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As is known, the 1d? theorem of Bogoliubov asserts that the mean density of the fermion pair states with
the total momentung obeys the inequalitp,= C/g%(g—0) in the case of the Fermi system taken at nonzero
temperature and in the superconducting state provided the interaction term of its Hamiltonian is locally gauge
invariant. With the principle of correlation weakening it is proved in this paper that the reason for the
mentioned singular behavior of, is the presence of the bound states of particle pairs with nonzero total
momenta. Thus, below the temperature of the superconducting phase transition there always exist the bound
states of the fermion couples beyond the pair condensate. If the pseudogap observed in the normal phase of the
high-T, superconductors is stipulated by the presence of the electron bound pairs, then the derived result
suggests, in a model-independent manner, that the pseudogap survivesTpel®0163-18209)14325-X

[. INTRODUCTION states there exist bound ones, then a part of particles of the
system involved form bound pair statesn the supercon-

At present the pseudogap is well established to be in theducting phase a macroscopical number of particle pajs
spectrum of the elementary excitations of undoped and optieccupy the same bound state, i.e., there is the condensate of
mally doped hight. superconductor§for example, see the pairs at which the ratitNy/V=n; is constant in the thermo-
review, Ref. ). The presence of the pseudogap implies thatdynamic limitV—c. In the space-uniform case the conden-
the electron subsystem in the normal phase is not the Fermsate is formed by the pairs with the zero total momentum
liguid and, so, theoretical explanation of the pseudogap ig=0, the binding energy, of these pairs being just the
recognized as the key point of understanding the phenondouble value of the superconducting gdprhe bound par-
enon of the highF, superconductivity:® There are a great ticle pairs beyond the condensate are characterized by the
number of various theoretical approaches of investigatingontinuous distribution over the total momentum of a
this problem. Two of them considered below are especiallycouple!! The couple(like thes@ must also have the finite
interesting in the context of this paper. binding energye,(q) that, due to the continuity argument,

The pseudogap can be associated with the presence of tehould tend tae, whenq—0. If these bound particle pairs
local pairing correlations without phase coherence. The ideare “hard” clusters, like in the theory of Alexandrov and
of this approach assuming the singlet pairing of fermionsMott, then one may consider that the quanttyfq) is prac-
without the phase coherence, as applied to the Migsu- tically independent of|. The binding energy(q) is just the
perconductivity, has been proposed in Ref. 4. The more radidouble value of the pseudogap, which manifests itself in the
cal model of Alexandrov and Matbperates with, say, pre- normal phase when the bound couples survivé:afl...
formed bosonsgbipolarons existing in the system abovi, , In BCS theory there are no bound pair states beyond the
the pseudogap being treated as coming from the binding emondensate absolutéli? (see below, which is a conse-
ergy of a bipolaror(of the order of a few hundred)KThis  quence of the violation of the local gauge invariafeee, for
model dates back to the Schafroth’s ideas according to whicexample, Ref. 18
the superconductivity is a result of the Bose-Einstein con- In this paper we shall prove in a model-independent man-
densation of the bound pairs of electrons localized in thener that the existence of the condensate of the bound pair
space and appearing in the system before the condenSatiostates(BCS pair$ implies the presence of bound couples

The concept of a bound state of two particles in a mediunbeyond the condensai&chafroth’s pairs We emphasize
can consistently be formulated with the reduced density mathat we do not specify the size of the pairs. If it is much more
trix of the second ordef2 matrix).” Indeed, the system of than the mean distance between particlee condensate
two particles is a subsystem of that Wf particles. So, its pairs in the BCS modgl then, following BogoliuboV, one
state is not pure even in the situation when the system asraay call these pairs “quasimolecules.” If the radius of the
whole has a wave function. In general a subsystem is specbound particle couples is of the order of the mean distance
fied by the density matriksee, e.g., Ref.)8In particular, the between particles or, even, lefthe Schafroth-Alexandrov-
reduced density matrix of the second order is of use when Mott approach, then one may speak about ordinary mol-
noncoherent superposition of the pure states of two particlescules. The proof is based on the well-knowg?ltheorem
is relevant rather than any wave function. If among thesef Bogoliubov for the Fermi systehwhich is valid in the
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space-uniform case and under the condition of the locaRef. 17). The same is correct for the total sgBrof a particle
gauge invariance of the interaction term of the systenpair if there is no magnetic orderit So, the index’ can be
Hamiltonian. represented as=(w,q,S), wherew stands for other quan-
The present article is organized as follows. In Sec. Il theeum numbers. As to the PWF, they can be written as
concept of in-medium wave functions of fermion pairs is
considered. The properties of the pair condensate are dis- exp{iq(ry+rz)/2}

cussed in the third section. At last, the proof concerning the Pi(X1:X2) = Y0517 12,51, W
noncondensed bound pairs of fermions is given in Sec. IV of (6)
the paper.
pap Then Eq.(1) can be expressed as
Il. THE CONCEPT OF PAIR WAVE FUNCTIONS ., N, aS 4
FOR FERMIONS Fa(Xq,X2:X1,X5) = Eqs v Ywas(li—r2:81,5)
w,(,
In this section we briefly discuss the concept of the pair % T
wave functions for fermions, for details see Refs. 7,14. Va1~ 12,51,52)
Thus, let us consider a homogeneous Fermi systeid of q
particles with the spirs=1/2 at nonzero temperatures. Sup- Xex;{ i E(rﬁ ro—ri—ro). !

pose that the total momentum and spin of the system are

conserved quantities. Let the forces exerted by fermions otf PWF are normalized a§sl,52f\,d3r|</f,l,,qys(r,sl,sz)|2
each other be described with the two-particle interaction po= 1 then the non-negative quantiy, , s can be interpreted
tential depending on the relative distance between them andg the mean number of the pairs in the stateq(S), any
may be, on the spin variables like in the case of variouspair being doubly taken.

effective Hamiltonians. A state of the whole system is speci- The wave functiony,, 4 <(r,S;,S,) which can be inter-
fied by the density matrix corresponding to the canonicalyreted as the wave function of a particle pair in the center-
or grand canonical Gibbs ensemble. In this case the gt mass system, is related to either discrete or continuous
matrix is represented in the forff: po(X1,%3;X1,X2)  spectra. In the former case we define-i, wherei stands for

= (T (x) T (x) W(x5) (x1)){N(N—1)}, where (---)  the discrete index enumerating the bound pair states. Let us
stands for the statistical averages(r,s) represents the denotey,, o s(r,51,52) = @q.5i(r,S1,S2), thus

space coordinatey and spin z projection s=*1/2;

#1(X), () are the field Fermi operators. In order to perform j 30 2_

the thermodynamic limit\{—,n=N/V=const) it is more 512,52 Vd leiqs(rs1.52)|"= 1, ®

convenient to deal with the pair-correlation functibg dif-

fering by a norm fromp,: ®q,si(rS1,52)—0, when r—oo, 9
Fo(Xq X2, X5) = (T (X)) T (Xo) (X)) (X)) (1) For the states of the continuous specira (p,mg). These

are “dissociated,” or scattering, pair states corresponding to

The boundary conditions fd¥, (Ref. 16 follow from the  the relative motion with the momenfa It is convenient to
principle of the correlation weakening at macroscopicalset by definition tﬂw,q,s(r,sl,sz)=qop,q,s,ms(r,sl,sz)/\/\—/,

separationé: where the following asymptotics takes place
(W (x) 9" (%2) (x3) (X)) = (T (x) YT (X2)) ©p,q,5mg(1:51,52) = X5mg(S1,52) @p,s(T) (10)
X{(p(x) (X)) (2) for r—oo, Here we denote
when \/Eco:{pr), S=0, 11
©@p,sil)= . .
ri—rp=const, rj—ry=const, |[rj—rq—; (3 V2sinpr),  S=1,
and stms(sl,sz) is the spin part of the pair wave function
(W (x) T (%2) (X5) (X)) — (4T (X0) (x1) ) (spinop, mg being thez projection of the total pair spis:
X<¢T(X2) (X)), (4) A(sl-i—sz)sgr(sl)/\/i, S=0, mg=0;
when O(—s)0(-s;), S=1, mg=—1;

XsmlSUS) T N (s 452, S=1, me=0;
@(31)6(52), S:l, Mg= 1.

As the kernel(1) is a non-negative Hermitian operator (12
acting on the two-particle wave functiongx,,x,), we can e introduced the functions
expand it in the orthonormal set of its eigenfunctions
¥,(X1,X5) which are called the pair wave functions, or PWF. 0, s#0, 1, s=0,
In an equilibrium state the total pair momentupis a good A(s)= 1 s=0, 0(s)= 0, s<0,
guantum number for PWF provided that the total momentum
of the whole system is a conserved quantisge proof in sgnS)=0(S)—0(-9).

ry—ri=const, r,—rs=const, |[ri—r,|—». (5
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We remark that in the situation when the fermion interaction Fo(Xq,Xp; X0, X5) = (T (Xq) T (X2) h(x5) h(X}))
does not depend on spin variables, the spin and space parts

of the PWF can be separated from one another not only when = (T () T (X) )((X5) h(X7))
r—oo put also for anyr. " , " )
Now, with the variables (P (X)) PXD NP (X2) h(X3))
— (¥ x0) Yx) (9T (x2) (X))
R=(I’1+r2)/2, I’=r1—l’2 (13)

17

and, respectivelyR’ andr’, expression(7) is rewritten as Further, for the “normal” averages we have

<¢T(X1) 'ﬂ(xi»:<¢T(r1131)¢(r1151)>

- Ng,s,i
Fz(Xl,Xz;Xl,Xz):%i %‘P;,S,i(rvsllsz) f &K
, ] = n(k)explik(r;—rqy)}A(s;—s7),
X eqsi(r’,st,spexplig(R’ —R)} (2m)3 ' '
18
Np,a,5mg . (18

+ Pp.asmgllS1,52) where n(k)=(a] a5} gives the distribution of fermions
k,s“k,

over momenta. “Anomalous” averages are given by

paSmg V2

X @pq.smg(r':51.5p) expliq(R’ —R)}.

(14) <¢(Xl)¢(Xi)>:<¢(rlisl)¢(ri'Si)>
3
In the thermodynamic limit all the summations over mo- =f 3<ak,sla_k,_sl>
menta can be replaced by the corresponding integrals: (2m)

xexplik(ri—r)}A(s;+s;). (19

Fz(lexzixi,Xé)Zg f d*qws(q) ¢ s,(r,S1,52) In the BCS model, the quantitya, ;a_, <) can be repre-
' sented in the following form:

X ¢qsi(r' s spexplig(R' —R)}

sgn(s)
+ > | d®pdqwg . (p,q) e N \/n—o@(k)?, (20
Smg Mt
><<p’,§q Sms(r,sl,sz)%,q,syms(r’,si,sé) with ¢(k) obeying the normalization condition
e (15) f o lo(k)|2=1 (21)
@m T T

Thus, from Egs.(14) and (15 we can see that
V ws,;(q)d®q is the number of the bound particle pairs with we remark that one can considek) as a real quantity
the spinS in the state and with the total couple momentum because it can be made real with the corresponding phase
q located in the infinitesimal VOlUm@sq. ReSpeCtively, transformation of the Operatoraks and als_ Now, Eqs
VAWs i (p,q)d°pd®q stands for the number of the “dissoci- (18), (19), and (20) allow us to rewrite Eq(17) in the fol-
ated” particle pairs in the stateS(mg) with the relative mo-  lowing form:
mentump and total momentung located in the infinitely

small volumesd®p andd®q. Fa(X1,X2;X1,X5) =No@(1) X0,d(S1,S2) (") X0,0(S1,S)
In the center-of-mass system the replacengent—p,s;
—5s,,5,—5; corresponds to the permutation of particles. So, d®pd®q (q q
the following symmetric relation takes place: +Sm f (2m)° n §+p nis—p
S
Ws i (P,0) = Wg n (—P.). (16) X @p,s(1) Xsmg(S1:52) p,s(r)

X xsmd(S1,82)expiq(R' =R)}, (22
As an example, let us consider the expansiorFefin

terms of PWF for the BCS model. Taken with an accuracy tovheree(r) is the Fourier transform op(k), and we use the
the asymptotically small guantities, the Hamiltonian in thenotations(11) and(12).
BCS approach is represented as the quadratic form of the With Eq. (21) one can easily be convinced that the nor-
Fermi operators that can be diagonalized with the Bogoliu- malization relation(8) is satisfied. Within the BCS model
bov transformation. Therefore, one is able to use the theorems;(q) =A(S)A(i)ned(q) (8(q) is the & function), i.e., all
of Wick, Bloch, and De Dominicf® the bound particle pairs are condensed.
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lll. PROPERTIES OF THE CONDENSATE OF PAIRS

Let us demonstrate in the most general case that if théo(r’sl’SZ): \/TO<‘/'(r1’Sl)'/’(r2’32)>
“anomalous” average(#(x,) #(X,)) is not equal to zero

(off-diagonal long-range ordgthen the distribution function 1 d3k .

wsg;(q) acquires thes-functional singularity corresponding = \/_—f?<ak,sla—k,—sl>A(sl+ Sp)explikr)

to some indicesS, and iy or, in other words, the ratio No’ (2m)

Ng,s,.io/V in the first sum of Eq(14) does not vanish in the 1 A(s;+s))

th d ic limit: = rysgrn(sy) +ei(r)}, (26
ermodynamic limi 2 {es(r)sgnisy) +e(r)},  (26)

Wsi(0) =NoS(A)A(S—Sp)A(i—ig) +Ws;(d), (23  wheregy(r)= g (—r) and ¢,(r)=—@(—r). According to
Eq. (12) the first term in Eq(26) corresponds to the singlet
where \7Vs,i(Q) is the regular part of Eq(23) giving the and the second, to the triplet components of the wave func-

bound-pair distribution over nonzero momenta. tion of the condensed fermions. However, E6) is not
To do this, let us take the limit relatiof®) and rewrite it ~ quite correct because the total pair spin should be an integral
with the variableg13) in the form of the motion, even in the situation with the spin-dependent
interaction between fermions. Therefore, we are not able to
R, t t / / obtain a superposition of the singlet and triplet states. In-
Fa(X1, X0, Xz) = (1 ()1 0x2) N x2) X)) stead, in Eq(26) one should select eithes(r)#0, @(r)
=ne*(r,81,) ¢(r',s1,s5), (24 =0 or ¢4(r)=0, ¢i(r)#0. So, we have
where the functiong* (r,s;,s,) ande(r’,s;,s;) are intro- @< XodS1,52)/ o,
duced in such a way that the normalization conditi@ ¢(r,s1,8)= () x1o(S1,52)/ g (27)
should be fulfilled. This can always be done because accord- PlIX1.031,52)V o-
ing to the principle of correlation weakenihg The spinorg(12) can be expressed with the help of the Pauli
matrices:xo o=i0y/\2, x10=i0,0,/12. Thus, the expres-
(h(X1) P(X2) ) — (X)W (X)) =0 sion (27) can be rewritten in the standard fofhproposed

first in Ref. 24,
whenr—o (see Ref. 2L Expression(24) is exactly the
contribution of the first singular term of E¢23) into Eq. A(r)ioy,, S=0,
(15). The contribution of the regular part of E@3) and that @(r,81,82)= [ d(r)- o)i Ss—1 (28
of the dissociated pair states into Efj5) are infinitely small TNy o
in the szituation of Eq.(3) according to the Riemann's \yhere we introduce the notationso= (o, ,7>),
theorent” because A(N)=A(=r)=gyr)/\2p, d(r)=—d(~1)=(0,06(r)/
J2n,). We get Eq.(28) in the z representation for the
spinors. An arbitrary representation can be obtained from Eq.
(27) with the unitary transformation of the spindtk). It is
not difficult to verify that in the general case all the three
components ofl(r) are not zero, and(r) is transformed as

ri+ry, ri+ry

R'=RI=|— 2

—5 00,

We remark that the pair distribution over the scattering )
stateg16) does not contaid-functional terms. Indeed, in the & SPIN—space vector.
opposite case they would lead to the condensate of the one- 1€ Phase coherence takes place for the condensed bound
particle states like in the situation of the Bose lighiayhich ~ Pairs due to the uncertainty relatiohgANy=1 for the
is impossible for the Fermi systems. phase ¢ ar_ld number of the_ bound fermion paifdy
Equation(24) allows us to treat the anomalous averages™ Na=0s,.i, IN the state §=0.S,ic). In the thermodynamic
as the wave functions of the condensed pairs of fermi@fs, limit the macroscopical occupation of this state results in
course, with an accuracy to the normalizing fagtéior the ~ ANy \/N_o—mo and, thereforeA ¢—0. For the bound pair

density of the pairs like these, Eq8) and (24) gives states beyond the condenshlgs; is limited above even for
V—o, Thus these states are not correlated with respect to
Ng-0s,.i the phase.
nO:—"O: E d3r [(y(r,s1) (0,5,))|? We remark that the total number of the bound particle
v S1.52 pairs(condensed and not
d3k 5
_ZS f (ZT)3|<ak,safk,fs>| ) (25) Nb:v; f danS,i(q)

where it has been taken into account that the total momeris proportional to the total number of particlss In particu-
tum of the system andcomponent of its spin are conserved lar, there is the inequality for the number of the condensed
quantities. Keeping in mind these integrals of the motionbound pair statés

one could expect that in the most general case the wave

function of the condensed pairs should be written as No<N. (29
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It should be emphasized that the inequal9) is not trivial. Fo(X1,X2 X} ,X5)
One can consider, for example, a dilute gasmeparticle
molecules. In this case we haMg=(m—1)N, thus, one can d3p;
obtainN,>N providedm=3. f (2n )sn(pl)eXD(I P1(ri—r1))A(s;—sy)
In the space—uniform case we can readily find relation
(29) with the inequality of Cauchy-Schwarz-Bogoliudov d°p,
f n(pz)exp(l P2(r3—r2))A(S,— ;)
(2m)°

|(AB)|2<(AAT\(B'B).

:J dsqupn(q/2+p)n(q/2—p) explip(r'— 1))

(2m)°
Xexpliq(R'—=R))A(s1—s))A(s,—s;), (3D

Indeed, assuming=a, s andB=a_y _5 we arrive at

|<ak,safk,fs>|2$<ak,sal,s><aik,7safk,fs> where, passing to the last equality, we introduced the new
—[1-n(K)]n(k) variablesq=p;+p, and p=(p;—p,)/2 and used notations
' (13). On the other hand, when E(p) is true, we have

Then, from Eq.(25) we derive r=[rp—rof—o, r'=[r;—ri|—=,

[r+r'|—w, R’—R=const, r’'—r=const.

N 1
n0=vo v & (s, _9lP=g E (n(k)—n?%(k)) Therefore, it follows from Eqgs(9), (10), and(15) that in the
kis limiting case (5) we have
2 N
= Vv ; n(k)= Vo n. Fz(X1.X2;X1,X§)HSEm f dsqupWs,mS(p,Q)QDp,s(r)
» 1S

It is interesting to note than(k)—n2(k)={(a} sk s)?) X @ps(I")Xsmy(51,52) Xs.mg(S1,S2)

—(a} @cs?=D(n(k)) is nothing else but the mean-square X expligq(R’' —R)), (32)
deviation of the occupation number of thie §) one-particle ) )
state. SO, the Stronger inequa"ty where we used notatlor(ﬂ,l) and (12) Further, Riemann’s

theorem® used while integrating ovep and relation(16)
allow us to rewrite Eq(32) as

2
no=y; 2 D(n(k)) (30 ;. o
k Fz(Xlixzixlaxz)HJ d*qd pSZm Ws mg(P,a) xs,mg(S1,S2)
Mg
demonstrates that the number of the condensed pairs is X Xs,my(S1,S2)explip(r’ —r))
tightly connected with the washout of the Fermi surface. In _
the BCS model at zero temperature Xexplig(R'—R)). (33
The right-hand side of Eq31) is equal to that of Eq(33) at
ng kgTe all the values of the spin variables and space anes’ —r
ne [ <1 andR=R’—R. Taking into account the completeness of the

set of the spin function&l?2)

because the bound pairs are formed by the particles located

near the Fermi surface only. In genenay, is the most “re- > Xsmg(S1:52) Xsmg(S1,52) = A(S1=S1)A(S,—S5),
liable” order parameter of the superconducting phase transi- ~"'s
tion. we derive the following equality:
s n(g/2+p)n(a/2—p)
IV. THE BOGOLIUBOV 1/ Q> THEOREM AND BOUND Wsmg(P,0) = 5 : (34)
PAIR STATES BEYOND THE CONDENSATE (2m)
Thus, in the thermodynamic limit one can write

Let us now prove with the principle of the correlation
weakening that the distribution of the particle pairs over the _ B
“scattering” stateswsm (p,q) is expressed in terms of the Np.q.8.ms=N(a/2+p)n(q/2=p). (35)

OCCUpatlon numbers of the one-particle stategk) As it is seen, when there is no magnetic orderiitgs obvi-

(ak sAk.s)- Indeed, on the one hand, in the limiting situa- ously true for the superconducting phagee function of the
tion of Eq.(5) we have the relatiod), which can be written pair distribution over the dissociated states is independent of
as the quantum numberS,mg.
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It is now easy to prove that the pair condensate musthe existence of fermion bound pairs beyond the condensate
always be accompanied by the presence of the noncondensean be found in pap&rin the case of neutral Fermi systems.

fermion pairswg;(q) #0 in Eq.(23) if ng#0. Let the inter- The space-uniform character of the Fermi system is of use
action energy of the system be invariant with respect to thd the proof given above. Electrons in the crystalline field, of

local gauge transformation of the field Fermi operafors ~ course, cannot be treated on the same level. However, for
g—0 (large wavelengthsa crystalline lattice can be consid-

P(r,s)— (r,s)explix(r)), ered as the continuum. Therefore, the derived result remains
_ correct in this case.
Yy (r,8)— ¢ (r,s)exp(—ix(r)). (36) We emphasize that the bound pair states can fully be a

result of the collective effects. Indeed, as it was demon-

In this case the § theorem of Bogoliubov for the Fermi d by Coopel bi I on b
systemd is valid which asserts that in the presence of theStateéd by Coopet, an arbitrary small attraction between

pair condensate we have the inequality for sufficiently smalplectrons leads to fqrmlng the c;ondensate O.f t_he bound elec-
tron pairs. Hence, if we considered a sufficiently shallow

g well as the two-fermion interaction potential, we would ob-
C serve formation of the condensed and, according to the ob-
maxN,, qs= =, tained result, noncondensed pairs at low temperatures. How-
0,8 q ever, the well can be chosen in such a way as to prevent the

bound states of two “bare” fermions from appearing within
IWe ordinary two-particle problem.

It is important to make one more remark on the connec-
tion between the & theorem of Bogoliubov and the Gold-
stone theoremt As it has been demonstrated in Ref. 7, the
existence of the Goldstone mode in the Bose system results
from the Bogoliubov theorem provided the mass operator
becausen(k)=<1 for fermions. Therefore, we have the only 3 (w,k) is regular in the vicinity of the pointv=0, k=0.
possibility at which the singularity @# appears due to the Let us emphasize that there are situations when the Bogoliu-
noncondensed bound pairs. It is reasonable to expect thhbv theorem is valid while this is not the case for the Gold-
these pairs have the quantum numbers of the condensaséone one. For example, in the case of a neutral weakly in-
couplesSy,i: teracting Bose gas the condition mentioned above for the
mass operator is correct, and the Goldstone mode exists. On
~ the contrary, for the charged Bose gas the mass operator is
Wsyio(@)=—. (87 not regular ak=0, and, thus, there is no Goldstone mode. A

q similar situation is realized for the Fermi systefsse, e.g.,

The BCS model is not locally gauge invariant which re- Ref. 32.
sults in absence of the noncondensed bound paigs(q)
=0. It is important to note in this connection that the bound V. CONCLUSION
pair states beyond the condensate may play a noticeable role . ) )
in calculating the gauge-invariant response of the system to [N conclusion, let us take notice of the main results once
the electromagnetic fields. more. The reduced density matrix of the second order is a
We have proved that the noncondensed bound pairs Coe;gndament_al char_acterlstlc of a many-partlcle_ system, its
ist with the condensed ones B&T.. So, any theory ignor- eigenfunctions being the pure states of two particles selected
ing the noncondensed bound pairs of fermions is not fullyN & arbitrary way. The appearance of the condensate of the
consistent. We remark that the distribution of the bound ferPound pair states(25) implies the occurrence of the
mion pairs over the center-of-mass momenta obeys the irg-functional term in the distribution of the bound pairs over
equality (37) with C' «<kgTn, (see Ref. . The distribution the momentung of the pair center-of-massee Eq.(23)].
of the particles over momenta in the Bose gagq) Using t.he space homogeneity of thg system and the local
=n(q)/(27)% answers, at small, the similar relation 92ug€ invariancé36) of the fermion interaction, we have
w(q)=C"/q? with C"=ksTn, (heren, denotes the density proved that there is the 47 singularity in the distribution

of the condensed bosornsTherefore, there are fundamental function ws;(q) provided thatny#0. Thus, we refined the
parallels between the Bose gas and the considered subsystdfi® theorem of Bogoliubov, having proved the singularity
of the fermion bound pairs. These parallels are not only reappears ir\hfvsli(q), Therefore, the presence of noncondensed
duced to agreement between the fermion-pair statistics angbund pairs belowl . is a necessary condition of supercon-
the Bose one. Following this analogy, we can expect that theluctivity. A new simple proof of the Yang inequality for the
bound fermion pairs exist evenat-T. (apparently, in some Fermi systemg29) and its stronger variant30) have also
temperature interval .<T<T*, in spite of the disappear- been derived as results of secondary importance.

ance of the K? singularity. Thus, it looks as if any super-
conducting phase transition is a particular case of the Bose-
Einstein condensation. This conclusion can be of interest in
the context of the discussion concerning different approaches This work was supported by the RFBR Grant No. 97-02-
of investigating the highF, superconductivitysee Refs. 28, 16705. Discussions with V. V. Kabanov and V. B. Priezzhev
29). We remark that possible experimental consequences @fre gratefully acknowledged.

whereN,, s appears in Eq(7) andw is the set of the quan-
tum numbers corresponding to both the continuous spectru
[w=(p,mg)] and the discrete onew=i).2” However, Eq.
(35) results in

=
Np,q.5me=1

!
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