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Common force field for graphite and polycyclic aromatic hydrocarbons
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A valence force field based on kekel’s theory has been developed, which allows us to establish a close
correlation between phonons of graphite and the normal modes of small polycyclic aromatic hydrocarbons
(such as coronene and hexabenzocoroneRge results show that in these systems two kinds of motions
dominate the Raman spectrum: tHemode and the “breathing™ mode. These modes are the equivalent, in
a finite domain, of theE,y phonon of graphite at thE point and theA” phonon at thek point of the first
Brillouin zone. This study provides a useful basis for the understanding of the Raman spectra of any material
containingsp? carbon domaing.S0163-18209)01542-9

[. INTRODUCTION PAH's and graphite aiming to develop a valence force field
that could be used for any kind of carbep? system, re-

Carbon-based materials, ranging from highly oriented py-gardless of size and shape, and for graphite too. Such a field
rolitic graphite to polycrystalline graphite and from would allow us to have a common ground in the interpreta-
Diamond-like-carbon to carbon nanotubes, have been exteion of the vibrational spectra of these materials. This is done
sively studied over the past two decades because of thei this work taking a force field proposed by Ohhinown
numerous and relevant technological applicatibfiae mac- @S MO/8 field, which has been shown to be suitable for
roscopic properties of these materials are strongly modifie®AH's of different size and shapend generalizing it to the
by the structure of the compound on atomic scale. The relat@se of an infinite two-dimensional layer of graphite. On the
tive amount ofsp? andsp® carbon atoms, the dimensions of basis of this force field the relevant spec.tral features of PAH
the aromatic domains in graphite, and the occurrence of dénolecules can be correlated, on analytic grounds, to those
fects are only a few of the “parameters” that vary in func- observed in graphite samples.
tion of the method of preparation. It is then important to
develop tools for an accurate structural characterization of Il. FORCE FIELD: METHOD
these materials: the aim of these kinds of work is to establish ) )
structure/property relationships, which may become useful in 1he MO/8 field has been shown to be suitable for the
obtaining improved materials with optimized properties for2nalysis of the in-plane vibrations of some condensed
specific applications. hydrocarboné.It takes into account the following force con-

Raman spectroscopy is a powerful means of structuraptants:
diagnosis: Raman spectra of a wide variety of carbon-based, ,
materials are reported in a very abundant literature and hay@agonal CC stretching:
often been used with success for sample characterization.

Problems arise, however, when spectral features are not used Fii=f1+fa(pi—po) + f3(1; = IIp), (€N
in a merely correlative way but they must be related to a
precise structural model. off-diagonal CC stretching interactions:
One of the most intriguing problems, which is still de-
bated, is the correct assignment of the so-calleRaman Fij="fall;  (i#]), 2

line of graphite, that is always observed in the spectra of

grgphitic mater.ials V\_/ith a certa_ir_1 degree of disorder. Thediagonal CH stretching: f,,

shift of the D line with the exciting laser frequency was

observed many years adaery recently, systematic studies

have related the shift of th® line to the occurrence of reso-

nance enhancement effeétsAt the same time, a close cor- .

relation between the Raman patterns of disordered graphi@@gonal CCH bending: fg,

and of polycyclic aromatic hydrocarbofBAHs) has been

observed by the authorsA systematic and comparative off-diagonal CC-CCC interaction: f;,

study of PAH’s and graphite spectra would be useful in order

to clarify the origin of theD line and its resonance behavior. off-diagonal CC-CCH interaction: fg.

The first step in this research is to build a common basis for

the analysis of Raman spectra of graphite and of the relateBlquations(1) and(2) have been derived according to ¢kd

molecular models. el's theory’® p, andII;; are, respectively, the bond order of
In this paper we describe the vibrational dynamics oftheith bond and the bond-bond polarizability of boridend

diagonal CCC bending: fs,
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j of the molecule;p, andIl, are the bond order and self-
bond polarizability for benzene.

In a finite molecule the total mobile bond order of a pair
of bonded atomst and s, as defined by Coulson and
Longuet-Higgens, is

M (or My)

m
Pis= Z’l N CiCis ©)

where the summation is over all the occupied orbitajsis
the number of electrons in tHéh orbital, andc;; andc,s are @ )
Huckel's coefficients for théth orbital on atomg ands of

the molecule. The bond-bond polarizability between bdsds  FIG. 1. (a) Lattice of graphitea; and a, are the fundamental
andvu can be written as vectors of the lattice. (b) Reciprocal lattice of graphite and first

Brillouin zone.
m

M yy=2>, (CuCsict CsCud) (CutCuict CurCu) _ cording to the LCAO linear combination of atomic orbitals
' =1 k=m+1 &1~ &k theory, as a linear combination of atomic orbitals
4
Ohno's force field can be generalized for a layer of graph- Y= nz nEz (Cnyny1®nin,1t Cniny2®inin,2)- ®
1

ite, provided that expressior{8) and (4) are extended to a

periodic and infinite systert?. A layer of graphite can be ®n;n,1 @ndé, > represent the, atomic orbital on carbon
considered as a two-dimensional crystal that can be deatoms (,,n,,1) and @;,n,,2); in fact only = molecular
scribed using a hexagonal lattice with two atoms per celbrbitals are considered in ldkel's theory. The coefficients
[Fig. 1(@]. Each atom in the lattice can be identified usingof the combination can be written using Bloch’s theorem.
three indicesn; andn,, which identify the cell in the lat- Neglecting the overlap between atomic orbitédso) and

tice, and a numbefl or 2), which identifies the atom inside assuming each a.o. to be normalized, the expectation value
the cell. A molecular orbital of graphite can be written, ac-for the energy of an electron in the molecular orbital is

(c¥citcicy)atciclB(l+e 1+e %) |+chcy B(1+e f1+elf2)
_ 1%1 2%2 1 2
y (certcicy)

where« is the Coulomb integral for a carbon atogjs the 1

resonance integral for any pair bbndedatoms, andd; and Cy=—e "2 (8a)
0, are the components oflavector in the reciprocal space V2

(k= 6,b;,+ 6,b,). The values ofe and B are fixed quanti-

ties, characteristic of the system. We can medasute en- 1 2
ergy with reference tar and in units ofp, i.e., we seta CV,2_5e -
=0 andB=—1.

Using the variation method one obtains the following ex-  ~onduction band
pressions for the electronic energy in valeneg)(and con-

duction (e¢c) bands: 1
Coq=— —ein2 (8b)
C1l 1/2
ey=—{3+2| cog 6,— 6,)+cosb,+cosb,|}, (6) 1
Cco=— ei ”/2,
)

ec={3+2| cog 6, — 6,)+cosh; +cosb,|}.  (7) where

Hereafter the subscripté and C will be used to denote, Cin_ (1+e '1+e'f2) 9

respectively, the valence and the conduction bands. Imposing e = J1+eh+e%)(1+e itre %) ©

the normalization condition on a celt{c,+c5c,=1) one

obtains the following values for Hikel's coefficients of cell Expressiong3) and (4) must be rewritten considering that

(0, O: Huckel's coefficients are now complex and that the summa-
Valence band tion over all the orbitals is infinite.
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1 (= (=
ptszw f, wj— 7T[Cf/,t( 01 ) 02)Cv,s( ‘91 ’ ‘92)

+Cy,1(61,60,)Cy {(61,60,)]1d6,d6,, (11

in which only the coefficients of the valence band appear
FIG. 2. Internal coordinates in the c€0,0) of graphite. since the summation in Eq10) was only over occupied
orbitals. The factor 1/(2)? appears as a consequence of
The invariance of bond order under exchange of two athormalization, sincé, and 6, take values betweest 7 and
oms is taken into account by writing .
At equilibrium, because of the symmetry of the lattice, all
« « bonds are equivalent; as a consequence the valpg dbes
Prs= 2’1 (Cit Cis + CisCit) - (10 hot depend on the pats (provided thatt and's are bonded
atoms and will be denoted hereafter simply ps
The summation can be substituted by integration over the Substituting the expression for the coefficients of ¢ell
first Brillouin zone: 0) in Eqg. (1) yields

1+ cosé; +coséb,
(27T — —'n'\/3+ 2[cosb; +cosb,+cog 6, — 6,)]

The bond-bond polarizability must be rewritten so that it is invariant under exchange of two onds:

N * * * *
(CiyCjutCiuCjy)(ciiCistciscjr) +c.c.
Mgy = 2 > . (13)

i=1 j=m+1 EiT &)

We introduce the integration over the entire Brillouin zone and obtain

™ [eF (0)Cc,u(0") + ¢ u(0)Cc (0)][cy (O)Cc o(0')+ ¢ (B)cc (0)]+c.c.
U

Ev—E&c

X d#,d6,d0;d6), (14)

where @ identifies the pair §,, 6,) which runs over the valence orbitals addidentifies the pair §; , #5) which runs over the
conduction orbitals.

Let Ry, R,, andR; be the three CC bonds associated with one @&lj. 2). Expression(14) can be further modified
observing that the translational invariance allows us to consider only interactions tslet®ndR, of the cell(0, 0). If the
first bond is fixed, there are only two kinds of polarizability: the one betvg0,0) and all the bondR;(n4,n,), which will
be calledIl'(n,,n,), and the interaction betweeR,;(0,0) andR,(n;,n,), which will be calledII"(n,,n,). Because of
symmetry, the interaction betweé (0,0) andR3(nq,n,) equals the interaction betwe&3(0,0) andR,(n,,n4).

We can thus write two kinds of polarizability for graphite:

7 [1—cog n+ n')]cosAf
1'(nsn0)= o5 )‘JWLTJ?J [ S(" 7)) d6,d0,d6,d 6},

—&¢

11"(ny,ny)
1
22w
J' J f Jw [1—cog 7+ 7')][coA b+ 6;)+cogAO—01)]+sin(np+ n')[SIN(AO—67)—SiNAG+ 6,)]
- —-mJ—-m v &
X d6,d6,d6;d6}, (15

where
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(1+cosf;+cosb,)(1+ cosh; +coshy) —(sin O, +sin B,) (sin O +sin 63)

cogn+n')= . .
vece

_ . (sin@1+5sin6)(1+cos; +cosy)+ (sin b;+sin 63)(1+cosd + cosbs,)
sin(n+n')= e o :
vece

e, =\3+2[cosf; +COSO,+CO 0, 0,)], &= /3+2[CcOSO;+COSH;+cog 0] — 05)],
and

AG=n1(0;— 601) +ny( 65— 07).

. DYNAMICS CALCULATION In the graphite lattice there are three kinds of redundan-
A. Force field cies which arise, respectively, from the following three con-
' ] ditions: (i) During the vibration the sum of three valence

We have assumed for graphite a structure made up Qfngles with a common vertex must equat. Zii) Each hex-
regular hexagons, with interatomic distance 1.42 A. US'”%gonal ring must remain close@ii ) The infinite crystal can-
Eq. (12) we have calculated the bond ordero) for graph-  not increase further its dimensions.
ite. The calculation was performed on a PC usimpLE Vv Conditions (i) and (ii) yield five redundancy relations,
by Waterloo Maple Inc. and the result was b:8.5249(in  each of which is a function ok. Condition (iii) is always
units of 8). The integrals of four variables in E¢L5) were  satisfied wherk+0, so it must be explicitly set only af
solved numerically using the function DO1FCF of the For-(je. atk=0), thus giving the two additional conditions at
tran library NAG MARK17 (a multidimensional adaptive de- point I'. The seven redundancies of graphite, obtained with
terministic quadrature over hyperrectangle the method described in Ref. 17, are listed in Table II.

Equations(1) and(2) would allow us to calculate the CC  Having removed redundancies at the high symmetry
stretching interactions at any distance; but in fact there is Points of the first Brillouin ZonéBZ) of graphite it becomes
distance beyond which interactions become negligible. Acpossible to obtain analytic expressions for nonredundant
cording to our calculations the interactions between CCsymmetry coordinates. At point3 K, andM the structure of
bonds in graphite cease to be significant beyond the sixtihe representation in the vibrational space is such that no
nearest cellwe considered 10° mdyn/A as the threshold  more than one vibrational coordinate belongs to each spe-
Furthermore, since we are integrating fast-oscillating funccies. This implies that after redundancies removal the sym-
tions, the precision of the result becomes very poor as thghetry coordinates obtained give directly the exact descrip-
distance of interaction lengthens and the computation timgion of phonon eigenvectors in cel0,0). In the following

needed to obtain meaningful results increases dramatica”ysections nonredundant Symmetry coordinatedfd€, andM
The force constants obtained have values that are compaipints are described.

ible with the valence force fields that have already been cal-
culated for other aromatic hydrocarbons: the value of the
CC-stretching diagonal constants is 5.893 mdyn/A. Further-
more the Kekulerule'® is satisfied on any path along the
graphite bonds. In Fig. 3 we show the force constants on ¢
cis path and on #&ranspath. The complete list of CC stretch-
ing valence force constants is reported in Table I.

B. Internal and symmetry coordinates treatment of graphite

Since the force field developed here is a valence force
field, our treatment of normal modes of graphite is based or
internal coordinate¥"*° so that each mode is described by a
linear combination of internal coordinates belonging to a
specific symmetry specié§.We have defined nine internal
in-plane coordinates in the reference dslkte Fig. 2, thus
obtaining N internal coordinates for the whole crystal
(whereN is the total number of cells in the latticeOn the
other hand, the vibrational in-plane degrees of freedom of
the lattice at eaclk#0 are only 4. This means that &t-0
the internal coordinates are not independent, but are linkec
by five relationships, called redundancies. Moreover] at
there are only two in-plane vibrational degrees of freedom so FIG. 3. Force constants of CC-stretching interaction betwen
a total number of seven redundancies must be found. and other CC bond&) on atrans path and(b) on acis path.

(a) (b)
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TABLE |I. List of the calculated force constants for graphite. Each row reports the interaction between CC bond Ryoftesll (0,0)
and bond numbeR,, of cell (ny,n,).

Force Force Force Force

R. R, ng ny constt. R, Ry, n; n, const. R, R, n; n, const R, R, n; ny const.

1 1 -6 -3 -0001 1 1 0 0 5893 1 1 6 3 —-0.001 2 2 -1 0 -0.064
1 1 -6 0 -0.001 1 1 0 1 -0.064 2 2 -9 6 -0001 2 2 0 0 5.893
1 1 -6 3 -0.001 1 1 0 2 0.003 2 2 -6 6 -0001 2 2 1 0 -—-0.064
1 1 -6 4 0.001 1 1 0 3 —0.006 2 2 -3 6 -0001 2 2 2 0 0.003
1 1 -6 5 0.001 1 1 0 4 —-0.001 2 2 -2 6 0.001 2 2 3 0 —0.006
1 1 -5 -2 -0001 1 1 0 6 —-0.001 2 2 -1 6 0.001 2 2 4 0 —0.001
1 1 -5 1 -0.002 1 1 1 -5 -0.002 2 2 -7 5 -—-0001 2 2 6 0 -0.001
1 1 -5 3 0.001 1 1 1 -4 0.001 2 2 -4 5 -0.002 2 2 -4 -1 -0.002
1 1 -5 4 -0.001 1 1 1 -3 -0.002 2 2 -2 5 0.001 2 2 -3 -1 0.001
1 1 -5 5 0.001 1 1 1 -2 -0.22 2 2 -1 5 -0001 2 2 -2 -1 -0.002
1 1 -5 6 0.001 1 1 1 -1 0.082 2 2 0 5 0.001 2 2 -1 -1 -0.022
1 1 -4 -4 -0.001 1 1 1 0 —-0.064 2 2 1 5 0.001 2 2 0-1 0.082
1 1 -4 -1 -0.002 1 1 1 1 -0.044 2 2 -8 4 -0001 2 2 1 -1 -0.064
1 1 -4 0 -0.001 1 1 1 2 —-0.005 2 2 -5 4 -0.002 2 2 2 =1 -0.044
1 1 -4 1 0.001 1 1 1 4 -0.002 2 2 -4 4 -0001 2 2 3 -1 -0.005
1 1 -4 -2 -0003 1 1 2 -4 -0.003 2 2 -3 4 0.001 2 2 5 -1 -0.002
1 1 -4 3 0.003 1 1 2 -3 0.006 2 2 -2 4 -0.003 2 2 -2 -2 -0.003
1 1 -4 4 0.002 1 1 2 -2 0.018 2 2 -1 4 0.003 2 2 -1 =2 0.006
1 1 -4 5 -0.001 1 1 2 -1 -0.022 2 2 0 4 0.002 2 2 0 -2 0.018
1 1 -4 6 0.001 1 1 2 0 0.003 2 2 1 4 -0.001 2 2 1 -2 -0.022
1 1 -3 -6 -0.001 1 1 2 1 -0.005 2 2 2 4 0.001 2 2 2 -2 0.003
1 1 -3 -3 -0.002 1 1 2 2 —0.007 2 2 -9 3 -0001 2 2 3 —2 -0.005
1 1 -3 -2 -0.01 1 1 2 3 -0.001 2 2 -6 3 -0002 2 2 4 -2 —0.007
1 1 -3 0 -0.006 1 1 2 5 -0.001 2 2 -5 3 -0001 2 2 5 -2 -0.001
1 1 -3 1 -0.002 1 1 3 -6 -0.001 2 2 -3 3 -0006 2 2 7 —2 —0.001
1 1 -3 2 0.006 1 1 3 -5 0.001 2 2 -2 3 -0.002 2 2 -3 -3 -0.001
1 1 -3 3 -0.002 1 1 3 -4 0.003 2 2 -1 3 0.006 2 2 -2 -3 0.001
1 1 -3 4 0.003 1 1 3 -3 -0.002 2 2 0 3 -0.002 2 2 -1 -3 0.003
1 1 -3 5 0.001 1 1 3 -2 0.006 2 2 1 3 0.003 2 2 0 -3 -—0.002
1 1 -3 6 -0.001 1 1 3 -1 -0.002 2 2 2 3 0.001 2 2 1-3 0.006
1 1 -2 -5 -0.001 1 1 3 0 —-0.006 2 2 3 3 —-0001 2 2 2 -3 -0.002
1 1 -2 -3 -0001 1 1 3 2 —-0.001 2 2 -7 2 -—-0001 2 2 3 -3 -0.006
1 1 -2 -2 -0007 1 1 3 3 —-0.002 2 2 -5 2 -0001 2 2 5 -3 -0.001
1 1 -2 -1 -0005 1 1 3 6 —-0.001 2 2 -4 2 -0007 2 2 6 —3 -—0.002
1 1 -2 0 0.003 1 1 4 -6 0.001 2 2 -3 2 -0005 2 2 9 -3 -0.001
1 1 -2 1 -0.022 1 1 4 -5 -0.001 2 2 -2 2 0.003 2 2 -2 -4 0.001
1 1 -2 2 0.018 1 1 4 -4 0.002 2 2 -1 2 -0022 2 2 -1 -4 -0.001
1 1 -2 3 0.006 1 1 4 -3 0.003 2 2 0 2 0.018 2 2 0 -4 0.002
1 1 -2 4 —-0.003 1 1 4 -2 -0.003 2 2 1 2 0.006 2 2 1-4 0.003
1 1 -1 -4 -0.002 1 1 4 -1 0.001 2 2 2 2 -0.003 2 2 2 —4 —-0.003
1 1 -1 -2 -0005 1 1 4 0 —-0.001 2 2 -5 1 -0.002 2 2 3 —4 0.001
1 1 -1 -1 -0044 1 1 4 1 -0.002 2 2 -3 1 -0005 2 2 4 -4 -0.001
1 1 -1 0 -0.064 1 1 4 4 —-0.001 2 2 -2 1 -0044 2 2 5 -4 -0.002
1 1 -1 1 0.082 1 1 5 -6 0.001 2 2 -1 1 -0.064 2 2 8 —4 -0.001
1 1 -1 2 -0022 1 1 5 -5 0.001 2 2 0 1 0.082 2 2 -1 -5 0.001
1 1 -1 3 —-0.002 1 1 5 -4 -0.001 2 2 1 1 -0022 2 2 0 -5 0.001
1 1 -1 4 0.001 1 1 5 -3 0.001 2 2 2 1 —-0.002 2 2 1 -5 -0.001
1 1 -1 5 -0.002 1 1 5 -1 -0.002 2 2 3 1 0.001 2 2 2 =5 0.001
1 1 0 -6 -0.001 1 1 5 2 —-0.001 2 2 4 1 -0.002 2 2 4 -5 -0.002
1 1 0 -4 -0.001 1 1 6 -5 0.001 2 2 -6 0 -0001 2 2 7 -5 -0.001
1 1 0 -3 -0.006 1 1 6 -4 0.001 2 2 -4 0 -0001 2 2 1 -6 0.001
1 1 0o -2 0.003 1 1 6 -3 -0.001 2 2 -3 0 -0.006 2 2 2 —6 0.001
1 1 0 -1 -0.064 1 1 6 0 —-0.001 2 2 -2 0 0.003 2 2 3 -6 —0.001
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TABLE I. (Continued)

Force Force Force Force

R, Ry, ng n, const. R, Ry, ng ny constt. R, R, ng n, const. R, R, ng ny const.

2 2 6 -6 —-0.001 3 3 2 -2 0.003 3 3 3 3 —-0.001 1 2 1 -2 -0.008
2 2 9 -6 -0.001 3 3 1 -1 -0.064 3 3 0 6 —-0.001 1 2 1 -1 -0.184
3 3 3 -9 -0.001 3 3 0 0 5893 3 3 -3 9 -0.001 1 2 1 0 0.415
3 3 0 -6 -0.001 3 3 -1 1 -0064 1 2 -6 0 0.001 1 2 1 1 0.040
3 3 -3 -3 -0001 3 3 -2 2 0.003 1 2 -6 2 0.001 1 2 1 2 —0.009
3 3 -4 =2 0.001 3 3 -8 3 -0.006 1 2 -6 3 0.001 1 2 1 4 0.001
3 3 -5 -1 0.001 3 3 -4 4 -0.001 1 2 -6 4 -0.001 1 2 1 5 —0.001
3 3 2 -7 -0.001 3 3 -6 6 —-0.001 1 2 -5 =2 0.001 1 2 2 -6 —0.001
3 3 -1 -4 -0.002 3 3 5 -4 -0.002 1 2 -5 0 0.001 1 2 2 -4 -0.001
3 3 -3 -2 0.001 3 3 4 -3 0.001 1 2 -5 1 0.001 1 2 2 -3 -0.013
3 3 -4 -1 -0.001 3 3 3 -2 -0002 1 2 -5 3 0.001 1 2 2 —2 -—0.008
3 3 -5 0 0.001 3 3 2 -1 -0022 1 2 -5 5 -0.001 1 2 2 -1 0.040
3 3 -6 1 0.001 3 3 1 0 0.082 1 2 -4 =2 0.001 1 2 2 0 0.005
3 3 4 -8 —-0001 3 3 0 1 -0.064 1 2 -4 -1 0.001 1 2 2 1 0.018
3 3 1 -5 -0.002 3 3 -1 2 -0044 1 2 -4 1 0.002 1 2 2 2 0.005
3 3 0 -4 -0.001 3 3 -2 3 —-0005 1 2 -4 2 0.003 1 2 2 3 —0.002
3 3 -1 -3 0.001 3 3 4 5 -0.002 1 2 -4 3 -0.002 1 2 3 -5 -0.003
3 3 -2 -2 -0.003 3 3 4 -2 -0.003 1 2 -4 4 0.001 1 2 3 -4 -0.001
3 3 -3 -1 0.003 3 3 3 -1 0.006 1 2 -4 6 -0.001 1 2 3 -3 0.002
3 3 -4 0 0.002 3 3 2 0 0.018 1 2 -3 3 0.001 1 2 3 -2 -0.009
3 3 -5 1 -0.001 3 3 1 1 -0.022 1 2 -3 -1 0.002 1 2 3 -1 0.018
3 3 -6 2 0.001 3 3 0 2 0.003 1 2 -3 0 0.004 1 2 3 0 0.005
3 3 6 -9 -0.001 3 3 -1 3 -0005 1 2 -3 2 0.005 1 2 3 2 0.003
3 3 3 -6 —-0.002 3 3 -2 4 -0.007 1 2 -3 4 -0.003 1 2 3 3 0.001
3 3 2 -5 -0001 3 3 -3 5 -0.001 1 2 -2 -4 -0001 1 2 3 4 —0.001
3 3 0 -3 -0.006 3 3 -5 7 -0.001 1 2 -2 -3 0.001 1 2 4 -4 -0.003
3 3 -1 -2 -0.002 3 3 6 -3 -0.001 1 2 -2 =2 0.003 1 2 4 -2 0.005
3 3 -2 -1 0.006 3 3 5 -2 0.001 1 2 =2 0. 0.005 1 2 4 0 0.004
3 3 -3 0. —-0.002 3 3 4 -1 0.003 1 2 -2 1 0.018 1 2 4 1 0.002
3 3 -4 1 0.003 3 3 3 0 —0.002 1 2 -2 2 -0.009 1 2 4 3 0.001
3 3 -5 2 0.001 3 3 2 1 0.006 1 2 -2 3 0.002 1 2 5 -6 -0.001
3 3 -6 3 -0.001 3 3 1 2 —-0.002 1 2 -2 4 -0.001 1 2 5 —4 0.001
3 3 5 -7 -0.001 3 3 0 3 —0.006 1 2 =2 5 -0003 1 2 5 -3 -0.002
3 3 3 -5 -0.001 3 3 -2 5 -0.001 1 2 -1 -3 -0002 1 2 5 -2 0.003
3 3 2 -4 -0.007 3 3 -3 6 —0.002 1 2 -1 -2 0.005 1 2 5 -1 0.002
3 3 1 -3 -0005 3 3 -6 9 -0.001 1 2 -1 -1 0.018 1 2 5 1 0.001
3 3 0 -2 0.003 3 3 6 -2 0.001 1 2 -1 0 0.005 1 2 5 2 0.001
3 3 -1 -1 -0022 3 3 5 -1 -0.001 1 2 -1 1 0.040 1 2 6 -5 -0.001
3 3 -2 0 0.018 3 3 4 0 0.002 1 2 - 2 —0.008 1 2 6 —3 0.001
3 3 -3 1 0.006 3 3 3 1 0.003 1 2 -1 3 -0.013 1 2 6 —1 0.001
3 3 -4 2 -0.003 3 3 2 2 —-0.003 1 2 -1 4 -0.001 1 2 6 0 0.001
3 3 4 -5 -0.002 3 3 1 3 0.001 1 2 -1 6 —-0001 1 2 6 2 0.001
3 3 2 -3 -0.005 3 3 0 4 —-0.001 1 2 0 -5 -0.001 1 2 7 —4 -0.001
3 3 1 -2 -0044 3 3 -1 5 -0.002 1 2 0 —4 0.001 1 2 7 -3 0.001
3 3 0 -1 -0.064 3 3 -4 8 -0.001 1 2 0 -2 -0.009 1 2 7 -2 0.001
3 3 -1 0 0.082 3 3 6 —1 0.001 1 2 0 -1 0.040 1 2 7 0 0.001
3 3 -2 1 -0.022 3 3 5 0 0.001 1 2 0 0 0415 1 3 0-6 0.001
3 3 -3 2 -0.002 3 3 4 1 -0.001 1 2 0 1 -0184 1 3 2 —6 0.001
3 3 -4 3 0.001 3 3 3 2 0.001 1 2 0 2 —-0.008 1 3 3 -6 0.001
3 3 -5 4 -0.002 3 3 1 4 —-0.002 1 2 0 3 0.002 1 3 4 -6 —0.001
3 3 6 -6 —-0.001 3 3 -2 7 -0.001 1 2 0 4 -0.003 1 3 -2 -5 0.001
3 3 4 -4 -0.001 3 3 5 1 0.001 1 2 1-4 -0003 1 3 0 -5 0.001
3 3 3 -3 -0.006 3 3 4 2 0.001 1 2 1-3 0.002 1 3 1 -5 0.001
1 3 3 -5 0.001 1 3 2 1 -0.009 2 3 5 -5 0.001 2 3 -1 1 0.415
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TABLE I. (Continued)
Force Force Force Force

Ra Ry, ny ny constt. R, R, n; n, constt. R, R, ng n, constt. R, R, ng n, const

1 3 5 -5 -0.001 1 3 4 1 0.001 2 3 4 -5 0.001 2 3 -2 1 0.040
1 3 -2 -4 0.001 1 3 5 1 -0.001 2 3 2 -5 0.001 2 3 -3 1 -0.009
1 3 -1 -4 0.001 1 3 -6 2 -0.001 2 3 0 -5 -0.001 2 3 -5 1 0.001
1 3 1 -4 0.002 1 3 -4 2 -0.001 2 3 6 —4 0.001 2 3 -6 1 -0.001
1 3 2 -4 0.003 1 3 -3 2 —-0.013 2 3 5 -4 0.001 2 3 4 2 -0.001
1 3 3 -4 -0.002 1 3 -2 2 —-0.008 2 3 3 -4 0.002 2 3 2 2 -0.001
1 3 4 -4 0.001 1 3 -1 2 0.040 2 3 2 -4 0.003 2 3 1 2 -0.013
1 3 6 —4 -0.001 1 3 0 2 0.005 2 3 1-4 -0.002 2 3 0 2 -0.008
1 3 -3 -3 0.001 1 3 1 2 0.018 2 3 0 -4 0.001 2 3 -1 2 0.040
1 3 -1 -3 0.002 1 3 2 2 0.005 2 3 -2 -4 -0001 2 3 -2 2 0.005
1 3 0 -3 0.004 1 3 3 2 —-0.002 2 3 6 -3 0.001 2 3 -3 2 0.018
1 3 2 -3 0.005 1 3 -5 3 -0.003 2 3 4 -3 0.002 2 3 -4 2 0.005
1 3 4 -3 -0.003 1 3 -4 3 -0001 2 3 3 -3 0.004 2 3 -5 2 -0.002
1 3 -4 -2 -0.001 1 3 -3 3 0.002 2 3 1 -3 0.005 2 3 2 3 -0.003
1 3 -3 -2 0.001 1 3 -2 3 -0009 2 3 -1 -3 -0.003 2 3 1 3 -0.001
1 3 -2 -2 0.003 1 3 -1 3 0.018 2 3 6 —2 -0.001 2 3 0 3 0.002
1 3 0 -2 0.005 1 3 0 3 0.005 2 3 5-2 0.001 2 3 -1 3 -0.009
1 3 1 -2 0.018 1 3 2 3 0.003 2 3 4 -2 0.003 2 3 -2 3 0.018
1 3 2 -2 -0.009 1 3 3 3 0.001 2 3 2 -2 0.005 2 3 -3 3 0.005
1 3 3 -2 0.002 1 3 4 3 —-0.001 2 3 1 -2 0.018 2 3 -5 3 0.003
1 3 4 -2 -0.001 1 3 -4 4 -0.003 2 3 0 -2 -0.009 2 3 -6 3 0.001
1 3 5 -2 -0.003 1 3 -2 4 0.005 2 3 -1 -2 0.002 2 3 -7 3 -0.001
1 3 -3 -1 -0.002 1 3 0 4 0.004 2 3 -2 -2 -0001 2 3 0 4 -0.003
1 3 -2 -1 0.005 1 3 1 4 0.002 2 3 -3 -2 -0003 2 3 -2 4 0.005
1 3 -1 -1 0.018 1 3 3 4 0.001 2 3 4 -1 -0.002 2 3 -4 4 0.004
1 3 0o -1 0.005 1 3 -6 5 -0.001 2 3 3 -1 0.005 2 3 -5 4 0.002
1 3 1 -1 0.040 1 3 -4 5 0.001 2 3 2 -1 0.018 2 3 -7 4 0.001
1 3 2 -1 -0.008 1 3 -3 5 -0.002 2 3 1 -1 0.005 2 3 1 5 -0.001
1 3 3 -1 -0.013 1 3 -2 5 0.003 2 3 0 -1 0.040 2 3 -1 5 0.001
1 3 4 -1 -0.001 1 3 -1 5 0.002 2 3 -1 -1 -0.008 2 3 -2 5 -0.002
1 3 6 -1 -0.001 1 3 1 5 0.001 2 3 -2 -1 -0.013 2 3 -3 5 0.003
1 3 -5 0 -0.001 1 3 2 5 0.001 2 3 -3 -1 -0001 2 3 -4 5 0.002
1 3 -4 0 0.001 1 3 -5 6 -—-0001 2 3 -5 -1 -0001 2 3 -6 5 0.001
1 3 -2 0 -0.009 1 3 -3 6 0.001 2 3 5 0 —-0.001 2 3 -7 5 0.001
1 3 -1 0 0.0040 1 3 -1 6 0.001 2 3 4 0 0.001 2 3 -1 6 -0.001
1 3 0 0 0.415 1 3 0 6 0.001 2 3 2 0-0.009 2 3 -3 6 0.001
1 3 1 0 -0.184 1 3 2 6 0.001 2 3 1 0 0.040 2 3-5 6 0.001
1 3 2 0 -—0.008 1 3 -4 7 -—-0001 2 3 0 0 0.415 2 3 6 6 0.001
1 3 3 0 0.002 1 3 -3 7 0.001 2 3 -1 0 -0.184 2 3 -8 6 0.001
1 3 4 0 -0.003 1 3 -2 7 0.001 2 3 -2 0 -0.008 2 3 -3 7 -0.001
1 3 -4 1 -0.003 1 3 0 7 0.001 2 3 -3 0 0.002 2 3 -4 7 0.001
1 3 -3 1 0.002 2 3 6 —6 0.001 2 3 -4 0 -0.003 2 3 -5 7 0.001
1 3 -2 1 -0.008 2 3 4 -6 0.001 2 3 3 1 -0.003 2 3 -7 7 0.001
1 3 -1 1 -0.184 2 3 3 -6 0.001 2 3 2 1 0.002

1 3 0 1 0.415 2 3 2 -6 -0.001 2 3 1 1 —-0.008

1 3 1 1 0.040 2 3 7 -5 0.001 2 3 0 1 -0.184

1. T point (b) Ring redundancies

In-plane structure of the representation:

I‘tot,in—planez Equt E2g .

Translations along andy belong toE,,,, thus leaving only
a twofold degenerat&,  vibrational mode.

Redundancies:

(a) Local redundancie$l,I1, as in Table II.

M=w,+2ws+w;+2w0,=0,

M5=3w;— w;+2w)+2w;=0.

(c) Crystal redundancieHg,I1; as in Table II.
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TABLE II. General expression of the vibrational redundancies of a single planar sheet of grRphite.
the CC bond length at equilibrium in A.

(a) Local redundancies: I1,=3;0;=0
II,=%0{=0
(b) Ring redundancies: 3= w;+ we 1+ wye 2+ w)e! (17 2

+(Déei02+wéei0120
I1,= 2R (e'"1— %) + Ry(1—€%2) —Ry(1—€'’1)
7\/§Rcc(w1+ 2w3e| 92+ w.iel(61+02)+2wée|52):0
I15=V3[Ry(1—€') +Ry(1—e'")] _
+RCC(Swl_wiel(gﬁez)""Zwée'92+2wée'91):0

(c) Crystal redundancies: [Ig=%R=0
(only atT’)
I7=Vv3(Ry+R3) —Re(wo + w3) =0

Removing redundanci&syields the following symmetry s =v3[Ry(1—el@37) £ Ry(1—e(437)]
coordinates: . '
+Rec(3wy—wi+ Zwée'(2/3)”+ Zwée'(‘“?’)”)

Ezg: Ax=Rcc(2R1—R2—Ry) =0.
‘/j ! I !
T 5 (2017 0~ w3t 201~ 03~ 03), Combining the nine internal coordinates according to the

character table oD, point group one obtains nine symme-
try coordinates. These coordinates are not linearly indepen-
dent because they are linked by the five redundancies.

We list the symmetry coordinates after removal of the
+ ?((1)2_(1)3"‘ w;— w3), redundancies:

Ay=Rcc(R2—Ra)

whereR¢ denotes the CC bond length. Species Coordinate
Notice that the crystal redundanciddd andII;) belong , _ i(43)m i(2/3)m
to E,4 species; combining them one can obtain the redun-"" 81:R1+R2ei(4/3)7+ R3ei(2/3)ﬁ
dancies iso-oriented with the,, 51 coordinates. 2 Sy= w1+ wy€ Tt
—w! - wre|(2/3)7-r_ w’e|(4/3)77
1 2 3

B E’ 83 :(ZR -R ei(4/3)7T_R ei(2/3)7'r)
I1,=v3(2R;—R,—R3) —R¢cc(2w,— wy— w3), X 12 3= .
X (2R;1—R;—R3) = Rcd(2w;— wy— w3 +\/3/RCC[(2w1—wze'(4’3)”—wge'(2/3)”)
F (20! — wlel@RT_ 41 ai@3)m
I, =v3(Ro~Ra) ~ Roc( @~ @3). (2or ez )
3. M point (D, point symmetry)

2. K point int t .
point (By, point symmetry) In-plane structure of the representation:

In-plane structure of the representation:

1—‘tot,in—plane: A:,L+Aé+ E. 1—‘tot,in—plane: Ag+ Blg+ B2u+ B3u .
Redundancies:
(a) Local redundancie$l,I1, as in Table II. Redundancies:
(b) Ring redundancies (@ Local redundancie$l,, 11, as in Table Il.

(b) Ring redundancies
5= w1+ 0,8 W37+ g6 @ITL ! 4 o1l (27

! Al (43—
+w3e'( ) =0, H3=w1—w2—w3+wi—wé—wé=o'
[I,=2R; — R,e'*¥7_ R el (237
H4=2(R2_R3)_‘/gRCC(wl+2w3+wi—2wé)=O,

R . .
- \/C§C(2w1_ w€ T — 3! P71 200

—wy€' I — 3! M) =0, I15=2V3(R,+R3) + Re( 3w — 0] — 2wy~ 2w3) =0.
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Symmetry coordinatesafter removal of the redundan- quencies that are lower with respect to the experimental data.

cies: The calculated frequency of titg,; mode atl” is 1541 cm?,
_ ' while the experimental Raman vaflés 1581 cm®. Never-
Species  Coordinate theless, the virtue of our field is the fact of being an exten-
— sion of the MO/8 field also used for finite molecules without
Aq S;=R; Ay variat ) ) . ;
, , y variation of its parameters. Our aim was in fact to obtain,
Big $= (w2t wy) — (w3t w3)

without any fitting procedure, a force field that could predict

experimental data reasonably well and that would allow us to
treat on common grounds graphite and molecular models.
This will permit us to establish a correlation between the

spectra of graphite and of PAH’s of any size, as will be

discussed in Sec. IV.

Using our force field we have calculated numerically both  Several dispersion curves for graphite have been ob-
the phonon dispersion curves in the three symmetry directained in the literature. Some of them have been published
tions of the reciprocal lattice of graphité-K, K-M, and by Dresselhaus and co-workers. Those presented in Ref.
M-I') and the corresponding one-phonon density of states] show remarkable differences from those here reported:
(DOS). We have also plotted the shape of the normal modeg, particular the overall shape of the higher optical branches
atl’, M, andK points. These results are shown in Figs. 4-6.i5 very different in thel'-M direction and these branches

Notice that, according to the discussion in the previousyre much more apart. These curves have been modified in a
sections, the nuclear displacements during normal modes %Ilowing papef?> to fit neutron-scattering data, thus

high-symmetryk values can pe directly derived on the baSiSobtaining a behavior more similar to that of our branches.
of the symmetry analysis, since only one normal mode peR/Iajor differences can still be noticed along thd-K

species is expected fdr, M, and K points. As a conse- . " . . . .
— O direction but unfortunately no direct experimental evidence
guence, the shape of the normal modes in Fig. 6 is indepen-

dent of the force field. Conversely, the calculated frequenc an definitely choose th_e better behavior. A bettgr resem-

of the mode depends on the force field. lance can 3be fpund with curves by K_rg_sse, FurtMu
The agreement between our results and the experimentd['d Hafner’? which are based on aab initio calculation

data is very satisfactory. In Fig. 4 the theoretical phononOf graphite electronic structure. This can be ascrlbed. to the

dispersion curves are compared with experimental points ofz/0S€ analogy between their approach and ours. Notice that

tained by electron-energy-loss spectros¢8pEELS) and  nheither Kresse, Furthniler, and Hafner nor we have per-

neutron scattering’ The agreement is excellent, especially formed any fitting on experimental data of graphite.

at low frequencies. At high frequencies, in particular towards

the center of the Brillouin zone, our force field gives fre-

Bou S3=V3Rco(R2—R3) +2[ (w0~ w3) — (w5~ w3)]
Bsy Sy=Rcc(Ry+R3) = 2V3[ (wo+ w3) — (w5 + w3) ]

C. Phonons of graphite

IV. COMPARISON WITH PAH’s
1800 . , .
Using Ohno's force field we carried out normal modes

a ¢ calculations on the molecules of coronene and hexabenzo-
coronene(Fig. 7) on the basis of the symmetry coordinates
suitably constructed. Figure 8 shows the Raman spectra of
solid samples of coronene and hexabenzocoror{efiC)
together with the plots of the motions which are assigned to

1600t o

1400+

%g;

e
N
o
(=]
T
@

Tg fo the most relevant Raman lines. It becomes apparent that the
5 ke strong lines in the Raman spectrum originate from two kinds
€ 1000 ) of motion: one will be calledd and the other, which is a
2 total symmetric breathing mode, will be calleéd The label
§ 800 g . s is the same one that was previously used for a normal
L mode, calculated and observed, of polyacetylene and poly-
600} o
400r 3000f =
200} 4 2
T 2000[ N
0 -
r M K L - S 4
FIG. 4. Calculated phonon dispersion curves along three high- - 7
symmetry directions in the reciprocal lattice of graphite. Circles 05

200 400 600 800 1000 1200 1400 1600 1800

represent experimental data from EE(enpty circle$ and neutron frequency (cm™)

scattering(filled circles. Squares and triangles identify phonons
that reproduce, respectively] and @ motions of coronene and FIG. 5. One phonon density of vibrational states for a two-
HBC. dimensional graphene sheet.
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T point

1541 em™ Ey 1541 cm™ Eng

K point

1235cm™ Ay 1082 ¢m™? A2

1216 cm™ E 1216 om™ E

Point M,
By 1380 em-1 B 1356 cm-1

Agg 1339 cm-1 Az 721 em-1

M;+ M;+M;
Bay, 1380 cm-1 B 1356 em-1

FIG. 6. Eigenvectors of graphite at poirlfs K, andM of the
first BZ.

FIG. 7. The molecular structure ¢d) coronene(b) hexabenzo-
coroneneg(HBC), and(c) circumcoronene.

A comparison of Figs. 6 and 8 shows that tHemode is
obviously analogous to the only Raman active mode of
graphite(the E,q mode atl’), which will thus be labeled as
“the I mode” of graphite. Thet motion of coronene and
HBC is a totally symmetric mode and may thus be compared
to the totally symmetric phonons of graphite at symmetry
pointsM or K of the first BZ.

The analogy between the twd modes(of graphite and
of finite moleculegis not only intuitive but it has also been
proved by a calculation, as shown below. We have used the
same procedure in order to establish the degree of resem-
blance of the totally symmetric modes of graphite and of the
@ mode of the oligomers. This procedure is described in de-
tail in what follows.

A phonon is a traveling wave, while the normal mode of

aromatic polymers. This motion, which has strong analogieg, finite domain can be approximately descriteals a sta-
with the Eq mode of graphite, gives rise to an extremely tionary wave. A stationary wave can be obtained from a
strong line in the Raman spectrum of polyconjugatedphonon having wave vectdr by summation with a phonon

polymers?*

having wave vector—k and same frequency. In the case
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4
s Band position (cm™)
! L obs. cale.
§° A 1627/1616 1612
%5 @ 1366/1349 1367
(a) 10 st Ramz‘n?r?m em™ 1= i

&

Band position (cm'l)
obs. cale,
A 1613/1598 1593
@ 1366 1362
@ 1282 1311

Raman intensity
©
S

1600 1500 1400 1300
( b) Raman shift (o)

R
(c) R = ~{CH)o-CHs

FIG. 8. Raman spectra @) coronene andb) hexaperi-hexabenzocoronernasubstituentR groups as in figureéc)]. For the sake of
simplicity we report the eigenvectors of the parent molecule without alkyl substituents. Spéatnes obtained usingq,.= 1064 nm and
spectrum(b) was obtained with\ o,.=514.5 nm.

under study we are dealing with phonons at polnt&, and For any oligomer the idedll motion is given by a collec-

M of the first BZ of graphite. tive coordinatelI=U4R whereR is a column vector which
Phonons al” (k=0) are stationary waves and can be clas-contains all the internal coordinates of the molecule consid-

sified according to th@®g, point symmetry, therefore they ered andUg is the vector of the coefficients of the

can be directly compared with thd modes of finite mol- combination. In order to buildJ;, a piece of graphite is

ecules(we are considering coronene and HBC, wiiky, considered which has the same shape as the molecules under

symmetry. investigation. Then the coefficient of the combination for
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TABLE lll. Raman spectrum of coronene: vibrational assign-  TABLE IV. Raman spectrum of HBC: vibrational assignments
ments and calculated ideal motions contents for cororépe  and calculated ideal motions contents Egyy modes.
modes.

Calc. Weighted
Calc. Weighted Sym. freq. Obs. freq. % of 51 content of
Sym. freq. Obs. freq. % of 51 content of spec. (cm™Y (cm™ vibration 51 vibration
spec. (cm™Y) (cm} vibration  $I vibration
Eag 3058 2 0.0225
Eog 3057 15 0.7701 3057 6 0.0639
3056 19 0.6593 3055 7 0.0716
1612 1627/1616 s 83 5.0454 1607 2 0.0201
1439 1448 vw 35 1.6711 1593 1605 87 0.8834
1438 41 2.6904 1526 2 0.0224
1396 0 0.0127 1475 9 0.0869
1216 1223 vw 38 1.5189 1449 8 0.0903
1149 24 1.7191 1335 12 0.1156
997 994 vw 12 0.5067 1281 0 0.0021
673 29 0.9573 1249 6 0.0476
534 17 0.5309 1183 5 0.0502
354 369 m 58 0.9816 1100 5 0.0367
1076 1 0.0053
897 13 0.0854
each stretching or bending coordinate of the oligomer is 846 19 0.0858
taken equal to the coefficient of ti#& symmetry coordinate 655 11 0.0597
of graphite crystal for the corresponding stretching or bend- 527 7 0.0249
ing. We recall that thefI coordinate of graphite is thE 283 30 0.0543
symmetry coordinate at poitt, which is obtained summing 270 60 0.1062

on all the cells the symmetry coordinate of c@l0) times
the corresponding phase facisee note 16

The scalar pro_duct betw_eemﬂ and _each of the eigen- Phonons aK are traveling waves that can be classified
vectorsL; (normalized to unity of the oligomer equals 1 if according toDs, symmetry. In order to obtain stationary
the two vectors are equal and O if the two vectors are ory oo \veo sun?khand—k phonons. It can be shown that the
thog?nal. Thfrefore the_mez_:ming Qf suph product is that o tation’ary waves so obtained obBy, symmetry, so they
th_e content” of 51 motion in theith eigenvector of the are consistent with the normal modes of the finite domains.
oligomer. The eigenvector of the stationary wave so obtained has been

_ used, by means of the same procedure described above for
Hopconteni =100 Ug-L;), the S motion, to build the ideal coordinate of totally sym-
metric K motion for each domain. We have then defined the
whereL; is theith column of the eigenvectors matrix, The  vector Uy and computed the % motion content and the
molecular eigenvectors that we use in this product are nomeighted motion content of the totally symmetric mode at
malized to unity, i.e.[;L;=1. pointK in the A;4 normal modes of coronene and HBC. The
On the other hand, Raman intensities are determined byresults are shown in Tables V and VI.
Phonons aM are traveling waves witlD,;, symmetry. It
da da can be shown th&t? a stationary wave that can be classified
—==2 — Ly, according to theDg,, point group may be obtained by sum-
Qi T IR ming the six degenerate phonons at poiMts,M,,M3 and
i . i —M;,—M,,—Mj3. We have then built thé&J,, vector for
wherelL; is thetth element oflL;, the eigenvector obtained -gronene and for HBC and we have computed the contents
by normalizing the epenvectors matrix according to Wil- ¢ totally symmetric motion aM in the A,, normal modes
son’s procedurgi.e., LL =G). of coronene and HBC. The results are listed in Tables V and

If we want to analyze Raman intensities in terms of the V.

content, we have to use eigenvectors normalized with Wil-  Figure 9 clearly shows that a large content\dfmotion

son’s method. The scalar produdt;-L; is a number that does not produce strong lines in the Raman spectrum; on the
represents an amount of motion that is weighted by the efcontrary a large content oK motion is associated with
fective mass of théth oscillator; therefore this product al- strong lines in the Raman spectrum.

lows for (i) the geometrical similarity between the ideal mo- We have thus shown that the few strong Raman lines of
tion and the real eigenvector afii the contribution of the the oligomers are due to motions which are related tdethe
eigenvector to Raman intensity. The calculated contents fomode atl" and to theA; phonon atK of graphite. These
coronene and HBC are listed in Tables Il and IV. There isconclusions are in good agreement with the work of
an immediate correlation between strong lines in the spec¥oshizawaet al?’ based on semiempirical molecular orbital
trum and modes with highl content. (MO) calculations on a few PAH molecules.
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TABLE V. Raman spectrum of coronene: vibrational assignments and calculated ideal motions contents
for coroneneA,y modes.

Calc. Weighted Weighted
Sym. freq. Obs. freq. % of K content of % of M content ofM
spec. (cm™ (cm™ vibration K vibration vibration vibration
Ay 3058 3042 1 0.0386 0 0.0052
1599 1595 vw 8 0.4087 17 0.8663
1367 1366/1349 vs 56 1.2514 5 0.1064
1198 0 0.0153 10 0.5262
1047 1025 2 0.0695 13 0.5009
477 485 m 3 0.0207 13 0.0956

In this paper we analyze only coronene and HBC. We tried to extend such a procedure to identify phonons
We have also recorded the Raman spectra of many oth@f graphite that reproduce botth and@ motions of the oli-
PAH’s, which have different size and well-defined sh?fbe, gomers. Let us first consider the molecule of coronene. It is
and we have observed that the features of the spectra aP9ssible to pave the graphite lattice with coronene-shaped
the same for any PARF The strongest Raman lines are tiles (Fig. 10. A phonon of graphite, in order to be superim-

the A1 line around 1600 cm" and one or more strong lines posable to a normal made of coronene, must have nodal
1 : lanes along the border between two tilegshed lines of
near 1350 cm™ are also observed. These latter lines are du1eE_ig 10

to @ motion of the bulk, differently coupled with the end = “tha centers of the tiles form a new latti¢eshich we
groups. _ . _ will call “superlattice”). In order to have nodal planes

The frequencies ofl and@ motions vary as a function of 510ng the borders of the tiles, a graphite phonon must be a
shape and the frequencies of graphite are rather diﬁerer&szo phonon of the superlatticeq{ is a vector in the re-
from those of the finite systems. This is due to the fact thabiproca| lattice of the Super|atti¢epractica”y we super-
the same kind of motion varies its frequency as a conseimpose the reciprocal lattices of graphite and of the
quence of confinement. In the next paragraph we will showcoronene-based superlattice and we choose all the points that
how confinement influences vibrational frequencies in arcorrespond taj,=0 phonons of the superlattice, excluding
sp? carbon network. the I point.

For a one-dimensional polymer it is a common Using this method we have found the phonons of graphite
proceduré to find relationships between short and long that correspond t6 andc vibrations of coronene. An analo-
chains and to lay the vibrational frequencies of the shorgous procedure has been applied to a graphite layer paved
chain (oligomers on the dispersion curves of the polymer with circumcoronene-shaped domajsse Fig. c)]. We are
(considered as a one-dimensional crysthi this way a re- forced to use circumcoronene instead of hexabenzocoronene
lationship is obtained between phonons of the ideally infinitebecause the shape of HBC is not compatible with the graph-
polymer and normal modes of the finite molecules. This conite lattice (i.e., it is not possible to pave graphite with HBC
cept has also been used in order to obtain experimental phdies).
non dispersion curves of polymers from the vibrational fre- The coordinates of the wave vectors of these phonons in
quencies of short chairf§:° the reciprocal space are

TABLE VI. Raman spectrum of HBC: vibrational assignments and calculated ideal motions contents for

Aq4 modes.
Calc. Weighted Weighted
Sym. freq. Obs. freq. % of K content of % of M content ofM
spec. (cm™h (em™h vibration K vibration vibration vibration
Ay 3058 4 0.0410 1 0.0162
3056 0 0.0036 3 0.0331
1582 7 0.0692 18 0.1830
1416 5 0.0416 36 0.2966
1362 1312/1300 37 0.2917 25 0.1926
1282 1263 43 0.3393 12 0.0936
1066 7 0.0511 3 0.0212
993 13 0.0747 13 0.0753
723 1 0.0079 6 0.0340

339 1 0.0011 0 0.0007
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The shapes of these phonons are shown in Fig. 11. Com
paring these figures with Fig. 8 we notice that the motion

one-dimensional polymer:

e T

Circumcoronene / HBC

1 @
1588 cm™ 1322 cm’

two-dimensional graphite lattice:

|
'
]
¢
]
]
1
1
1
1
i
1
|
1
1
1
|
|

FIG. 11. Phonons of graphite that correspondft@nd ¢ mo-
FIG. 10. Graphite paved with coronene tilsee text tions of coronene and circumcoronene.
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V. CONCLUSIONS We have established a correlation between these motions

In the present work we have achieved the following re_and.tvyo.phonons of graphite: tifé '.“0“0” of ohgorr?er.s, n
sults: the infinite case becomes tkg, motion atl’ of graphite; the

We have derived the first long-range valence force field! motion, in the infinite case becomes thg motion of
for graphite. This field is the extension of MO/8 field, with- graphite at.
out modification of its parameters. Therefore it allows to We have extended to the infinite two-dimensional case a
compare the results obtained for graphite with the resultshethod which is usually applied to one-dimensional systems
given by MO/8 field on finite systems. (polymers; in this way we have shown that it is possible to

We present the complete treatment of in-plane vibrationshoose proper phonons of the infinite system which repro-
in terms of valence symmetry coordinates for a single layeduce motions of small domairisligomers.
of graphite at the high-symmetry points of the first Brillouin ~ On the basis of this analysis we can state thaCtti@e in
zone. This treatment allows to describe, in an analytical anthe Raman spectra of defected graphite samples or carbon
univocal way, the shape of the phonons of graphit€,a&, = materials can be ascribed to @amotion of domains of finite
andM, independently of the force field used. size® This concept will be more extensively investigated in

On the basis of such results we have done the followingpaper which will follow shortly*

We have identified two kinds of motion of carbap?
aromatic systems which produce strong Raman linessithe
motion and thei@ motion. The I motion of a carborsp?
network can be described as motion where all horizontal
bonds stretch in phase, while the other bonds shfthis We thank Dr. Cremonesi of C.I.L.E.A. for his precious
motion is perfectly equivalent to the other two motions ob-help with the numeric methods needed to solve the bond-
tained by rotation of the lattice of2/3). The@ motion is a bond polarizabilities integrals. This work has been partly
more complex motion which can be roughly described as supported by “Progetti Finalizzati” of the National Research
breathing mode. Council of Italy.
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