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This paper aims to justify the existence of a two-dimensional Bose metal, i.e., a metallic phase made out of
Cooper pairs aff=0. To this end, we consider the physics of quantum phase fluctuatiofgranulaj
superconductors in the absence of disorder and emphasize the role of two order parameters in the problem, viz.
phase order and charge order. We focus on the two-dimengi@2DaBose Hubbard model in the limit afery
large fillings, i.e., a 2D array of Josephson junctions. We find that the algebra of phase fluctuations is that of
the Euclidean groufk, in this limit, and show that the model is equivalentto coupledXY models in
(2+1) dimensions, one corresponding to the phase degrees of freedom, and the other to the charge degrees of
freedom. The Bose metal, then, is the phase in which both these degrees of freedom are diGsderesult
of quantum frustration We analyze the model in terms of its topological excitations and suggest that there is
a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We
find a remarkable consistency of this scenario with certainTguthin film experiments.

[S0163-182699)11525-X

I. INTRODUCTION would like to ask the question — is it possible for the
charged bosons, i.e., Cooper pairs, to form an incoherent
The superconductor-insulatdfSl) transition in lowT,  metallic phase al=07? The intriguing feature of this phase
thin film system& has drawn a lot of attention over the pastis that although the bosons are mobile, they do not bose
couple of decades. These systems undergo transition froepndense at any temperature. Instead, they are dissipative
superconductofSO) to insulator as the disorder, thickness or and fail to drive a supercurrent evenTat 0, unlike a super-
magnetic field is tuned. The problem has received a strongonductor. We regard this phase as a Bose m@&isl). In
impetus after the experiment by Goldmetnal 2 on homoge-  this paper, we give arguments justifying the existence of a
neous lead and bismuth films, which went from a superconBose metal in a physically realizable system.
ducting phase to an insulating phase as a function of thick- The natural question, then is, what has been missing in the
ness, and which, right at the interface, was probably metalliccurrent theoretical models where a metallic phase was not
Since electrons usually do not form a metallic state in twoobtained. Our thought on this issue is the following: most of
dimensions, it was argued thgRef. 3b)] this T=0 transi- the earlier theorié$° tried to attack this problem from the
tion is due to the localization of preformed Cooper pairs. Itsuperconducting side of the phase diagram and projected it
was also claimed that the resistivity at the transition is uni-onto a basis diagonal in the phase states. In all these theories,
versal[Ref. 3b)]. Similar Sl transitions have been observedthere was a single order parameter, viz (e'?), where ¢
in granular superconductors and Josephson Junction drraysefers to the phase of the charge boson. In the superconduct-
This scenario has been called into question after a receig phase, this order parameter is well developed. At the SI
magnetic field tuned experiment in the Mo-Ge sanple, transition, y—0 and the phases of the charge bosons get
where the metal is no more a point in the phase diagram, bugcrambled. The scrambling of the phas@had so far been
exists as a separate phase. We would like to point out thaaken as the indication of onset of the insulating phase. How-
this is not the first observation of a metallic phase in a two-ever, this is not enough to characterize the insulator. A Bose
dimensional, otherwise superconducting, system. We camiesulator (Bl) phase is characterized by amtra order pa-
across at least two separate instances of this phenomenonrameter viz. the charge density. It is like a charge density
granular superconductors — one in Ga fitnamd the other wave but built out of Cooper pairs. This piece of physics has
in granular Pb film§, where a metallic phase is found to be been missing in the existing theorie&:1° The central point
sandwiched between the superconducting and the insulatimaf this paper is that the phase fluctuation physics of super-
phases. A similar observation has been reported in Josephsoanductors should be viewed as$veo order parameter prob-
Junction array$.Each of these observations has probably dem, viz. there is a competition between phase order and
detailed explanation within the scope of the specific expericharge order. It almost follows from this fact that the de-
mental system being measured. However, there is somethirgiruction of one order parameter does not necessitate the
common in these systems which is quite hard to overlookgrowth of the other order parameter. This implies a possible
viz. the preformed Cooper pairs are very much alive wherexistence of a disordered phase where both the order param-
the metallic phase is seen; and continue to exist till the insueters are zero ai=0. We consider this to be a Bose metal
lating transition and beyond. Motivated by this fact, we phase.
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Secondly, we work in the limit when the average filling of arrays!® The problem with the former is that superconduc-
the bosonsrfy) per site is very large. In this limit, the Bose tivity is never destroyed away from half-filling in their model
Hubbard mode[Ref. 3b)], which plays a central role in the (please see Sec. Il)Bwhile the latter invokes the idea of
Sl transition, becomes equivalent to a Josephson junctiofelf-duality which implies logarithmic interaction among
array (JJA model. Most of the existing work on the JJA C(_)op_er pairs and is not a good representation of the realistic
model does not treat this largwg limit consistently. In many ~ thin film samples. _ o
cases, the constraint due to the average filling, (Egbelow Apa}rt from the_exustence ofa dlsordgred Bose liquid state,
is neglected® in certain other cases, there is a tendency tdN€re is another Important feature which emerges from our
replace theE, algebra, which is the appropriate algebra forWork. Itis well knpwn that* noninteracting elec'grons car_mot
this limit (see Secs. Il and V for more detaijlby a qualita- SUPPOrt a metallic state at low temperatures in two dimen-
tively different algebra, viz. SU(2) algebra, which holds in SioNS(2D) in the absence of spin-orbit scattering. The situa-
the hard core limit, i.e., for small fillings. Hence, we shall tion is much less clear when both interactions and disorder

give a quite detailed description of the basic formulation of2™€ Present. This fact has been brought into the limelight
this limit in this paper. with the recent observatidhof metal-like states in two di-

Thus, we consider a pure model of Josephson-coupIeEPer‘Si_onal electron and hole systems in s_emicondu_ctor b(_':lsed
Cooper pairs with extremely large fillings, interacting via r_natenals. In the wake of t_hese ob_servatlon_s,_ our investiga-
on-site and near neighbor repulsive forces in two dimenlions suggest that a me'Fthc state is a possmmty if the elec—.
sions. This model captures the basic physics of granula‘imnS bind themselves into Cooper pairs and behave as if
superconductorsexcept that disorder is absent. It is appli- €Y are bosons. . .
cable to a limited extent to the Josephson junction arrays as 1 n€ plan of the paper is as follows. In Sec. II, we intro-
well. We are able to demonstrate that the physics of phasgucé the model and straighten out some of the basic issues
fluctuations, within such a model, can be described by twdVhich relate to the model. Using a combination of qualitative
coupled anisotropicXY models in (2+1) dimensions, one and quantitative arguments, we explain why the BM phase is

corresponding to the charge degrees of freedom and the oth§2SiPle. The mapping onto the coupldr models is dem-

the phase degrees of freedom, where the coupling i nstrated here. We_ quantify the arguments in Sec. lll a_nd
“ % Y-like.” The two mechanisms which drive the two tran- sketch. the phase dlag_rar_n.of the model. Section IV contains
sitions are as follows — disordering of the vortices and thed estimate Of the resistivity of the Bosg metal phase and a
Bose condensation of vortices. Phase order is destroyegpmpa,r'son W'th the Gallium f|Im_ expenment..The thermp—
when the vortex-antivortex pairs unbindr, vortex loops ynamics O_f thls_strange _metalllc s_tate and its con_nectlon
blow up in (2+1) dimension$ as a result of the quantum W!th the_spm I!qwds are qllscussed n Sec. V. We wind up
fluctuations; the charge order grows when the vortices Bos}@”th a discussion of certain relgvant ISSues and conclusm_ns
condensé! In light of this, a search for a completely disor- in Sec. VL. S_ome of the calculational details may be found in
dered phase in the charge picture translates into a search fg}e Appendices.

a non superfluidSH liquid in the vortex picture. The pres-

ence of unbound, as yet uncondensed, dissipative vortices Il. THE FOUNDATIONS

makes the disordered phase metallic. The two mechanisms
mentioned above are separate processes owing to the pres-
ence of retardation, or equivalently, dissipative effects, com- We shall consider the following model Hamiltonian in
ing from a gauge field mediated interaction in the vortexthis paper:

picture (for more details see Secs. Il D and Ill).Bin the

charge picture, the existence of a disordered phase like that A

of a Bose metal results fromuantum frustratioreffects, i.e., H= _J02a> cog i — ¢i+a)+vozi (on;)

the zero point motion is not strong enough to set up super-

conducting correlations and the long range interactions are - - N

not sufficient to set up a charge ordered state. This state +V1<iEa> (5ni+5ni+a)2_@ on—puNng, (1)
seems to be intrinsically related to tgaples$ spin liquid

states. Although disorder is not explicitly present in our, .o Sh,=0,—n,, With A, =number density operaton,
model, our results on the nature of the Bose metal phase €aDpeytralizing background charge density, equivalently,

be readily generalized to the case where disorder is present, density of C irSl = b f latti
We find a remarkable agreement of our predictions with the © average density of L.ooper pairbl =number of lattice

Gallium film experimenf. We believe this provides evidence SIteS: @ndu=pu+V, the renormalized chemical potential in
of the existence of such a phase and supports the scenaifde problem. Alsog=X,y refers to the spatial unit vectors.
described above. All of our considerations in this paper ard he first term in Eq(1) represents the kinetic energy of the
restricted toT =0 and zero magnetic field unless mentionedPosons(Cooper pairs for our cagethe second term the on-

otherwise. This situation is relevant to the experiments irite repulsion among theiwhich should be nonzero to pre-
Refs. 5 and 6. vent any collapse of the bosons onto a single) sitee next

Before we go over to the main part of the paper, weterm the repulsion among the nearest neighbors which acts to
would like to mention that the idea of two order parametersset up a charge order in the system, and the last two terms are
is not completely new and has appeared in the discussion &€ chemical potential terms. Equatiah) has to be supple-
the hard-core limit of the Bose-Hubbard modeind also in  mented with the constraint (4) =;(n;)=no, which in terms
the gauge theory description of the Josephson junctioof the charge fluctuation operators convert into

A. The model
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=g(s+1) of the SU(2) algebra. Thus, unlike the SU(2) case,
(@) here the constraint on the component of the spin is
_ much weaker an¢b) the zcomponent of the spin enters very
This equation implieg.=0 and, in the rest of the paper, we anisotropically in the algebra compared to thandy com-
shall forget about the chemical potential terms completely. ponents of the spin(Here operatoL is referred to as the
On the experimental side, the three parameters of theomponent of spin foE, algebra; see Sec. V for more de-
Hamiltonian(1) can be determined in the following wa$:  tails). Hence, in the disordered/symmetric phase, although
the x andy components oE, spin might acquire a gap like
J=(Ro/2Ry)Ao. @ the SU(2) spin, the component of the former might remain
HereRQ=(h/4e2)=6.45 KQ, R,=normal resistance of the gapless unlike the latter. Put in simple words, there may be a
film, and A= pairing gap. The interaction constaig and  length scale determining the Iocall superf!uidity in this phase
V, are related to the inverse of the capacitance mafpof ~ @nd as yet no length scale associated with the charge order-
the grains. ing in the system. A calculation of the charge charge corre-
lation function indeed justifies this, as discussed in Sec. V.
Thus, given a disordered phase within a model built out of

i ) E, spin operators, it can support gapless excitations. We
The model discussed in E(lL) needs to be supplemented gha|| give detailed arguments in Secs. Il D and Il as to why

with the phase fluctuation algebra, which constitutes the aphe model(1) along with commutation rulea—(6c) con-
propriate commutation relations for this problem: tain a completely disordered phase.

Now, if we rotate the charge fluctuatiohs at each site,

Ei (8n;)=0. )

B. The commutation relations

[0, 1=16;; . @ iz
Equation(4) implies an angular momentum representation .
[Ref. 3a)] Li—eQriL;,
R 9 where
on;=i a_(ﬁ| R

Q=(m,m),

Further, let us define the operators . o
we obtain the Hamiltonian as

J )
L=i—, P=¢€" (5
d¢ H=>, JPIP+ > VilLiLy, 7
K K
Thus, Eq.(4) can be recast as
where
[L.,P]=-P, (63
Ji=—J(cosk,+cosk,),
[L,PT]=PT, (6b) ‘ A
Vi=(Vo+4V,)— 2V (cosk,+ cosk,),
[P,PT]=O, (60) k ( 0 l) 1( X y)
with PPT=1. It is well known in quantum optics that the and P,L couple through the commutation relatiofsa-

(60). In this form, it assumes the shape of a two order pa-
rameter problem(Macroscopic occupation &f=0 mode of

P reflects superconductivity and that bfa charge density
wave) However, because of commutation rulés)—(60), it

is very hard to diagonalize this Hamiltonian in this form. So,
we seek alternative means.

phase operators being ladder operafassis seen from Egs.
(6a) and (6b)] usually do not commut¥. However, in the
large ng limit, they do (see Appendix F Thus, Eq.(6¢) is
strictly valid in the largeng limit of the problem and, hence,
our discussion holds good in this limit only. Now, E¢6a)—
(60) constitute thealgebra of the Euclidean group £ the
group of translations and rotations in 2D, with the square of _

linear momentun{P) restricted to unity for our case. It de- C. The charge picture

serves to be mentioned here that the SU(2) algebra used in In this section, we demonstrate that the model Hamil-
the context of the hard-core limit of the Bose probféris  tonian (1) is equivalent to two coupleXY models in (2
distinctly different from this algebra and is obtained in the + 1) dimension. To do this, we first write the mod@) in
opposite limit, i.e., the smalh, limit of the Bose Hubbard terms of a path integral representafidt’ keeping the com-
model. The effects of the change in the group structure areutation relationg6a)—(6c) in mind. The partition function
quite significant. In the hardcore model, away from half fill- Zz=Tre A", wherep is the inverse temperaturé (and kg
ing, increased interactions change the SF to a supersoligre taken to be one, unless mentioned othepwvisan be
phase. Thus, superfluidity is never destroyed away from haljyritten as
filling. On the other hand, our model allows superfluidity to

be quenched at arbitrary fillings. Further, the conserved 27 s
quantities supported by the two algebras are different: the Z:{m~(7)} . Déi(T)e >,
invariant of E, algebra is(square of linear momentu)rrPﬁ '
+P7=p? (=1 for our casg as compared t&+S;+S;  where
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B i (B
S=iJ0 Z mi(r)a—d;JrJO dr] —J% cog(¢i(7)

—¢i+a<r>)+v02i m?<r>+v1i2 (my(7)

+mi+a( 7.))2 ’ (8)

with periodic boundary conditions in the imaginary time di-

rection implied. Herex=x,y refers to the nearest neighbors
in the space direction anah(7) are integers meaning the
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zzf D¢Db;e5,
0
with
S=JAT§ cosV i)+ AT
—iQ-r; . 2p X
x}i: coge V. +V26,)+ 2V1AT% cogV,6)),
(10

change in the number of Cooper pairs from the average at the

site i. We shall consider only the case=0, so that the

where the phase is associated with superfluidity and the

integral over imaginary time extends to infinity. Next, we Phase¢ with charge density wave. Equatid@0) explicitly

discretize the time axis with an intervAlr and rescale the

shows that the phase fluctuation physicggrinulay super-

lattice constant in the space directions to be unity. Furthefconductors, in the absence of disorder, is equivalent to two

we rotate the integersm;(r)—e ' "im(7), where Q
=(m,m). Thus, we obtain

S=iY, e MMV, b))+ VoA, m?

+VIATY, (V,m)2=JA7Y, codV, ). (9)

coupled XY models in (2-1) D, where the coupling is
XY-like. A few comments are in order. In the limit;=0,

we havef, =0, the 6-terms in action(10) drop out, and we
obtain a singleXY model in (2+1) D, as has been dis-
cussed previousl§1%1° Also, the coupling ternithe second
term) is highly anistropic in¢ and 6, explicitly breaking
self-duality in this systemassumedn Ref. 13. Equatiorf10)

is one of the key results of this paper. Thus, we see that the
destruction of superfluid state is driven by oX& model,

Here summation overrefers to the time axis as well, and so wWhereas the otheXY model characterizes the growth of the

does the indexin m; and ¢; . The derivatives/ , in Eq. (9)
and also in what follows are lattice derivativdsTo avoid
any confusion, we shall reserve the notatipfior the spatial
coordinates of théth point andy; its space-time coordinates.

To show that the actiof9) is equivalent to two coupled
XY models, we follow the following sequence of stefib.
We decouple the Y,m)? term using a Hubbard-
Stratanovich fieldp;,, viz.

f'Dpiae_(j-MVlAT)ziapiza_izimi(gapia)_

(2) First, we notice that the coupling term with; is invari-
ant under shifts op,;, by 27. So, we break up the integral
overp;, from —o to + o0 into that of periods of zr. Further,

we split upp;, into a curl and a gradient part. Since the

divergence ofp,, couples tom;, only the gradient part en-
ters the dynamics. Thus, we obtain for this part,

>

27 . P >
f Daie—lﬁimiV 0;— (UAN1AT)Z o(V 0 — 275 ,)
{lia} 0

27
:j Deie(llzle-r)Eiacos(Vaai)e—iEimiVZHi1
0

where we have used ainverse Villain transformation'3
(3) Now, using ar(inverse Villain transformation again, one
can execute the sum over integens

> exp(—iZ mi(e7 1NV b+ V26,)— VoA 7>, m?

{m;}

:e(l/Z\/OAT)cos(e_iQ"iVTqSiJrVZHi).

Putting all these together, one obtains

charge ordered state. And, hence, as the parameters are tuned
one transition does not necessarily accompany the other.

D. The vortex picture

Although the action10) shows that the superfluid order
and charge order are driven by differefiY models, it is not
clear whether the coupling between them, which is quite
complicated, guarantees a completely disordered phase. In
order to answer such a question, we now consider the model
(1) in the dual picture, i.e., of the vortices. To do this, we
invoke a duality transformatioht*'11%Starting from action
(9) (Ref. 21 one can show that

71_2
S: —

{35

2

1
2%
do q, q2 q,

N T
| 2
n JAT

) qE j0,G(0,9)j% o, (11

wherejg , are Fourier transforms of the integer vortex vari-
ablesj*(j?=vortex density,j*=vortex current, and

- ~ VoAT ~ VlA’T ~ ~
G Hwq)=| 0*+ 0%+ 9%(a-Q)*|.
| 357 In(JTT)

(12

The intervening steps are quite standa@hd are discussed

in Appendix A. @,q refer to lattice frequency and momen-
tum respectively(Appendix A). One may like to note here
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that there is no Magnus force term on the vortices, corretrons in the vortex core, ejcThese features of vortices in
sponding to the disappearancengffrom the problem in the granular superconductors have been discussed previously by
largeng limit. Eckern and Schmitf

In the previous subsection, we observed that whgn One may also undo some of the steps in Appendix A, and
—0, the model is equivalent to a singY model rather recast Eq.(14) in terms of a gauge field with appropriate
than two coupledXY models. The question obviously is, action as
how this change is reflected in the dual picture. The basic 9
answer lies in the appearance or disappearance of the zegg_ 270 A0 2, 202\ a0 pa
point motion term forpt%e vortice@nore pl(D)I[DJuIarIy known as §_In(JT)Ea, [A"Aq uA=q -0 (@7 CAT)AG oAZg —0]
the vortex mass termTo show this, we look at the long

wavelength low frequency modes. In the lineitg— 0 and £ 2 AR 2 Go La a 1
w<cgq (Wherec, is the plasmon velocily the Green’s func- 7”2 JPATTm 2 q% Ja.wl =00 (15
tion G(w,q) splits up into a singular paG(w,q) and a In| 35~

constant parG, viz. ) N )
(with the gauge conditioV ,Aj*=0 imposed. A few com-

G(w,9)=G4w,q)+ Gy, (13) ments are in order. Equatiqi5) shows that, considered in
the vortex picture, the quantum phase fluctuations in a 2D
where superconductor, as described by modg| are equivalent to
B 9, 2.2 o, N a two-componentquantumplasma(bosons of two flavors,
Gs(w,q)=1w+c5q%), Go=b/8(b"+c7)7, viz. vortices and antivorticgsnoving in a fluctuating gauge
field A#*. Secondly, the above scenario is a simple quantum
mechanical extension of classical phase fluctuations in a 2D
VAT superconductor, which is described by a two component
5T classical plasma undergoing screening by a static electric
In(—) field (E=—VA,), as described by Kosterlitz and Thouless
JAT (KT).?® The effect of including quantum mechanics in the
problem, apart from bringing up the importance of the quan-
tum statistics of vortices, is to make the electric field dy-

with

VlA T

]

2:

c2=b%+c?, b?=8

Thus the action is

2 T namical, viz.E= — VA,— (1/cs) 9A/ 97 with a magnetic field
S= 75T & dawzlae B=VXxA. Whereas the importance of the statistics is to al-
In(JT) ¢ q low for the superfluidity of the vortices, an important conse-
T quence of the dynamical nature of the electromagnetic field
w2 is that there are retardation effects, viz.
F g 2 el Cl@ +Cali%y - (14 o
m(—) - () F ()
JAT 2 drd7’ I ] ,
i, g g ’ 2 ’
Since Gy is a constant, it allows us to identify this term as " \/(ri(T)_rj(T )2 +cg(r—1')?
the vortex kinetic energy, i.e., mass term. From K@) and  \hich break Galilean invariancéThis feature is intensified
(13), we notice that this term does not exist whép=0. i, 5 rea]| system by external heat bath mechanisms mentioned

Thus, we have shown that the change of the nature okthe before)® This is not surprising because the actid®) has

models is tied to the existence or nonexistence of a vorteyhe structure of Maxwell’s action. which is reputed to have
mass term. _ _ Lorentz invariance but lacks Galilean invariance. Now the

~ We now look at the other terms in the actit). The  gpsence of Galilean invariance will have a strong effect on
first term in the action is the usual logarithmic interaction g, system, because it is bosonic. It is well known thtt
term among the vortices, and the second term, because of thgs gelocalized bosons will condense into the superfluid state
reta'rdatlltgn effects, leads to a d|§3|pat!ve term for theyny if the system is Galilean invariaftif this invariance is
vortices.” In the limit |r;—r;|<c¢|7— 7’| (which is the same  gpgent in a Bose system, then as the relevant parameter is
quasistatic limit discussed so Jathis part of the action takes tuned, the(vortex condensate is gradually depleted and at

the form one point the superfluidity will be completely lost. At this
) stage, it is important to recollect what important processes
™ 2 2 2 i are going on in this system. There are two of them: destruc-
cAn(213A 1) 13 qiq; ~ @ n || Mol - tion of vortex (and antivortex superfluidity (owing to retar-

dation effecty and the binding of vortex-antivortex pairs,
whereq;= *1 refers to the charge on thth vortex. Physi- corresponding respectively to the destruction of charge order
cally, the aforesaid limit corresponds to the slow motion ofand the growth of phase order. Now, these two processes are
vortices. The source of this heat bdth, dissipationis the  controlled effectively by two separate parameters, viz.
gauge fielddiscussed in Appendix YAor more precisely, the ¢?/g?~(Vo+8V;)A 7 (corresponding to the strength of the
transverse modes arising from the quantum fluctuations inetardation effects and g>~JAr (corresponding to the
the system(There will be additional retardation effects in a strength of the logarithmic interactipnrespectively, where
real system from external heat bath mechanisms, e.g., eledr~1/A,>* (please refer to Appendix D and Sec. Il for the
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notation and appropriate detailsAs a result, the vortices B. Destruction of vortex superfluidity

(and antivorticepdo not necessarily condense into the super- ¢ is el established that the existence of charge order
fluid state as soon as they unbind. This leads to the pOSSIbIII—.np"es superfluidity of vortices and vice verSawe shall

ity of a non-SF vortex liquid, or equivalently, a BM phase. In g6y this notion here and estimate the growth of charge
fact, that is what we find when we quantitatively evaluatey qer in terms of the superfluidity of vortices. We mentioned
these processes in Sec. lll. There is a simpler way 10 S€f gec || D that the vortices and antivortices move in the
what is happening here. As we noted earlier, following Ed.presence of @ynamicalgauge field and argued that because
(14), the kinetic energy of vortices originates from WO o the atter there are retardation effects which deplete the
sources —(@ quantum zero point motiofthe Go term and  (yortex) Bose condensate. As a result, the vortices and anti-
(b) action of aneffectiveheat bath(the G, term). In the  \rtices do not necessarily condense into a superfluid state as
delocalized state, if the 'sourq‘a) dominates, the vortices ¢yon as they unbind. This physics of suppression of Bose
move coherently, and since they are bosons, they form gqonqensation as a result of gauge field fluctuations is not new
superfluid. On the other hand, when the soufisedomi-  p;t has been explored substantially in the context of spin

nates, because of the random nature of the effective he@harge separation theories in high superconducto@”
bath, the motion of the vortices is necessarily incoherent, anghe giscussion here is very similar in spirit to that piece of
one is in a metallic phase. In this phase, no charge order i§q k.

set up and one obtains a Bose metal phase. To estimate the strength of the parameters where vortex

These features of dual vortices are not special to a latticgyherfluidity is destroyed, we follow the self-consistent func-
model, but observable in the continuum formulation as wellgq 4 approach of loffet al23 They did the calculation for a

as discussed in Appendix B. very similar piece of physics, i.e., how the coupling to a

gauge field can kill superfluidity in a bosonic systéwith
IIl. THE PHASE DIAGRAM logarithmic interactiopas a result of broken Galilean invari-
) ) ~ ance stemming from retardation effects. We refer the reader
In the previous section, we argued why the Hamiltonianyg that paper for a full description of this technique. A short
described by Eq(1) may contain an incoherent metallic giscussion of this is given in Appendix D. We can follow
phase. In this section, we quantify these arguments by calcyneijr approach here, simply because the lattice action and the
lating the phase diagram of modl): we shall locate the continuum action have identical structure in the low fre-
phase boundary where superconductivity is destroyed a”ﬁ'uency long wavelength limit, as discussed in Appendix B.

the one where charge order is established. To do this, we first replace the two component plasma by a
one component plasma, i.e., chargesrticeg of one flavor
A. Destruction of charge superfluidity moving in the background of fixed neutralizing charges of

This is done nonperturbatively by estimating where thethe other flavor. This approximation is very standard and
. . captures the salient features of the problem, until and unless
vortex loops blow up in (2 1) D2’ This happens when the b P

o X the plasma is extremely den&eThen, the results of Sec. V
entropy of the loops overcomes their interaction enéfgy.

. . . ; in Ref. 23 can be directly carried over here with the identi-
good estimate of the interaction energy is the self energy ication of the Coulomb interaction parameter and trans-
the loops, simply because dipole-dipole interactions fall off

as 1f3 and the mutual interaction energy of the links in averse gauge field coupling constary as” (Appendix D

loop is much smaller than the self-energy of the loops when ac=(m212)v1/(vy+8v1)2
the loops are fairly large. Thus, the effective free energy of
the loops is given by ag=(1/mn,)[ 1+ (vo/8v)], (18)
2 wheren,=average vortex density and=(V;/J),(i=0,1).
F= G(0)—u |N, (16)  Since what counts in the destruction of vortex superfluidity
In( ) are the free vorticegand antivortices we take n,~n;,
JAT which goes inversely as the square of the correlation length

¢, which diverges at the SC-BM boundary from the BM

whereN is the number of the links in a vortex loo@(0) side. Thus, from Eq(17), n N[g (Vo+8V,)/I—1]?" (E
=diagonal part of the Green’s function=[" (dw/ ' RO ! 0

2m)[d?q/(27)?]G(w,q), obtained from Eq.(12), and u,
=entropy of the loops=In 3 for our casé® An estimate of
G(0) is given in the Appendix C. The loops blow up when
F<0. Thus, superconductivity is destroyed wffen

=1/b,) with v~ 2/3, since this phase boundary has the char-
acter of (2+1) D XY model. Also, if we are above the
phase boundary of Eq17) (see Fig. 1, we havea<<1 as in
Ref. 23, wheren= \/a.. Since as we shall note below that
the transition from SF to non-SF state takes place at a small
- value of @, this assumption of small is self-consistent.
(Vo/3)+8(V1/3)>Dy, 17 Let us first consider the simple case when we are slightly
. above the phase boundaf¥6) and along theV; axis (see
where'bo=2(bo/u)? and by=a number of order unity Fig. 1), so thatV,=0V;~2.1J. Then, we haveg=0.2 and
=3.1725, defined by EqC6) in Appendix C. This phase a¢>1; the calculation of Ref. 23, in that case, suggests we
boundary has the character of{2) D XY model, at least are in the disordered BM phase. Thus, there is at least a small
whenV;<V, [as seen from Eq10)], and hence, the super- region close to the phase bound#ty), where the system is
fluid density changes continuously across this transition linemetallic.



PRB 60 EXISTENCE OF A BOSE METAL ATT=0 1267

is charge ordered and insulating as a result we call it a Bose
insulator (BI); and in the intermediate region, the system is
disordered and, hence, metallijgclease see Sec. IV below
the BM phasgregionZY XL).
BI What one sees on the phase diagram of Fig. 1 is that the
metallic phase is more prominent towards theaxis rather
than theV, axis. Further, from Eq(1l) we note that the/,
term contains both on-site and nearest neighbor repulsion
energies. This shows that the Bose metallic phase is to be
expected in cases where these energy scales atenagba-
rable order of magnitude, a situation well represented by the
granular superconductofs.

We can provide a physical explanation in the charge pic-
ture as to why the metallic phase opens up alongthexis:
) _ ) let us focus on Eq(1l) and say that superconductivity is
FIG. 1. A schematic phase diagram for mod®l. The various already quenched. First consider the c¥gelarge andV,

phla Ses ?r?rr? ergar%atg(?. bygs)olio(l)bé) lg'ga)émn?tets the lmtult.icritti- small, so that we are alor(gr, close td theV, axis. Naively,
cal point. The dashed line©, 0B,0C) denote typical trajecto- e 61 expect from th¥, term thatén; + én; . ,~ large.

ries executed as the normal reS|staF2f,:|_a)f a superconducting film But, this costs a large energy from tig term. As a result,
is tuned. Please see the text for details. . ) - S
what is favored isén;=0, i.e., nj=ngy, a (rather trivia)

We now complete the calculation of phase boundary ofharge ordered state. Now, consider the opposite c4ge:
BM-BI transition, following Ref. 23. Since @n,<1, from  fairly large andV, small, so that we are close (or, along

Eq. (18), a;>0.32. From Fig. 7 of Ref. 23, one can see thatthe Vi axis. SinceV, is appreciable, Eq(1) suggestson

in this regime, the phase boundary tends to saturate at * 9M+.=0. A nontrivial configuration may bedn,

= a;=0.08. Actually, for larger values afy, o, is alitle = ~OMi+a=1, for somei’s and zero otherwise. This state
less; but, the point is that,, is always finite, however small '€Presents an RVB-like state of fluctuating chafparticle-

it be, for large values ofy,. That is, the vortices always hole) dipoles, the equivalent of spin singlets hépiease see

form a superfluid for small enough. A physical way of Se€¢ V for more on this point Vo being small, the

2 . .
seeing why there is always superfluidity for small enoughVo=i(dni)” term does not cost much energy for this kind of

Coulomb repulsion is as follows. The strength of the Cou-Stéte- This is the disordered BM phase. WNaris increased

lomb repulsion is controlled by the effective chargdsee further, the dipoles freeze into a charge or.dered solid. Thus,
Appendix D, which also controls the strength of the cou- V€'Y crudely speaking, the smallness\f is a source of
pling between the particlegvortices and the transverse [rustration in this model for finite/,. .

gauge field. So, when the magnitude of Coulomb repulsion is  SinceJ is inversely proportional to the normal resistance
small,g is small, and hence, the coupling with the transversén [Ed- (3)], as the normal resistance of a thin film is tuned
gauge field is small as well. As a result, the particles do not @ €xperiment we gradually cross from superconducting to
feel the effect of retardation strongly enough in this limit andn@nsuperconducting regions according to the phase diagram

condense into a superfluid phase. Thus, the vortices are in® Fig- 1. Some such typical traces are shown in the figure —
superfluid state wher < a.,, which means the dashed line®A, OXB, andOC. TracesOXBandOC

represent a superconductor-insulator transition, a case which
1 5 has been discussed very widely in the literatui@n the
m[(Vo 13)+(8V1/3)]°>cy, (19 other hand, the trac® A represents a superconductor-metal-

insulator transition. In this part of the phase diagram, the
where co=4(m/8a,)?=96 for a;=0.08. This calculation retardation effects are very strong and the system passes
implies a jump in thevortex superfluid density at this phase through an intermediate disordered phase. This is a new pre-
boundary?® This means that the phase transition is either ofgiction made by our analysis. Modél) which leads to this
first order or has a KT character. More calculations are necis good for superconductor-insulator-superconductor junc-
essary to resolve this point. tions.

We display a schematic phase diagram determined by

Egs.(17) and(19) in Fig. 1. Equation17) is represented by
the curveL XM and Eq.(19) by ZY X They seem to meet at IV. RESISTIVITY OF THE METALLIC PHASE
a tricritical point X. Since the retardation effects are very  The discussion in the previous section suggests that the
strong in this mode{meaning that the value af., is smal),  appropriate model for the Bose metal phase is that of uncon-
the constant, in Eq. (19) is roughly an order of magnitude densed bosongvortices and antivorticgsin a transverse
larger than the constabt appearing in Eq(17); and hence gauge field. In the frustrated BM phase, the vortices are un-
we expect that this crossing between the two curves wilbound, but they fail to bose condense due to retardation, or
always occur, implying the existence of the Bose m&ak  equivalently dissipative, effects. As a result, the system ex-
Sec. VI as well. The various phases determined by thesehibits metallic behavior. This section is devoted to making a
equations are as marked in Fig. 1 when the zero point motiosimplest possible estimate of the resistivity of this metallic
of the Cooper pairs is large, the system is superconductinghase. We shall evaluate the resistivity of the charge bosons
(regionLXMO); when the interactions dominate, the systemp,. in terms of the conductivityr, of the dual variables, viz.

V/3
1
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the vortices. The relation between the two is giverl bye , [Rn 2v
mention the factor oh explicitly in this formula Ny&o~| /g —1] (22
C
— 2 ~
pc=(h/4e%)a, . 20 \where R.=boRq/[(Vo+8V,)/Ao] is the critical resistance
Also, o, is given by the Drude formular,=n,7,/m, of the f||_m where the metallic phase s_ets in and
where 7,, refers to the transport time amt, is the free = correlation length exponent. The exponenis dependent

vortex density. There are three contributions to the conduc?” the particular universality class of SC-BM phase transi-
tivity of the vortices —(i) dissipation due to the action of a tion. For our case, the SC-BM phase boundary has the char-
heat bath(coming from the trasverse modesii) scattering acter of a (2-1) D XY model and, hencey=2/3. How-
from impurities, andiii) Bardeen-Stephen processes. In this€Ver, a real material, like the lowg thin film systems, is
part, we shall focus on the contribution from procésswWe he_avny disordered and will certainly be very different from
give here a short description of how this dissipation mechathis, as we shall see below. So, from Eg1), we have

nism comes about in this BM phase. As one enters this phase -

from the SC phase, saffollowing curve A in Fig. 1, for Rp/Ro~bol (Ra/Re) —11%(Rg/Re). (23)

Eﬁzmﬂ% éuzrvzrst'girsezgdeggﬂvgtﬁgeé:;g'n?o'g ﬁr?iengrséeeTbe case when disorder is presenhe foregoing discussion
9 9 n be readily generalized to the case when disorder is

ing length, i.e., a gap in the longitudinal part of the g""ugepresent. Owing to the Drude formula, the structure of Eg.

field. However, the transverse part of the gauge field is gap 21) is not unique to modefl) but will come about when the

[?sséeb?rga:\l;iirgleﬁoljers]oh;\?g%ae?fzgﬁrEZTnmesg/n EJ rria:‘(llu sons form a metallic phase as a result of phase fluctuations
q n zero magnetic field i.e.,

tuations and mediate the dissipation process. They represent
the plasmons(Physically, this makes sense, since the plas- - 2

mons are gapless in 2DThe physics is essentially that of Ro~2Rq(Muiép)ko 4
damping which results when a charggorteX moves whereup represents the vortex mobility, or the friction fac-
through a background of other charged particles. This lends @r, arising from the dissipation of vortices and is model
hydrodynamical character to this dissipation mechanism. Inlependent® For the pure case discussed above, the damping
Sec. Il D, we saw that the most important modes are is due to the transverse modes gng~(Vo+8V,)/7?A,.
<cgk. So, we shall consider contributions from these modesVhen the normal resistance is tuned throlh as we saw
only. The leading order contribution, then, comes from theabove for the pure case, the most important dependence of
w=0k=finite modes, and we make an estimate from thisBM resistivity in the formula(24) comes from the free vor-
sector only. We think the higher order contributions will leadtex densityn, &3, i.e.,

to simple renormalization of coefficients. Thus, we are led to

evaluate the resistivity of a set of uncondensed bosons mov- ) n

ing in a static randon(but, annealedgauge field, with a nvfﬁo’v(R—C_l
variance

2v

where the critical exponent characterizing the SC-BM
(H(a)H(—a))=1/2c2In(2/JA 7) phase transition depends on the particular universality class
. being considered. As compared to this, the dissipation factor
as seen from Eq(15), whereH=V XA. Now, also in this , in general being dependent on the morphological and
delocalized phase, the interactions between the vortices atyrmal properties of the film, is only weakly dependent on

screenedby antivortice and, in a lowest order approxima- the normal resistivity abouR...® Thus, in general,
tion, we shall treat them as noninteracting bosons. Thus, the

transport time is the same as that of a noninteracting particle Ro~Rg[(Rh/Ry)— 1]%". (25

scattering from a random magnetic field, which is givef*by _ )
For the case of Ref. R.~Rg. As R, is tuned in such an

m experiment, one executes a typical trajectory A on the phase
’Tt,—:—ZZ(VO'F 8ViAT, diagram of Fig. 1. The phase which exists in a real material
™ like gallium and is not captured by a pure model like model

where we have used the above field distribution and the pa(—l) is the Bose glastBG) phase. So, instead of SC-BM-BI

. . scenario along A, one would probably have a SC-BM-
rameters as enumerated followin 3). The lattice con- ) . .
stant in the time directionA 7~ 1/A?).5ng1us we have BG(-BI) scenario. Either way, in the BM phase, because of

formula (25) the resistivity of this metal increases continu-
ously from zero through a wide spectrum of valuesRgds
e éRQ(nvfgg)(VOJr 8V,)/Aq, (21)  tuned througtR, as is seen in the expgri_m_eﬁt%We dis-
T play the low temperature metallic resistivity from Ref. 5
5 . _ [Fig. 2 of this referenckas a function ofR, in Fig. 2 and
whereRq=h/4e*=6.4K(). The quantityn,;£j is inversely  gpserve the remarkable fit to the formut@s) with v=2.
proportional to the square of the superconducting coherencenis clearly points out that the low temperature metallic
length which diverges at the SC-BM phase boundary, i..phase observed in Ref. 5 was, in all probability, due to an
nvf§§~(§olg+)2~[(vo+ 8V,;)/beJ—1]%*, obtained from incoherent motion of the Cooper pairs. The aforementioned
Eqg. (17). Using Eq.(3), we can rewrite this as value of the correlation exponent is consistent with the no-
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2 — — interacting with a transverse gauge ff8i&f is analogous to
ih o] the fermionic case for which an extensive literature exists.
‘6_4”" Following Reizer®® we find at low temperaturegAppendix
; E)
T e l A T23
oy 2| r > ] C~A,T (pure
. e ~AgTIN(To/T) (with disordej. (26)
’ This anomalous behavior originates sheerly from the fact
T e ] that the transverse gauge field undergoes dynamical screen-
st 1 ing, which leads to the presence of diffusive modes
R ~—ig", wheren=2 (disordered or 3 (pure. The coeffi-
’ cientA, scales asA,~n??, Ay asAs~n;, and T, as Ty
T a8 e 94 w2 0 oz o4 os  os ~1/n;, wheren; refers to the free vortex densitAppendix
log(f — 1) E). This displays the non-Fermi liquid behavior of the Bose

metal phase and verifies that there is no consistency problem
with the third law. Clearly, the BM phase has more entropy
than a normal fermi liquid at low temperatures.

FIG. 2. The resistivity of the metallic phase as a functiorRgf
in Ga film experimentRef. 5 (the diamonds are the data points

from Fig. 2 of this referengeand the best fit of Eq25) (the dashed The foreqoing temperature variation of th ific heat
curve. (We have not displayed those points of Fig. 2 in Ref. 5 € Toregoing température variation of the Specilic hea

which are in the insulating regime and, expectedly, deviate from th .hOWS that there are weak singularitie'at0 in the mgtal-
best fit shown here. ic state. Thus, the BM state has the character cfitical

point asT—0. This requires further study since the coeffi-

tion that Ga films were highly disordered sampfeand the ~ Ciénts which enter the specific heat calculation would un-
Chayes theorefd along with it. dergo strong renormalization and the actual temperature de-
pendence may be somewhat different. These arguments also
suggest that there is no good length scale in the quantum
liquid phase afT=0. This can be seen by calculating the

The question now arises whether the Bose metal discharge charge correlation function. Using E@é4) [or,
cussed in the previous sections is actually an adiabatic corequivalently Eqs(B2)] and (E3), we obtained
tinuation of some known state of matter or if it is completely
new. In this section, we argue that this state is actually a q
mathematical variant of a quantum disordered spin liquid <5”q,w5”—q,—w>“T' (27)
with large spin and that it is a liquid of nonfermionic variety. —ia—+bg?

To show this, we first note that the algebra which controls a
the quantum mechanics of our problentis as discussed in \here the coefficientst andb may be read off from Eq.
Sec. II. Now,E, is a group contraction of S@),"®i.e., as  (E3). Thus, the excitation spectrum of the charge fluctuations
the radiusR of the sphere on which SO(3) operations arejs gapless and diffusive. As we pointed out in Sec. Il B,
defined tends to infinity, SO(3) contracts B, viz. J,/R  because of the algebra of phase fluctuations, this does not
——P,,J,/R—P,,J,—L, where the operatoils andP are  contradict the fact that there is a length scale associated with
as defined in Eq(5). And, in the same limit, i.e., as the superfluidity viz. the superfluid correlation lenggh tied to
SO(3) angular momentum quantum number pR—=,  the free vortex densitp;. Thus, the BM phase is analogous
wherep refers to the linear momentum quantum number ofto a gapless quantum spin liquid, very much like an RVB
E,, the irreducible representations of SO(3) map onto thosetate.
of E,. Thus, the mode(l) is a variation of a quantum spin
model and the Bose metal obtained here, which is a quantum VI. DISCUSSION AND CONCLUSIONS
disordered phase, may be thought of as analogous to the
frustrated spin liquids obtained within such a model in the In summary, we have argued that the superconductor-
limit of spin becoming largé® insulator transition in lowF, superconductors should be

A more intriguing question is the issue of how consistentviewed as &wo order parameter problem and observed that
the existence of a disordered phase as that of a Bose metalitits described by two couple®Y models in(2+1)D in the
T=0 is with the third law of thermodynamics. To this end, charge picture. This change from a sin¢®e-1)D XY model,
we calculate the low temperature specific heat of the metaks conventionally thought, is tied to the inclusion of an ap-
under the same approximation as in Sec. IV, i.e., noninterpropriate vortex mass term in the vortex picture or nonlocal
acting uncondensed bosofwertices moving in a transverse interactions in the charge picture. This leads to the interest-
gauge field. The longitudinal part of the gauge field ising possibility of a novel disordered Bose metal phase
gapped because of the screening effects and hence do rdistinct from the traditional superconductor and Bose insula-
contribute significantly to the specific hedtHowever, the tor phases. On the basis of our analysis of the model, we
transverse gauge field representing the quantum fluctuatiorexpect a superconductor-insulator transition WHég, sie
associated with the transverse modes are gapless in this meVyy (NN=nearest neighbgra case close to that of the
tallic phasé® and, hence, make a dominant contribution toJosephson junction arrays(with Bg,=0), and a
the specific heat. The calculation for uncondensed bosorsuperconductor-metal-insulator transition  wheW gt

V. HOW NEW IS THIS STATE OF MATTER?

2
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~Vun, @ situation close to that of the granular supercon-distinguishes our work from the previous ones. Firstly, we
ductors[it may be helpful to note thaV;~(2€)?/C;,C; have worked in the large, limit of the problem. Most of the
=capacitanck’ The physics of the problem seems to becurrent work on this model does not treat this limit consis-
controlled by a multicritical point. We find the properties of tently. Also, in this limit, the algebra which determines the
the Bose metal to be critical. It is inherently connected to thequantum mechanics is qualitatively different from that of the
guantum spin liquid states and is strongly reminiscient of thehard core bosons, i.eE,, and the chemical potential does
gapless RVB phase. The resistivity of this metallic phasenot play a significant roléas found in Sec. Il B In the small
predicted by our calculations finds an excellent match withng limit, « plays a dominant role, especially in stabilizing
the experiments on gallium filmsDissipation in the bosonic  the commensurate Bose insulat@BI) phase(mostly called
system at low temperatures, within our model, is hydrody-Mott insulator in the Bose literatureThe weakening effect
namical: it comes from the fact that a moving chafger-  of 4 asn, increases is clearly observable in the shrinking of
tex) dissipates as it moves through a background of chargedB| lobes withn,, evidenced by the perturbative and quan-
particles(vortices and antivorticesThe heat is carried away tym Monte Carlo calculations of Ref. 41. This provides ad-
by the gapless transverse modes representing the plasmoggional support to the results obtained here in this approxi-
This source of dissipation translates into quantum fluctuamation. Further, we also observed that the nearest neighbor
tions in the charge picture. , interaction plays a crucial role in opening up the metallic
Toour knowledge, so.far there has been no m_etal_llc phas hase in the system. There is no such phase with just on-site
proposed in the phase diagram of the Bose localization pro epulsion. This piece of physics has support from the RG
lem, within the scope of any physically realizable model.fOWS con.structed by Fisher and Grinst&h
This paper is an attempt to propose this concept and establish Yy : : :
some of the basic principles which underlie the existence o On the supersolid phasét is somewhat tempting to use
such a phase. As a result, many of the features which are tiggd- (19) to the fullest extent and extend the cu¥ X be-
to the current experiments have gone unaddressed. Some ¥#nd the poiniX along the dotted lin&O. Equation(19) is
these are existence of disorder, long-rangeitferactions, éally not good beyond the poitk but if we take it at face
nonzero magnetic field, finite temperature effects, etc. Alsovalue, it seems to suggest a regioiXM where both phase
in a realistic sample, an important source of heat bath iPrder and charge order exist, i.e., a supersolid phase. This
addition to the emission of transverse excitations is the eledas some support, if we look at the actid®). Here, as we
trons in the vortex core. This needs to be incorporated intdnoted earlier, wheW; <V, 6;=0, implying the presence of
the calculation. charge order in the system. This, however, corresponds to
An important concern is whether the BM phase will sur-trivial charge ordering only, vizén;=0, i.e., nj=nq. This
vive in improved calculations, given that our calculationsphase needs to be verified by better calculations. If this phase
have been mean field like. As we saw, the experiments arguexists in improved calculations, the poiXtwould be tetra-
in favor of the existence of this phase. Further, as we arguegritical.
in Sec. II D, the retardation effects leading to the destruction Before we close, we would like to make a short comment
of vortex Supel‘fluidity and the b|nd|ng of vortex-antivortex on the Mo-Ge Systerﬁ'a situation Where magnetic f|e|d iS
pairs, the features corresponding to the loss of charge ordgfesent. As we argued in Sec Il D, the physics of quantum
and the growth of phase order respectively, are controlleghase fluctuations in 2D superconductors is a quantum me-
effectively by two separate parameters. Plus, as we found ighanical generalization of the KT scenario. We expect this to
Sec. lll, the constants which determine the cuv®M and  happen when magnetic field is present as well. Let us recol-
ZY Xin Fig. 1 differ by about an order of magnitude becausgect the classical case for completeness. Here, dislocation-
of the strong retardation effects felt by the vortices in thisantidisiocation pairs are induced in the vortex lattice which
model. In view of these facts and the self consistent nature Qfinpind as a result of thermal fluctuatiotfsat low tempera-
the calculation, it is reasonable to think that the cul¥eX  tyres, quantum effects dominate and we expect the unbinding
will lie above the curve. XM and intersect it at a multicriti- - resulting from quantum fluctuations instead. But, as pointed
cal point even if the fluctuations are taken into account, imout in this paper, their kinetic energy should receive two
plying a separate BM pha$é Either way, it will be very  contributions — from the zero point motion and the action of
useful to check this via numerical simulations. An importantg heat bath. The metallic state is realized when the disloca-
issue which confronts us at the moment is what is the unitions in the vortex lattice(more precisely, vortex glass
versality class of the critical phenomena associated witthhase move under the action of a heat bath. This is very
model(1)? Although we have commented on this above, onémych along the lines of what had been suggested in Ref. 4.
needs to perform renormalization group calculations or nufollowing our discussion in Sec. V, we suggest specific heat
merical simulations to answer this question completelymeasurements be made to spot any nonfermionic behavior of
What is clear from our calculations, however, is that theth|s metal-like phase_ We p|an to take up some of the unre-
critical behavior, both al =0 andT=small but finite, im-  solved issues mentioned in this section in a future publica-
plies a universality class with a multicritical point which is tjon.
very rich.
Given the considerable amount of work done on the Bose-
Hubbard models, one might wonder why this phase was not ACKNOWLEDGMENTS
observed in the other theoretical constructs, particularly in
simulations. In view of this, we would like to mention a few  This work was supported by NSF under Grant No. DMR
points, in addition to the idea of two order parameters, whict6-27459.
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APPENDIX A: THE DUALITY TRANSFORMATION

We start from action(9), but with the transformatiom,
—e~1%"im; undone, so that

S=iY, m(V,h)+VoArY, m2+ VA7), (mi+m;,,)?

—JATY, cogV  ¢b). (A1)

We now use Villain transformation on thketerm. For small
values ofJA 7, one ha¥

JATZ; €080 o) — @~ IN(WA DT (N7 HiZi 6(V o)

e

Integrating out the phase degrees of freedpmone obtains

z=> > €5

{mi} {njo}

2
2 2 2
In(JAT)% n|a+VOATZ m:

+VIATY (M4 ,)%, (A2)
la
supplemented with the constraint
vV.m+V,n;,=0 (A3)

(with the summation overa implied). Defining nf
=(m;,n{"), (=0,1,2), one obtains the constrai#3) as

V,n#=0.
This allows us to define an integer gauge fild, via

ni= VAP,

,u,Vp v

(A4)

A purist might object to our not using the shifted lattice
operatorsA - in Eq. (A4).2 This does not matter for our
case since the model involves a single gauge field. Now,

transforming over to the Fourier space[m,
=(1/N0)2q,weiq'ximq'w, with g=(w,q) andx; referring to
theith site on the space-time lattice, willy, the total num-
ber of lattice sitef one obtains

zZ=> e’S

{Af}

with
(qu)Ag wqu 7(,)]

(A5)
with G~ (w,q) given by Eq.(12) andAy , refer to the Fou-
rier transform ofA. Herea and w refer to lattice momen-
tum and frequency respectively, arﬁﬁ 3K QK (q),
with K, (q)= (LA)(1—e™9%),K () = (L) (e/%—1) 2

And, (4-Q)*=2,K,(q-Q)K,(q—Q) in Eq. (12). Equa-
tion (14) is complete with the gauge condition,

( )2 [qZAg WAL, TG!
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vV, A=0. (AB)

Now, we introduce the vortex variablg§ via the Poisson
summation formul&

z=2

{ith

Integrating out the gauge field degree of freedom, one ob-
tains Eq.(12).

DA{‘e’S’ZWiEi AL (A7)

APPENDIX B: CONTINUUM VERSION

The features of the vortices discussed in Sec. Il D are not
special to the lattice case, but exist in the continuum case as
well. This gives us a more general frame in which to study
the model. The considerations in the continuum case start
from the actiofi®?*

8= f drdx

+2mi] A,

— ., 1
(mi20)|317+ 5 [ dyV-y) 5000 3p(y)

(B1)

whereJ refers to the charge current aag the charge fluc-
tuations, with the gauge field, given by

(8p,d)=

AIso,TM= (p, ,jv) refers to the vortex three current density,

m=mass of the Cooper pairs, apd=average Cooper pair
density. We have not written down a Magnus force term on
vortices due to a background charge condensate, because this
is not contained in the lattice modél) discussed in the
paper. However, this may be important in a uniform system

like Mo-Ge** Working in the transverse gaude A=0, we
obtain after integrating out the gauge field

JH(x)= € uupdvPp - (B2)

§=2W EkakZJ K,—

2l S T Bkt (B3
m e ' '
where the Green’s functioB(w,k) is given by
G Y w, k)= w2+ (p/m)k3V,, (B4)

where V, is the Fourier transform of the potenti®i(r).
From here onwards we consider the screened Coulomb po-
tential with

Vk: Voaf/ \ k2+ az.

In the limit w,k—0 andw<ck (with ¢ being the plasmon
velocity), the Green’s function splits up into a singular part
G(w,k) and Gy just like in the lattice model

G(w,k)=Gg(w,k)+ Gy, (B5)

where
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Go(w,k)=1Uw?+¢2k?), Go=1/(2pVoa?/m),
with

Thus, from Egs(B3) and (B5), we obtain

p
2
w+277 E

x%igw[és(w,kwéoﬂik,,w. (B6)

Thus, comparing EqgB6) and (14), we see that the lattice
and continuum actions of phase fluctuations, within the
scope of our model, have identical low frequency and long

wavelength limits.

Correspondence between the lattice version and the con-
tinuum version is established via the following identific

tions:

D. DAS AND S. DONIACH
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(C4

1
F(O)= -
VT Rz A
Important contributions to EC3) come from the low mo-
mentum region. Thus,

F(a)=12(x§+8x7)\2—(

Combining Eqs(C3) and (C5), we are led to the condition
(17), with

cosgy+cosqy). (CH

(C6)

w d
bo= fo Jsimx+ sirfy

APPENDIX D: SELF-CONSISTENT FUNCTIONAL
APPROACH

In this appendix, we give a brief review of the self-

a- consistent functional approdthdiscussed by loffeet al?®

This is essentially a hydrodynamical kind of approach. We
start with the following electromagnetic Lagrangian of
bosons in imaginary timén 2—d):

m/p—2In(2JA 1), (B7)
~y — 10,7 a
2= Vo /mesc2= (Vo+ 8V A IN(2JA7), (BS) Le=Lgtletls. (D1)
5 o Here
Go=1/(2pVoa?/m)—Gy=b?/8(b%+c?)2. (B9 ” )
g
Following Ref. 43, one can easily show that H&3) is :¢*E+ |V¢|2 5 Pl (MInfr=r"|p(r")— u|y|?,
equivalent to the following Hamiltonian for the vortices: (D23)
i ~ [
H,= om. Di+ 27 Qi A(X;)) 2+ 22 — E aig;Infri—r;l, LB=—ﬁa'[¢V¢* ¢*V¢]+ 2|¢|2 (D2b)
(B10)
where the summation is over all vortices and antivortices and a_ L 0 2.3 2
= ~ =— + X
the gauge fieldA has the spectrum determined Ggl(w,k) Le 292[((97&1) c(Vxayl, (D29

as in Eq.(15). Hereg;==1 refers to the charges on the

vortices. Herem, refers to the vortex mass.

APPENDIX C: AN ESTIMATE OF G(0)

From Sec. Ill A, we have

G(0)= (Cy

ffw fw(Z’]T)z (1—cosw)+A?’
where

A?=[2—(cosqg,+ cosqy) I Ko+ 2Kk2{2+ cosg,+ cosqy}],

(C2
with
ki=c? and «k2=b%8,
whereb? andc? have been introduced in Sec. Il D.
From Eq.(C1), we obtain
ORI T @ 3
2 —71'(2’77)2 q ,

with

wherey, * refer to the Bose fields ang= ¢* . We work
in the transverse gau®~ a=0. The dimensionless coupling
constants determining the strength of the Coulomb repulsion
and transverse gauge field, viz, and e, respectively, are
defined as
_gm ¢
1672n" ¢ 8mmc?’

(D3)

wheren is the average density of bosons. Comparison of Eq.
(D2) with Eq. (15) allows us to identify
g2—2m2In(20A 1), c?ec?

S

and
mi2n— m2Gy/IN(2/1JA 7). (D4)

The last identification also follows from the fact that the

weight of the zero point motion terrj|? is m/2n. Using
Egs.(D3) and(D4), we are led to Eqg18).%°

The calculation of the depletion of the Bose condensate
from the actionD2) proceeds in two steps. The first involves
determining the effective functional of the superfluid Bose
system in the absence of a transverse gauge field. And, the
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second involves determining the effect of the gauge field ometallic phase. Connection with the original model is estab-

this system, i.e., calculating the change in the superfluid derished via the mappingD4).%° We first rescale the transverse

sity. gauge fielda—ga so that the effective charggappears in
The effective functional of the superfluid Bose systemthe Eq.(D2b) rather than Eq(D2c). Thus, the unperturbed

(with 5=O) is obtained by expanding the Bose field in termsgauge propagator is

of the slow and fast modes, and integrating out the fast

modes?® Galilean invariance of this system dictates=n.?

The leading terms in the effective action &wer small values DY 5(0,0,) =K ,5(0) w2+—czqz (ED
of a) n
where w,=2mnT(n=integer) are Matsubara frequencies
so=f xdr| = ¥ b2 i b+ —— [T ] and
2m T 8mn
qaqﬁ
gZ 1 KaB(Q): 5&,8_ .
+?q2w Wq,w?ﬂ'—q,—w: (D5) q2

To obtain the contribution of specific heat from the trans-

Wl.he;ed’ a;ndhp(x,lr)zn+ g(X’T_) \7re_the ?Q&i‘? and the am- verse modes, one integrates out the patrticle degrees of free-
plitude of the slow modeyo=Vp(x,7)e - We now 451 in a one-loop approximatici. This leads to the re-
work in the real time and integrate out the phase variables; jeq polarization function

This leads to an action solely in terms of the density fluctua-

tion variablessr ® J .2n Q .
o p(0,Q)=—K,p(q)g7| —i ™ m"’c Xpd },
exp{(i/Z)j d3xd3x’ w(x)C~ Y (x—x") 7 (x") |, (E2)
where where yp=ng(—u)/24mmc@ and mv3/2=|ug|, with
ng(&€)=1/(ef*—1). The structure of Eq(E2) is quite inde-
ng?/m pendent of the statistics because the integrals which enter the
Clo,)=—F—— 5 > - (D6)  calculation are of the fornf” ,dén(¢) and [~ ,d&(an/d¢).
©°=(q°/2m)“—ng’/m+ié The renormalized gauge propagator is then given by Dyson’s
and d®x = d?xdt. equation

To calculate the change of the superfluid densify-n
due to the action of the transverse gauge field, we focus on

the diamagnetic term in E4D2b) In the quasistatic approximatiofR<cq, we have the re-
1 tarded gauge propagator as

- 1.
A2, —_ a2
>md Yo o=~ 5 a%(n+m). (D7) o 0
1/ | =i —+c?9?| |,
m vgQ

(E3)

D:D0+ DOHD

D (0,9)=K,4(q)

The weight of thea? term determines the superfluid density.
One now integrates out the-degrees of freedom. The cou-
pling term in Eq.(D7) leads to ara®—a? interaction term.  where c2=c?(1+g2yp). Integrating out the gauge fields
One then(a) decouples this term in a mean field approxima-leads to the free energy

tion and(b) rewrites the gauge field in terms of fast and slow
modes,a; and ay, and integrates out the fast modes. The
weight of theaé term then gives the self-consistent equation
for the superfluid densitp,,

BFz—%TrIn D(q,wp). (E4)

The specific heat is obtained fro@=TdS/dT. The details

i 3 of the calculation may be found in Ref. 39. For the disor-
”szﬂJrEf d*xC(x)D(x), (D8)  dered case, the Green’s function is written G&p,w,)
=Uliw,—&ptil27sgn(wy) ], with 7 the scattering time for
whereD(x) is the gauge field correlator the vortices from the impuritieéwhich appear as a static

gauge field in the vortex picturé® In this case, the factor
1/vgq appearing in the frequency term in EgE2) and(EJ)
gets replaced by 2 The coefficientsA,, Aq and Ty in Eqg.
(26) are approximately given by

g2

w?—(c2QP+ng¥m)+is’

D(w,q)= (D9)

Equation(D8) leads to the phase diagram in— a4 plane,
mentioned in Sec. Il B. Ap%(anzlmvB?Z)m/w,

APPENDIX E: SPECIFIC HEAT CALCULATION Ad~ngz7'/772m€2,
To calculate the specific heat, we consider the Lagrangian o
(D2) without the log interaction, which is screened in the To~q2mc/ang?s, (E5)
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whereaC denotes an upper momentum cutefl/£,, with &,
the Cooper pair size.

APPENDIX F: COMMUTATION RULE (6¢)

In this appendix, we discuss how the commutation rule

(6c) comes about. From commutatda) and (6b), we ob-
serve that® and P' are ladder operators. Hence, in the an-
gular momentum representatiob|(),,) =m|Q,)), "8

. DONIACH PRB 60

[

P=i >

—{no}+1

|-l ~T 2 | Q1D (FD)

PT

—i 7% ) |Qm+l><Qm| ~ =i Zx |Qm+l><Qm|!
’ (F2)

where{ngy}=nq for integerng, and the floor or ceiling oh,
(appropriately taken otherwise. The approximate expres-
sions written on the right hold only wham,>1.
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