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Exact results for thermodynamics of the classical field theories:
Sine-Gordon and sinh-Gordon models
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Using the recently obtained exact results for the expectation values of operators in the sine- and sinh-Gordon
models[A. B. Zamolodchikov and S. Lukyanov, Nucl. Phys4B3 571(1997; V. Fateev, S. Lukyanov, A.
B. Zamolodchikov, and Al. B. Zamolodchikov, Phys. Lett4B6, 83 (1997 ] we calculate the specific heat of
the corresponding two-dimensional Eucliddalassical models. We show that the temperature dependence of
the specific heat of the sine-Gordon model, in the commensurate phase, has a maximum well below the
Kosterlitz-Thouless transition and that the sinh-Gordon model is thermodynamically unstable in the strong-
coupling regime. We give also the temperature dependence of the specific heat in the incommensurate phase of
the sine-Gordon mode]S0163-18209)00641-4

I. INTRODUCTION 1
SIVel*+u(coshge—1)|. (4

Ssinh:f d?x
The sine-Gordon model is an exactly solvable model

which has an enormous number of applications inFor this model there are no kinks and creation of nonzero-

condensed-matter physics and statistical mechanics. It hdigld gradient would require imaginary field. We do not

been studied for years with many remarkable results beingonsider such possibility.

obtained. However, most of the effort has been concentrated One can consider the quantum field theory in(1) di-

on studying this model as a quantum field theory. In thismensions witiz= [DgpeI¢ whereS is given by Eqs(3)

paper we discuss the sine-Gordon model together with a lessy (4). The exact solution for both models is known and we

famous sinh-Gordon model as models of classical statisticalan take advantage of the fact that the free energy of a

mechanics analyzing the behavior of their specific heat in th@-dimensional classical model is related to the ground-state

various range of parameters. energyE, of the corresponding quantum field theory living
Let us consider thelassicalsine- and sinh-Gordon mod- in a space of D—1) dimensions. More specifically, fdd
els whose partition functions are given by =2 the partition function of the classical theory defined on a
rectanglel, X L, with periodic boundary conditions in the
7 j Dpe-9¢] direction at temperatur€ is equal to the partition function of
' the quantum field theory at temperatdr;%l with the cou-

pling constant3®>=T. The limit L,—» corresponds to the
limit of zero temperature in the quantum field theory when
' its free energy is equal to the ground-state eneEgy
(1) =L,& . Thus we get the following relation between the free
energy per unit area of the two-dimensional classical model
o m F and the ground-state energy per unit length of the (1
§|V¢|2+ T(COSh(P_ 1)}_ +1)-dimensional field theory:

Sein= 7 Esil ¢]= | d ﬁ|V<p—Q| + T (1—cose)

1
SsinhE ? Esinl{ ‘P] = f d?x
(2 FAT)=TE[B(T)]. (5

The first model describes, for example, the commensuraterne ground-state energ§, of the quantum sine-Gordon
incommensurate transitidnMost recently it has been ap- model as a function of paramete{T) and u is known
plied to double-layered quantum Hall systefns. exactly ™ and the corresponding expression for the sinh-

The incommensurate phase appears wi@hexceeds Gordon model can be extracted from Ref. 7
some critical value and is characterized by nonzero average

value (QV ¢). Redefining the field variablep(/T)?p= ¢

we reduce the above Euclidean action to the canonical sine-

Gordon form(see, for example, Ref.)3 We start our discussion of the sine-Gordon model with
the case&)=0 which is already quite nontrivial. In the Bethe

1 ansatz approach the ground-state energy of the quantum

§|V¢’_h'8/277|2+'“(1_003ﬂ¢) IS sine-Gordp(?n model is galculated by regu?grizing theqmodel
by putting it on a lattice. The lattice constamtand the in-

with B2=T/psandu=m/T, |h|=27|Q|/B>. verse coupling constar of the regularized model are re-

In a similar fashion the sinh-Gordon action becomes lated to the mass of physical particles. According to Ref. 4

II. SINE-GORDON MODEL AT Q=0

Ssin= J d?x
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the ground-state energat Q=0) is given by we take the contribution of only the nearest pofe(1
. ) — 7). Second, the regioh/T.e (0.35,0.7) where we take the
c :if“°s'”4‘9t sinh(77t) dt, (6 contribution of both poles. Third, fof/Tce (0.7,0.9) we
a? ) ., ot cosh w(1— 7)t]sinh(7t) take only the contribution of the pole=i.

We combine these results to find the specific KegfT)
whereq-zT/(S.m?S)ET/T.c. The parameter§ anda are re-  _ _ 1.2/ 22T as a function of T/T, and m/T,, in T/T,
lated to the kink’s mass: €(0,1). In Fig. 1 we present plots of the temperature of the
4 specific heat for various values of. Figure 2 gives the
me=—e (=7, (7)  temperature dependence of the kink’s mass. From this pic-
a ture one can estimate the region where the conditipa
To excluded from Eq. (6) we use theT dependence of the <1 is fulfilled.
kink’s mass given in Ref. 3: At 1—7<1 and atr<1 expressions$10) for the specific
heat simplify. In the first case we have
1 2 I{[T(T~T)1}

My=—— 27°m? | 1 e
*a g T[T /(T—T)]} a2F=— " “21n
T, 1-71 m(1l—17)
am ['(1— T/Ty) | Y41~ (TTe
X(T_C T(i+ T/TC)) ® +0[(1—T)|n2(1—r)]], (12
Note that in the limiting case<1 we have 3 )

c _477 m-T. 13

OGS LA 49

me= i Y (mliw Ty 9
a This singularity is associated with the Kosterlitz-Thouless

We should stress that the above expressions make sense o#fignsition atT =T, (see Fig. 1

for m@<1 when the continuous approach works. Therefore At 7<1 we have

to calculate the ground-state energy in the continuous ap-

1/(1—7
proximation in Eq.(6) one has to keep only the pole closest 2p_ 4 2 [TM @
; , ; a‘F 47°m , (14
to real axis. Near the point=1/2 two poles at=i andt T
=i/2(1— 7) compete and one has to take into account both ,
of them. c—arl ™ Te o] Te | Te
Taking this into account we obtain from E@) the gen- R T " N/ 78X 7N ) -
eral expression for the free energy: (15)
F=F,+F,, The latter expression explains the existence of the maximum
in the specific heat: at Ii{/7m)>1 the maximum occurs at
m?2 - ™ =[In(T/7m)] L.
F1=TTcot(2(1_T))
Ill. SINE-GORDON MODEL IN THE INCOMMENSURATE
T . ™ C2(12)[TI(T—T)]} PHASE
= 7 N 21— T/ | TH (W2 [T/ (Te—T)1} At
_ U1— TITY
[T TA=-TITe) ¢ (10 Q>Qc=4rmy7) (16)
T, I'(1+T/Ty) ' . o )
the sine-Gordon model is in the incommensurate phase char-
2 [ma)4i-7 acterized by a condensate of kinl@V ¢) #0. The ground-
F,= —T; 2 taf w(1—17)]. (17 state energy of the corresponding quantum field theory ac-

quires an additional contribution originating from the
We emphasize that the necessity to keep both terms in theondensate. The corresponding change in the free energy of
expression for the free energy exists only close to the fre#he classical model is

fermion point. At7<<1/2 the free energy remains finite in the

- - . . . . 2 B
continuous limit @—0, mg=const), while atr>1/2 it di- SE= PR n T_msJ' h 1
verges. The latter fact is in agreement with the perturbation 2 2m 7Bdecos 0€(0). (17)
theory inm:

The nonpositive functiore( ) is defined inside the interval
5 5 a1 —B<#<B and satisfies the integral equati¢see, for ex-
f d X<COSB¢(X)COSE¢(0)>~I d*x(x/a) =47 ample Ref. 3

diverges at small distances. B Q

Since we always keepfinite, we plot the specific heat at e(0)+ ﬁBda'K(ﬁ_ 0')e(0')=mscosho—,—, (18)
finite values of @rm/T.), and it is convenient to separate the
interval of 7 into three regions. First, fof/T.e(0.1,0.35), where the Fourier image of the kernel is
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FIG. 1. Plots of the specific heat as a functionTéfc, for different values of the parameter, are shown.
sinf m(1-27)w/2(1—7)] corresponds to conditiof16). The critical line,Q.(7), sepa-
K(w)= 2 coshimwl2)sinf mral2(1—17)]" rating the commensurate-incommensurate phases, is shown

in Fig. 3.

The kernelK(#) encodes the information about the soliton- We have solved the integral equation for the function
soliton scattering. The limiB is determined by the condition €(#) numerically and the plots of its dependencerandQ
e(*=B)=0. A possibility of € being negative appears when are shown in Fig. 4. The dependence of the liibn the
the right-hand side becomes not positively defined whichtemperature an@ is shown on Fig. 5.
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FIG. 2. Plots of &my) as function of I/Tc), for different values of the parameter, are shown. The condition of continuous approach
works on the regiongmy) <1.
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FIG. 3. The critical line as function ofT{T,) for a fixed value
of the parametem is shown. The lattice constaatis taken to be

unity.

It is curious that the critical field has a finite limit at
—0 (this limit was first considered in Ref,)6According to
Eqg. (9), we have

)1/2

In the vicinity of the critical line in the incommensurate
phase one can expand solution of EDB) in series inB and
get for the additional free energy:

m

aQ.(0)= 16( (19

T

1 QZ ™ms Q 3/2 Q 1/2
ro- Sl [rrolg )
K2(0)\( Q
+ 01+7T>(ac—l +--- (20)

At small 7, K(0)~ (1/7%7)In(1/7) and the expansion is
valid for
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2

FQ-F(O)= pr _T%COI( 2(177— 7))
- 4% 2 k(Qﬂ/-4r) | 22
The factork(Q/47) is given as a power series
k(Ql4r)= éo Koy", (23)
with
_ 2mg/m T[1/2(1—7)]) 42" 4

Q

The first two coefficients are given by

T[/2(1—1)]

I'(r) I'(5/2-1)
I'(—7) I'(1/2+7) (27-1)(3—27)°
(25
)2

T

KO: 7, Kl: 2
Putting them together in Eq22) we get

2

mS o
ch’t(zu—r))_T(
2<Q)2 I'(r) T'(5/2—17)
e (=7 [(1/2+7)
T
21320
2ma/7 T[1/2(1—7)]

Q

2
FQ-FO="F 1 ~

T
o

(26)

4(1-1)
X( Q r[r/2<1—r>])

The second term on the right-hand side of the above equation
gives the free energy of the system in absence of the §eld
(with opposite sighand cancels with-(0) of the left-hand

w2 7In(1/7)>(Q/Q.—1). (21
Plots of the additional specific heat are shown on Fig),6
whereas plots of the total specific heat are shown in Rig. 6 side. On the other hand the first and the third terms on the
for some values of the fiel®. right cancel each othetkeeping in mind thafl .=8mp,).

The Q/7—0o0 analytic structure of the total free energy The total free energy of the system in the presence of the
F(Q) is given by Zamolodchikot field Q is given, to this order of approximation, by

4=.0600,

m=.0001 0=.0900, m=.0001

FIG. 4. (a) Plots of[—€(0)]
for different fixedr. In (b) the pa-
rameter Q=0.090, which corre-
sponds to crossing the critical line
at 7=~0.

0=.1200, m=.0001 0=2.0000, m= .0001
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FIG. 5. Plots of temperature dependence of the paranieierEq. (18). The parametef is taken to have values 0.060 and 0.120,
respectively.

2(Q\2 I'(r) T'(5/2—7) T = dt cosH(xt)sinh(xt) -
F(Q):_T;<4_T) I'(=7) [(1/2+7) (27-1)(3-27) I(X):exr{zfo T(_sinht costi(1+x)t]  <© ZtH’

_ 29
2mg\/7 T[1/21— 7)) 447 _ S (29
Q T[2(1-7] where T,=8mps. This expression is valid fof <T;. The
integral (29) can be calculated to give the expression
T, T I'(5/2— 1
——qerle r((—T)) r(1/2+ T; e 2 T2 )12(1+30] T T[= x/2(1+x)]
m [(=n T2t ) (27 T ()= 2= x21+x)] T(—x) T21+x]
I[1/2(1—7)]\ 42" (30
o i1 ) o, ooty secrensig e
I[7/2(1—17)] with 0<x<1.1(x) is monotonically decreasing function tak-
o _ ing values in the interval0,1).
The expansion is valid only for small values @t 1/2, In the light of the following discussion it will be instruc-
where the free energy of the system in absence of the@eld tive also to have the expression for the més® inverse
is given byF; of Eq. (10). correlation length of the sinh-Gordon theory. To get this
expression one has to changeto i 8 for the sine-Gordon
IV. SINH-GORDON MODEL: THERMODYNAMIC ma.ss which corresponds to reversal of the sigi oin Eq.
INSTABILITY ®):
Now we consider the sinh-Gordon model. Here the exact _ 4w
solution was suggested by Fatéavho has taken the sine- ma= F[TJ2T+TYIT[1+T/I2(T+TY)]

Gordon two-body S matrix for the first breathers and

changed the sign of the coupling const@itin it. Compar- | T(1+T/Ty)|TeAT+Td (31)
ing Egs.(3 and 4 we see that to get the sinh-Gordon action T. I'(1-TITy)
t of the sine-Gord h to ch i d . . . . .
(r)nu—>o—m € sine-Gordon one we have to chaigge i/ an (this expression coincides with the mass of the sine-Gordon
Doing this substitution in the expression for the free en_breatherafter the,substltu_t|0ﬂ'—>—T). We would like tp
ergy (see also Ref.)7 we get attract the reader’s attention to the fact thatT) never di-

verges aff <T. and actually goes to zero &t—T,.
For 7=(1-T/T.)<1 we obtain from Eq(29) I(7)~7

and substituting this into Eq28) we get at In{./7m)>1

TL(1-T/Ty) |\ 7T+
F=—mI(T/TY(1+T/Ty) :

ML (14 T/Ty)
(28) F~ _(1_T/TC)1/2e—(1—T/Ta|n(Tc/7Tm). (32)

(a) m=.0001 (by ©
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FIG. 6. (a) Three-dimensional plot of the contribution to the specific heat coming from the soliton condensate as funcéind@f The
presence of the condensate leads to decrease in the specifibh&ae total specific heat of the system for different values of the parameter
Q. Each of the lines 1-5 merge with the line Q€ 0) at the commensurate-incommensurate transition temperature.
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It is easy to see that the specific heat becomes negative at V. CONCLUSIONS

The summary of our results on the classical sine-Gordon

—TITy)<(1+v2 n(Te/mm)]~ model is well represented by Fig. 6. The specific heat has a
(A-TITY<(A+VD)[2In(Te/mm)] * (33 del i Il d by Fig. 6. Th ific heat h

peak well below the Kosterlitz-Thouless transition and the

such that at temperatures sufficiently clos@tahe model is ~ {€mperature dependence becomes even more complicated in
thermodynamically unstable. the incommensurate phase. We suppose that all these fea-

This thermodynamic instability is not completely unex- tures are detectable experimentally in the relevant systems

pected. It occurs in the strong-coupling regime when thdik€ the one described in Ref. 2.
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