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Sliding mode and breaking of analyticity in the double-chain model
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The double chain modéDCM) generalizes the Frenkel-Kontorova model for composite systems, coping
with situations when both subsystems are deformable. We show how the shape and amplitude of the inter-
modulation of subsystems depend on the intersubsystem interaction potential, elastic constants, and average
repeat distances of the subsystems. We characterize and study the behavior of the sliding mode, that is a
pseudo-Goldstone mode of the system. DCM undergoes an analyticity breaking transition that leads to intrinsic
pinning of the sliding mode, when the strength of the intersubsystem coupling is increased above a threshold
value.[S0163-182@99)02042-1

I. INTRODUCTION ing deformation of both subsystems. None of the previous
models are able to explain correctly static properties like the
Incommensurate composites belong to the class of quasiatermodulation, or to give a full account of the lattice dy-

periodic crystals, and are defined by the presence in thelamics by taking into account the discrete nature of the com-

structure of at least two interpenetrating modulated crystalPosite. In order to provide a more accurate description of the

line subsystems, that have incommensurate average repédgtic and dynamic properties of composites, we have re-
distances along one or several common crystallographic dfently introducetf the double-chain modéDCM), consist-

rections. The most studied composites are the intergrowth dpg Of two harmonic chains of atoms that interact with each

inclusion compound&? for which the connectivity of at least ©ther via pair potentials. DCM generalizes the FK model by

one of the subsystems is linear, and the misfit layer or inter’€Pacing the rigid periodic substrate of the latter by a sec-

claton compoundS,uhose subsystems form akermating 200, ST chan, Unike te doube P it
parallel layers with planar connectivity. P y 9

T . . eriodic potential, the DCM deals with the mutual deforma-
Because the irrational ratio of average repeat distances

b i difi | the chemical nat ; jon of the chains in a more realistic way.
cannot be eastly modi iefiinless the chemical naturé ot one — pecant experimental work focused on structural and dy-
of the subsystems is altenredomposites remind of quasic-

namic properties of urea-alkane inclusion compounds and
rystals. The fact that one or both subsystems are modulatgfytivated our theoretical approach. X-ray and neutron-

by their mutual interaction reminds of modulated IncOMmen-gcattering experiments showed the presence of satellite re-
surate crystals. In this sense incommensurate composites reéfsctions, due to the intermodulation of both subsystéhis.
resent an intermediate case. As usual for quasiperiodic crysthe positions in the reciprocal space of the main reflections
tals, the structure of incommensurate composites can bgnd satellites are linear combinations of two wave vectors
usefully described by superspace analysis. The general prigorresponding to the inverse average periods of the
ciples of the superspace embedding as well as the applicatigubsystem$® This implies that the modulation function of
of this method to the description of the structure of inter-each subsystem has the period of the other subsystem. Mea-
growth compounds like Hg sAsFg were introduced by Jan- suring the intensities of different x-ray reflections allowed
ner and Janssérsing this approach van Smalfeanalyzed the structure refinement of the;{l3¢/urea inclusion com-
the structure of several incommensurate misfit layer and inpound, taking into account atomic displacements associated
tergrowth compounds. In the case of incommensurate conwith the modulatiort? Lattice dynamics has been studied via
posites at least two sets of atomic surfaces are needed, oBgillouin light scattering and inelastic neutron scattering.
for each subsystem. The dimension of the superspace lattiGpecial attention has been given to the detection of the con-
is 3+d whered is the number of independent incommensu-troversial phason mode, that for composites should involve
rate length ratios in the structure, and it seems that the intethe relative displacement of the subsystems and therefore is
modulation does not introduce new incommensurate ratioalso called sliding mode. Optical measurements on
(does not changd). C.Han4o/urea compoundsn=12, 14, 17, 19 are compat-
Hydrodynamic modes of the intergrowth compoundible with the existence of a sliding motfethat may be
Hgs_ sAsF; were computed in Ref. 6. Elasticity theory of pinned!®
composites was discussed in Ref. 7. The Frenkel-Kontorova In this paper we intend to discuss some general features of
model(FK) (Refs. 8 and 9consisting of a harmonic chain of the statics and dynamics of composites. For simplicity we
atoms under the influence of a rigid periodic substrate woulanake a rather special choice of the interchain pair potential
describe a special composite system, when one of the sukhat is considered to be Gaussian. We shall present
systems is infinitely rigid. Double Frenkel-Kontorova elsewher&’ a methodology for determining the shape and the
model$®** allowed some understanding of solitons involv- amplitude of the interchain pair potential for specific inclu-
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sion compounds. This uses the model developed here and After several rescalings the energy becomes
allows direct confrontation of the theory with experimental
data on intermodulation and dynamics. W (1)

Another purpose of this work is the study of the analytic- E= @ > 1)?
ity breaking transitionABT) for the DCM. The FK model
develops a zero-temperature transition when the amplitude of (1)_ (2)
the substrate potential increases above a threshold value. The + > (YD —y@  — ) 2,0 2 V( )
signature of the transition is the loss of analyticity of the 2y
modulation function of the chain, accompanied by the pin- 2.2
ning of the phason mode. AuHﬁ/prowded a rigorous analy-
sis of the FK model, emphasizing that ABT corresponds tovhere E=¢&/(kt2a2), yP=x/a,;, y@=x@/a,, «
breaking invariant tori of a two-dimension@D) dynamical =a,/a;,r=pla,, X(l)—k(l 2)/k(l) (2)—k(1 2K,
system. We show that DCM also undergoes ABT when a A stationary(equilibrium) conflguratlon obeys
critical line in the plane of the coupling constants is crossed.
This result shows that this type of transition is very general (VE) = (2yP—ym) —yD) /@)
and that the presence of a rigid periodic substrate is not re- 1) (2
ally necessary in order for this to happen. s E V’(y “Ym ) 0.

This paper is structured as follows. The next section de- r
scribes the DCM. The ground states of the DCM and their
superspace embedding are described in Sec. Ill A. In Sec. (0DE) =2y —y?)  —y@ )1,/
[l B we discuss symmetry breaking and the two Goldstone
modes of the model: the acoustical phonon and the phason (1 —y(2)
(sliding) mode. The analyticity breaking transition is dis- Y 2 V'( ) 0 (2.3
cussed in Sec. Il C. In Sec. Ill D we use Poisson sum for-
mula and perturbation theory in order to calculate the modu-
lation amplitudes. Section Ill E contains an analysis of the
relation between the average repeat distances ratio and the
relative modulation amplitudes of the subsystems. A special
effect is emphasized that we call enhanced rigidity of the

The frequencies of phonon excitations, and the corre-
gonding atomic displacements in reduced coordin&f@s

\/—y(') are the square roots of eigenvalues, and the eigen-
vectors of the infinite dimensional dynamical matbx re-

longer period subsystem. spectively:
1 1
Il. DOUBLE-CHAIN MODEL — 9LDE —1 6]
. . my m;m,
The double-chain modéDCM) consists of two parallel D= , (2.4

chains of atoms. The atoms interact via pair potentials and 1) 1 22

itudi et —J“E  —d'“%E
move only longitudinally along the common direction of the Jm;m, m,

chains.
A configuration of the DCM is defined by the whered"E are the four blocks of the HessianBftwo for
1D positions of the atoms along the two chainsintrachain and two for interchain interactjon
C:={x§11) ,Xgﬁ)}m‘nez_ The potential energy of a configura-  For commensurate ground states, the Bloch theorem may
tion is be used to decompogg into a family of finite dimensional
dynamical matrice®? In order to find commensurate ground
states we have used a conjugate-gradient method to mini-

5(C)=EI VAU —xE) + X v@dx@—x2) mize the configuration energfEq. (2.2] with periodic
n.n m,m'’ boundary conditions y(?,=y{V+p,y{Z =y +wa, p q
S V(lvz)(xf,l)—xff)). 2.1 e?), at fixed Wlndmg number W—Ilmr_m(ym+r

—y@y) —y(y=p/q=a. Series of rational winding
numbers converging to an irrational allowed examining

Here we restrict the range of intrachain interactions toncommensurate ground states.
successive neighboring atoms, and use convex harmonic in-
trachain potentialg’*V) V(22 In other words, successive IIl. INTERMODULATION AND PHASON MODE
atoms on the chains 1 and 2 are connected by springs of
elastic constantk™), and k®, and undeformed lengths
a;,a,, respectively. We also consider that the interchain po- A ground-state configuration corresponding to the wind-
tential V(*? has a finite rangg. In this paperV*? is a  ing numbera can be described by giving the displacements
Gaussian potential(22)(x) = (k1?p2/2)V(x/p) whereV=  of each atom with respect to equidistant positions. Similarly
—exp(—x9). In a previous papéf we have considered the to the case of the Frenkel-KontoroyeK) model, the com-
case of a truncated harmonic potential that leads to analytiplete information describing these displacements can be en-
results. As we show elsewhéfehe shape of the interchain capsulated in two modulation functioiene for FK model
potential may be adapted to the particular composite systemefined each one on the circle. Provided that ground states
that is studied. exist with the imposed winding numbéas valid for the FK

A. Circle map and superspace representation
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model), it is always possible to define modulation functions | gD |
for each subsystem having the periodicity of the other sub- 1 ‘
system, as follows: \ |

yO=n+fOm), fO(y+a)=f(y), 7l {
yD=ma+ s+t @(ma+s), 1@(y+1)=1y). -

b
e S
The relation(3.1) between displacements and modulation «' Ay ‘4‘

functions can be rewritten by using the circle n@ap:R/Z \S !
—R/Z,C (X)=x+a(mod1):
|

|
fD(acy,(0)=y—n, / 5/

fE(CR(8) =y —ma-s. (3.2 /) (

For arbltre;ry,B the orbit of any pomt/x undgr the' C|rcle FIG. 1. Atomic lines for an incommensurate composite. Atoms
map 1S Un{CB(.x)}={X+'n,8(.mod Ljne %} This orbit fills are at the intersections of these lines with the physical tinaxis).
densely the circle for irrationaB=a,a . If () then 5 phason shift is a translation of theaxis.

Egs. (3.2) define the values of the modulation functions on

sets that are dense in the circle. For the FK model anyyasks in a way the symmetry between the two subsystems,
ground state has a well defined winding number and whep it is in general convenient. As true in general, the Fourier
this number is irrational the modulation function can alwaystransform of the intersection of the superspace distribution
be extended to left or right continuous functions on the entirgyith the physical line is the projection of the Fourier trans-
circle® Furthermore, the modulation function is analytic if form of this distribution onto the physical line. One can
the substrate potential is weak enough. We expect the sam@eck that for any value of, the projection of the reciprocal

to be true for DCM. Itis actually at this point that we get the syperiattice onto the physical line is the dense Fourier mod-
full meaning of the property that each subsystem is moduyje {27(n+m/a)}, m., that contains the positions of all
lated with the period of the other. The modulation functionsgragg peaks of the composite. In the gendrabdulated

are analytic or at least left or right continuous when they argase " it can be shown that the two families of undulating
defined for each subsystem with the period of the other substomic lines are uniquely defined bfj) the intersections of
system. In more general situatiSfisvhen more than two  the two families of atomic lines with the physical line are
periods are involved the convenient periodicity of the modu-, (1) (2) respectivelyii) the set of atomic lines have the
lation function is dictated by the Diophantine relations be- r(]ari;)dn;ci,ty of the sup;erlattice The equations of the two
tween the periods of the system; this may lead to quasiperk, wilies of atomic lines are '

odic modulation functions as well. Fer=p/q, p,qeZ the

circle map orbits are finite and Eq8.1) and(3.2) define the x=fO[ —y/tan(y)+n]+n,
values of the modulation functions on finite sets of points
equidistantly distributed on the circle, and the successive val-  x=f@)[y/tan(y) + ma+ 8] +y/tan y) + ma+ é.
ues fA(r/q),r=0,...p—1, f@(s+s/q),s=0,...4 (3.3
—1, are the relabeled values of the displacemgijts—n,
2)—ma—6 via the permutationsr=n*g(modp), s B. Phason(sliding) mode and Goldstone theorem

=m* p(modq). We have used this property to construct the

modulation functions for ground states calculated with peri- Not counting space inversion, there are two types of sym-
. " metry elements of the configuration energy of the DCM.
odic boundary conditions.

The above constructions find a simple geometrical inter-Some of these symmetry elements form the group of con-

pretation in the 2D superspace formaliérRositions of at- tinuous translationg, :

oms in the two chains are the intersections of the 1D physical T @) @y =y y@ 4y 3.4

line (Fig. 1, horizontal with two families of parallel atomic Ayn 7 ym D=1y Y TA} 34
lines (One for each Chabn If no intermodulation is present Other symmetry elements form a countable group, con-

the atomic lines are straight and cut the physical line at equisisting in shifts of atomic indices, that preserve sequential
distant position® andmea + 6. The superlattice is defined by grder inside each chain.

the intersections between the two families of straight lines.

As shown in Fig. 1 the geometry of the 2D superlattice is not S (y®y@h={y®, y@ 1. (3.5
entirely fixed by the winding number. Two angles have to be

specified, giving the inclination of the two families of lattice  Let G={n+f®)(n),ma+ 6+ @ (ma+ )} be a ground
lines with respect to the physical line. One of these twostate corresponding to the irrational winding number
angles is usually chosen/2 for simplicity, and thus one We call group of phason translations the subgroup
family of atomic lines is perpendicular to the physical line, {P, s}:={T_.S; ¢} sz of the direct product, XS; 5. P, ¢
while the second anglesy) is arbitrary. This, however, acts ong in the following way:
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P, (n+fM(n), ma+s+f@(ma+s)}) 0.02) a 0.02 "
={n+fM(n=¢6"), ma++8 +f@(ma+s+6")}, oo oo
x
36 £ O g °
! i i -0.01 -0.01
where 8’ =sa—r. Using Egs.(3.3) we may show that this .
transformation corresponds exactly to a shift of the physical -0.02 - 0,02

line (horizonta) in the vertical direction by a distance 0 0.5 1 ¥ 0.5 1
d'tan(y) (Fig. 1). Equation(3.6) shows the “sliding” char-

acter of the phason translation: this induces an average rele .,
tive displacemen®’ of one chain with respect to the other Tk 001f

(the modulation functions have zero mean, hence the shifts . %01~ ”;2
of the arguments produce displacements that compensate <. O N F 0
the average ~_0.01 S S 001
If (1),§(2) are differentiable, the countable set G is 0.02 e
densely embedded in the differentiable manifold of ground ' s -0.02
states Py Gi=[n+fD(n—5"),ma+6+6 +fD(ma+s (@ % yg>1_0(n_1) 0.02 ~0.02 y§12>1_(,?_1)a_5 0.02
+6")], with 8’ now a continuous parameter. The action of } B
the translation groufy, extends the manifol@ 1 to the 2D 0.1
differentiable manifoldT, P 5. G. This is typically the kind of 0.1
situation ensuring the existence of two hydrodynamic Gold- = 0.05
stone modes. Precisely, all vectors in the 2D tangent bundle = 0%k & 0
of the manifold of ground states are in the kernel of the % T _0.05
second derivative of the energy, therefore they are zero- -0 01
energy modes. In order to prove this one has to differentiate e <34
the stationarity equation for a ground state(T,P s G)=0 0 0)'(5 !
with respect to eithek or " and find thus??E(T,P 5 G)v;
=0j=1,2. 0.1
The acoustical phonon corresponding to the rigid dis- 01 o w 0.05 I
placement of both chains is;=dT,PsG/oN={1,1} . < s L
The phasor(sliding) mode is e O /4 o
0.1 & =005
IT\P5G df(l)(n) L df<2)(Im s L ~0.1
s dx T dx . (b) _0'13/f,‘_’1—0(n—1)0'1 _O'1y‘n2_’1—(r?-1)a-60'1

(3.7)
FIG. 2. Modulation functions and corresponding+1-

It corresponds to the rigid displacement of one chain withgimensional manifolds(a) analytic [y¥=x®=0.5, r=1/3, «
respect to the other, on which zero mean, oscillating compo=144/89~ 7= (1+ \/5)/2, approximant of the golden méaand
nents, equal to the derivatives of the modulation functions(p) discontinuous )= y@=1.5,r = 1/3, a=144/89). The atoms
are superimposed. In the superspace image the phason made. 55 and 34 are nearest neighbors and correspond to edges of the
is polarized perpendicularly to the physical line. largest discontinuities of the modulation functions of the first and

There is a fundamental difference between the acousticalecond chain, respectively.
phonon and the phason. The first one is a true Goldstone

mode, because it breaks the continuous translation SYmMMe: mbers fill densely invariant 2D tori. The Kolmogorov-

ty, and thgrefore remains hydrodynamlc even .'f the rnOduArnold—Moser theorerl? ensures that tori corresponding to
lation functions are not continuous. The latter is a pseudo-

Goldstone mode because it breaks only a countabléumc'emly irrational winding numbers are preserved and

(although densesubgroup of translations, therefore loses itsOnIy _deformed for sufﬁmgntly small co_uphng. DCM does not
hydrodynamic character in the case of discontinuous moderowde suqh Iovx€1d2|)men5|_o nal dynamical systems, except for
lation functions, when the countable set of degenerateégxego;zl'r;?erﬁ (;fTO()’ 'giigralzlg hC;rsn?oxvsi%aDﬁ%?Af'Pe-
ground states can no longer be embedded in a differentiabfe Y W0 uncoup rmon iner 1l
manifold. One important difference between the DCM andm'[e coupling, each atom of one chain interacts with each

the FK model is the absence of continuous translational sym‘?}tom of the other chain, hence the interchain coupling is not

metry and of the acoustical phonon for the latter, when Onl);lgorously a local perturbation and the Kolmogorov-Arnolg-

] . Moser theorem can not be applied in its standard form. In
the pseudo-Goldstone mode exiéttse phason spite of this complexity, numerical simulation shows that
o _ N orbits having as coordinates displacements of successive at-

C. Analyticity breaking transition oms {ygl_)l_ (n— 1)’y$11)_ n}:{f(l)(n_ 1),f(1)(n)} and

For the FK model the stationarity Eq&.3) lead to a {y?;—(n—1)a—8,yP—na — & = {{@[(n—1)a+ 4],

dynamical systef#'in R2. For zero coupling the system is f()(na+ 8)} fill densely 2D smooth closed curvésig. 2).
integrable and the orbits corresponding to irrational windingThese smooth curves exist for weak interchain coupling. The
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FIG. 3. Behaviour of the Peierls-Nabarro barrier, phason gap,
largest discontinuity jumps in the modulation functions, (A,), at
the analyticity breaking transition. The calculation was mader for
=1/3,¢=89/55~ 1.

FIG. 4. Sliding parametes for different modes, as a function of
frequency (=1/3, a=144/89~7). (a) In the analytic regimefb)

at the analyticity breaking transitiofg) and(d) in the nonanalytic
regime. The phason corresponds to the maximum of the sliding
Harameters was rescaled by/N whereN=233 is the number of

dense confinement of a configuration inside a pair of smoot i . )
gtoms in the unit cell, in order to ensure convergence wien

2D closed curves is equivalent to the smoothness of th
modulation functions and atomic lines. If the interchain cou-
pling is strengthened, or if the chains are softened, i.e., i{
x®) and y® are increased the modulation functidit® and

f(2) become discontinuous in an infinite number of points.

;T%gﬂ;lytf'g'rt{hgftwg ;?]g?nu;ae\%r;:]ug(?r'i(:gsal'?rg;(;lﬁieﬁnsl:?eu:;]motivated by our expectation that the “sliding” character of
the bl ny 1) @ is or d The phvsi han ) the phason should be preserved also in the nonanalytic re-
€ planex™, x ) S Crossed. The physiCs changes acrosgy,,qe Figure 4 shows that our expectation is fulfilled and that
thg transition I|ne._ the phason_become_s pinned, phason tran “cluster of modes with high values sfs moving towards
lations no I_or_1ger |nvol\_/e continuous dlsplacement§ and proﬁigher frequencies when the coupling parametgs, y@
duce atomic jumps, neighboring ground states are isolated b te increased in the nonanalytic regime. Interestingly

Peierls-Nabarro barriers, and an '”f'”'t.e hlerarchy of met.a'enough, the phason mode defined as above corresponds to
stable states can be produced by atomic jumps over barrie

with various energetic heights. In order to study the analyt-%Srther a real gap in the spectrum or to a discontinuity in the

. . o . density of stategdiscontinuity of the slope of IDOS in Fig.
l(;:rllty)/(gge;(lél)ngftgaer\wlzl:g)lnq\lljvaen?iiii\ég determined the dependencg)' The dependence of the phason energy as a function of
, : (1) (2) ing discontinuity
Order parametersThe normalized widths of the largest XX s rather complex, showing discontinuity jumps
discontinuity jumps of the modulation functions, defined as ., . . .
Ay =maf A (x+) - fE(x—)/[maxf(x) — minf()], | T

o, a—T.

he two chains in a normalized eigenvector and we defined
the phason gap as the energy of the phason mode. This defi-
nition agrees with Eq(3.7) in the analytic regime and is

can be chosen as order parameters for the ABT. In the ana 4| e Dx(1)=x(2)=0_ge
lytical regime, A, , are zero(they scale likeA;~1/p, A, a
~1/q for periodic boundary conditionsIn the nonanalytic 0.12

regimeA; , become simultaneously finite, the transition oc-
curring simultaneously in the two chailBig. 3). 041
Phason gapFor the FK model the phason gap is defined =,
as the lowest frequency in the phonon spectrum. This is zerCg oAl
for analytic modulation functions and increases in the
nonanalytic regime according to a power l&wFor the
DCM the lowest frequency in the phonon spectrum is always
zero because of the continuous translational symmetry. In the
analytical regime the zero frequency has twofold degeneracy
and the phason mode is rigorously defined by €47). In , , , , , , ,
the nonanalytic regime it is difficult to identify the phason 700 750 800 850 900 950 1000 1050 1100
mode because this is no longer described by(Eq) and the IDOS
phason frequency is not the lowest in the spectrum. We have F|G. 5. Integrated density of states for different values of the
chosen to call phason the mode corresponding to the higheggupling parametersr & 1/3, a=144/89~7). The squares mark
value of the sliding parameter=|(u™)—(u®)| represent-  the position of the phason which is either a gap edge, or a discon-
ing the relative displacement between the centers of mass @huity of the density of statetslope of IDOS.

0.09

0.08k"
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FIG. 6. Phason energy as a function of the coupling, at equal Yo

rigidity of the subsystemsr& 1/3, a=89/55~ 7). FIG. 7. The displacement8 of atoms on the first X) and on

the second @) chain, corresponding to an effective discommensu-
(Figs. 3 and & Nevertheless, the jumps in the phason energyation (positioned aty,) (yV'=x®=1.0r=1/3a=144/8%~17).
are large only far away from the critical line and becomeThe correlation lengththe same for both chaihss the inverse
vanishingly small close to it. We should mention that theslope of the interpolated straight lines.
parameters defining the phason is neither a topological in-

variant nor a symmetry property of this m_ode, therefore Fhel'he displacements decay exponentially with the distance to
continuity of .the phason energy as a function of the coqplmg[he selected atom and the corresponding characteristic
parameters IS hot guaranteed. For the 1D DCM and in th?engths(correlation lengthsare equal along the two chains
analytical regime the_zero frequency phason and phonon .b?l':ig. 7). Like the FK model, DCM predicts that the height of
long both to the antisymmetric representaﬂpn of the pOIntthe PN barrier decreases with the correlation lertgfidth of
syn;m(—:;ry g_rtouflzz. For 2Dhor 3D strudc:ﬁresr\l/wth more S%m' the discommensuratignThe correlation length diverges and
g?ﬁ ry te situa |ton fmayt% a;n%ethan h ep ?S(:Q_ may Naveds pN parrier vanishes at the ABT. In the superspace repre-
I ehrteg syt;wmte ryh rom that o e;p dor]lc_orjt._ n flst.hcas?] ON&entation an “effective discommensuration” corresponds to
might be able 1o choose a symmelry definition of the phasotl , ihinitesimal phason translation of the physical line and is

that would ensure the continuity of the phason energy evegnalog to the phason flip in quasicryst&lZ? The difference

in the nonanalytic regime. b I .
i . - . etween DCM and a cut and projection model of a quasic-
Peierls-Nabarro (PN) barrierThe PN barrier is defined stal is that the number of unequivalent discontinuities of

as the maximum energy height of an optimal path betwee e atomic lines and therefore the number of atoms that

two contiguous grounq states i_n the configuration space, i'ernove are infinitely many for the first model and in finite
states whose modulation functions are one left and the Oth?{umber for the latter

right continuous, respectively. For continuous modulation

functions contiguous states coincide and the PN barrier is

zero. In the FK model, the physical meaning of a path be- D. Perturbation theory estimates

tween contiguous ground states is the jump of an atom from of the modulation amplitudes

one valley of the substrate potential to a neighboring one _

over a potential maximum, accompanied by smaller dis- Let f(y)=3f0) exp(2emiy/a), and f@(y)
placementgthat do not jump over potential maximaf all =3 (2 exp(27iny) be the Fourier series expansions of the
other atoms$?! The choice of the atom that jumps is not ar- modulation functions, and 18¢(k) = [ exp(—ikx)V(x)dx be

bitrary: its position relabeled via the circle map should be ofyne £ rier transform of the interchain interaction potential.

the edge.of the largest discontinuity of the modulation func-,;or absolutely summable potentiatsand bounded periodic
tion. Similarly, for the DCM one has to move the atom on g, tions f of period b, the following generalized Poisson
the edge of the largest discontinuity of the modulation func-,, 1, formulas are valigsee Appendix for anya:
tion of one chain, while keeping fixed the atom on the sec-

ond chain closest to it in the direction of movemdititis

second atom is on the edge of the largest discontinuity of the

modulation function of the second chain, Fig. Zhe result Z V(x—na)f(na+y)

is the jump of the first atom from the lgfor right) side tothe "

right (or left) side of the second atom. As for the FK model,

this position permuting jump is accompanied by smaller dis- _ E 2 V[ZW(E+ T
placements of all other atoms that preserve positional order; atp b a
each atom move corresponds to crossing a discontinuity of

the modulation functions. This special local deformation of P

the system was called “effective discommensuratidh.” Xexy{zmyg) (3.8

?pexp{&rix
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; V(x—na)=§2 V(%)ex;{%ﬂx%). (3.8

Using the stationarity Eq2.3), the above identities, and a

2
: * 0.08 g s
first order Taylor expansion of the interchain potential in the EO'“L‘J % f o4 . ij <4 o *"‘VW
.5 1 - 15 .5+ 1 - 15
o o

modulation amplitudes, we obtain the following system of

equations:

4 Tmj ...
— air? ——|F@)
X(l)smz( - )f&m

o o
2w m—s\2_[2m(m—s)r\.
(1)
e I
& M e
—% p+;) V[Zw p+— }fp } (3.99

4 ~
— sir? (2)
X(Z)SI (mna)f;

= — ar3inV(—2mnr) + 27%r?

> (n=9)N[-27r(n-s)[f?

S

Rl

X

2

v{zﬁr L ?g;g,], 390
=] 74

wheref§) =T exp(2mi 6m/a).

r=0.2 r=0.2 s r=0.2
0.12 0.12

0.08]

A2

0 o]

0 2 0 2 05 1 15 2
o
r=0.5 r=0.5 r=0.5
3 +
0.12 P 0.12 & ﬁ}h
2 7? 2
+ [3Y)
0.08 0.08 < AW
- Y] + o g
< ‘&{ < % <<
0.04 . ooa
; o :
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05 1 g 15 2 05 1 g 15 2 05 1 g 15 2

FIG. 8. Amplitudes of the modulation functions fgf!)= y(?
=0.5 as found numerically+) compared with the result of the
perturbation theory calculatiofsolid lineg. The enhanced rigidity
of the longer period subsystem, meaning tAafA,>1 when «
>1 and vice versa, is more accentuated for the longer range of the
interchain interactionr(=0.5).

nominators sif{ 7m/a), sirf(7na), while for a ¢ () suffi-
ciently irrational the perturbation series is convergent, and
Eqgs.(3.10 provide approximations of the shapes and ampli-
tudes of the modulation functions. In Fig. 8 we have com-
pared the modulation amplitudes resulting from the perturba-
tion theory calculatiorfusing a limited number of harmonics

in Egs.(3.10, |m|,|n|=<4] and from the numerical determi-
nation of the ground state. We can notice that for winding
numbers that are large denominator rationals the second-
order perturbation theory gives amplitudes in good agree-

Equations(3.9) allow us to find the expansions of the ment with the numerical values. Deviations correspond to
harmonics of the modulation functions up to second order iRyinding numbers with small denominators.

the coupling parameterd{) =T, D+7(L2 F@ =T
+1(22 where

B rimy®  _/27mr
Fa_ ™ , (3.10a
om 402 siré(mm/ ar) a
~ —ar3iny®_
fel=_ " "X G(—2mnr), 3.10
" 4sirf(mna) ( : 10
fpn T (s mosyemos g,
M e sir?(rmla) | S @ “« "
m 2~ mj |~
B m | [F21)
% p+— v[zw p+— }fp } (3.100
B 7214y ~ ~
fgz,z):W:-na){Zs (n—9)¥V[—27r(n—s)[f&Y
p o\ p ~(1.1)
—Ep ;-I—n V| 27r Z+n f&,p . (3.10d

From Egs.(3.10 f(V~y® &~ and using Egs.
(2.2, (3.1), and(3.8) we can write the energy of the DCM in
the limit (Y- 0 that means infinitely rigid subsystem 1, or
x#—0, i.e., infinitely rigid subsystem 2:

1 X(z)r3
Ee1~3 % (YR =y = @)+ 5

X Y, V(—2mnr)exp2miny?) | (3.113
n
1 1\2
Eoc,z"’z ; (Zgl)—Z,(ql)l— 2)

(1) 3

X r ~[2mmr
+_ j—

2 ( )EV< a

a m

EXF{ZWim( zZ(— é” ,
o
(3.11b

wherezV=yW/q.

The DCM with one of the subsystems infinitely rigid be-
comes the FK model with periodic, but not necessarily sinu-
soidal substrate potential. For sufficiently smooth and rapidly
decreasing interchain potential the following property is

For a € (), different harmonics diverge in any order of the valid: (P) The ratio{ between the amplitudes of the second
perturbation series in Eq$3.10), because of the small de- and of the first harmonic of the substrate potential resulting
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in the limit when one of the subsystems becomes infinitelyThis is again the effect of the enhanced rigidity of the longer
rigid goes to zero when the range-.2° For this type of period subsystem tending to compensate its softening.
potentials DCM becomes the FK model with sinusoidal po-

tential. In the limit yY—0, r—o, provided that IV. CONCLUSIONS

(2)¢3\/( — i imit v(2) . .
2 7rV(=2am) —xpk, Or in the limit x*¥'—0, r—c, The double-chain model can be used to understand static
provided that ZM(r/a)3V(27r/a)— xrk, the configura- and dynamic properties of composite incommensurate and
tion energy becomes Efi~3i3.(y?@ -y —a)? commensurate compounds. Due to its 1D character this
+ (xrk/2)2, cos(2ry@), or Eg2~1i3 (2P -2 —1/a)?  model is suitable for the study of inclusion compounds with

+(xex/2)=, cos(2r2Y), respectively. A Gaussian potential ON€ Set of parallel channefarea, thiourea or selenourea in-

. v 2 clusion compounds.
belongs to this class becauSigk) = — ' exp(~k?2) and DCM predicts intermodulation effects, each subsystem

therefore ¢(=V(—4mr)/V(—2mr)=exp(—67°r%) or {  peing modulated with the period of the other. The shapes and
=V(—4mr/a)IN(—2mr]a)=exp(— 67%r% a?) if the first  the amplitudes of the modulation functions can be calculated
or the second chain are rigid, respectively. In order to obtairusing numerical methods or perturbation theory. An interest-
the FK model with a sinusoidal potential we must considering property is the enhanced rigidity of the longer period
the limits y®—0, x?—w, r—owo, provided that subsystem that can be softer, but still not much more de-
2Jmx A3 exp(—27%r%) — xek, of xP—0, yM—oo, r formed than the shorter period subsystem.
—o, provided that 2/myM(r/a)dexp(—2m72r?a?) A genuine feature of the dynamics of the DCM is the
— XFK - existence of a phasdsliding) mode. We have overcome the
difficulties in defining the phason in a system with continu-
ous translation symmetry, for which acoustic phonons and
E. Enhanced rigidity of the longer period subsystem the phason mix together, by showing the existence of a mode
with pronounced “sliding” character, measured by the aver-
age relative shift of the subsystems in a normalized eigen-
vector. This property of the phason could be particularly im-
portant for optical experimental studies of lattice dynamics.
The sliding mode produces large nonzero average relative
enough,A, <A, for a<l1 andA;>A, for a>1. We call displacemgnts of orﬁ)e subsysten?with respect to thg other and
this phenorlwenon enhanced r|9)|d|ty(2§)f the longer Pe”Od has a greater chance to induce variations of dipolar momenta
subsystem,” that means that fgf')= x(*) the longer period \pich couple to light radiation. As a counterpart, dissipation
subsystem is less deformed. We believe this to be rat_h%rocesses, not studied here, may affect rather strongly the
general for composite systems as shown by the followingyetection of this mode. We showed that for strong intersub-
argument. An atom of the longer period subsystem feels 0Qy qtems coupling the phason is pinned. Furthermore, pinning
the average interactions with more atoms than an atom of th - e ases with softening of subsystems and is more sensitive
shorter period subsystem is able to do, hence it feels g o rigidity of the shorter period subsystem.
smaller amplitude effec_tive potential. This is no longer true  these general results provide tools for analysing specific
for a very short range intersubsystem potential, as one ¢ mpoundg? It is particularly interesting to compare prop-

understand from the extreme case when each atom on eaghyjes of homologous inclusion compounds that differ only

subsystem interacts with at most one atom of the other sully the Jength of the guest molecule, therefore by the period
system. Let us now leave the situation of equal rigidities an

f f th his will . ff the guest subsystem.
soften one of the subsystems. This will induce an increase of ¢ 5"certain interest for statistical mechanics is the occur-

the modulation amplitude of the sqftened Subsystem and a.'%%nce of the analyticity breaking transition in this rather com-
as a secondary effect a weaker increase of the mOdUIaUO,EEL
i

_ ex model, in the absence of a rigid substrate that imposes
amplitude of the other subsystem. If the softened subsyster; periodicity as in the case of the FK model. For the DCM

is the long period one the inequality of the modulation am-j; js hot generally possible to write a finite dimensional dy-
plitudes will be weakened, otherwise this inequality will be 5 yica) system describing stationary configurations, there-
reinforced. In the alkane/urea intergrowth compounds thgq e o conclusions rely entirely on numerical results. Nev-
urea subsystem has shorter period but higher rigidity than th@rtheless, the DCM is not isolated in the realm of FK-type

alkane subsystem. Itis thus possible that the combined effegt o5 Because each chain feels the effective quasiperiodic
of the difference in rigidity and periodicity produces compa

: . V'\Potential produced by its companion, the DCM is related to
rable modul'atlon .amplltudes of the two subsystems as showia Fk model with a quasiperiodic substrldn the limit
by x-ray-diffraction measurements of urea/nonadecan

4 ! fhen the rigidity of one of the chains becomes infinite we
compounds? In order to compare experimental results andobtain the FK model with a multiharmonic potential sub-

theoretical predictions of the model one needs information st Numerical studi® suggest that this type of model
on the intersubsystem potential, as well on the elastic confaq honuniversal critical behavior. We shall report elsewhere

stants. A method for obtaining and using this information,, he comparison between DCM and the above models.
will be presented elsewhetéAs shown by Fig. 3, softening

of any of the two subsystems increases pinriingreases the
PN barrier &py). Nevertheless, in the nonanalytic regime
3EpnI IXP<9Epnl I whena>1, i.e., pinning is more This work was supported by the EC Grant No. ERBCH-
sensitive to the softening of the shorter period subsystemBGCT940690.

At equal rigidities of the chaing®= y(?), the depen-
dence of the raticA; /A, of the modulation amplitudes on
the winding number and the range of the interchain in-
teraction showgFig. 8 that as soon as becomes large
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APPENDIX: GENERALIZED POISSON SUM FORMULAS

) ) ] v(x—na)f(na+y)
Let us consider the version of the Poisson sum formulan

that is most familiar to physicists:

1 ~ o~ 2
] ] LN dlw(k)fpexp[i Kx+ Wpy”
) 27 2nm 27 Wp b
2 explinay)=— 2 Sly———|. (Al
n=—o a n=—ow a 27Tp
xex;{ina ——k)
From Eq.(Al) it follows that b
1 ~ o~ . 2mTpy
1 ~ ==
> v(x+na)=%2 fdkv(k)exdik(erna)] a% dkv(k)fpex;{l ot b ”5
n n
27p 27r\ 1 . ~ p r)
1 ~ 27 T _k——|== L
-3 fdkv(k)exr(ikx)& k—%) ( b < a a;p V2T pta
r
1 « ~[27r 2rirx xT, exp 2mix B+L ex;{eriyE . (A3)
=2 >V — e —— (A2) P b a b
r Equations(A2) and (A3) are the two Poisson formulas used
and in this paper.
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