
5 (

s1 ,s2

E d3r u^c~r ,s1!c~0,s2!&u2

5(
s
E d3k

~2p!3
u^ak,sa2k,2s&u2, ~25!

where it has been taken into account that the total mom
tum of the system andz component of its spin are conserve
quantities. Keeping in mind these integrals of the moti
one could expect that in the most general case the w
function of the condensed pairs should be written as
e

d-

e-

s

n-

,
ve

w~r ,s1 ,s2!5
1

An0

^c~r1 ,s1!c~r2 ,s2!&

5
1

An0
E d3k

~2p!3
^ak,s1

a2k,2s1
&D~s11s2!exp~ ikr !

5
1

An0

D~s11s2!

A2
$ws~r !sgn~s1!1w t~r !%, ~26!

wherews(r )5ws(2r ) and w t(r )52w t(2r ). According to
Eq. ~12! the first term in Eq.~26! corresponds to the single
and the second, to the triplet components of the wave fu
tion of the condensed fermions. However, Eq.~26! is not
quite correct because the total pair spin should be an inte
of the motion, even in the situation with the spin-depend
interaction between fermions. Therefore, we are not able
obtain a superposition of the singlet and triplet states.
stead, in Eq.~26! one should select eitherws(r )Þ0, w t(r )
50 or ws(r )50, w t(r )Þ0. So, we have

w~r ,s1 ,s2!5H ws~r !x0,0~s1 ,s2!/An0,

w t~r !x1,0~s1 ,s2!/An0.
~27!

The spinors~12! can be expressed with the help of the Pa
matrices:x0,05 isy /A2, x1,05 iszsy /A2. Thus, the expres
sion ~27! can be rewritten in the standard form23 proposed
first in Ref. 24,

w~r ,s1 ,s2!5H D~r !isy , S50,

~d~r !•s!isy , S51,
~28!

where we introduce the notationss5(sx ,sy ,sz),
D(r )5D(2r )5ws(r )/A2n0, d(r )52d(2r )5(0,0,w t(r )/
A2n0). We get Eq. ~28! in the z representation for the
spinors. An arbitrary representation can be obtained from
~27! with the unitary transformation of the spinors~12!. It is
not difficult to verify that in the general case all the thr
components ofd(r ) are not zero, andd(r ) is transformed as
a spin–space vector.

The phase coherence takes place for the condensed b
pairs due to the uncertainty relationDwDN0.1 for the
phase w and number of the bound fermion pairsN0
5Nq50,S0 ,i 0

in the state (q50,S0 ,i 0). In the thermodynamic
limit the macroscopical occupation of this state results
DN0}AN0→` and, therefore,Dw→0. For the bound pair
states beyond the condensateNq,S,i is limited above even for
V→`. Thus these states are not correlated with respec
the phase.

We remark that the total number of the bound parti
pairs ~condensed and not!

Nb5V(
S,i

E d3qwS,i~q!

is proportional to the total number of particlesN. In particu-
lar, there is the inequality for the number of the condens
bound pair states25

N0<N. ~29!
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It should be emphasized that the inequality~29! is not trivial.
One can consider, for example, a dilute gas ofm-particle
molecules. In this case we haveNb5(m21)N, thus, one can
obtainNb.N providedm>3.

In the space–uniform case we can readily find relat
~29! with the inequality of Cauchy-Schwarz-Bogoliubov7

u^ÂB̂&u2<^ÂÂ†&^B̂†B̂&.

Indeed, assumingA5ak,s andB5a2k,2s we arrive at

u^ak,sa2k,2s&u2<^ak,sak,s
† &^a2k,2s

† a2k,2s&

5@12n~k!#n~k!.

Then, from Eq.~25! we derive

n05
N0

V
5

1

V (
k,s

u^ak,sa2k,2s&u2<
2

V (
k

„n~k!2n2~k!…

<
2

V (
k

n~k!5
N

V
5n.

It is interesting to note thatn(k)2n2(k)5^(ak,s
† ak,s)

2&
2^ak,s

† ak,s&
25D„n(k)… is nothing else but the mean-squa

deviation of the occupation number of the (k,s) one-particle
state. So, the stronger inequality

n0<
2

V (
k

D„n~k!… ~30!

demonstrates that the number of the condensed pair
tightly connected with the washout of the Fermi surface.
the BCS model at zero temperature

n0

n
}

kBTc

EF
!1

because the bound pairs are formed by the particles loc
near the Fermi surface only. In general,n0 is the most ‘‘re-
liable’’ order parameter of the superconducting phase tra
tion.

IV. THE BOGOLIUBOV 1/ Q2 THEOREM AND BOUND
PAIR STATES BEYOND THE CONDENSATE

Let us now prove with the principle of the correlatio
weakening that the distribution of the particle pairs over
‘‘scattering’’ stateswS,mS

(p,q) is expressed in terms of th

occupation numbers of the one-particle statesn(k)
5^ak,s

† ak,s&. Indeed, on the one hand, in the limiting situ
tion of Eq.~5! we have the relation~4!, which can be written
as
n

is
n

ed

i-

e

F2~x1 ,x2 ;x18 ,x28!

→E d3p1

~2p!3
n~p1!exp„ip1~r182r1!…D~s12s18!

3E d3p2

~2p!3
n~p2!exp„ip2~r282r2!…D~s22s28!

5E d3qd3p
n~q/21p!n~q/22p!

~2p!6
exp„ip~r 82r !…

3exp„iq~R82R!…D~s12s18!D~s22s28!, ~31!

where, passing to the last equality, we introduced the n
variablesq5p11p2 and p5(p12p2)/2 and used notations
~13!. On the other hand, when Eq.~5! is true, we have

r 5ur22r1u→`, r 85ur282r18u→`,

ur1r 8u→`, R82R5const, r 82r5const.

Therefore, it follows from Eqs.~9!, ~10!, and~15! that in the
limiting case (5) we have

F2~x1 ,x2 ;x18 ,x28!→(
S,mS

E d3qd3pwS,mS
~p,q!wp,S~r !

3wp,S~r 8!xS,mS
~s1 ,s2!xS,mS

~s18 ,s28!

3exp„iq~R82R!…, ~32!

where we used notations~11! and ~12!. Further, Riemann’s
theorem22 used while integrating overp and relation~16!
allow us to rewrite Eq.~32! as

F2~x1 ,x2 ;x18 ,x28!→E d3qd3p (
S,mS

wS,mS
~p,q!xS,mS

~s1 ,s2!

3xS,mS
~s18 ,s28!exp„ip~r 82r !…

3exp„iq~R82R!…. ~33!

The right-hand side of Eq.~31! is equal to that of Eq.~33! at
all the values of the spin variables and space onesr̃5r 82r
andR̃5R82R. Taking into account the completeness of t
set of the spin functions~12!

(
S,mS

xS,mS
~s1 ,s2!xS,mS

~s18 ,s28!5D~s12s18!D~s22s28!,

we derive the following equality:

wS,mS
~p,q!5

n~q/21p!n~q/22p!

~2p!6
. ~34!

Thus, in the thermodynamic limit one can write

Np,q,S,mS
5n~q/21p!n~q/22p!. ~35!

As it is seen, when there is no magnetic ordering~it is obvi-
ously true for the superconducting phase!, the function of the
pair distribution over the dissociated states is independen
the quantum numbersS,mS .
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It is now easy to prove that the pair condensate m
always be accompanied by the presence of the nonconde
fermion pairs:w̃S,i(q)Þ0 in Eq.~23! if n0Þ0. Let the inter-
action energy of the system be invariant with respect to
local gauge transformation of the field Fermi operators26

c~r ,s!→c~r ,s!exp„ix~r !…,

c†~r ,s!→c†~r ,s!exp„2 ix~r !…. ~36!

In this case the 1/q2 theorem of Bogoliubov for the Ferm
systems7 is valid which asserts that in the presence of
pair condensate we have the inequality for sufficiently sm
q

max
v,S

Nv,q,S>
C

q2
,

whereNv,q,S appears in Eq.~7! andv is the set of the quan
tum numbers corresponding to both the continuous spect
@v5(p,mS)# and the discrete one (v5 i ).27 However, Eq.
~35! results in

Np,q,S,mS
<1

becausen(k)<1 for fermions. Therefore, we have the on
possibility at which the singularity 1/q2 appears due to the
noncondensed bound pairs. It is reasonable to expect
these pairs have the quantum numbers of the conden
couplesS0 ,i 0:

w̃S0 ,i 0
~q!>

C8

q2
. ~37!

The BCS model is not locally gauge invariant which r
sults in absence of the noncondensed bound pairs:w̃S,i(q)
50. It is important to note in this connection that the bou
pair states beyond the condensate may play a noticeable
in calculating the gauge-invariant response of the system
the electromagnetic fields.

We have proved that the noncondensed bound pairs c
ist with the condensed ones atT,Tc . So, any theory ignor-
ing the noncondensed bound pairs of fermions is not fu
consistent. We remark that the distribution of the bound f
mion pairs over the center-of-mass momenta obeys the
equality ~37! with C8}kBTn0 ~see Ref. 7!. The distribution
of the particles over momenta in the Bose gasw(q)
5n(q)/(2p)3 answers, at smallq, the similar relation
w(q)>C9/q2 with C9}kBTn0 ~heren0 denotes the density
of the condensed bosons!.7 Therefore, there are fundament
parallels between the Bose gas and the considered subsy
of the fermion bound pairs. These parallels are not only
duced to agreement between the fermion-pair statistics
the Bose one. Following this analogy, we can expect that
bound fermion pairs exist even atT.Tc ~apparently, in some
temperature intervalTc,T,T* , in spite of the disappear
ance of the 1/q2 singularity!. Thus, it looks as if any super
conducting phase transition is a particular case of the Bo
Einstein condensation. This conclusion can be of interes
the context of the discussion concerning different approac
of investigating the high-Tc superconductivity~see Refs. 28,
29!. We remark that possible experimental consequence
st
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the existence of fermion bound pairs beyond the conden
can be found in paper12 in the case of neutral Fermi system

The space-uniform character of the Fermi system is of
in the proof given above. Electrons in the crystalline field,
course, cannot be treated on the same level. However
q→0 ~large wavelengths! a crystalline lattice can be consid
ered as the continuum. Therefore, the derived result rem
correct in this case.

We emphasize that the bound pair states can fully b
result of the collective effects. Indeed, as it was dem
strated by Cooper,30 an arbitrary small attraction betwee
electrons leads to forming the condensate of the bound e
tron pairs. Hence, if we considered a sufficiently shallo
well as the two-fermion interaction potential, we would o
serve formation of the condensed and, according to the
tained result, noncondensed pairs at low temperatures. H
ever, the well can be chosen in such a way as to preven
bound states of two ‘‘bare’’ fermions from appearing with
the ordinary two-particle problem.

It is important to make one more remark on the conn
tion between the 1/q2 theorem of Bogoliubov and the Gold
stone theorem.31 As it has been demonstrated in Ref. 7, t
existence of the Goldstone mode in the Bose system res
from the Bogoliubov theorem provided the mass opera
S(v,k) is regular in the vicinity of the pointv50, k50.
Let us emphasize that there are situations when the Bogo
bov theorem is valid while this is not the case for the Go
stone one. For example, in the case of a neutral weakly
teracting Bose gas the condition mentioned above for
mass operator is correct, and the Goldstone mode exists
the contrary, for the charged Bose gas the mass operat
not regular atk50, and, thus, there is no Goldstone mode.
similar situation is realized for the Fermi systems~see, e.g.,
Ref. 32!.

V. CONCLUSION

In conclusion, let us take notice of the main results on
more. The reduced density matrix of the second order
fundamental characteristic of a many-particle system,
eigenfunctions being the pure states of two particles sele
in an arbitrary way. The appearance of the condensate o
bound pair states~25! implies the occurrence of the
d-functional term in the distribution of the bound pairs ov
the momentumq of the pair center-of-mass@see Eq.~23!#.
Using the space homogeneity of the system and the lo
gauge invariance~36! of the fermion interaction, we have
proved that there is the 1/q2 singularity in the distribution
function w̃S,i(q) provided thatn0Þ0. Thus, we refined the
1/q2 theorem of Bogoliubov, having proved the singulari
appears inw̃S,i(q). Therefore, the presence of noncondens
bound pairs belowTc is a necessary condition of superco
ductivity. A new simple proof of the Yang inequality for th
Fermi systems~29! and its stronger variant~30! have also
been derived as results of secondary importance.
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