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Ab initio study of the Se local oscillator in zinc sulfide
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A method is presented to calculate the energy and symmetry of local vibrational itidfdss ) at point
defects in semiconductors from first principles. The force constants for the disturbed and undisturbed systems
are calculated using a variant of td&ect approach The ab initio results are used as input parameters for a
cluster simulation with up to 489 vibrating atoms, which accounts for hybridization effects between the LVM
and the host lattice modes. The method is applied to the LVM of Zns:®hkich shows a pronounced fine
structure due to both host and ligand induced isotope effects. The energy of the main peak, which represents
the most abundant Selen isotoffiSe, is calculated as 229.6 ch This agrees very well with the result of
229.2 cm'* from Fourier transform infrared experiments found in the literature. It is shown thatttlisitio
result improves the understanding of the LVM, when compared to the previouslyadsedcmodel, espe-
cially in the low-energy region.S0163-1829)09525-9

The aim is to calculate the energy and fine structure of aon is imposed on a supercell. This is only possible, if the
local vibrational modéLVVM ) from first principles. In recent relative amplitudes of the vibrational mode are knoavpri-
years, density-functional theory and density-functional per-ori. For example, at special points of the Brillouin zone, the
turbation theory have been used to calculate the phonon diselative amplitudes can be deduced from symmetry prin-
persion curves of a wide range of materials, including semieiples. But this is not possible for arbitrary values of the
conductors and metals® wave vectork, so that the frozen phonon approach is no

For local vibrational modes, recent work has mostly fo-longer applicable, unless a time consuming iteration proce-
cused onab initio molecule simulations, again on a wide dure is accepted. The same is true for systems with a defect:
range of materials like fulleren®sr dicarbon defects in The exact amplitude and direction of the vibration of the
GaAs! In Ref. 8, the LVM’s in an organic adsorbate on a atoms around the defect is unknown, before the dynamical
wolfram surface are calculated by simulating the wolframmatrix has been solved.
single crystal using only one single atom. This approxima- To overcome the limited range of frozen phonon calcula-
tion is correct if the frequencies of the eigenmodes of thdions, Frank, Elssser, and Hanle introduced thedirect
adsorbate or impurity are much higher than the eigenmode®rce-constant approachThis uses a large supercell, where
of the host lattice. only one atom is displaced. Force constants are calculated

For ZnS:Se, the energy of the LVM is only 2 meV above within the linear approximation by dividing the change of the
the band edge of the accoustical phonon band. In this casklellmann-Feynman forces on the neighbors of the displaced
the hybridization of the LVM with host lattice modes must atom by the amount of the displacement. However, in the
not be neglected, so that a large number of the atoms of thelane-wave code used, a single displaced atom inside the
host lattice needs to be included in the calculation of thesupercell is equivalent to a superlattice of displaced atoms in
molecule. Such calculations with large molecules are not feafull space. The range of the forces around the displaced atom
sible with current computers. Therefore a two-step approacbhan be visualized as spheres. The supercell must be large
is used: First, force constants are calculated for the perfe@nough so that these spheres do not overlap.
and disturbed systems. Second, these force constants areFrank, Elsaser, and Hanle applied their method to alkali
used as input to a cluster simulation. metals. They calculated force constants for up to the fifth

Several methods exist to calculate the interatomic forceneighbor. They found that the force constants reduce rapidly
constants of a perfect crystal and the phonon-dispersiowith increasing distance. The heavier the alkali metal is, the
curves from first principles. In thinear-response approach faster is the decay. For natrium the ratio of next-neighbor to
the effect of an infinitesimal displacement of the host atomdifth-neighbor force constants is over 100:1, in the case of
is studied by using the inverse dielectric matrix or by pertur-kalium, it is even over 500:1. This is due to the alkali metals
bation theory: This requires two software programs: One to forming a nearly free electron gas, which screens the effects
calculate the perfect system and one to calculate the lineaf moving one ion efficiently.
response to a perturbation. In thigect approachthe linear In the case of ZnS, it is not sufficient to include only force
response is obtained by using the saabeinitio software to  constants for up to the fifth neighbor. In a test calculation,
calculate the perfect system and the system where one atowhere the number of neighbors was reduced from 11 to 5,
has been moved slightly. The linear response is obtained bihe frequencies of the acoustical vibrational modes changed
comparing the two results. If required, large displacementdy 5% at theX point of the Brillouin zone.
can be used to study anharmonic effects. Calculations for ZnS are computationally much more ex-

The easiest direct calculation is tli@zen phononap-  pensive than alkali metal calculations, even if only the same
proach: A snapshot of the displacement pattern of the phaaumber of neighbors is considered. Alkali metals have one
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valence electron pair for each two atoms. In the case of ZnS, | f [ 7 2% ¢ o 1
the 3d electrons of Zn need to be treated as valence elec- J ‘\ o ¢
h’\"{

trons, so that there are nine electron pairs for each Zn-S pair.
The strongly bound @ electrons require a high cutoff energy
E..: of 65 Ry, as compared to 8.5 Ry for the alkali metal
calculations. Therefore thdirect force-constant approads
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not feasible for this work. 10f ] ]
An alternative is thelanar force-constant separation ap-
proachintroduced by Wei and Chatilt starts by calculating 0§

planar force constants. The supercell is formed by taking the X ) g -

primitive cell of the plane, for which force constants are FIG. 1. Ab initio results(solid lines for the phonon-dispersion
calculated, and a vector perpendicular to that plane. Thisurves of ZnS, compared to experimental results from neutron scat-
vector needs to be at least twice as long as the range of thering (diamonds, Ref. 12

interplanar forces. However, the other two sides of the su-

percell are small. This reduces the volume of the supercelthe interactions of that atom with the superlattice of the dis-
making the calculations less costly. placed atoms. If a cutoff radius,,y is introduced, only a

Planar force constants can be used to calculate the phondifite subset of the superlattice has to be considered. For each
dispersion among high-symmetry directions. To obtain theatom in the supercell, a linear equation can be written for the
full dispersion from planar force constants, individual atom-interaction of that atom with the finite subset. If enough su-
atom force constants have to be separated. Each planar forpercells are calculated, the system of linear equations be-
constant is the sum of all force constants between the atongomes overdefined and can be solved for individual atom-
in a plane and a given atom inside or outside that plane. Agtom force constants using a least-square fit.
the force constants decay rapidly with increasing distance, To calculate the dispersion curves of ZnS, three different
Wei and Chou set all force constants to zero, if the distanc&upercells containing 40, 48, and 56 atoms are used. For each
between two atoms is larger than a cutoff radiyg,. The  supercell, 12 calculations are performed. In each calculation,
result is that each planar force constant can be written as @ne atom is displaced by 0.@Gg in the positive or negative
sum of a finite number of atom-atom force constants. This ik, Y, or z direction, wherea, is the Bohr radius. These
a linear equation with a known left sidthe planar constant results are used as input to the separation procedure, which is
calculatedab initio) and an unknown right sidéhe sum of used to calculate force constants for up to the 11th shell of
atom-atom force constantdt is possible to calculate planar neighbors for both Zn and S. The effective charge is deter-
force constants for arbitrary space directions. Planar forcénined as 0.8@ for Zn and—0.86 e for S by fitting the split
constant for different space directions are different lineaof the TO and LO phonon at th& point. The resulting
combinations of atom-atom force constants. The authors caphonon dispersion curves are plotted in Fig. 1. To test con-
culate so many planar constants that the system of linearergency, force constants are calculated for up to the 18th
equations becomes overdefined. Using a least-square fit, it &ell, but no significant difference is found in the resulting
solved to obtain individual atom-atom force constants. phonon dispersion curves.

Wei and Chou applied thplanar force-constant separa- For the disturbed ZnS:gea bcc supercell with 32 atoms
tion approachto silicon, which shows no long-range inter- is used. The cell is oriented such that the S atom is
action between atoms. In compound semiconductors likat the origin and the four Zn ligands are located
ZnS, the long-range interaction has to be included as wellat (—a/4,—al4,—al4), (aldald,—ald), (ald,—aldald),

This is done by associating the Zn and S ions with an effecand (—a/4,a/4,a/4) with a as the lattice constant of
tive ionic charge. The force constants outsigg, are not set  10.22a,. After the central S has been replaced with Se, it is
to zero, but are set equal to the dipole-dipole term of thenecessary to calculate the relaxation to find the new equilib-
interaction between those effective charges. The effectiveium positions of the atoms around the defect. Only symme-
charge is determined by fitting the calculated dispersioriry conserving relaxations are considered. The first shell of
curves to experiment. This is the only parameter not calcuZn neighbors are moved along the line of the Se-Zn bonds by
lated directly from first principles. 0.19a4 away from the Se atom. The S atom atd,a/2,0) is

Because of its special geometry, the planar force-constamboved by (0.028,,0.028,,0.00%,). The other 11 S atoms
separation method cannot be used to calculate LVM’s ain the second shell are moved accordingly. Because move-
point defects. For these, the supercell must be large in alhent is already low in the second shell, no further shells are
three space directions to reduce the defect-defect interactiorlaxed. The results from this and previous woskow that
to a minimum. for movements of up to 0.@6, the error due to anharmonic-

The method presented here is a generalization ofdthe ity is smaller than or in the same range as the errors due to
rect force-constant approacand theplanar force-constant the other approximations usékbcal-density approximation,
separation approachAn analysis of the work of Wei and energy cutoff, pseudopotentials, and sg.on
Chou shows that at no point in their work are their special After relaxation has been completed, the force constants
geometries actually required. Results for any arbitrary superef the disturbed system are calculated using the direct force-
cell can be used as input to the separation approach. Movingpnstant approach. The separation method discussed above is
one atom of a supercell is equivalent to displacing a supermot applicable here, because changing the supercell geometry
lattice of atoms in real space. The Hellmann-Feynman forcewill also change the distribution of the impurities in thb
acting on a given atom of the supercell are a superposition dhitio calculation. Therefore only force constants between the
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TABLE I. Energy of the ZnS:Se LVM versus cluster size. The impurit§®8e. The mass of the Zn ligands is set to 65u38e average
mass of Zn. In this case, a tripl€, mode is expected. Small clusters lead to an artifical line split, which is indicated by giving a range like
28.364 . ..28.392 as result.

Number of shells 6 7 8 9 12 14 18 21 25
Number of atoms 47 71 87 99 159 191 293 381 489
Calculated energjmeV] 28.364...28.392 28.28...28.297 28.322 28.293 28.299 28.302 28.294 28.289 28.289

impurity and its first- and second-nearest neighbors are déFhere are six stable isotopes for the Se impurity and five
termined by displacing the Se impurity by 0.2 and 0.05 isotopes for the Zn ligands. Each possible isotope combina-
ag in the positive and negativedirections in four different tion gives an LVM with a slightly different energy. If all Zn
ab initio calculations. The change of the force constants beligands have the same mass, a threefold degeneracy is ob-
tween the Zn ligands and their respective first- and secondserved. This triplet splits into one singlet and one doublet, or
nearest neighbors is obtained by displacing one of the fouthree singlets if the Zn ligands have different masses. There
nearest neighbors of the Se impurity by 084 along the  are five stable Zn isotopes, so thdt5625 combinations are
positive or negativet, y, andz axis in six additional calcu- possible for the Zn ligands. Due to the tetrahedral symmetry,
lations. All other force constants are not changed. many of these combinations are equivalent, so that only 70
The LVM is calculated using the cluster method. It con-independent configurations remain.
sists of a classical simulation of vibrating point masses. The For each of the six possible Se centers, all 70 ligand com-
cluster contains all atoms inside a certain cluster radius witlinations are solved, so that there are 420 cluster calculations
the impurity located at the center. The mass of all atomsn total. Each calculation results in three possibly degenerate
outside the cluster is set to infinity, so that these atoms do nonhodes. At the energy of each LVM, a Gaussian curve is
move. The force constants for the interaction of the atomsirawn. All Gaussians have the same half-width, which is
inside and outside of the cluster are not neglected. fitted to the experiment. The amplitude of each Gaussian is
The dynamical matrix is diagonalized to calculate the vi-set to the natural abundancy of the isotopes used in the clus-
brational modes of the cluster. The eigenvalue of a particulater calculation for that Gaussian.
mode is the square of its frequency. The squares of the ele- The FTIR results from Ref. 10 and the calculated fine
ments of an eigenvector give the spatial distribution of thestructure are printed in Figs. 3 and 2. The location and the
vibrational energy. If at least 35% of the energy is located orrelative amplitude of the main maxima, which are labeled
the impurity and at least 70% are located on the impurity and’®Se through®2Se, are reproduced very well. However, the
its four neighbors, the mode is considered a local vibrationaintensity of the calculated side maxima is lower than in the
mode. experiment. The closer a side maximum is to the main peak
To test convergency, the cluster size is varied between 4%°Se, the bigger is the deviation. This can be explained if a
and 489 atoms; see Table I. It is found that increasing the

cluster size from 99 atoms to larger sizes changes the calcu- 800 L 8'0 ' o
lated energy of the LVM by less than 10eV. ZnS:Se Se Se P
ZnS:Se shows a pronounced fine structure, which can be - .
resolved using Fourier transform infrared FTIR) B2gn
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FIG. 2. Theoretical fine structure of the LVM in ZnS:Se. The

calculated phonon frequencies have been broadened by GaussiansFIG. 3. Experimentally observed fine structure of the LVM in
with a half-width of 22ueV=0.18 cni?l. ZnS:Se, taken from Ref. 10.
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The shape of this dashed line agrees with the model results
of Sciaccaet al. in Fig. 3. However, the energy difference
between the main maxima and the highest side maxima is
A 0.18 meV in this work, as opposed to 0.34 meV in Ref. 10.

In Fig. 2, the difference between th&Se and &Se
maxima is 0.18 meV. This means that the side maximum of
the 8°Se peak(see Fig. 4 and the®%Se fall on top of each
other. The same is true for the side maximun&e and the
maximum of 8Se and so on. In Ref. 10, the difference be-

. . . . tween the maximum and side maximum is calculated as 0.34
226 227 228 229 230 meV; see Fig. 3. This means that the side maximuni®se
Wave number (") is located below the maximum &fSe and so on.

FIG. 4. Theoretical fine structure of the LVM, if onf§’Se is Th's hiding .Of .'”.‘F’O”a”t. side maxima be]ow pther
present. The solid line uses a half-width of 22vV=0.18 cm %, maxima make§ It dlfflcu_lt to find the e_lctual reIat.lons.hlp be-
while the dashed line has been calculated with LEV _tWe_e” the Se _lsotope shift and the Zn isotope Sh'ft withaduit
—0.09 cnil initio calculations. In Ref. 10, the calculated fine structure

does not match the experimental results in the region 225—

226 cm 1. As the intensity is low in that region, it is difficult
certain percentage of the impurities in the experiment has @ distinguish between experimentally observed noise and
non-Gaussian broadening of the associated LVM. For exinappropriate interpretation of the spectrum.
ample, Se impurites located next to other Se impurities or In conclusion, a method has been presented to calculate
intrinsic crystal defects have a slightly different energy. If athe energy and the fine structure of LVM'’s from first prin-
hole or electron is bound to a certain percentage of the Seiples, which include hybridization effects. The results show
impurities, their LVM will be broadened by the electron- clearly that models are not trustworthy for fine-structure cal-
phonon interaction® culations of LVM’s if a large number of isotope combina-

The calculated fine structure is about 0.5 ¢mvider than  tions is involved. The calculations presented here agree bet-

experimentally observed. This is due to the limited clusterf€’ With the FTIR experiments in the low-energy region than

H 10
size. By setting the atoms outside of the cluster as immobild€ model presented by Sciacedal ™ The model and the
alculation completely disagree on the results found for

a hard cluster wall is introduced, which reflects any outsid S805e While th del its miaht b d h
amplitude of the LVM back into the cluster. This increases4n>: =€- While the model results might be wrong due to the
difficult assignment of the lines, the presentda initio re-

the vibration amplitudes and therefore the isotope shifts in- . o .
side the cluster slightly. sults are unambiguous. Therefor_e Slaxthnjltlo calculations
Sciaccaet al!° presented a model calculation for ZnS:Se.ShoUId be used to explain complicated fine structures.
They used their model to predict the fine structure for doping The author thanks U. Scherz for many fruitful discussions
with 8%Se, the most abundant Selen isotope. The result showgnd for his encouragement. The author wishes to thank the
two prominent peaks, which are 0.34 meV apart; see théritz-Haber Institut, Berlin, for providing their computer pro-
inset in Fig. 3. The results of this work f8fS are plotted in  grams FHI93CP and FHI94ME The author also thanks the
Fig. 4. The solid line is calculated with a half-width of the Konrad-Zuse-Zentrum “fu Informationstechnik, Berlin for
Gaussians of 22.eV, the same as in Fig. 2. For the dashedproviding CPU time and support for a Cray T3D massive
line, the half-width of the Gaussians is reduced toudeV.  parallel system.
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