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Ab initio study of the SeS local oscillator in zinc sulfide
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A method is presented to calculate the energy and symmetry of local vibrational modes~LVM’s ! at point
defects in semiconductors from first principles. The force constants for the disturbed and undisturbed systems
are calculated using a variant of thedirect approach. Theab initio results are used as input parameters for a
cluster simulation with up to 489 vibrating atoms, which accounts for hybridization effects between the LVM
and the host lattice modes. The method is applied to the LVM of ZnS:SeS, which shows a pronounced fine
structure due to both host and ligand induced isotope effects. The energy of the main peak, which represents
the most abundant Selen isotope80Se, is calculated as 229.6 cm21. This agrees very well with the result of
229.2 cm21 from Fourier transform infrared experiments found in the literature. It is shown that theab initio
result improves the understanding of the LVM, when compared to the previously usedad hocmodel, espe-
cially in the low-energy region.@S0163-1829~99!09525-9#
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The aim is to calculate the energy and fine structure o
local vibrational mode~LVM ! from first principles. In recent
years, density-functional theory and density-functional p
turbation theory have been used to calculate the phonon
persion curves of a wide range of materials, including se
conductors and metals.1–5

For local vibrational modes, recent work has mostly
cused onab initio molecule simulations, again on a wid
range of materials like fullerenes6 or dicarbon defects in
GaAs.7 In Ref. 8, the LVM’s in an organic adsorbate on
wolfram surface are calculated by simulating the wolfra
single crystal using only one single atom. This approxim
tion is correct if the frequencies of the eigenmodes of
adsorbate or impurity are much higher than the eigenmo
of the host lattice.

For ZnS:Se, the energy of the LVM is only 2 meV abo
the band edge of the accoustical phonon band. In this c
the hybridization of the LVM with host lattice modes mu
not be neglected, so that a large number of the atoms of
host lattice needs to be included in the calculation of
molecule. Such calculations with large molecules are not
sible with current computers. Therefore a two-step appro
is used: First, force constants are calculated for the per
and disturbed systems. Second, these force constants
used as input to a cluster simulation.

Several methods exist to calculate the interatomic fo
constants of a perfect crystal and the phonon-disper
curves from first principles. In thelinear-response approach,
the effect of an infinitesimal displacement of the host ato
is studied by using the inverse dielectric matrix or by pert
bation theory.1 This requires two software programs: One
calculate the perfect system and one to calculate the lin
response to a perturbation. In thedirect approach, the linear
response is obtained by using the sameab initio software to
calculate the perfect system and the system where one
has been moved slightly. The linear response is obtained
comparing the two results. If required, large displaceme
can be used to study anharmonic effects.

The easiest direct calculation is thefrozen phononap-
proach: A snapshot of the displacement pattern of the p
PRB 600163-1829/99/60~18!/12726~4!/$15.00
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non is imposed on a supercell. This is only possible, if
relative amplitudes of the vibrational mode are knowna pri-
ori. For example, at special points of the Brillouin zone, t
relative amplitudes can be deduced from symmetry p
ciples. But this is not possible for arbitrary values of t
wave vectork, so that the frozen phonon approach is
longer applicable, unless a time consuming iteration pro
dure is accepted. The same is true for systems with a de
The exact amplitude and direction of the vibration of t
atoms around the defect is unknown, before the dynam
matrix has been solved.

To overcome the limited range of frozen phonon calcu
tions, Frank, Elsa¨sser, and Fa¨hnle introduced thedirect
force-constant approach.3 This uses a large supercell, whe
only one atom is displaced. Force constants are calcul
within the linear approximation by dividing the change of t
Hellmann-Feynman forces on the neighbors of the displa
atom by the amount of the displacement. However, in
plane-wave code used, a single displaced atom inside
supercell is equivalent to a superlattice of displaced atom
full space. The range of the forces around the displaced a
can be visualized as spheres. The supercell must be l
enough so that these spheres do not overlap.

Frank, Elsa¨sser, and Fa¨hnle applied their method to alka
metals. They calculated force constants for up to the fi
neighbor. They found that the force constants reduce rap
with increasing distance. The heavier the alkali metal is,
faster is the decay. For natrium the ratio of next-neighbo
fifth-neighbor force constants is over 100:1, in the case
kalium, it is even over 500:1. This is due to the alkali met
forming a nearly free electron gas, which screens the effe
of moving one ion efficiently.

In the case of ZnS, it is not sufficient to include only forc
constants for up to the fifth neighbor. In a test calculatio
where the number of neighbors was reduced from 11 to
the frequencies of the acoustical vibrational modes chan
by 5% at theX point of the Brillouin zone.

Calculations for ZnS are computationally much more e
pensive than alkali metal calculations, even if only the sa
number of neighbors is considered. Alkali metals have o
12 726 ©1999 The American Physical Society
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valence electron pair for each two atoms. In the case of Z
the 3d electrons of Zn need to be treated as valence e
trons, so that there are nine electron pairs for each Zn-S
The strongly bound 3d electrons require a high cutoff energ
Ecut of 65 Ry, as compared to 8.5 Ry for the alkali me
calculations. Therefore thedirect force-constant approachis
not feasible for this work.

An alternative is theplanar force-constant separation ap
proachintroduced by Wei and Chou.2 It starts by calculating
planar force constants. The supercell is formed by taking
primitive cell of the plane, for which force constants a
calculated, and a vector perpendicular to that plane. T
vector needs to be at least twice as long as the range o
interplanar forces. However, the other two sides of the
percell are small. This reduces the volume of the superc
making the calculations less costly.

Planar force constants can be used to calculate the ph
dispersion among high-symmetry directions. To obtain
full dispersion from planar force constants, individual ato
atom force constants have to be separated. Each planar
constant is the sum of all force constants between the at
in a plane and a given atom inside or outside that plane.
the force constants decay rapidly with increasing distan
Wei and Chou set all force constants to zero, if the dista
between two atoms is larger than a cutoff radiusr max. The
result is that each planar force constant can be written
sum of a finite number of atom-atom force constants. Thi
a linear equation with a known left side~the planar constan
calculatedab initio! and an unknown right side~the sum of
atom-atom force constants!. It is possible to calculate plana
force constants for arbitrary space directions. Planar fo
constant for different space directions are different lin
combinations of atom-atom force constants. The authors
culate so many planar constants that the system of lin
equations becomes overdefined. Using a least-square fit,
solved to obtain individual atom-atom force constants.

Wei and Chou applied theplanar force-constant separa
tion approachto silicon, which shows no long-range inte
action between atoms. In compound semiconductors
ZnS, the long-range interaction has to be included as w
This is done by associating the Zn and S ions with an eff
tive ionic charge. The force constants outsider max are not set
to zero, but are set equal to the dipole-dipole term of
interaction between those effective charges. The effec
charge is determined by fitting the calculated dispers
curves to experiment. This is the only parameter not ca
lated directly from first principles.

Because of its special geometry, the planar force-cons
separation method cannot be used to calculate LVM’s
point defects. For these, the supercell must be large in
three space directions to reduce the defect-defect interac
to a minimum.

The method presented here is a generalization of thedi-
rect force-constant approachand theplanar force-constant
separation approach. An analysis of the work of Wei and
Chou shows that at no point in their work are their spec
geometries actually required. Results for any arbitrary sup
cell can be used as input to the separation approach. Mo
one atom of a supercell is equivalent to displacing a sup
lattice of atoms in real space. The Hellmann-Feynman for
acting on a given atom of the supercell are a superpositio
S,
c-
ir.
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the interactions of that atom with the superlattice of the d
placed atoms. If a cutoff radiusr max is introduced, only a
finite subset of the superlattice has to be considered. For e
atom in the supercell, a linear equation can be written for
interaction of that atom with the finite subset. If enough s
percells are calculated, the system of linear equations
comes overdefined and can be solved for individual ato
atom force constants using a least-square fit.

To calculate the dispersion curves of ZnS, three differ
supercells containing 40, 48, and 56 atoms are used. For
supercell, 12 calculations are performed. In each calculat
one atom is displaced by 0.06a0 in the positive or negative
x, y, or z direction, wherea0 is the Bohr radius. These
results are used as input to the separation procedure, whi
used to calculate force constants for up to the 11th shel
neighbors for both Zn and S. The effective charge is de
mined as 0.86e for Zn and20.86 e for S by fitting the split
of the TO and LO phonon at theG point. The resulting
phonon dispersion curves are plotted in Fig. 1. To test c
vergency, force constants are calculated for up to the 1
shell, but no significant difference is found in the resulti
phonon dispersion curves.

For the disturbed ZnS:SeS, a bcc supercell with 32 atom
is used. The cell is oriented such that the S atom
at the origin and the four Zn ligands are locat
at (2a/4,2a/4,2a/4), (a/4,a/4,2a/4), (a/4,2a/4,a/4),
and (2a/4,a/4,a/4) with a as the lattice constant o
10.22a0. After the central S has been replaced with Se, i
necessary to calculate the relaxation to find the new equ
rium positions of the atoms around the defect. Only symm
try conserving relaxations are considered. The first shel
Zn neighbors are moved along the line of the Se-Zn bonds
0.19a0 away from the Se atom. The S atom at (a/2,a/2,0) is
moved by (0.028a0,0.028a0,0.005a0). The other 11 S atoms
in the second shell are moved accordingly. Because mo
ment is already low in the second shell, no further shells
relaxed. The results from this and previous work9 show that
for movements of up to 0.06a0, the error due to anharmonic
ity is smaller than or in the same range as the errors du
the other approximations used~local-density approximation
energy cutoff, pseudopotentials, and so on!.

After relaxation has been completed, the force consta
of the disturbed system are calculated using the direct fo
constant approach. The separation method discussed abo
not applicable here, because changing the supercell geom
will also change the distribution of the impurities in theab
initio calculation. Therefore only force constants between

FIG. 1. Ab initio results~solid lines! for the phonon-dispersion
curves of ZnS, compared to experimental results from neutron s
tering ~diamonds, Ref. 12!.
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TABLE I. Energy of the ZnS:Se LVM versus cluster size. The impurity is80Se. The mass of the Zn ligands is set to 65.38u, the average
mass of Zn. In this case, a tripletT2 mode is expected. Small clusters lead to an artifical line split, which is indicated by giving a rang
28.364 . . .28.392 as result.

Number of shells 6 7 8 9 12 14 18 21 25
Number of atoms 47 71 87 99 159 191 293 381 489
Calculated energy@meV# 28.364 . . .28.392 28.283 . . .28.297 28.322 28.293 28.299 28.302 28.294 28.289 28.2
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impurity and its first- and second-nearest neighbors are
termined by displacing the Se impurity by 0.02a0 and 0.05
a0 in the positive and negativez directions in four different
ab initio calculations. The change of the force constants
tween the Zn ligands and their respective first- and seco
nearest neighbors is obtained by displacing one of the
nearest neighbors of the Se impurity by 0.04a0 along the
positive or negativex, y, andz axis in six additional calcu-
lations. All other force constants are not changed.

The LVM is calculated using the cluster method. It co
sists of a classical simulation of vibrating point masses. T
cluster contains all atoms inside a certain cluster radius w
the impurity located at the center. The mass of all ato
outside the cluster is set to infinity, so that these atoms do
move. The force constants for the interaction of the ato
inside and outside of the cluster are not neglected.

The dynamical matrix is diagonalized to calculate the
brational modes of the cluster. The eigenvalue of a partic
mode is the square of its frequency. The squares of the
ments of an eigenvector give the spatial distribution of
vibrational energy. If at least 35% of the energy is located
the impurity and at least 70% are located on the impurity a
its four neighbors, the mode is considered a local vibratio
mode.

To test convergency, the cluster size is varied between
and 489 atoms; see Table I. It is found that increasing
cluster size from 99 atoms to larger sizes changes the ca
lated energy of the LVM by less than 10meV.

ZnS:Se shows a pronounced fine structure, which can
resolved using Fourier transform infrared~FTIR!
spectroscopy.13 This fine structure is due to isotope effec

FIG. 2. Theoretical fine structure of the LVM in ZnS:Se. Th
calculated phonon frequencies have been broadened by Gaus
with a half-width of 22meV50.18 cm21.
e-

-
d-
ur

-
e
th
s
ot
s

-
ar
le-
e
n
d
al

7
e
u-

be

There are six stable isotopes for the Se impurity and fi
isotopes for the Zn ligands. Each possible isotope comb
tion gives an LVM with a slightly different energy. If all Zn
ligands have the same mass, a threefold degeneracy is
served. This triplet splits into one singlet and one doublet
three singlets if the Zn ligands have different masses. Th
are five stable Zn isotopes, so that 545625 combinations are
possible for the Zn ligands. Due to the tetrahedral symme
many of these combinations are equivalent, so that only
independent configurations remain.

For each of the six possible Se centers, all 70 ligand co
binations are solved, so that there are 420 cluster calculat
in total. Each calculation results in three possibly degene
modes. At the energy of each LVM, a Gaussian curve
drawn. All Gaussians have the same half-width, which
fitted to the experiment. The amplitude of each Gaussia
set to the natural abundancy of the isotopes used in the c
ter calculation for that Gaussian.

The FTIR results from Ref. 10 and the calculated fi
structure are printed in Figs. 3 and 2. The location and
relative amplitude of the main maxima, which are label
76Se through82Se, are reproduced very well. However, th
intensity of the calculated side maxima is lower than in t
experiment. The closer a side maximum is to the main p
80Se, the bigger is the deviation. This can be explained

iansFIG. 3. Experimentally observed fine structure of the LVM
ZnS:Se, taken from Ref. 10.
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certain percentage of the impurities in the experiment ha
non-Gaussian broadening of the associated LVM. For
ample, Se impurites located next to other Se impurities
intrinsic crystal defects have a slightly different energy. I
hole or electron is bound to a certain percentage of the
impurities, their LVM will be broadened by the electron
phonon interaction.11

The calculated fine structure is about 0.5 cm21 wider than
experimentally observed. This is due to the limited clus
size. By setting the atoms outside of the cluster as immob
a hard cluster wall is introduced, which reflects any outs
amplitude of the LVM back into the cluster. This increas
the vibration amplitudes and therefore the isotope shifts
side the cluster slightly.

Sciaccaet al.10 presented a model calculation for ZnS:S
They used their model to predict the fine structure for dop
with 80Se, the most abundant Selen isotope. The result sh
two prominent peaks, which are 0.34 meV apart; see
inset in Fig. 3. The results of this work for80S are plotted in
Fig. 4. The solid line is calculated with a half-width of th
Gaussians of 22meV, the same as in Fig. 2. For the dash
line, the half-width of the Gaussians is reduced to 11meV.

FIG. 4. Theoretical fine structure of the LVM, if only80Se is
present. The solid line uses a half-width of 22meV50.18 cm21,
while the dashed line has been calculated with 11meV
50.09 cm21.
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The shape of this dashed line agrees with the model res
of Sciaccaet al. in Fig. 3. However, the energy differenc
between the main maxima and the highest side maxim
0.18 meV in this work, as opposed to 0.34 meV in Ref. 1

In Fig. 2, the difference between the82Se and 80Se
maxima is 0.18 meV. This means that the side maximum
the 80Se peak~see Fig. 4! and the82Se fall on top of each
other. The same is true for the side maximum of78Se and the
maximum of 80Se and so on. In Ref. 10, the difference b
tween the maximum and side maximum is calculated as 0
meV; see Fig. 3. This means that the side maximum of78Se
is located below the maximum of82Se and so on.

This hiding of important side maxima below othe
maxima makes it difficult to find the actual relationship b
tween the Se isotope shift and the Zn isotope shift withoutab
initio calculations. In Ref. 10, the calculated fine structu
does not match the experimental results in the region 22
226 cm21. As the intensity is low in that region, it is difficul
to distinguish between experimentally observed noise
inappropriate interpretation of the spectrum.

In conclusion, a method has been presented to calcu
the energy and the fine structure of LVM’s from first prin
ciples, which include hybridization effects. The results sh
clearly that models are not trustworthy for fine-structure c
culations of LVM’s if a large number of isotope combina
tions is involved. The calculations presented here agree
ter with the FTIR experiments in the low-energy region th
the model presented by Sciaccaet al.10 The model and the
calculation completely disagree on the results found
ZnS:80Se. While the model results might be wrong due to t
difficult assignment of the lines, the presentedab initio re-
sults are unambiguous. Therefore suchab initio calculations
should be used to explain complicated fine structures.
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and for his encouragement. The author wishes to thank
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