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Sliding mode and breaking of analyticity in the double-chain model
of incommensurate composites

O. Radulescu* and T. Janssen
Institute of Theoretical Physics, Nijmegen University, Postbus 9010, 6500 GL Nijmegen, The Netherlands

~Received 7 April 1999!

The double chain model~DCM! generalizes the Frenkel-Kontorova model for composite systems, coping
with situations when both subsystems are deformable. We show how the shape and amplitude of the inter-
modulation of subsystems depend on the intersubsystem interaction potential, elastic constants, and average
repeat distances of the subsystems. We characterize and study the behavior of the sliding mode, that is a
pseudo-Goldstone mode of the system. DCM undergoes an analyticity breaking transition that leads to intrinsic
pinning of the sliding mode, when the strength of the intersubsystem coupling is increased above a threshold
value.@S0163-1829~99!02042-1#
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I. INTRODUCTION

Incommensurate composites belong to the class of qu
periodic crystals, and are defined by the presence in t
structure of at least two interpenetrating modulated crys
line subsystems, that have incommensurate average re
distances along one or several common crystallographic
rections. The most studied composites are the intergrowt
inclusion compounds,1,2 for which the connectivity of at leas
one of the subsystems is linear, and the misfit layer or in
calation compounds,3 whose subsystems form alternatin
parallel layers with planar connectivity.

Because the irrational ratio of average repeat distan
cannot be easily modified~unless the chemical nature of on
of the subsystems is altered! composites remind of quasic
rystals. The fact that one or both subsystems are modul
by their mutual interaction reminds of modulated incomme
surate crystals. In this sense incommensurate composites
resent an intermediate case. As usual for quasiperiodic c
tals, the structure of incommensurate composites can
usefully described by superspace analysis. The general
ciples of the superspace embedding as well as the applica
of this method to the description of the structure of int
growth compounds like Hg32dAsF6 were introduced by Jan
ner and Janssen.4 Using this approach van Smallen5 analyzed
the structure of several incommensurate misfit layer and
tergrowth compounds. In the case of incommensurate c
posites at least two sets of atomic surfaces are needed
for each subsystem. The dimension of the superspace la
is 31d whered is the number of independent incommens
rate length ratios in the structure, and it seems that the in
modulation does not introduce new incommensurate ra
~does not changed).

Hydrodynamic modes of the intergrowth compou
Hg32dAsF6 were computed in Ref. 6. Elasticity theory o
composites was discussed in Ref. 7. The Frenkel-Kontor
model~FK! ~Refs. 8 and 9! consisting of a harmonic chain o
atoms under the influence of a rigid periodic substrate wo
describe a special composite system, when one of the
systems is infinitely rigid. Double Frenkel-Kontorov
models10,11 allowed some understanding of solitons invol
PRB 600163-1829/99/60~18!/12737~9!/$15.00
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ing deformation of both subsystems. None of the previo
models are able to explain correctly static properties like
intermodulation, or to give a full account of the lattice d
namics by taking into account the discrete nature of the co
posite. In order to provide a more accurate description of
static and dynamic properties of composites, we have
cently introduced12 the double-chain model~DCM!, consist-
ing of two harmonic chains of atoms that interact with ea
other via pair potentials. DCM generalizes the FK model
replacing the rigid periodic substrate of the latter by a s
ond, deformable chain. Unlike the double FK model10 that
represents the action of one chain on the other by an ave
periodic potential, the DCM deals with the mutual deform
tion of the chains in a more realistic way.

Recent experimental work focused on structural and
namic properties of urea-alkane inclusion compounds
motivated our theoretical approach. X-ray and neutro
scattering experiments showed the presence of satellite
flections, due to the intermodulation of both subsystems.13,14

The positions in the reciprocal space of the main reflecti
and satellites are linear combinations of two wave vect
corresponding to the inverse average periods of
subsystems.13 This implies that the modulation function o
each subsystem has the period of the other subsystem. M
suring the intensities of different x-ray reflections allow
the structure refinement of the C17H36/urea inclusion com-
pound, taking into account atomic displacements associ
with the modulation.14 Lattice dynamics has been studied v
Brillouin light scattering and inelastic neutron scatterin
Special attention has been given to the detection of the c
troversial phason mode, that for composites should invo
the relative displacement of the subsystems and therefo
also called sliding mode. Optical measurements
CnH2n12/urea compounds (n512, 14, 17, 19! are compat-
ible with the existence of a sliding mode15 that may be
pinned.16

In this paper we intend to discuss some general feature
the statics and dynamics of composites. For simplicity
make a rather special choice of the interchain pair poten
that is considered to be Gaussian. We shall pres
elsewhere17 a methodology for determining the shape and
amplitude of the interchain pair potential for specific incl
12 737 ©1999 The American Physical Society
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12 738 PRB 60O. RADULESCU AND T. JANSSEN
sion compounds. This uses the model developed here
allows direct confrontation of the theory with experimen
data on intermodulation and dynamics.

Another purpose of this work is the study of the analyt
ity breaking transition~ABT! for the DCM. The FK model
develops a zero-temperature transition when the amplitud
the substrate potential increases above a threshold value
signature of the transition is the loss of analyticity of t
modulation function of the chain, accompanied by the p
ning of the phason mode. Aubry18 provided a rigorous analy
sis of the FK model, emphasizing that ABT corresponds
breaking invariant tori of a two-dimensional~2D! dynamical
system. We show that DCM also undergoes ABT when
critical line in the plane of the coupling constants is cross
This result shows that this type of transition is very gene
and that the presence of a rigid periodic substrate is no
ally necessary in order for this to happen.

This paper is structured as follows. The next section
scribes the DCM. The ground states of the DCM and th
superspace embedding are described in Sec. III A. In S
III B we discuss symmetry breaking and the two Goldsto
modes of the model: the acoustical phonon and the pha
~sliding! mode. The analyticity breaking transition is di
cussed in Sec. III C. In Sec. III D we use Poisson sum f
mula and perturbation theory in order to calculate the mo
lation amplitudes. Section III E contains an analysis of
relation between the average repeat distances ratio and
relative modulation amplitudes of the subsystems. A spe
effect is emphasized that we call enhanced rigidity of
longer period subsystem.

II. DOUBLE-CHAIN MODEL

The double-chain model~DCM! consists of two paralle
chains of atoms. The atoms interact via pair potentials
move only longitudinally along the common direction of th
chains.

A configuration of the DCM is defined by th
1D positions of the atoms along the two chai
C:5$xn

(1) ,xm
(2)%m,nPZ . The potential energy of a configura

tion is

E~C!5 (
n,n8

V (1,1)~xn
(1)2xn8

(1)
!1 (

m,m8
V (2,2)~xm

(2)2xm8
(2)

!

1(
n,m

V (1,2)~xn
(1)2xm

(2)!. ~2.1!

Here we restrict the range of intrachain interactions
successive neighboring atoms, and use convex harmoni
trachain potentialsV (1,1),V (2,2). In other words, successiv
atoms on the chains 1 and 2 are connected by spring
elastic constantsk(1), and k(2), and undeformed length
a1 ,a2, respectively. We also consider that the interchain
tential V (1,2) has a finite ranger. In this paperV (1,2) is a
Gaussian potentialV (1,2)(x)5(k(1,2)r2/2)V(x/r) whereV5
2exp(2x2). In a previous paper12 we have considered th
case of a truncated harmonic potential that leads to ana
results. As we show elsewhere17 the shape of the interchai
potential may be adapted to the particular composite sys
that is studied.
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After several rescalings the energy becomes

E5
1

2x (1) ( ~yn
(1)2yn21

(1) 21!2

1
1

2x (2) ( ~ym
(2)2ym21

(2) 2a!21
r 2

2 ( VS yn
(1)2ym

(2)

r D ,

~2.2!

where E5E/(k(1,2)a1
2), yn

(1)5xn
(1)/a1 , ym

(2)5xm
(2)/a1 , a

5a2 /a1 ,r 5r/a1 , x (1)5k(1,2)/k(1), x (2)5k(1,2)/k(2).
A stationary~equilibrium! configuration obeys

~] (1)E!n5~2yn
(1)2yn11

(1) 2yn21
(1) !/x (1)

1
r

2 (
m

V8S yn
(1)2ym

(2)

r D 50,

~] (2)E!m5~2ym
(2)2ym11

(2) 2ym21
(2) !/x (2)

2
r

2 (
n

V8S yn
(1)2ym

(2)

r D 50. ~2.3!

The frequencies of phonon excitations, and the cor
sponding atomic displacements in reduced coordinateszn

( i )

5Amiyn
( i ) are the square roots of eigenvalues, and the eig

vectors of the infinite dimensional dynamical matrixD, re-
spectively:

D5F 1

m1
] (1,1)E

1

Am1m2

] (1,2)E

1

Am1m2

] (2,1)E
1

m2
] (2,2)E

G , ~2.4!

where] ( i , j )E are the four blocks of the Hessian ofE ~two for
intrachain and two for interchain interaction!.

For commensurate ground states, the Bloch theorem
be used to decomposeD into a family of finite dimensional
dynamical matrices.12 In order to find commensurate groun
states we have used a conjugate-gradient method to m
mize the configuration energy@Eq. ~2.2!# with periodic
boundary conditions (yn1p

(1) 5yn
(1)1p,ym1q

(2) 5ym
(2)1wq,p,q

PZ), at fixed winding number w5 limr→`(ym1r
(2)

2ym
(2)/yn1r

(1) 2yn
(1))5p/q5a. Series of rational winding

numbers converging to an irrationala allowed examining
incommensurate ground states.

III. INTERMODULATION AND PHASON MODE

A. Circle map and superspace representation

A ground-state configuration corresponding to the win
ing numbera can be described by giving the displaceme
of each atom with respect to equidistant positions. Simila
to the case of the Frenkel-Kontorova~FK! model, the com-
plete information describing these displacements can be
capsulated in two modulation functions~one for FK model!
defined each one on the circle. Provided that ground st
exist with the imposed winding number~as valid for the FK
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model19!, it is always possible to define modulation functio
for each subsystem having the periodicity of the other s
system, as follows:

yn
(1)5n1 f (1)~n!, f (1)~y1a!5 f (1)~y!,

ym
(2)5ma1d1 f (2)~ma1d!, f (2)~y11!5 f (2)~y!.

~3.1!

The relation~3.1! between displacements and modulati
functions can be rewritten by using the circle mapCa :R/Z
→R/Z,Ca(x)5x1a(mod 1):

f (1)
„aC1/a

n ~0!…5yn
(1)2n,

f (2)
„Ca

m~d!…5ym
(2)2ma2d. ~3.2!

For arbitraryb the orbit of any pointx under the circle
map isøn$Cb

n(x)%5$x1nb(mod 1)unPZ%. This orbit fills
densely the circle for irrationalb5a,a21. If aP” Q then
Eqs. ~3.2! define the values of the modulation functions
sets that are dense in the circle. For the FK model
ground state has a well defined winding number and w
this number is irrational the modulation function can alwa
be extended to left or right continuous functions on the en
circle.19 Furthermore, the modulation function is analytic
the substrate potential is weak enough. We expect the s
to be true for DCM. It is actually at this point that we get th
full meaning of the property that each subsystem is mo
lated with the period of the other. The modulation functio
are analytic or at least left or right continuous when they
defined for each subsystem with the period of the other s
system. In more general situations20 when more than two
periods are involved the convenient periodicity of the mod
lation function is dictated by the Diophantine relations b
tween the periods of the system; this may lead to quasip
odic modulation functions as well. Fora5p/q, p,qPZ the
circle map orbits are finite and Eqs.~3.1! and~3.2! define the
values of the modulation functions on finite sets of poi
equidistantly distributed on the circle, and the successive
ues f (1)(r /q),r 50, . . . ,p21, f (2)(d1s/q),s50, . . . ,q
21, are the relabeled values of the displacementsyn

(1)2n,
ym

(2)2ma2d via the permutationsr 5n* q(modp), s
5m* p(modq). We have used this property to construct t
modulation functions for ground states calculated with pe
odic boundary conditions.

The above constructions find a simple geometrical in
pretation in the 2D superspace formalism.4 Positions of at-
oms in the two chains are the intersections of the 1D phys
line ~Fig. 1, horizontal! with two families of parallel atomic
lines ~one for each chain!. If no intermodulation is presen
the atomic lines are straight and cut the physical line at e
distant positionsn andma1d. The superlattice is defined b
the intersections between the two families of straight lin
As shown in Fig. 1 the geometry of the 2D superlattice is
entirely fixed by the winding number. Two angles have to
specified, giving the inclination of the two families of lattic
lines with respect to the physical line. One of these t
angles is usually chosenp/2 for simplicity, and thus one
family of atomic lines is perpendicular to the physical lin
while the second angle (g) is arbitrary. This, however
-
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masks in a way the symmetry between the two subsyste
but it is in general convenient. As true in general, the Fou
transform of the intersection of the superspace distribut
with the physical line is the projection of the Fourier tran
form of this distribution onto the physical line. One ca
check that for any value ofg, the projection of the reciproca
superlattice onto the physical line is the dense Fourier m
ule $2p(n1m/a)%n,mPZ that contains the positions of a
Bragg peaks of the composite. In the general~modulated!
case, it can be shown that the two families of undulat
atomic lines are uniquely defined by:~i! the intersections of
the two families of atomic lines with the physical line a
xn

(1) ,xm
(2) , respectively;~ii ! the set of atomic lines have th

periodicity of the superlattice. The equations of the tw
families of atomic lines are

x5 f (1)@2y/tan~g!1n#1n,

x5 f (2)@y/tan~g!1ma1d#1y/tan~g!1ma1d.
~3.3!

B. Phason„sliding… mode and Goldstone theorem

Not counting space inversion, there are two types of sy
metry elements of the configuration energy of the DC
Some of these symmetry elements form the group of c
tinuous translationsTl :

Tl~$yn
(1) ,ym

(2)%!5$yn
(1)1l,ym

(2)1l%. ~3.4!

Other symmetry elements form a countable group, c
sisting in shifts of atomic indices, that preserve sequen
order inside each chain.

Sr ,s~$yn
(1) ,ym

(2)%!5$yn1r
(1) ,ym1s

(2) %. ~3.5!

Let G5$n1 f (1)(n),ma1d1 f (2)(ma1d)% be a ground
state corresponding to the irrational winding numbera.
We call group of phason translations the subgro
$Pr ,s%:5$T2rSr ,s%r ,sPZ of the direct productTl3Sr ,s . Pr ,s
acts onG in the following way:

FIG. 1. Atomic lines for an incommensurate composite. Ato
are at the intersections of these lines with the physical line (x axis!.
A phason shift is a translation of thex axis.
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12 740 PRB 60O. RADULESCU AND T. JANSSEN
Pr ,s„$n1 f (1)~n!, ma1d1 f (2)~ma1d!%…

5$n1 f (1)~n2d8!, ma1d1d81 f (2)~ma1d1d8!%,

~3.6!

whered85sa2r . Using Eqs.~3.3! we may show that this
transformation corresponds exactly to a shift of the phys
line ~horizontal! in the vertical direction by a distanc
d8tan(g) ~Fig. 1!. Equation~3.6! shows the ‘‘sliding’’ char-
acter of the phason translation: this induces an average
tive displacementd8 of one chain with respect to the othe
~the modulation functions have zero mean, hence the s
of the arguments produce displacements that compensa
the average!.

If f (1), f (2) are differentiable, the countable setPr ,sG is
densely embedded in the differentiable manifold of grou
states Pd8Gª@n1 f (1)(n2d8),ma1d1d81 f (2)(ma1d
1d8)#, with d8 now a continuous parameter. The action
the translation groupTl extends the manifoldPd8I to the 2D
differentiable manifoldTlPd8G. This is typically the kind of
situation ensuring the existence of two hydrodynamic Go
stone modes. Precisely, all vectors in the 2D tangent bu
of the manifold of ground states are in the kernel of t
second derivative of the energy, therefore they are ze
energy modes. In order to prove this one has to different
the stationarity equation for a ground state]E(TlPd8G)50
with respect to eitherl or d8 and find thus]2E(TlPd8G)v i
50,i 51,2.

The acoustical phonon corresponding to the rigid d
placement of both chains isv15]TlPd8G/]l5$1,1% .

The phason~sliding! mode is

v25
]TlPd8G

]d8
5H 2

d f (1)

dx
~n!,11

d f (2)

dx
~ma1d!J .

~3.7!

It corresponds to the rigid displacement of one chain w
respect to the other, on which zero mean, oscillating com
nents, equal to the derivatives of the modulation functio
are superimposed. In the superspace image the phason
is polarized perpendicularly to the physical line.

There is a fundamental difference between the acous
phonon and the phason. The first one is a true Goldst
mode, because it breaks the continuous translation sym
try, and therefore remains hydrodynamic even if the mo
lation functions are not continuous. The latter is a pseu
Goldstone mode because it breaks only a counta
~although dense! subgroup of translations, therefore loses
hydrodynamic character in the case of discontinuous mo
lation functions, when the countable set of degenera
ground states can no longer be embedded in a differenti
manifold. One important difference between the DCM a
the FK model is the absence of continuous translational s
metry and of the acoustical phonon for the latter, when o
the pseudo-Goldstone mode exists~the phason!.

C. Analyticity breaking transition

For the FK model the stationarity Eqs.~2.3! lead to a
dynamical system18,19 in R2. For zero coupling the system i
integrable and the orbits corresponding to irrational wind
l
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numbers fill densely invariant 2D tori. The Kolmogorov
Arnold-Moser theorem19 ensures that tori corresponding
sufficiently irrational winding numbers are preserved a
only deformed for sufficiently small coupling. DCM does n
provide such low dimensional dynamical systems, except
zero coupling (k(1,2)50, integrable case when DCM be
comes a system of two uncoupled harmonic chains!. For fi-
nite coupling, each atom of one chain interacts with ea
atom of the other chain, hence the interchain coupling is
rigorously a local perturbation and the Kolmogorov-Arnol
Moser theorem can not be applied in its standard form.
spite of this complexity, numerical simulation shows th
orbits having as coordinates displacements of successiv
oms $yn21

(1) 2(n21),yn
(1)2n%5$ f (1)(n21),f (1)(n)% and

$yn21
(2) 2(n21)a2d,yn

(2)2na 2 d% 5 $ f (2)@(n21)a1d#,
f (2)(na1d)% fill densely 2D smooth closed curves~Fig. 2!.
These smooth curves exist for weak interchain coupling. T

FIG. 2. Modulation functions and corresponding 111-
dimensional manifolds:~a! analytic @x (1)5x (2)50.5, r 51/3, a
5144/89't5(11A5)/2, approximant of the golden mean# and
~b! discontinuous (x (1)5x (2)51.5, r 51/3, a5144/89). The atoms
No. 55 and 34 are nearest neighbors and correspond to edges
largest discontinuities of the modulation functions of the first a
second chain, respectively.
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dense confinement of a configuration inside a pair of smo
2D closed curves is equivalent to the smoothness of
modulation functions and atomic lines. If the interchain co
pling is strengthened, or if the chains are softened, i.e
x (1) andx (2) are increased the modulation functionsf (1) and
f (2) become discontinuous in an infinite number of poin
The analyticity of the modulation functions is broken simu
taneously for the two chains, when a critical transition line
the planex (1),x (2) is crossed. The physics changes acr
the transition line: the phason becomes pinned, phason tr
lations no longer involve continuous displacements and p
duce atomic jumps, neighboring ground states are isolate
Peierls-Nabarro barriers, and an infinite hierarchy of me
stable states can be produced by atomic jumps over bar
with various energetic heights. In order to study the ana
icity breaking transition we have determined the depende
on x (1),x (2) of several quantities.

Order parameters.The normalized widths of the larges
discontinuity jumps of the modulation functions, defined
D1,25max@ f (1,2)(x1)2 f (1,2)(x2)#/@maxf (x) 2 min f (x)#,
can be chosen as order parameters for the ABT. In the
lytical regime, D1,2 are zero~they scale likeD1;1/p, D2
;1/q for periodic boundary conditions!. In the nonanalytic
regimeD1,2 become simultaneously finite, the transition o
curring simultaneously in the two chains~Fig. 3!.

Phason gap.For the FK model the phason gap is defin
as the lowest frequency in the phonon spectrum. This is z
for analytic modulation functions and increases in t
nonanalytic regime according to a power law.21 For the
DCM the lowest frequency in the phonon spectrum is alw
zero because of the continuous translational symmetry. In
analytical regime the zero frequency has twofold degener
and the phason mode is rigorously defined by Eq.~3.7!. In
the nonanalytic regime it is difficult to identify the phaso
mode because this is no longer described by Eq.~3.7! and the
phason frequency is not the lowest in the spectrum. We h
chosen to call phason the mode corresponding to the hig
value of the sliding parameters5u^u(1)&2^u(2)&u represent-
ing the relative displacement between the centers of mas

FIG. 3. Behaviour of the Peierls-Nabarro barrier, phason g
largest discontinuity jumps in the modulation functions (D1 ,D2), at
the analyticity breaking transition. The calculation was made for
51/3,a589/55't.
th
e
-
if

.

s
ns-
-

by
-
rs

t-
ce

s

a-

-

ro

s
he
cy

ve
st

of

the two chains in a normalized eigenvector and we defi
the phason gap as the energy of the phason mode. This
nition agrees with Eq.~3.7! in the analytic regime and is
motivated by our expectation that the ‘‘sliding’’ character
the phason should be preserved also in the nonanalytic
gime. Figure 4 shows that our expectation is fulfilled and t
a cluster of modes with high values ofs is moving towards
higher frequencies when the coupling parametersx (1),x (2)

are increased in the nonanalytic regime. Interestin
enough, the phason mode defined as above correspon
either a real gap in the spectrum or to a discontinuity in
density of states~discontinuity of the slope of IDOS in Fig
5!. The dependence of the phason energy as a functio
x (1),x (2) is rather complex, showing discontinuity jump

p,
FIG. 4. Sliding parameters for different modes, as a function o

frequency (r 51/3, a5144/89't). ~a! In the analytic regime;~b!
at the analyticity breaking transition;~c! and~d! in the nonanalytic
regime. The phason corresponds to the maximum of the slid
parameter.s was rescaled byAN whereN5233 is the number of
atoms in the unit cell, in order to ensure convergence whenN
→`, a→t.

FIG. 5. Integrated density of states for different values of
coupling parameters (r 51/3, a5144/89't). The squares mark
the position of the phason which is either a gap edge, or a disc
tinuity of the density of states~slope of IDOS!.
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12 742 PRB 60O. RADULESCU AND T. JANSSEN
~Figs. 3 and 6!. Nevertheless, the jumps in the phason ene
are large only far away from the critical line and becom
vanishingly small close to it. We should mention that t
parameters defining the phason is neither a topological i
variant nor a symmetry property of this mode, therefore
continuity of the phason energy as a function of the coupl
parameters is not guaranteed. For the 1D DCM and in
analytical regime the zero frequency phason and phonon
long both to the antisymmetric representation of the po
symmetry groupZ2. For 2D or 3D structures with more sym
metry the situation may change and the phason may ha
different symmetry from that of the phonon. In this case o
might be able to choose a symmetry definition of the pha
that would ensure the continuity of the phason energy e
in the nonanalytic regime.

Peierls-Nabarro (PN) barrier.The PN barrier is defined
as the maximum energy height of an optimal path betw
two contiguous ground states in the configuration space,
states whose modulation functions are one left and the o
right continuous, respectively. For continuous modulat
functions contiguous states coincide and the PN barrie
zero. In the FK model, the physical meaning of a path
tween contiguous ground states is the jump of an atom f
one valley of the substrate potential to a neighboring o
over a potential maximum, accompanied by smaller d
placements~that do not jump over potential maxima! of all
other atoms.21 The choice of the atom that jumps is not a
bitrary: its position relabeled via the circle map should be
the edge of the largest discontinuity of the modulation fu
tion. Similarly, for the DCM one has to move the atom
the edge of the largest discontinuity of the modulation fu
tion of one chain, while keeping fixed the atom on the s
ond chain closest to it in the direction of movement~this
second atom is on the edge of the largest discontinuity of
modulation function of the second chain, Fig. 2!. The result
is the jump of the first atom from the left~or right! side to the
right ~or left! side of the second atom. As for the FK mod
this position permuting jump is accompanied by smaller d
placements of all other atoms that preserve positional or
each atom move corresponds to crossing a discontinuit
the modulation functions. This special local deformation
the system was called ‘‘effective discommensuration.22

FIG. 6. Phason energy as a function of the coupling, at eq
rigidity of the subsystems (r 51/3, a589/55't).
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The displacements decay exponentially with the distance
the selected atom and the corresponding character
lengths~correlation lengths! are equal along the two chain
~Fig. 7!. Like the FK model, DCM predicts that the height o
the PN barrier decreases with the correlation length~width of
the discommensuration!. The correlation length diverges an
the PN barrier vanishes at the ABT. In the superspace re
sentation an ‘‘effective discommensuration’’ corresponds
an infinitesimal phason translation of the physical line and
analog to the phason flip in quasicrystals.23,24 The difference
between DCM and a cut and projection model of a quas
rystal is that the number of unequivalent discontinuities
the atomic lines and therefore the number of atoms t
move are infinitely many for the first model and in fini
number for the latter.

D. Perturbation theory estimates
of the modulation amplitudes

Let f (1)(y)5(mf̃ m
(1) exp(2pmiy/a), and f (2)(y)

5(nf̃ n
(2) exp(2piny) be the Fourier series expansions of t

modulation functions, and letṼ(k)5*exp(2 ikx)V(x)dx be
the Fourier transform of the interchain interaction potent
For absolutely summable potentialsV and bounded periodic
functions f of period b, the following generalized Poisso
sum formulas are valid~see Appendix!, for anya:

(
n

V~x2na! f ~na1y!

5
1

a (
r ,p

ṼF2pS p

b
1

r

aD G f̃ p expF2p ixS p

b
1

r

aD G
3expS 2p iy

p

bD ~3.8a!

al

FIG. 7. The displacementsd of atoms on the first (3) and on
the second (s) chain, corresponding to an effective discommens
ration ~positioned atyo) (x (1)5x (2)51.0,r 51/3,a5144/89't).
The correlation length~the same for both chains! is the inverse
slope of the interpolated straight lines.
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(
n

V~x2na!5
1

a (
r

ṼS 2pr

a DexpS 2p ix
r

aD . ~3.8b!

Using the stationarity Eq.~2.3!, the above identities, and
first order Taylor expansion of the interchain potential in t
modulation amplitudes, we obtain the following system
equations:

4

x (1)
sin2S pm

a D f̃ d,m
(1)

52
pr 3im

a2
ṼS 2pmr

a D
1

2p2r 4

a H(
s

S m2s

a D 2

ṼS 2p~m2s!r

a D f̃ d,s
(1)

2(
p

S p1
m

a D 2

ṼF2pS p1
m

a D G f̃ p
(2)J , ~3.9a!

4

x (2)
sin2~pna! f̃ n

(2)

52pr 3inṼ~22pnr !12p2r 4

3H(
s

~n2s!2Ṽ@22pr ~n2s!# f̃ s
(2)

2(
p

S p

a
1nD 2

ṼF2pr S p

a
1nD G f̃ d,p

(1)J , ~3.9b!

where f̃ d,m
(1)

ª f̃ m
(1) exp(2p idm/a).

Equations~3.9! allow us to find the expansions of th
harmonics of the modulation functions up to second orde
the coupling parametersf̃ d,m

(1) 5 f̃ d,m
(1,1)1 f̃ d,m

(1,2) , f̃ n
(2)5 f̃ n

(2,1)

1 f̃ n
(2,2) where

f̃ d,m
(1,1)52

pr 3imx (1)

4a2 sin2~pm/a!
ṼS 2pmr

a D , ~3.10a!

f̃ n
(2,1)5

2pr 3inx (2)

4 sin2~pna!
Ṽ~22pnr !, ~3.10b!

f̃ d,m
(1,2)5

p2r 4x (1)

2a sin2~pm/a!
H(

s
S m2s

a D 2

ṼS 2p~m2s!r

a D f̃ d,s
(1,1)

2(
p

S p1
m

a D 2

ṼF2pS p1
m

a D G f̃ p
(2,1)J , ~3.10c!

f̃ n
(2,2)5

p2r 4x (2)

2 sin2~pna!
H(

s
~n2s!2Ṽ@22pr ~n2s!# f̃ s

(2,1)

2(
p

S p

a
1nD 2

ṼF2pr S p

a
1nD G f̃ d,p

(1,1)J . ~3.10d!

For aPQ, different harmonics diverge in any order of th
perturbation series in Eqs.~3.10!, because of the small de
f

n

nominators sin2(pm/a), sin2(pna), while for aP” Q suffi-
ciently irrational the perturbation series is convergent, a
Eqs.~3.10! provide approximations of the shapes and amp
tudes of the modulation functions. In Fig. 8 we have co
pared the modulation amplitudes resulting from the pertur
tion theory calculation@using a limited number of harmonic
in Eqs.~3.10!, umu,unu<4# and from the numerical determi
nation of the ground state. We can notice that for windi
numbers that are large denominator rationals the seco
order perturbation theory gives amplitudes in good agr
ment with the numerical values. Deviations correspond
winding numbers with small denominators.

From Eqs.~3.10! f n
(1);x (1), f m

(2);x (2), and using Eqs.
~2.2!, ~3.1!, and~3.8! we can write the energy of the DCM in
the limit x (1)→0 that means infinitely rigid subsystem 1, o
x (2)→0, i.e., infinitely rigid subsystem 2:

E`,1;
1

2 (
m

~ym
(2)2ym21

(2) 2a!21
x (2)r 3

2

3(
n

Ṽ~22pnr !exp~2p inym
(2)! , ~3.11a!

E`,2;
1

2 (
n

S zn
(1)2zn21

(1) 2
1

a D 2

1
x (1)

2 S r

a D 3

(
m

ṼS 2pmr

a DexpF2p imS zn
(1)2

d

a D G ,

~3.11b!

wherezn
(1)5yn

(1)/a.
The DCM with one of the subsystems infinitely rigid b

comes the FK model with periodic, but not necessarily sin
soidal substrate potential. For sufficiently smooth and rapi
decreasing interchain potential the following property
valid: ~P! The ratioz between the amplitudes of the seco
and of the first harmonic of the substrate potential result

FIG. 8. Amplitudes of the modulation functions forx (1)5x (2)

50.5 as found numerically~1! compared with the result of the
perturbation theory calculation~solid lines!. The enhanced rigidity
of the longer period subsystem, meaning thatA1 /A2.1 whena
.1 and vice versa, is more accentuated for the longer range o
interchain interaction (r 50.5).
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in the limit when one of the subsystems becomes infinit
rigid goes to zero when the ranger→`.25 For this type of
potentials DCM becomes the FK model with sinusoidal p
tential. In the limit x (1)→0, r→`, provided that

2x (2)r 3Ṽ(22pr )→xFK , or in the limit x (2)→0, r→`,

provided that 2x (1)(r /a)3Ṽ(2pr /a)→xFK , the configura-
tion energy becomes EFK

`,1; 1
2 (m(ym

(2)2ym21
(2) 2a)2

1(xFK/2)(n cos(2pym
(2)), or EFK

`,2; 1
2 (m(zm

(1)2zm21
(1) 21/a)2

1(xFK/2)(n cos(2pzm
(1)), respectively. A Gaussian potenti

belongs to this class becauseṼ(k)52Ap exp(2k2/2) and

therefore z5Ṽ(24pr )/Ṽ(22pr )5exp(26p2r 2) or z

5Ṽ(24pr /a)/Ṽ(22pr /a)5exp(26p2r 2/a2) if the first
or the second chain are rigid, respectively. In order to ob
the FK model with a sinusoidal potential we must consid
the limits x (1)→0, x (2)→`, r→`, provided that
2Apx (2)r 3 exp(22p2r 2)→xFK , or x (2)→0, x (1)→`, r
→`, provided that 2Apx (1)(r /a)3 exp(22p2r 2/a2)
→xFK .

E. Enhanced rigidity of the longer period subsystem

At equal rigidities of the chainsx (1)5x (2), the depen-
dence of the ratioA1 /A2 of the modulation amplitudes o
the winding numbera and the ranger of the interchain in-
teraction shows~Fig. 8! that as soon asr becomes large
enough,A1,A2 for a,1 and A1.A2 for a.1. We call
this phenomenon ‘‘enhanced rigidity of the longer peri
subsystem,’’ that means that forx (1)5x (2) the longer period
subsystem is less deformed. We believe this to be ra
general for composite systems as shown by the follow
argument. An atom of the longer period subsystem feels
the average interactions with more atoms than an atom o
shorter period subsystem is able to do, hence it feel
smaller amplitude effective potential. This is no longer tr
for a very short range intersubsystem potential, as one
understand from the extreme case when each atom on
subsystem interacts with at most one atom of the other s
system. Let us now leave the situation of equal rigidities a
soften one of the subsystems. This will induce an increas
the modulation amplitude of the softened subsystem and
as a secondary effect a weaker increase of the modula
amplitude of the other subsystem. If the softened subsys
is the long period one the inequality of the modulation a
plitudes will be weakened, otherwise this inequality will b
reinforced. In the alkane/urea intergrowth compounds
urea subsystem has shorter period but higher rigidity than
alkane subsystem. It is thus possible that the combined e
of the difference in rigidity and periodicity produces comp
rable modulation amplitudes of the two subsystems as sh
by x-ray-diffraction measurements of urea/nonadec
compounds.14 In order to compare experimental results a
theoretical predictions of the model one needs informat
on the intersubsystem potential, as well on the elastic c
stants. A method for obtaining and using this informati
will be presented elsewhere.17 As shown by Fig. 3, softening
of any of the two subsystems increases pinning~increases the
PN barrier EPN). Nevertheless, in the nonanalytic regim
]EPN /]x (2),]EPN /]x (1) when a.1, i.e., pinning is more
sensitive to the softening of the shorter period subsyst
y
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This is again the effect of the enhanced rigidity of the long
period subsystem tending to compensate its softening.

IV. CONCLUSIONS

The double-chain model can be used to understand s
and dynamic properties of composite incommensurate
commensurate compounds. Due to its 1D character
model is suitable for the study of inclusion compounds w
one set of parallel channels~urea, thiourea or selenourea in
clusion compounds2!.

DCM predicts intermodulation effects, each subsyst
being modulated with the period of the other. The shapes
the amplitudes of the modulation functions can be calcula
using numerical methods or perturbation theory. An intere
ing property is the enhanced rigidity of the longer peri
subsystem that can be softer, but still not much more
formed than the shorter period subsystem.

A genuine feature of the dynamics of the DCM is th
existence of a phason~sliding! mode. We have overcome th
difficulties in defining the phason in a system with contin
ous translation symmetry, for which acoustic phonons a
the phason mix together, by showing the existence of a m
with pronounced ‘‘sliding’’ character, measured by the av
age relative shift of the subsystems in a normalized eig
vector. This property of the phason could be particularly i
portant for optical experimental studies of lattice dynami
The sliding mode produces large nonzero average rela
displacements of one subsystem with respect to the other
has a greater chance to induce variations of dipolar mom
which couple to light radiation. As a counterpart, dissipati
processes, not studied here, may affect rather strongly
detection of this mode. We showed that for strong inters
systems coupling the phason is pinned. Furthermore, pinn
increases with softening of subsystems and is more sens
to the rigidity of the shorter period subsystem.

These general results provide tools for analysing spec
compounds.17 It is particularly interesting to compare prop
erties of homologous inclusion compounds that differ on
by the length of the guest molecule, therefore by the per
of the guest subsystem.

Of a certain interest for statistical mechanics is the occ
rence of the analyticity breaking transition in this rather co
plex model, in the absence of a rigid substrate that impo
its periodicity as in the case of the FK model. For the DC
it is not generally possible to write a finite dimensional d
namical system describing stationary configurations, the
fore our conclusions rely entirely on numerical results. Ne
ertheless, the DCM is not isolated in the realm of FK-ty
models. Because each chain feels the effective quasiperi
potential produced by its companion, the DCM is related
the FK model with a quasiperiodic substrate.20 In the limit
when the rigidity of one of the chains becomes infinite w
obtain the FK model with a multiharmonic potential su
strate. Numerical studies26 suggest that this type of mode
has nonuniversal critical behavior. We shall report elsewh
on the comparison between DCM and the above models
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APPENDIX: GENERALIZED POISSON SUM FORMULAS

Let us consider the version of the Poisson sum form
that is most familiar to physicists:

(
n52`

`

exp~ inay!5
2p

a (
n52`

`

dS y2
2np

a D . ~A1!

From Eq.~A1! it follows that

(
n

v~x1na!5
1

2p (
n
E dkṽ~k!exp@ ik~x1na!#

5
1

a (
r
E dkṽ~k!exp~ ikx!dS k2

2pr

a D
5

1

a (
r

ṽS 2pr

a Dexp
2p irx

a
~A2!

and
i

-

i

a
(

n
v~x2na! f ~na1y!

5
1

2p (
n,p

E dkṽ~k! f̃ p expF i S kx1
2ppy

b D G
3expF inaS 2pp

b
2kD G

5
1

a (
p,r

E dkṽ~k! f̃ pexpF i S kx1
2ppy

b D Gd
3S 2pp

b
2k2

2pr

a D5
1

a (
r ,p

ṽF2pS p

b
1

r

aD G
3 f̃ p expF2p ixS p

b
1

r

aD GexpS 2p iy
p

bD . ~A3!

Equations~A2! and ~A3! are the two Poisson formulas use
in this paper.
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