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Exact results for thermodynamics of the classical field theories:
Sine-Gordon and sinh-Gordon models

Emiliano Papa and Alexei M. Tsvelik
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
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Using the recently obtained exact results for the expectation values of operators in the sine- and sinh-Gordon
models@A. B. Zamolodchikov and S. Lukyanov, Nucl. Phys. B493, 571 ~1997!; V. Fateev, S. Lukyanov, A.
B. Zamolodchikov, and Al. B. Zamolodchikov, Phys. Lett. B406, 83 ~1997!# we calculate the specific heat of
the corresponding two-dimensional Euclidean~classical! models. We show that the temperature dependence of
the specific heat of the sine-Gordon model, in the commensurate phase, has a maximum well below the
Kosterlitz-Thouless transition and that the sinh-Gordon model is thermodynamically unstable in the strong-
coupling regime. We give also the temperature dependence of the specific heat in the incommensurate phase of
the sine-Gordon model.@S0163-1829~99!00641-4#
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I. INTRODUCTION

The sine-Gordon model is an exactly solvable mo
which has an enormous number of applications
condensed-matter physics and statistical mechanics. It
been studied for years with many remarkable results be
obtained. However, most of the effort has been concentr
on studying this model as a quantum field theory. In t
paper we discuss the sine-Gordon model together with a
famous sinh-Gordon model as models of classical statis
mechanics analyzing the behavior of their specific heat in
various range of parameters.

Let us consider theclassicalsine- and sinh-Gordon mod
els whose partition functions are given by

Z5E Dwe2S[w] ,

Ssin[
1

T
Esin@w#5E d2xF rs

2T
u¹w2Qu21

m

T
~12cosw!G ,

~1!

Ssinh[
1

T
Esinh@w#5E d2xF rs

2T
u¹wu21

m

T
~coshw21!G .

~2!

The first model describes, for example, the commensur
incommensurate transition.1 Most recently it has been ap
plied to double-layered quantum Hall systems.2

The incommensurate phase appears whenuQu exceeds
some critical value and is characterized by nonzero ave
value ^Q¹w&. Redefining the field variable (rs/T)1/2w5f
we reduce the above Euclidean action to the canonical s
Gordon form~see, for example, Ref. 3!:

Ssin5E d2xF1

2
u¹f2hb/2pu21m~12cosbf!G , ~3!

with b25T/rs andm5m/T, uhu52puQu/b2.
In a similar fashion the sinh-Gordon action becomes
PRB 600163-1829/99/60~18!/12752~6!/$15.00
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Ssinh5E d2xF1

2
u¹fu21m~coshbf21!G . ~4!

For this model there are no kinks and creation of nonze
field gradient would require imaginary fieldh. We do not
consider such possibility.

One can consider the quantum field theory in (111) di-
mensions withZ5*Dfe2S[f] whereS is given by Eqs.~3!
or ~4!. The exact solution for both models is known and w
can take advantage of the fact that the free energy o
D-dimensional classical model is related to the ground-s
energyE0 of the corresponding quantum field theory livin
in a space of (D21) dimensions. More specifically, forD
52 the partition function of the classical theory defined on
rectangleLx3Ly with periodic boundary conditions in thex
direction at temperatureT is equal to the partition function o
the quantum field theory at temperatureLx

21 with the cou-
pling constantb25T. The limit Lx→` corresponds to the
limit of zero temperature in the quantum field theory wh
its free energy is equal to the ground-state energyE0
5LyE0 . Thus we get the following relation between the fr
energy per unit area of the two-dimensional classical mo
F and the ground-state energy per unit length of the
11)-dimensional field theory:

F~T!5TE0@b~T!#. ~5!

The ground-state energyE0 of the quantum sine-Gordon
model as a function of parametersb(T) and m is known
exactly3–5 and the corresponding expression for the sin
Gordon model can be extracted from Ref. 7

II. SINE-GORDON MODEL AT Q50

We start our discussion of the sine-Gordon model w
the caseQ50 which is already quite nontrivial. In the Beth
ansatz approach the ground-state energy of the quan
sine-Gordon model is calculated by regularizing the mo
by putting it on a lattice. The lattice constanta and the in-
verse coupling constantu of the regularized model are re
lated to the mass of physical particles. According to Ref
12 752 ©1999 The American Physical Society
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the ground-state energy~at Q50! is given by

E05
1

a2 E
2`

1` sin 4ut

t

sinh~ptt !

cosh@p~12t!t#sinh~pt !
dt, ~6!

wheret5T/(8prs)[T/Tc . The parametersu anda are re-
lated to the kink’s mass:

ms5
4

a
e2u/(12t). ~7!

To excludeu from Eq. ~6! we use theT dependence of the
kink’s mass given in Ref. 3:

ms5
1

a

2

Ap

G$~1/2!@T/~Tc2T!#%

G$~1/2!@Tc /~Tc2T!#%

3S pm

Tc

G~12 T/Tc!

G~11 T/Tc!
D 1/2@12 ~T/Tc!#

. ~8!

Note that in the limiting caset!1 we have

ms5
4

a
t21~m/pTc!

1/2. ~9!

We should stress that the above expressions make sense
for msa!1 when the continuous approach works. Theref
to calculate the ground-state energy in the continuous
proximation in Eq.~6! one has to keep only the pole close
to real axis. Near the pointt51/2 two poles att5 i and t
5 i /2(12t) compete and one has to take into account b
of them.

Taking this into account we obtain from Eq.~6! the gen-
eral expression for the free energy:

F5F11F2 ,

F15T
ms

2

4
cotS p

2~12t! D
5

T

pa2 cotS p

2~12T/Tc!
D G2$~1/2!@T/~Tc2T!#%

G2$~1/2!@Tc /~Tc2T!#%

3S pm

Tc

G~12 T/Tc!

G~11 T/Tc!
D 1/~12 T/Tc!

, ~10!

F252T
2

a2 S msa

4 D 4(12t)

tan@p~12t!#. ~11!

We emphasize that the necessity to keep both terms in
expression for the free energy exists only close to the
fermion point. Att,1/2 the free energy remains finite in th
continuous limit (a→0, ms5const), while att.1/2 it di-
verges. The latter fact is in agreement with the perturba
theory inm:

E d2x^cosbf~x!cosbf~0!&;E d2x~x/a!24(12t)

diverges at small distances.
Since we always keepa finite, we plot the specific heat a

finite values of (pm/Tc), and it is convenient to separate th
interval of t into three regions. First, forT/TcP(0.1,0.35),
nly
e
p-
t

h

he
e

n

we take the contribution of only the nearest polei /2(1
2t). Second, the regionT/TcP(0.35,0.7) where we take th
contribution of both poles. Third, forT/TcP(0.7,0.9) we
take only the contribution of the polet5 i .

We combine these results to find the specific heatCv(T)
52T]2F/]2T as a function ofT/Tc and m/Tc , in T/Tc
P(0,1). In Fig. 1 we present plots of the temperature of
specific heat for various values ofm. Figure 2 gives the
temperature dependence of the kink’s mass. From this
ture one can estimate the region where the conditionmsa
!1 is fulfilled.

At 12t!1 and att!1 expressions~10! for the specific
heat simplify. In the first case we have

a2F52
2p3m2

Tc
H 1

12t
12 lnS e2

p~12t! D
1O@~12t!ln2~12t!#J , ~12!

Cv5
4p3

a2

m2Tc

~Tc2T!3 1¯ . ~13!

This singularity is associated with the Kosterlitz-Thoule
transition atT5Tc ~see Fig. 1!.

At t!1 we have

a2F524p2mS pm

Tc
D 1/(12t)

, ~14!

Cv54pS pm

Tc
D 2

lnS Tc

pmD F21 lnS Tc

pmD Gt expS 2t lnS Tc

pmD D .

~15!

The latter expression explains the existence of the maxim
in the specific heat: at ln(Tc /pm)@1 the maximum occurs a
t* 5@ ln(Tc /pm)#21.

III. SINE-GORDON MODEL IN THE INCOMMENSURATE
PHASE

At

Q.Qc54tms~t! ~16!

the sine-Gordon model is in the incommensurate phase c
acterized by a condensate of kinks^Q¹f&Þ0. The ground-
state energy of the corresponding quantum field theory
quires an additional contribution originating from th
condensate. The corresponding change in the free energ
the classical model is

dF5
rcQ

2

2
1

Tms

2p E
2B

B

du coshue~u!. ~17!

The nonpositive functione(u) is defined inside the interva
2B,u,B and satisfies the integral equation~see, for ex-
ample Ref. 3!

e~u!1E
2B

B

du8K~u2u8!e~u8!5mscoshu2
Q

4t
, ~18!

where the Fourier image of the kernel is
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FIG. 1. Plots of the specific heat as a function ofT/Tc, for different values of the parameterm, are shown.
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K~v!5
sinh@p~122t!v/2~12t!#

2 cosh~pv/2!sinh@ptv/2~12t!#
.

The kernelK(u) encodes the information about the solito
soliton scattering. The limitB is determined by the condition
e(6B)50. A possibility of e being negative appears whe
the right-hand side becomes not positively defined wh
 h

corresponds to condition~16!. The critical line,Qc(t), sepa-
rating the commensurate-incommensurate phases, is sh
in Fig. 3.

We have solved the integral equation for the functi
e(u) numerically and the plots of its dependence ont andQ
are shown in Fig. 4. The dependence of the limitB on the
temperature andQ is shown on Fig. 5.
ch
FIG. 2. Plots of (ams) as function of (T/Tc), for different values of the parameterm, are shown. The condition of continuous approa
works on the region (ams)!1.
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It is curious that the critical field has a finite limit att
→0 ~this limit was first considered in Ref. 6!. According to
Eq. ~9!, we have

aQc~0!516S m

pTc
D 1/2

. ~19!

In the vicinity of the critical line in the incommensura
phase one can expand solution of Eq.~18! in series inB and
get for the additional free energy:

1

Tc
dF5

Q2

2
2

tms
2

6p S Q

Qc
21D 3/2F12K~0!S Q

Qc
21D 1/2

1S 0.117
K2~0!

6 D S Q

Qc
21D1¯ G . ~20!

At small t, K(0)' (1/p2t) ln(1/t) and the expansion is
valid for

p2t/ ln~1/t!@~Q/Qc21!. ~21!

Plots of the additional specific heat are shown on Fig. 6~a!,
whereas plots of the total specific heat are shown in Fig. 6~b!
for some values of the fieldQ.

The Q/t→` analytic structure of the total free energ
F(Q) is given by Zamolodchikov3

FIG. 3. The critical line as function of (T/Tc) for a fixed value
of the parameterm is shown. The lattice constanta is taken to be
unity.
F~Q!2F~0!5
rcQ

2

2
2T

ms
2

4
cotS p

2~12t! D
2S Q

4t D 2 k~Q/4t!

p
. ~22!

The factork(Q/4t) is given as a power series

k~Q/4t!5 (
n50

`

Kny
n, ~23!

with

y5S 2msAp

Q

G@1/2~12t!#

G@t/2~12t!#
D 4(12t)

. ~24!

The first two coefficients are given by

K05t, K152
G~t!

G~2t!

G~5/22t!

G~1/21t!

t

~2t21!~322t!
.

~25!

Putting them together in Eq.~22! we get

F~Q!2F~0!5
rcQ

2

2
2T

ms
2

4
cotS p

2~12t! D2TS Q

4t D 2 t

p

2T
2

p S Q

4t D 2 G~t!

G~2t!

G~5/22t!

G~1/21t!

3
t

~2t21!~322t!

3S 2msAp

Q

G@1/2~12t!#

G@t/2~12t!#
D 4(12t)

. ~26!

The second term on the right-hand side of the above equa
gives the free energy of the system in absence of the fielQ
~with opposite sign! and cancels withF(0) of the left-hand
side. On the other hand the first and the third terms on
right cancel each other~keeping in mind thatTc58prc!.
The total free energy of the system in the presence of
field Q is given, to this order of approximation, by
e

FIG. 4. ~a! Plots of @2e(u)#
for different fixedt. In ~b! the pa-
rameter Q50.090, which corre-
sponds to crossing the critical lin
at t'0.
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FIG. 5. Plots of temperature dependence of the parameterB in Eq. ~18!. The parameterQ is taken to have values 0.060 and 0.12
respectively.
ld

a
-
d

on

n

-

-

s

don
F~Q!52T
2

p S Q

4t D 2 G~t!

G~2t!

G~5/22t!

G~1/21t!

t

~2t21!~322t!

3S 2msAp

Q

G@1/2~12t!#

G@t/2~12t!#
D 4(12t)

52Q2214t
Tc

8p

G~t!

G~2t!

G~5/22t!

G~1/21t!

1

~2t21!~322t!

3S 2msAp
G@1/2~12t!#

G@t/2~12t!# D
4(12t)

. ~27!

The expansion is valid only for small values oft,1/2,
where the free energy of the system in absence of the fieQ
is given byF1 of Eq. ~10!.

IV. SINH-GORDON MODEL; THERMODYNAMIC
INSTABILITY

Now we consider the sinh-Gordon model. Here the ex
solution was suggested by Fateev7 who has taken the sine
Gordon two-body S matrix for the first breathers an
changed the sign of the coupling constantb2 in it. Compar-
ing Eqs.~3 and 4! we see that to get the sinh-Gordon acti
out of the sine-Gordon one we have to changeb→ ib and
m→2m.

Doing this substitution in the expression for the free e
ergy ~see also Ref. 7!, we get

F52mI~T/Tc!~11T/Tc!S TcG~12T/Tc!

pmG~11T/Tc!
D T/~T1Tc!

.

~28!
ct

-

I ~x!5expF2E
0

` dt

t S 2
cosh2~xt!sinh~xt!

sinht cosh@~11x!t#
1xe22tD G ,

~29!

whereTc58prs. This expression is valid forT,Tc . The
integral ~29! can be calculated to give the expression

I ~x!5
G@1/21 x/2~11x!#

G@1/22 x/2~11x!#

G~x!

G~2x!

G@2 x/2~11x!#

G@x/2~11x!#
,

~30!

with 0,x,1. I (x) is monotonically decreasing function tak
ing values in the interval~0,1!.

In the light of the following discussion it will be instruc
tive also to have the expression for the mass~the inverse
correlation length! of the sinh-Gordon theory. To get thi
expression one has to changeb to ib for the sine-Gordon
mass which corresponds to reversal of the sign ofTc in Eq.
~8!:

msa5
4Ap

G@Tc/2~T1Tc!#G@11T/2~T1Tc!#

3Fpm

Tc

G~11T/Tc!

G~12T/Tc!
GTc/2(T1Tc)

~31!

~this expression coincides with the mass of the sine-Gor
breather after the substitutionT→2T!. We would like to
attract the reader’s attention to the fact thatm(T) never di-
verges atT,Tc and actually goes to zero atT→Tc .

For t5(12T/Tc)!1 we obtain from Eq.~29! I (t);t
and substituting this into Eq.~28! we get at ln(Tc /pm)@1

F;2~12T/Tc!
1/2e2(12T/Tc)ln(Tc /pm). ~32!
eter

FIG. 6. ~a! Three-dimensional plot of the contribution to the specific heat coming from the soliton condensate as function oft andQ. The

presence of the condensate leads to decrease in the specific heat.~b! The total specific heat of the system for different values of the param
Q. Each of the lines 1–5 merge with the line 0 (Q50) at the commensurate-incommensurate transition temperature.
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It is easy to see that the specific heat becomes negative

~12T/Tc!,~11& !@2 ln~Tc /pm!#21 ~33!

such that at temperatures sufficiently close toTc the model is
thermodynamically unstable.

This thermodynamic instability is not completely une
pected. It occurs in the strong-coupling regime when
coupling constantT/Tc approaches its critical value 1. Le
the reader recall that at this value of the coupling cons
the ultraviolet limit of the sinh-Gordon model, the Liouvill
model, becomes unstable8 ~its central charge approaches t
value of 25!. Another indication of the instability come
from the temperature dependence of the inverse correla
length given by Eq.~31!: at T→Tc the mass becomes zer
which one does not expect to happen to the sinh-Gor
model which can be thought of as the Gaussian theory
turbed by a strongly relevant operator. One can check tha
the instability point~33! the mass of the sinh-Gordon partic
is still much larger than its value atT50.
,
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V. CONCLUSIONS

The summary of our results on the classical sine-Gord
model is well represented by Fig. 6. The specific heat ha
peak well below the Kosterlitz-Thouless transition and t
temperature dependence becomes even more complicat
the incommensurate phase. We suppose that all these
tures are detectable experimentally in the relevant syst
like the one described in Ref. 2.
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