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Existence of a Bose metal atT50

D. Das
Department of Applied Physics, Stanford University, Stanford, California 94305

S. Doniach
Departments of Applied Physics and Physics, Stanford University, Stanford, California 94305
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This paper aims to justify the existence of a two-dimensional Bose metal, i.e., a metallic phase made out of
Cooper pairs atT50. To this end, we consider the physics of quantum phase fluctuations in~granular!
superconductors in the absence of disorder and emphasize the role of two order parameters in the problem, viz.
phase order and charge order. We focus on the two-dimensional~2D! Bose Hubbard model in the limit ofvery
large fillings, i.e., a 2D array of Josephson junctions. We find that the algebra of phase fluctuations is that of
the Euclidean groupE2 in this limit, and show that the model is equivalent totwo coupledXY models in
(211) dimensions, one corresponding to the phase degrees of freedom, and the other to the charge degrees of
freedom. The Bose metal, then, is the phase in which both these degrees of freedom are disordered~as a result
of quantum frustration!. We analyze the model in terms of its topological excitations and suggest that there is
a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We
find a remarkable consistency of this scenario with certain low-Tc thin film experiments.
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I. INTRODUCTION

The superconductor-insulator~SI! transition in low-Tc

thin film systems1 has drawn a lot of attention over the pa
couple of decades. These systems undergo transition
superconductor~SC! to insulator as the disorder, thickness
magnetic field is tuned. The problem has received a str
impetus after the experiment by Goldmanet al.2 on homoge-
neous lead and bismuth films, which went from a superc
ducting phase to an insulating phase as a function of th
ness, and which, right at the interface, was probably meta
Since electrons usually do not form a metallic state in t
dimensions, it was argued that@Ref. 3~b!# this T50 transi-
tion is due to the localization of preformed Cooper pairs
was also claimed that the resistivity at the transition is u
versal@Ref. 3~b!#. Similar SI transitions have been observ
in granular superconductors and Josephson Junction arr1

This scenario has been called into question after a re
magnetic field tuned experiment in the Mo-Ge samp4

where the metal is no more a point in the phase diagram,
exists as a separate phase. We would like to point out
this is not the first observation of a metallic phase in a tw
dimensional, otherwise superconducting, system. We c
across at least two separate instances of this phenomen
granular superconductors — one in Ga films5 and the other
in granular Pb films,6 where a metallic phase is found to b
sandwiched between the superconducting and the insula
phases. A similar observation has been reported in Josep
Junction arrays.7 Each of these observations has probabl
detailed explanation within the scope of the specific exp
mental system being measured. However, there is somet
common in these systems which is quite hard to overlo
viz. the preformed Cooper pairs are very much alive wh
the metallic phase is seen; and continue to exist till the in
lating transition and beyond. Motivated by this fact, w
PRB 600163-1829/99/60~2!/1261~15!/$15.00
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would like to ask the question — is it possible for th
charged bosons, i.e., Cooper pairs, to form an incohe
metallic phase atT50? The intriguing feature of this phas
is that although the bosons are mobile, they do not b
condense at any temperature. Instead, they are dissip
and fail to drive a supercurrent even atT50, unlike a super-
conductor. We regard this phase as a Bose metal~BM!. In
this paper, we give arguments justifying the existence o
Bose metal in a physically realizable system.

The natural question, then is, what has been missing in
current theoretical models where a metallic phase was
obtained. Our thought on this issue is the following: most
the earlier theories3,8,9 tried to attack this problem from the
superconducting side of the phase diagram and projecte
onto a basis diagonal in the phase states. In all these theo
there was a single order parameter, viz.c5^eif&, wheref
refers to the phase of the charge boson. In the supercond
ing phase, this order parameter is well developed. At the
transition, c→0 and the phases of the charge bosons
scrambled. The scrambling of the phases3,10 had so far been
taken as the indication of onset of the insulating phase. H
ever, this is not enough to characterize the insulator. A B
insulator ~BI! phase is characterized by anextra order pa-
rameter, viz. the charge density. It is like a charge dens
wave but built out of Cooper pairs. This piece of physics h
been missing in the existing theories.3,8–10The central point
of this paper is that the phase fluctuation physics of sup
conductors should be viewed as atwo order parameter prob
lem, viz. there is a competition between phase order
charge order. It almost follows from this fact that the d
struction of one order parameter does not necessitate
growth of the other order parameter. This implies a poss
existence of a disordered phase where both the order pa
eters are zero atT50. We consider this to be a Bose met
phase.
1261 ©1999 The American Physical Society
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1262 PRB 60D. DAS AND S. DONIACH
Secondly, we work in the limit when the average filling
the bosons (n0) per site is very large. In this limit, the Bos
Hubbard model@Ref. 3~b!#, which plays a central role in the
SI transition, becomes equivalent to a Josephson junc
array ~JJA! model. Most of the existing work on the JJ
model does not treat this largen0 limit consistently. In many
cases, the constraint due to the average filling, Eq.~2! below
is neglected;46 in certain other cases, there is a tendency
replace theE2 algebra, which is the appropriate algebra f
this limit ~see Secs. II and V for more details!, by a qualita-
tively different algebra, viz. SU(2) algebra, which holds
the hard core limit, i.e., for small fillings. Hence, we sh
give a quite detailed description of the basic formulation
this limit in this paper.

Thus, we consider a pure model of Josephson-coup
Cooper pairs with extremely large fillings, interacting v
on-site and near neighbor repulsive forces in two dim
sions. This model captures the basic physics of gran
superconductors,3 except that disorder is absent. It is app
cable to a limited extent to the Josephson junction array
well. We are able to demonstrate that the physics of ph
fluctuations, within such a model, can be described by
coupled anisotropicXY models in (211) dimensions, one
corresponding to the charge degrees of freedom and the o
the phase degrees of freedom, where the coupling
‘‘ XY-like.’’ The two mechanisms which drive the two tran
sitions are as follows — disordering of the vortices and
Bose condensation of vortices. Phase order is destro
when the vortex-antivortex pairs unbind@or, vortex loops
blow up in (211) dimensions# as a result of the quantum
fluctuations; the charge order grows when the vortices B
condense.11 In light of this, a search for a completely diso
dered phase in the charge picture translates into a searc
a non superfluid~SF! liquid in the vortex picture. The pres
ence of unbound, as yet uncondensed, dissipative vor
makes the disordered phase metallic. The two mechan
mentioned above are separate processes owing to the
ence of retardation, or equivalently, dissipative effects, co
ing from a gauge field mediated interaction in the vort
picture ~for more details see Secs. II D and III B!. In the
charge picture, the existence of a disordered phase like
of a Bose metal results fromquantum frustrationeffects, i.e.,
the zero point motion is not strong enough to set up sup
conducting correlations and the long range interactions
not sufficient to set up a charge ordered state. This s
seems to be intrinsically related to the~gapless! spin liquid
states. Although disorder is not explicitly present in o
model, our results on the nature of the Bose metal phase
be readily generalized to the case where disorder is pres
We find a remarkable agreement of our predictions with
Gallium film experiment.5 We believe this provides evidenc
of the existence of such a phase and supports the sce
described above. All of our considerations in this paper
restricted toT50 and zero magnetic field unless mention
otherwise. This situation is relevant to the experiments
Refs. 5 and 6.

Before we go over to the main part of the paper,
would like to mention that the idea of two order paramet
is not completely new and has appeared in the discussio
the hard-core limit of the Bose-Hubbard model12 and also in
the gauge theory description of the Josephson junc
n
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arrays.13 The problem with the former is that supercondu
tivity is never destroyed away from half-filling in their mode
~please see Sec. II B!, while the latter invokes the idea o
self-duality which implies logarithmic interaction amon
Cooper pairs and is not a good representation of the real
thin film samples.

Apart from the existence of a disordered Bose liquid sta
there is another important feature which emerges from
work. It is well known that14 noninteracting electrons canno
support a metallic state at low temperatures in two dim
sions~2D! in the absence of spin-orbit scattering. The situ
tion is much less clear when both interactions and disor
are present. This fact has been brought into the limeli
with the recent observation15 of metal-like states in two di-
mensional electron and hole systems in semiconductor b
materials. In the wake of these observations, our invest
tions suggest that a metallic state is a possibility if the el
trons bind themselves into Cooper pairs and behave a
they are bosons.

The plan of the paper is as follows. In Sec. II, we intr
duce the model and straighten out some of the basic is
which relate to the model. Using a combination of qualitati
and quantitative arguments, we explain why the BM phas
feasible. The mapping onto the coupledXY models is dem-
onstrated here. We quantify the arguments in Sec. III a
sketch the phase diagram of the model. Section IV conta
an estimate of the resistivity of the Bose metal phase an
comparison with the Gallium film experiment. The therm
dynamics of this strange metallic state and its connec
with the spin liquids are discussed in Sec. V. We wind
with a discussion of certain relevant issues and conclus
in Sec. VI. Some of the calculational details may be found
the Appendices.

II. THE FOUNDATIONS

A. The model

We shall consider the following model Hamiltonian
this paper:

H52J(̂
ia&

cos~f i2f i 1a!1V0(
i

~dn̂i !
2

1V1(̂
ia&

~dn̂i1dn̂i 1a!22m̄(
i

dn̂i2mNn0 , ~1!

where dn̂i5n̂i2n0, with n̂i5number density operator,n0
5neutralizing background charge density~or, equivalently,
the average density of Cooper pairs!, N5number of lattice
sites, andm̄5m1V0 the renormalized chemical potential i
the problem. Also,a5 x̂,ŷ refers to the spatial unit vectors
The first term in Eq.~1! represents the kinetic energy of th
bosons~Cooper pairs for our case!, the second term the on
site repulsion among them~which should be nonzero to pre
vent any collapse of the bosons onto a single site!, the next
term the repulsion among the nearest neighbors which ac
set up a charge order in the system, and the last two term
the chemical potential terms. Equation~1! has to be supple-
mented with the constraint (1/N)( i^n̂i&5n0, which in terms
of the charge fluctuation operators convert into
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(
i

^dn̂i&50. ~2!

This equation impliesm̄50 and, in the rest of the paper, w
shall forget about the chemical potential terms complete

On the experimental side, the three parameters of
Hamiltonian~1! can be determined in the following way:16

J5~RQ/2Rn!D0 . ~3!

HereRQ5(h/4e2)56.45 KV, Rn5normal resistance of the
film, andD05pairing gap. The interaction constantsV0 and
V1 are related to the inverse of the capacitance matrixCi j of
the grains.

B. The commutation relations

The model discussed in Eq.~1! needs to be supplemente
with the phase fluctuation algebra, which constitutes the
propriate commutation relations for this problem:

@dn̂i ,f̂ j #5 id i j . ~4!

Equation ~4! implies an angular momentum representat
@Ref. 3~a!#

dn̂i5 i
]

]f i
.

Further, let us define the operators

L5 i
]

]f
, P5eif. ~5!

Thus, Eq.~4! can be recast as

@L,P#52P, ~6a!

@L,P†#5P†, ~6b!

@P,P†#.0, ~6c!

with PP†5I . It is well known in quantum optics that th
phase operators being ladder operators@as is seen from Eqs
~6a! and ~6b!# usually do not commute.17 However, in the
large n0 limit, they do ~see Appendix F!. Thus, Eq.~6c! is
strictly valid in the largen0 limit of the problem and, hence
our discussion holds good in this limit only. Now, Eqs.~6a!–
~6c! constitute thealgebra of the Euclidean group E2,18 the
group of translations and rotations in 2D, with the square
linear momentum~P! restricted to unity for our case. It de
serves to be mentioned here that the SU(2) algebra use
the context of the hard-core limit of the Bose problem12 is
distinctly different from this algebra and is obtained in t
opposite limit, i.e., the smalln0 limit of the Bose Hubbard
model. The effects of the change in the group structure
quite significant. In the hardcore model, away from half fi
ing, increased interactions change the SF to a supers
phase. Thus, superfluidity is never destroyed away from
filling. On the other hand, our model allows superfluidity
be quenched at arbitrary fillings. Further, the conser
quantities supported by the two algebras are different:
invariant of E2 algebra is~square of linear momentum! Px

2

1Py
25p2 (51 for our case!, as compared toSx

21Sy
21Sz

2

e

p-

f

in

re

lid
lf

d
e

5s(s11) of the SU(2) algebra. Thus, unlike the SU(2) ca
~a! here the constraint on thez component of the spin is
much weaker and~b! thez component of the spin enters ver
anisotropically in the algebra compared to thex andy com-
ponents of the spin.~Here operatorL is referred to as thez
component of spin forE2 algebra; see Sec. V for more de
tails!. Hence, in the disordered/symmetric phase, althou
the x andy components ofE2 spin might acquire a gap like
the SU(2) spin, thez component of the former might remai
gapless unlike the latter. Put in simple words, there may b
length scale determining the local superfluidity in this pha
and as yet no length scale associated with the charge o
ing in the system. A calculation of the charge charge cor
lation function indeed justifies this, as discussed in Sec.
Thus, given a disordered phase within a model built out
E2 spin operators, it can support gapless excitations.
shall give detailed arguments in Secs. II D and III as to w
the model~1! along with commutation rules~6a!–~6c! con-
tain a completely disordered phase.

Now, if we rotate the charge fluctuationsLi at each site,
viz.

Li→eiQW •r i
W
Li ,

where

QW 5~p,p!,

we obtain the Hamiltonian as

H5(
k

JkPk
†Pk1(

k
VkLk

†Lk , ~7!

where

Jk52J~coskx1cosky!,

Vk5~V014V1!22V1~coskx1cosky!,

and P,L couple through the commutation relations~6a!–
~6c!. In this form, it assumes the shape of a two order
rameter problem.~Macroscopic occupation ofk50 mode of
P reflects superconductivity and that ofL a charge density
wave.! However, because of commutation rules~6a!–~6c!, it
is very hard to diagonalize this Hamiltonian in this form. S
we seek alternative means.

C. The charge picture

In this section, we demonstrate that the model Ham
tonian ~1! is equivalent to two coupledXY models in (2
11) dimension. To do this, we first write the model~1! in
terms of a path integral representation18,19 keeping the com-
mutation relations~6a!–~6c! in mind. The partition function
Z5Tre2bH, whereb is the inverse temperature (\ and kB
are taken to be one, unless mentioned otherwise!, can be
written as

Z5 (
$mi (t)%

E
0

2p

Df i~t!e2S,

where
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S5 i E
0

b

(
i

mi~t!
]f i

]t
1E

0

b

dtF2J(
ia

cos„f i~t!

2f i 1a~t!…1V0(
i

mi
2~t!1V1(

ia
„mi~t!

1mi 1a~t!…2G , ~8!

with periodic boundary conditions in the imaginary time d
rection implied. Herea5 x̂,ŷ refers to the nearest neighbo
in the space direction andmi(t) are integers meaning th
change in the number of Cooper pairs from the average a
site i. We shall consider only the caseT50, so that the
integral over imaginary time extends to infinity. Next, w
discretize the time axis with an intervalDt and rescale the
lattice constant in the space directions to be unity. Furth
we rotate the integersmi(t)→e2 iQ•r imi(t), where QW
5(p,p). Thus, we obtain

S5 i(
i

e2 iQ.r imi~¹tf i !1V0Dt(
i

mi
2

1V1Dt(
ia

~¹ami !
22JDt(

ia
cos~¹af i !. ~9!

Here summation overi refers to the time axis as well, and s
does the indexi in mi andf i . The derivatives¹m in Eq. ~9!

and also in what follows are lattice derivatives.20 To avoid
any confusion, we shall reserve the notationr i for the spatial
coordinates of thei th point andxi its space-time coordinates

To show that the action~9! is equivalent to two coupled
XY models, we follow the following sequence of steps.~1!
We decouple the (¹ami)

2 term using a Hubbard
Stratanovich fieldpia , viz.

E Dpiae2(1/4V1Dt)( iapia
2

2 i ( imi (¹̄apia).

~2! First, we notice that the coupling term withmi is invari-
ant under shifts ofpia by 2p. So, we break up the integra
overpia from 2` to 1` into that of periods of 2p. Further,
we split up pia into a curl and a gradient part. Since th
divergence ofpia couples tomi , only the gradient part en
ters the dynamics. Thus, we obtain for this part,

(
$ l ia%

E
0

2p

Du ie
2 i ( imi¹

2u i2(1/4V1Dt)( ia(¹au i22p l ia)2

.E
0

2p

Du ie
(1/2V1Dt)( iacos(¹au i )e2 i ( imi¹

2u i,

where we have used an~inverse! Villain transformation.13

~3! Now, using an~inverse! Villain transformation again, one
can execute the sum over integersmi

(
$mi %

expS 2 i(
i

mi~e2 iQ.r i¹tf i1¹2u i !2V0Dt(
i

mi
2D

.e(1/2V0Dt)cos(e2 iQ•r i¹tf i1¹2u i ).

Putting all these together, one obtains
he

r,

Z5E
0

2p

Df iDu ie
S,

with

S5JDt(
ia

cos~¹af i !1
1

2V0Dt

3(
i

cos~e2 iQ•r i¹tf i1¹2u i !1
1

2V1Dt (
ia

cos~¹au i !,

~10!

where the phasef is associated with superfluidity and th
phaseu with charge density wave. Equation~10! explicitly
shows that the phase fluctuation physics of~granular! super-
conductors, in the absence of disorder, is equivalent to
coupled XY models in (211) D, where the coupling is
XY-like. A few comments are in order. In the limitV150,
we haveu i50, theu-terms in action~10! drop out, and we
obtain a singleXY model in (211) D, as has been dis
cussed previously.3,10,19Also, the coupling term~the second
term! is highly anistropic inf and u, explicitly breaking
self-duality in this system,assumedin Ref. 13. Equation~10!
is one of the key results of this paper. Thus, we see that
destruction of superfluid state is driven by oneXY model,
whereas the otherXY model characterizes the growth of th
charge ordered state. And, hence, as the parameters are
one transition does not necessarily accompany the other

D. The vortex picture

Although the action~10! shows that the superfluid orde
and charge order are driven by differentXY models, it is not
clear whether the coupling between them, which is qu
complicated, guarantees a completely disordered phase
order to answer such a question, we now consider the m
~1! in the dual picture, i.e., of the vortices. To do this, w
invoke a duality transformation.3,13,11,19Starting from action
~9! ~Ref. 21! one can show that

S5
p2

lnS 2

JDt D (
q,v

j q,v
0 1

q̂2
j 2q,2v
0

1
p2

lnS 2

JDt D (
q,v

j q,v
a G~v,q! j 2q,2v

a , ~11!

where j q,v
m are Fourier transforms of the integer vortex va

ablesj i
m( j i

05vortex density,j i
a5vortex current!, and

G21~v,q!5F v̂21
V0Dt

lnS 2

JDt D q̂21
V1Dt

lnS 2

JDt D q̂2~ q̂2Q!2G .

~12!

The intervening steps are quite standard22 and are discussed
in Appendix A. v̂,q̂ refer to lattice frequency and momen
tum respectively~Appendix A!. One may like to note here
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that there is no Magnus force term on the vortices, co
sponding to the disappearance ofn0 from the problem in the
largen0 limit.

In the previous subsection, we observed that whenV1
→0, the model is equivalent to a singleXY model rather
than two coupledXY models. The question obviously is
how this change is reflected in the dual picture. The ba
answer lies in the appearance or disappearance of the
point motion term for the vortices~more popularly known as
the vortex mass term!. To show this, we look at the long
wavelength low frequency modes. In the limitv,q→0 and
v!csq ~wherecs is the plasmon velocity!, the Green’s func-
tion G(v,q) splits up into a singular partGs(v,q) and a
constant partG0, viz.

G~v,q!.Gs~v,q!1G0 , ~13!

where

Gs~v,q!51/~v21cs
2q2!, G05b2/8~b21c2!2,

with

cs
25b21c2, b258

V1Dt

lnS 2

JDt D , c25
V0Dt

lnS 2

JDt D .

Thus the action is

S5
p2

lnS 2

JDt D (
q,v

j q,v
0 1

q2
j 2q,2v
0

1
p2

lnS 2

JDt D (
q,v

j q,v
a @Gs~v,q!1G0# j 2q,2v

a . ~14!

SinceG0 is a constant, it allows us to identify this term a
the vortex kinetic energy, i.e., mass term. From Eqs.~14! and
~13!, we notice that this term does not exist whenV150.
Thus, we have shown that the change of the nature of theXY
models is tied to the existence or nonexistence of a vo
mass term.

We now look at the other terms in the action~14!. The
first term in the action is the usual logarithmic interacti
term among the vortices, and the second term, because o
retardation effects, leads to a dissipative term for
vortices.16 In the limit ur i2r j u!csut2t8u ~which is the same
quasistatic limit discussed so far!, this part of the action take
the form

p2

cs
2ln~2/JDt!

(
i , j

qiqj(
v

v2lnS 1

uvu D r i ,vr j ,2v ,

whereqi561 refers to the charge on thei th vortex. Physi-
cally, the aforesaid limit corresponds to the slow motion
vortices. The source of this heat bath~or, dissipation! is the
gauge field~discussed in Appendix A!, or more precisely, the
transverse modes arising from the quantum fluctuation
the system.~There will be additional retardation effects in
real system from external heat bath mechanisms, e.g., e
-

ic
ero

x

the
e

f

in

c-

trons in the vortex core, etc.! These features of vortices i
granular superconductors have been discussed previous
Eckern and Schmid.16

One may also undo some of the steps in Appendix A, a
recast Eq.~14! in terms of a gauge field with appropriat
action as

S5 lnS 2

JDt D(
q,v

@q2Aq,v
0 A2q,2v

0 1~v21cs
2q2!Aq,v

a A2q,2v
a #

12p i(
i

j i
mAi

m1p2
G0

lnS 2

JDt D (
q,v

j q,v
a j 2q,2v

a ~15!

~with the gauge condition¹aAi
a50 imposed!. A few com-

ments are in order. Equation~15! shows that, considered in
the vortex picture, the quantum phase fluctuations in a
superconductor, as described by model~1!, are equivalent to
a two-componentquantumplasma~bosons of two flavors,
viz. vortices and antivortices! moving in a fluctuating gauge
field Am. Secondly, the above scenario is a simple quant
mechanical extension of classical phase fluctuations in a
superconductor, which is described by a two compon
classical plasma undergoing screening by a static elec
field (EW 52¹W A0), as described by Kosterlitz and Thoule
~KT!.25 The effect of including quantum mechanics in th
problem, apart from bringing up the importance of the qua
tum statistics of vortices, is to make the electric field d
namical, viz.EW 52¹W A02(1/cs)]AW /]t with a magnetic field
BW 5¹W 3AW . Whereas the importance of the statistics is to
low for the superfluidity of the vortices, an important cons
quence of the dynamical nature of the electromagnetic fi
is that there are retardation effects, viz.

(
i , j

E dtdt8
rẆ i~t!•rẆ j~t8!

A
„rW i~t!2rW j~t8!…21cs

2~t2t8!2
,

which break Galilean invariance.~This feature is intensified
in a real system by external heat bath mechanisms mentio
before.!16 This is not surprising because the action~15! has
the structure of Maxwell’s action, which is reputed to ha
Lorentz invariance but lacks Galilean invariance. Now t
absence of Galilean invariance will have a strong effect
our system, because it is bosonic. It is well known thatall
the delocalized bosons will condense into the superfluid s
only if the system is Galilean invariant.26 If this invariance is
absent in a Bose system, then as the relevant paramet
tuned, the~vortex! condensate is gradually depleted and
one point the superfluidity will be completely lost. At th
stage, it is important to recollect what important proces
are going on in this system. There are two of them: destr
tion of vortex ~and antivortex! superfluidity~owing to retar-
dation effects! and the binding of vortex-antivortex pairs
corresponding respectively to the destruction of charge o
and the growth of phase order. Now, these two processes
controlled effectively by two separate parameters, v
c2/g2;(V018V1)Dt ~corresponding to the strength of th
retardation effects! and g2;JDt ~corresponding to the
strength of the logarithmic interaction!, respectively, where
Dt;1/D0

34 ~please refer to Appendix D and Sec. III for th
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1266 PRB 60D. DAS AND S. DONIACH
notation and appropriate details!. As a result, the vortices
~and antivortices! do not necessarily condense into the sup
fluid state as soon as they unbind. This leads to the poss
ity of a non-SF vortex liquid, or equivalently, a BM phase.
fact, that is what we find when we quantitatively evalua
these processes in Sec. III. There is a simpler way to
what is happening here. As we noted earlier, following E
~14!, the kinetic energy of vortices originates from tw
sources —~a! quantum zero point motion~theG0 term! and
~b! action of aneffectiveheat bath~the Gs term!. In the
delocalized state, if the source~a! dominates, the vortices
move coherently, and since they are bosons, they form
superfluid. On the other hand, when the source~b! domi-
nates, because of the random nature of the effective
bath, the motion of the vortices is necessarily incoherent,
one is in a metallic phase. In this phase, no charge orde
set up and one obtains a Bose metal phase.

These features of dual vortices are not special to a lat
model, but observable in the continuum formulation as w
as discussed in Appendix B.

III. THE PHASE DIAGRAM

In the previous section, we argued why the Hamilton
described by Eq.~1! may contain an incoherent metall
phase. In this section, we quantify these arguments by ca
lating the phase diagram of model~1!: we shall locate the
phase boundary where superconductivity is destroyed
the one where charge order is established.

A. Destruction of charge superfluidity

This is done nonperturbatively by estimating where
vortex loops blow up in (211) D.27 This happens when th
entropy of the loops overcomes their interaction energy.28 A
good estimate of the interaction energy is the self energ
the loops, simply because dipole-dipole interactions fall
as 1/r 3 and the mutual interaction energy of the links in
loop is much smaller than the self-energy of the loops wh
the loops are fairly large. Thus, the effective free energy
the loops is given by

F5F p2

lnS 2

JDt D G~0!2m lGN, ~16!

whereN is the number of the links in a vortex loop,G(0)
5diagonal part of the Green’s function5*2p

p (dv/
2p)@d2q/(2p)2#G(v,q), obtained from Eq.~12!, and m l
5entropy of the loops5 ln 3 for our case.29 An estimate of
G(0) is given in the Appendix C. The loops blow up whe
F,0. Thus, superconductivity is destroyed when30

~V0 /J!18~V1 /J!.b̃0, ~17!

where b0̃52(b0 /m l)
2 and b05a number of order unity

.3.1725, defined by Eq.~C6! in Appendix C. This phase
boundary has the character of (211) D XY model, at least
whenV1!V0 @as seen from Eq.~10!#, and hence, the supe
fluid density changes continuously across this transition l
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B. Destruction of vortex superfluidity

It is well established that the existence of charge or
implies superfluidity of vortices and vice versa.11 We shall
follow this notion here and estimate the growth of char
order in terms of the superfluidity of vortices. We mention
in Sec. II D that the vortices and antivortices move in t
presence of adynamicalgauge field and argued that becau
of the latter there are retardation effects which deplete
~vortex! Bose condensate. As a result, the vortices and a
vortices do not necessarily condense into a superfluid sta
soon as they unbind. This physics of suppression of B
condensation as a result of gauge field fluctuations is not
but has been explored substantially in the context of s
charge separation theories in highTc superconductors.31,23

The discussion here is very similar in spirit to that piece
work.

To estimate the strength of the parameters where vo
superfluidity is destroyed, we follow the self-consistent fun
tional approach of Ioffeet al.23 They did the calculation for a
very similar piece of physics, i.e., how the coupling to
gauge field can kill superfluidity in a bosonic system~with
logarithmic interaction! as a result of broken Galilean invar
ance stemming from retardation effects. We refer the rea
to that paper for a full description of this technique. A sho
discussion of this is given in Appendix D. We can follo
their approach here, simply because the lattice action and
continuum action have identical structure in the low fr
quency long wavelength limit, as discussed in Appendix
To do this, we first replace the two component plasma b
one component plasma, i.e., charges~vortices! of one flavor
moving in the background of fixed neutralizing charges
the other flavor. This approximation is very standard a
captures the salient features of the problem, until and un
the plasma is extremely dense.32 Then, the results of Sec. V
in Ref. 23 can be directly carried over here with the iden
fication of the Coulomb interaction parameterac and trans-
verse gauge field coupling constantag as30 ~Appendix D!

ac5~p2/2!v1 /~v018v1!2,

ag5~1/pnv!@11~v0/8v1!#, ~18!

wherenv5average vortex density andv i5(Vi /J),(i 50,1).
Since what counts in the destruction of vortex superfluid
are the free vortices~and antivortices!, we take nv;nf ,
which goes inversely as the square of the correlation len
j1 which diverges at the SC-BM boundary from the B
side. Thus, from Eq.~17!, nf;@ b̄0(V018V1)/J21#2n, (b̄0

51/b̃0) with n;2/3, since this phase boundary has the ch
acter of (211) D XY model. Also, if we are above the
phase boundary of Eq.~17! ~see Fig. 1!, we havea!1 as in
Ref. 23, wherea5Aac. Since as we shall note below tha
the transition from SF to non-SF state takes place at a s
value ofa, this assumption of smalla is self-consistent.

Let us first consider the simple case when we are sligh
above the phase boundary~16! and along theV1 axis ~see
Fig. 1!, so thatV050,V1;2.1J. Then, we have,a.0.2 and
ag@1; the calculation of Ref. 23, in that case, suggests
are in the disordered BM phase. Thus, there is at least a s
region close to the phase boundary~17!, where the system is
metallic.
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PRB 60 1267EXISTENCE OF A BOSE METAL ATT50
We now complete the calculation of phase boundary
BM-BI transition, following Ref. 23. Since 0,nv,1, from
Eq. ~18!, ag.0.32. From Fig. 7 of Ref. 23, one can see th
in this regime, the phase boundary tends to saturate aa
5acr.0.08. Actually, for larger values ofag , acr is a little
less; but, the point is thatacr is always finite, however smal
it be, for large values ofag . That is, the vortices alway
form a superfluid for small enougha. A physical way of
seeing why there is always superfluidity for small enou
Coulomb repulsion is as follows. The strength of the Co
lomb repulsion is controlled by the effective chargeg ~see
Appendix D!, which also controls the strength of the co
pling between the particles~vortices! and the transverse
gauge field. So, when the magnitude of Coulomb repulsio
small,g is small, and hence, the coupling with the transve
gauge field is small as well. As a result, the particles do
feel the effect of retardation strongly enough in this limit a
condense into a superfluid phase. Thus, the vortices are
superfluid state whena,acr , which means

1

~8V1 /J!
@~V0 /J!1~8V1 /J!#2.c0 , ~19!

wherec054(p/8acr)
2.96 for acr.0.08. This calculation

implies a jump in the~vortex! superfluid density at this phas
boundary.23 This means that the phase transition is either
first order or has a KT character. More calculations are n
essary to resolve this point.

We display a schematic phase diagram determined
Eqs.~17! and~19! in Fig. 1. Equation~17! is represented by
the curveLXM and Eq.~19! by ZYX. They seem to meet a
a tricritical point X. Since the retardation effects are ve
strong in this model~meaning that the value ofacr is small!,
the constantc0 in Eq. ~19! is roughly an order of magnitud
larger than the constantb0̃ appearing in Eq.~17!; and hence
we expect that this crossing between the two curves
always occur, implying the existence of the Bose metal~see
Sec. VI as well!. The various phases determined by the
equations are as marked in Fig. 1 when the zero point mo
of the Cooper pairs is large, the system is superconduc
~regionLXMO); when the interactions dominate, the syste

FIG. 1. A schematic phase diagram for model~1!. The various
phases are demarcated by solid boundaries.X denotes the multicriti-
cal point. The dashed lines (OA,OB,OC) denote typical trajecto-
ries executed as the normal resistanceRn of a superconducting film
is tuned. Please see the text for details.
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is charge ordered and insulating as a result we call it a B
insulator~BI!; and in the intermediate region, the system
disordered and, hence, metallic~please see Sec. IV below!
the BM phase~regionZYXL).

What one sees on the phase diagram of Fig. 1 is that
metallic phase is more prominent towards theV1 axis rather
than theV0 axis. Further, from Eq.~1! we note that theV1
term contains both on-site and nearest neighbor repul
energies. This shows that the Bose metallic phase is to
expected in cases where these energy scales are ofcompa-
rable order of magnitude, a situation well represented by
granular superconductors.7

We can provide a physical explanation in the charge p
ture as to why the metallic phase opens up along theV1 axis:
let us focus on Eq.~1! and say that superconductivity i
already quenched. First consider the caseV0 large andV1
small, so that we are along~or, close to! theV0 axis. Naively,
one would expect from theV1 term thatdni1dni 1a; large.
But, this costs a large energy from theV0 term. As a result,
what is favored isdni.0, i.e., ni.n0, a ~rather trivial!
charge ordered state. Now, consider the opposite caseV1
fairly large andV0 small, so that we are close to~or, along!
the V1 axis. SinceV1 is appreciable, Eq.~1! suggestsdni
1dni 1a.0. A nontrivial configuration may bedni
52dni 1a51, for somei ’s and zero otherwise. This stat
represents an RVB-like state of fluctuating charge~particle-
hole! dipoles, the equivalent of spin singlets here~please see
Sec. V for more on this point!. V0 being small, the
V0( i(dni)

2 term does not cost much energy for this kind
state. This is the disordered BM phase. WhenV1 is increased
further, the dipoles freeze into a charge ordered solid. Th
very crudely speaking, the smallness ofV0 is a source of
frustration in this model for finiteV1.

SinceJ is inversely proportional to the normal resistan
Rn @Eq. ~3!#, as the normal resistance of a thin film is tun
in an experiment we gradually cross from superconducting
nonsuperconducting regions according to the phase diag
of Fig. 1. Some such typical traces are shown in the figure
the dashed linesOA, OXB, andOC. TracesOXB andOC
represent a superconductor-insulator transition, a case w
has been discussed very widely in the literature.3 On the
other hand, the traceOA represents a superconductor-met
insulator transition. In this part of the phase diagram,
retardation effects are very strong and the system pa
through an intermediate disordered phase. This is a new
diction made by our analysis. Model~1! which leads to this
is good for superconductor-insulator-superconductor ju
tions.

IV. RESISTIVITY OF THE METALLIC PHASE

The discussion in the previous section suggests that
appropriate model for the Bose metal phase is that of unc
densed bosons~vortices and antivortices! in a transverse
gauge field. In the frustrated BM phase, the vortices are
bound, but they fail to bose condense due to retardation
equivalently dissipative, effects. As a result, the system
hibits metallic behavior. This section is devoted to making
simplest possible estimate of the resistivity of this meta
phase. We shall evaluate the resistivity of the charge bos
rc in terms of the conductivitysv of the dual variables, viz.
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1268 PRB 60D. DAS AND S. DONIACH
the vortices. The relation between the two is given by9 ~we
mention the factor ofh explicitly in this formula!

rc5~h/4e2!sv . ~20!

Also, sv is given by the Drude formulasv5nv ft tr /mv ,
where t tr refers to the transport time andnv f is the free
vortex density. There are three contributions to the cond
tivity of the vortices —~i! dissipation due to the action of
heat bath~coming from the trasverse modes!, ~ii ! scattering
from impurities, and~iii ! Bardeen-Stephen processes. In t
part, we shall focus on the contribution from process~i!. We
give here a short description of how this dissipation mec
nism comes about in this BM phase. As one enters this ph
from the SC phase, say~following curve A in Fig. 1, for
example!, the vortices and antivortices unbind in 2D. The
unbound charges screen each other leading to a finite sc
ing length, i.e., a gap in the longitudinal part of the gau
field. However, the transverse part of the gauge field is g
less, because there is no spontaneous symmetry brea
These transverse modes have their source in quantum
tuations and mediate the dissipation process. They repre
the plasmons.~Physically, this makes sense, since the pl
mons are gapless in 2D.! The physics is essentially that o
damping which results when a charge~vortex! moves
through a background of other charged particles. This len
hydrodynamical character to this dissipation mechanism
Sec. II D, we saw that the most important modes arev
!csk. So, we shall consider contributions from these mo
only. The leading order contribution, then, comes from
v50,k5finite modes, and we make an estimate from t
sector only. We think the higher order contributions will le
to simple renormalization of coefficients. Thus, we are led
evaluate the resistivity of a set of uncondensed bosons m
ing in a static random~but, annealed! gauge field, with a
variance

^H~q!H~2q!&51/2cs
2ln~2/JDt!

as seen from Eq.~15!, whereH5¹W 3AW . Now, also in this
delocalized phase, the interactions between the vortices
screened~by antivortices! and, in a lowest order approxima
tion, we shall treat them as noninteracting bosons. Thus,
transport time is the same as that of a noninteracting par
scattering from a random magnetic field, which is given b33

t tr5
mv

p2
2~V018V1!Dt,

where we have used the above field distribution and the
rameters as enumerated following Eq.~13!. The lattice con-
stant in the time direction,Dt;1/D0.34 Thus, we have

rc;
2

p2
RQ~nv fj0

2!~V018V1!/D0 , ~21!

whereRQ5h/4e256.45KV. The quantitynv fj0
2 is inversely

proportional to the square of the superconducting cohere
length which diverges at the SC-BM phase boundary,
nv fj0

2;(j0 /j1)2;@(V018V1)/b̃0J21#2n, obtained from
Eq. ~17!. Using Eq.~3!, we can rewrite this as
c-
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nv fj0
2;S Rn

Rc
21D 2n

, ~22!

whereRc5b̃0RQ /@(V018V1)/D0# is the critical resistance
of the film where the metallic phase sets in andn
5correlation length exponent. The exponentn is dependent
on the particular universality class of SC-BM phase tran
tion. For our case, the SC-BM phase boundary has the c
acter of a (211) D XY model and, hence,n.2/3. How-
ever, a real material, like the low-Tc thin film systems, is
heavily disordered andn will certainly be very different from
this, as we shall see below. So, from Eq.~21!, we have

Rh /RQ;b̃0@~Rn /Rc!21#2n~RQ /Rc!. ~23!

The case when disorder is present.The foregoing discussion
can be readily generalized to the case when disorde
present. Owing to the Drude formula, the structure of E
~21! is not unique to model~1! but will come about when the
bosons form a metallic phase as a result of phase fluctuat
~in zero magnetic field!, i.e.,

Rh;2RQ~nv fj0
2!mD , ~24!

wheremD represents the vortex mobility, or the friction fac
tor, arising from the dissipation of vortices and is mod
dependent.35 For the pure case discussed above, the damp
is due to the transverse modes andmD'(V018V1)/p2D0.
When the normal resistance is tuned throughRc , as we saw
above for the pure case, the most important dependenc
BM resistivity in the formula~24! comes from the free vor-
tex densitynv fj0

2, i.e.,

nv fj0
2;S Rn

Rc
21D 2n

,

where the critical exponentn characterizing the SC-BM
phase transition depends on the particular universality c
being considered. As compared to this, the dissipation fa
mD , in general being dependent on the morphological a
normal properties of the film, is only weakly dependent
the normal resistivity aboutRc .35 Thus, in general,

Rh;RQ@~Rn /Rc!21#2n. ~25!

For the case of Ref. 5,Rc;RQ . As Rn is tuned in such an
experiment, one executes a typical trajectory A on the ph
diagram of Fig. 1. The phase which exists in a real mate
like gallium and is not captured by a pure model like mod
~1! is the Bose glass~BG! phase. So, instead of SC-BM-B
scenario along A, one would probably have a SC-B
BG~-BI! scenario. Either way, in the BM phase, because
formula ~25! the resistivity of this metal increases contin
ously from zero through a wide spectrum of values asRn is
tuned throughRc , as is seen in the experiments.5,6 We dis-
play the low temperature metallic resistivity from Ref.
@Fig. 2 of this reference# as a function ofRn in Fig. 2 and
observe the remarkable fit to the formula~25! with n.2.
This clearly points out that the low temperature meta
phase observed in Ref. 5 was, in all probability, due to
incoherent motion of the Cooper pairs. The aforemention
value of the correlation exponent is consistent with the
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PRB 60 1269EXISTENCE OF A BOSE METAL ATT50
tion that Ga films were highly disordered samples36 and the
Chayes theorem37 along with it.

V. HOW NEW IS THIS STATE OF MATTER?

The question now arises whether the Bose metal
cussed in the previous sections is actually an adiabatic
tinuation of some known state of matter or if it is complete
new. In this section, we argue that this state is actuall
mathematical variant of a quantum disordered spin liq
with large spin and that it is a liquid of nonfermionic variety

To show this, we first note that the algebra which contr
the quantum mechanics of our problem isE2, as discussed in
Sec. II. Now,E2 is a group contraction of SO(3),18 i.e., as
the radiusR of the sphere on which SO(3) operations a
defined tends to infinity, SO(3) contracts toE2, viz. Jx /R
→2Py ,Jy /R→Px ,Jz→L, where the operatorsL andP are
as defined in Eq.~5!. And, in the same limit, i.e., as th
SO(3) angular momentum quantum numberj 5pR→`,
wherep refers to the linear momentum quantum number
E2, the irreducible representations of SO(3) map onto th
of E2. Thus, the model~1! is a variation of a quantum spi
model and the Bose metal obtained here, which is a quan
disordered phase, may be thought of as analogous to
frustrated spin liquids obtained within such a model in t
limit of spin becoming large.38

A more intriguing question is the issue of how consiste
the existence of a disordered phase as that of a Bose me
T50 is with the third law of thermodynamics. To this en
we calculate the low temperature specific heat of the m
under the same approximation as in Sec. IV, i.e., nonin
acting uncondensed bosons~vortices! moving in a transverse
gauge field. The longitudinal part of the gauge field
gapped because of the screening effects and hence do
contribute significantly to the specific heat.39 However, the
transverse gauge field representing the quantum fluctua
associated with the transverse modes are gapless in this
tallic phase23 and, hence, make a dominant contribution
the specific heat. The calculation for uncondensed bos

FIG. 2. The resistivity of the metallic phase as a function ofRn

in Ga film experiment~Ref. 5! ~the diamonds are the data poin
from Fig. 2 of this reference! and the best fit of Eq.~25! ~the dashed
curve!. ~We have not displayed those points of Fig. 2 in Ref.
which are in the insulating regime and, expectedly, deviate from
best fit shown here.!
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interacting with a transverse gauge field40,33 is analogous to
the fermionic case for which an extensive literature exist39

Following Reizer,39 we find at low temperatures~Appendix
E!

C;ApT2/3 ~pure!

;AdTln~T0 /T! ~with disorder!. ~26!

This anomalous behavior originates sheerly from the f
that the transverse gauge field undergoes dynamical scr
ing, which leads to the presence of diffusive modesv
;2 iqn, wheren52 ~disordered! or 3 ~pure!. The coeffi-
cient Ap scales asAp;nf

2/3, Ad as Ad;nf , and T0 as T0

;1/nf , wherenf refers to the free vortex density~Appendix
E!. This displays the non-Fermi liquid behavior of the Bo
metal phase and verifies that there is no consistency prob
with the third law. Clearly, the BM phase has more entro
than a normal fermi liquid at low temperatures.

The foregoing temperature variation of the specific h
shows that there are weak singularities atT50 in the metal-
lic state. Thus, the BM state has the character of acritical
point asT→0. This requires further study since the coef
cients which enter the specific heat calculation would u
dergo strong renormalization and the actual temperature
pendence may be somewhat different. These arguments
suggest that there is no good length scale in the quan
liquid phase atT50. This can be seen by calculating th
charge charge correlation function. Using Eqs.~A4! @or,
equivalently Eqs.~B2!# and ~E3!, we obtained

^dnq,vdn2q,2v&'
q2

2 i ã
v

q
1b̃q2

, ~27!

where the coefficientsã and b̃ may be read off from Eq.
~E3!. Thus, the excitation spectrum of the charge fluctuatio
is gapless and diffusive. As we pointed out in Sec. II
because of the algebra of phase fluctuations, this does
contradict the fact that there is a length scale associated
superfluidity viz. the superfluid correlation lengthj1 tied to
the free vortex densitynf . Thus, the BM phase is analogou
to a gapless quantum spin liquid, very much like an RV
state.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have argued that the superconduc
insulator transition in low-Tc superconductors should b
viewed as atwo order parameter problem and observed t
it is described by two coupledXY models in~211!D in the
charge picture. This change from a single~211!D XYmodel,
as conventionally thought, is tied to the inclusion of an a
propriate vortex mass term in the vortex picture or nonlo
interactions in the charge picture. This leads to the inter
ing possibility of a novel disordered Bose metal pha
distinct from the traditional superconductor and Bose insu
tor phases. On the basis of our analysis of the model,
expect a superconductor-insulator transition whenVon-site
@VNN (NN5nearest neighbor!, a case close to that of th
Josephson junction arrays~with Bext50), and a
superconductor-metal-insulator transition whenVon-site

e
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1270 PRB 60D. DAS AND S. DONIACH
;VNN , a situation close to that of the granular superco
ductors @it may be helpful to note thatVi;(2e)2/Ci ,Ci

5capacitance#.7 The physics of the problem seems to
controlled by a multicritical point. We find the properties
the Bose metal to be critical. It is inherently connected to
quantum spin liquid states and is strongly reminiscient of
gapless RVB phase. The resistivity of this metallic pha
predicted by our calculations finds an excellent match w
the experiments on gallium films.5 Dissipation in the bosonic
system at low temperatures, within our model, is hydro
namical: it comes from the fact that a moving charge~vor-
tex! dissipates as it moves through a background of char
particles~vortices and antivortices!. The heat is carried awa
by the gapless transverse modes representing the plasm
This source of dissipation translates into quantum fluct
tions in the charge picture.

To our knowledge, so far there has been no metallic ph
proposed in the phase diagram of the Bose localization p
lem, within the scope of any physically realizable mod
This paper is an attempt to propose this concept and esta
some of the basic principles which underlie the existence
such a phase. As a result, many of the features which are
to the current experiments have gone unaddressed. Som
these are existence of disorder, long-range 1/r interactions,
nonzero magnetic field, finite temperature effects, etc. A
in a realistic sample, an important source of heat bath
addition to the emission of transverse excitations is the e
trons in the vortex core. This needs to be incorporated
the calculation.

An important concern is whether the BM phase will su
vive in improved calculations, given that our calculatio
have been mean field like. As we saw, the experiments a
in favor of the existence of this phase. Further, as we arg
in Sec. II D, the retardation effects leading to the destruct
of vortex superfluidity and the binding of vortex-antivorte
pairs, the features corresponding to the loss of charge o
and the growth of phase order respectively, are contro
effectively by two separate parameters. Plus, as we foun
Sec. III, the constants which determine the curvesLXM and
ZYX in Fig. 1 differ by about an order of magnitude becau
of the strong retardation effects felt by the vortices in t
model. In view of these facts and the self consistent natur
the calculation, it is reasonable to think that the curveZYX
will lie above the curveLXM and intersect it at a multicriti-
cal point even if the fluctuations are taken into account,
plying a separate BM phase.47 Either way, it will be very
useful to check this via numerical simulations. An importa
issue which confronts us at the moment is what is the u
versality class of the critical phenomena associated w
model~1!? Although we have commented on this above, o
needs to perform renormalization group calculations or
merical simulations to answer this question complete
What is clear from our calculations, however, is that t
critical behavior, both atT50 andT5small but finite, im-
plies a universality class with a multicritical point which
very rich.

Given the considerable amount of work done on the Bo
Hubbard models, one might wonder why this phase was
observed in the other theoretical constructs, particularly
simulations. In view of this, we would like to mention a fe
points, in addition to the idea of two order parameters, wh
-
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distinguishes our work from the previous ones. Firstly,
have worked in the largen0 limit of the problem. Most of the
current work on this model does not treat this limit cons
tently. Also, in this limit, the algebra which determines th
quantum mechanics is qualitatively different from that of t
hard core bosons, i.e.,E2, and the chemical potentialm does
not play a significant role~as found in Sec. II B!. In the small
n0 limit, m plays a dominant role, especially in stabilizin
the commensurate Bose insulator~CBI! phase~mostly called
Mott insulator in the Bose literature!. The weakening effect
of m asn0 increases is clearly observable in the shrinking
CBI lobes withn0, evidenced by the perturbative and qua
tum Monte Carlo calculations of Ref. 41. This provides a
ditional support to the results obtained here in this appro
mation. Further, we also observed that the nearest neig
interaction plays a crucial role in opening up the meta
phase in the system. There is no such phase with just on
repulsion. This piece of physics has support from the R
flows constructed by Fisher and Grinstein.10

On the supersolid phase.It is somewhat tempting to us
Eq. ~19! to the fullest extent and extend the curveZYX be-
yond the pointX along the dotted lineXO. Equation~19! is
really not good beyond the pointX; but if we take it at face
value, it seems to suggest a regionOXM where both phase
order and charge order exist, i.e., a supersolid phase.
has some support, if we look at the action~10!. Here, as we
noted earlier, whenV1!V0 ,u i.0, implying the presence o
charge order in the system. This, however, correspond
trivial charge ordering only, viz.dni.0, i.e., ni.n0. This
phase needs to be verified by better calculations. If this ph
exists in improved calculations, the pointX would be tetra-
critical.

Before we close, we would like to make a short comme
on the Mo-Ge system,4 a situation where magnetic field i
present. As we argued in Sec II D, the physics of quant
phase fluctuations in 2D superconductors is a quantum
chanical generalization of the KT scenario. We expect this
happen when magnetic field is present as well. Let us re
lect the classical case for completeness. Here, dislocat
antidislocation pairs are induced in the vortex lattice wh
unbind as a result of thermal fluctuations.42 At low tempera-
tures, quantum effects dominate and we expect the unbin
resulting from quantum fluctuations instead. But, as poin
out in this paper, their kinetic energy should receive tw
contributions — from the zero point motion and the action
a heat bath. The metallic state is realized when the dislo
tions in the vortex lattice~more precisely, vortex glass!
phase move under the action of a heat bath. This is v
much along the lines of what had been suggested in Re
Following our discussion in Sec. V, we suggest specific h
measurements be made to spot any nonfermionic behavio
this metal-like phase. We plan to take up some of the un
solved issues mentioned in this section in a future publi
tion.
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APPENDIX A: THE DUALITY TRANSFORMATION

We start from action~9!, but with the transformationmi
→e2 iQ•r imi undone, so that

S5 i(
i

mi~¹tf i !1V0Dt(
i

mi
21V1Dt(

ia
~mi1mi 1a!2

2JDt(
ia

cos~¹af i !. ~A1!

We now use Villain transformation on theJ term. For small
values ofJDt, one has34

eJDt( iacos(¹af i ).e2 ln(2/JDt)( iania
2

1 i ( i f i (¹̄ania).

Integrating out the phase degrees of freedomf i , one obtains

Z5(
$mi %

(
$nia%

e2S,

S5 lnS 2

JDt D(
ia

nia
2 1V0Dt(

i
mi

2

1V1Dt(
ia

~mi1mi 1a!2, ~A2!

supplemented with the constraint

¹̄tmi1¹̄ania50 ~A3!

~with the summation overa implied!. Defining ni
m

5(mi ,ni
a), (m50,1,2), one obtains the constraint~A3! as

¹̄mni
m50.

This allows us to define an integer gauge fieldAi
m , via

ni
m5«mnr¹̄nAi

r . ~A4!

A purist might object to our not using the shifted lattic
operatorsAi 2 r̂

r in Eq. ~A4!.13 This does not matter for ou
case since the model involves a single gauge field. N
transforming over to the Fourier space@mi

5(1/N0)(q,veiq̃•ximq,v , with q̃5(v,qW ) and xi referring to
the i th site on the space-time lattice, withN0 the total num-
ber of lattice sites#, one obtains

Z5 (
$Ai

m%

e2S,

with

S5 lnS 2

JDt D(
q,v

@ q̂2Aq,v
0 A2q,2v

0 1G21~v,q!Aq,v
a A2q,2v

a #

~A5!

with G21(v,q) given by Eq.~12! andAq,v
m refer to the Fou-

rier transform ofAi
m . Here q̂ and v̂ refer to lattice momen-

tum and frequency respectively, andq̂25(aK̄a(q)Ka(q),
with K̄a(q)5(1/i )(12e2 iqa),Ka(q)5(1/i )(eiqa21).20

And, (q̂2Q)25(aK̄a(q2Q)Ka(q2Q) in Eq. ~12!. Equa-
tion ~14! is complete with the gauge condition,
,

¹aAi
a50. ~A6!

Now, we introduce the vortex variablesj i
m via the Poisson

summation formula13

Z5(
$ j i

m%
E DAi

me2S22p i(
i

j i
mAi

m
. ~A7!

Integrating out the gauge field degree of freedom, one
tains Eq.~11!.

APPENDIX B: CONTINUUM VERSION

The features of the vortices discussed in Sec. II D are
special to the lattice case, but exist in the continuum cas
well. This gives us a more general frame in which to stu
the model. The considerations in the continuum case s
from the action43,24

S̃5E dtd2xF ~m/2r̄ !uJW u21
1

2E d2yV~x2y!dr~x!dr~y!

12p i j̃ mAmG ~B1!

whereJW refers to the charge current anddr the charge fluc-
tuations, with the gauge fieldAm given by

Jm~x!5~dr,JW !5«mnr]nAr . ~B2!

Also, j̃ m5(rv ,JW v) refers to the vortex three current densit
m5mass of the Cooper pairs, andr̄5average Cooper pai
density. We have not written down a Magnus force term
vortices due to a background charge condensate, becaus
is not contained in the lattice model~1! discussed in the
paper. However, this may be important in a uniform syst
like Mo-Ge.44 Working in the transverse gauge¹W •AW 50, we
obtain after integrating out the gauge field

S̃52p2
r̄

m (
k,v

j̃ k,v
0 1

k2
j̃ 2k,2v
0

12p2
r̄

m (
k,v

j̃ k,v
a G̃~v,k! j̃ 2k,2v

a , ~B3!

where the Green’s functionG̃(v,k) is given by

G̃21~v,k!5v21~ r̄/m!k2Vk , ~B4!

where Vk is the Fourier transform of the potentialV(r ).
From here onwards we consider the screened Coulomb
tential with

Vk5V0a/Ak21a2.

In the limit v,k→0 andv! c̃sk ~with c̃s being the plasmon
velocity!, the Green’s function splits up into a singular pa
G̃s(v,k) andG̃0 just like in the lattice model

G̃~v,k!.G̃s~v,k!1G̃0 , ~B5!

where
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G̃s~v,k!51/~v21 c̃s
2k2!, G̃051/~2r̄V0a2/m!,

with

c̃s
25 r̄V0 /m.

Thus, from Eqs.~B3! and ~B5!, we obtain

S̃52p2
r̄

m (
k,v

j̃ k,v
0 1

k2
j̃ 2k,2v
0 12p2

r̄

m

3(
k,v

j̃ k,v
a @G̃s~v,k!1G̃0# j̃ 2k,2v

a . ~B6!

Thus, comparing Eqs.~B6! and ~14!, we see that the lattice
and continuum actions of phase fluctuations, within
scope of our model, have identical low frequency and lo
wavelength limits.

Correspondence between the lattice version and the
tinuum version is established via the following identific
tions:

m/ r̄↔2ln~2/JDt!, ~B7!

c̃s
25 r̄V0 /m↔cs

25~V018V1!Dt/ ln~2/JDt!, ~B8!

G̃051/~2r̄V0a2/m!↔G05b2/8~b21c2!2. ~B9!

Following Ref. 43, one can easily show that Eq.~B3! is
equivalent to the following Hamiltonian for the vortices:

H̃v5
1

2mv
(

i
„pW i12pqiAW ~xi !…

212p2
r̄

m (
iÞ j

qiqj lnur i2r j u,

~B10!

where the summation is over all vortices and antivortices
the gauge fieldAW has the spectrum determined byG̃s

21(v,k)
as in Eq.~15!. Here qi561 refers to the charges on th
vortices. Heremv refers to the vortex mass.

APPENDIX C: AN ESTIMATE OF G„0…

From Sec. III A, we have

G~0!5
1

2E2p

p dv

2pE2p

p d2q

~2p!2

1

~12cosv!1A2
, ~C1!

where

A25@22~cosqx1cosqy!#@k0
212k1

2$21cosqx1cosqy%#,
~C2!

with

k0
25c2 and k1

25b2/8,

whereb2 andc2 have been introduced in Sec. II D.
From Eq.~C1!, we obtain

G~0!5
1

2E2p

p d2q

~2p!2
F~q!, ~C3!

with
e
g

n-

d

F~q!5
1

AA2~21A2!
. ~C4!

Important contributions to Eq.~C3! come from the low mo-
mentum region. Thus,

F~q!.1/A2~k0
218k1

2!A22~cosqx1cosqy! . ~C5!

Combining Eqs.~C3! and ~C5!, we are led to the condition
~17!, with

b05E
0

p/2 d2x

Asin2x1sin2y
. ~C6!

APPENDIX D: SELF-CONSISTENT FUNCTIONAL
APPROACH

In this appendix, we give a brief review of the sel
consistent functional approach45 discussed by Ioffeet al.23

This is essentially a hydrodynamical kind of approach. W
start with the following electromagnetic Lagrangian
bosons in imaginary time~in 22d):

LB5LB
01L̃B1LB

a . ~D1!

Here

LB
05c*

]c

]t
1

1

2m
u¹W cu21

g2

2
r~r !lnur 2r 8ur~r 8!2mucu2,

~D2a!

L̃B52
i

2m
aW •@c¹W c* 2c* ¹W c#1

1

2m
aW 2ucu2, ~D2b!

LB
a5

1

2g2
@~]taW !21c2~¹W 3aW !2#, ~D2c!

wherec,c* refer to the Bose fields andr5c* c. We work
in the transverse gauge¹W •aW 50. The dimensionless couplin
constants determining the strength of the Coulomb repuls
and transverse gauge field, viz.ac andag , respectively, are
defined as

ac5
g2m

16p2n
, ag5

g2

8pmc2
, ~D3!

wheren is the average density of bosons. Comparison of
~D2! with Eq. ~15! allows us to identify

g2↔2p2/ln~2/JDt!, c2↔cs
2 ,

and

m/2n↔p2G0 /ln~2/JDt!. ~D4!

The last identification also follows from the fact that th
weight of the zero point motion termu jWu2 is m/2n. Using
Eqs.~D3! and ~D4!, we are led to Eqs.~18!.30

The calculation of the depletion of the Bose condens
from the action~D2! proceeds in two steps. The first involve
determining the effective functional of the superfluid Bo
system in the absence of a transverse gauge field. And
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second involves determining the effect of the gauge field
this system, i.e., calculating the change in the superfluid d
sity.

The effective functional of the superfluid Bose syste
~with aW 50) is obtained by expanding the Bose field in term
of the slow and fast modes, and integrating out the f
modes.45 Galilean invariance of this system dictatesns5n.26

The leading terms in the effective action are~for small values
of a)

S05E d2xdtF n

2m
u¹W fu22 ip]tf1

1

8mn
u¹W pu2G

1
g2

2 (
q,v

pq,v

1

q2
p2q,2v , ~D5!

wheref andr(x,t)5n1p(x,t) are the phase and the am
plitude of the slow modec05Ar(x,t)eif(x,t). We now
work in the real time and integrate out the phase variab
This leads to an action solely in terms of the density fluct
tion variablesp

expS ( i /2)E d3xd3x8p~x!C21~x2x8!p~x8! D ,

where

C~v,q!5
nq2/m

v22~q2/2m!22ng2/m1 id
~D6!

andd3x5d2xdt.
To calculate the change of the superfluid densityns5n

due to the action of the transverse gauge field, we focus
the diamagnetic term in Eq.~D2b!

2
1

2m
aW 2c0* c052

1

2m
aW 2~n1p!. ~D7!

The weight of theaW 2 term determines the superfluid densit
One now integrates out thep-degrees of freedom. The cou
pling term in Eq.~D7! leads to anaW 22aW 2 interaction term.
One then~a! decouples this term in a mean field approxim
tion and~b! rewrites the gauge field in terms of fast and slo
modes,a1 and a0, and integrates out the fast modes. T
weight of thea0

2 term then gives the self-consistent equati
for the superfluid densityns ,

ns5n1
i

mE d3xC~x!D~x!, ~D8!

whereD(x) is the gauge field correlator

D~v,q!5
g2

v22~c2q21nsg
2/m!1 id

. ~D9!

Equation~D8! leads to the phase diagram ina2ag plane,
mentioned in Sec. III B.

APPENDIX E: SPECIFIC HEAT CALCULATION

To calculate the specific heat, we consider the Lagrang
~D2! without the log interaction, which is screened in t
n
n-

st

s.
-

n

-

n

metallic phase. Connection with the original model is est
lished via the mapping~D4!.30 We first rescale the transvers
gauge fieldaW→gaW so that the effective chargeg appears in
the Eq.~D2b! rather than Eq.~D2c!. Thus, the unperturbed
gauge propagator is

Dab
0 ~q,vn!5Kab~q!

1

vn
21c2q2

, ~E1!

where vn52pnT(n5 integer) are Matsubara frequencie
and

Kab~q!5dab2
qaqb

q2
.

To obtain the contribution of specific heat from the tran
verse modes, one integrates out the particle degrees of
dom in a one-loop approximation.39 This leads to the re-
tarded polarization function

Pab
(R)~q,V!52Kab~q!g2F2 i

2n

m

V

vBq
1c2xDq2G ,

~E2!

where xD5nB(2m)/24pmc2 and mvB
2/25umBu, with

nB(j)51/(ebj21). The structure of Eq.~E2! is quite inde-
pendent of the statistics because the integrals which ente
calculation are of the form*2m

` djn(j) and*2m
` dj(]n/]j).

The renormalized gauge propagator is then given by Dyso
equation

D5D01D0PD.

In the quasistatic approximationV!cq, we have the re-
tarded gauge propagator as

Dab
(R)~q,V!5Kab~q!F1YS 2 i

2ng2

m

V

vBq
1 c̄2q2D G ,

~E3!

where c̄25c2(11g2xD). Integrating out the gauge field
leads to the free energy

bF52
1

2
Trln D~q,vn!. ~E4!

The specific heat is obtained fromC5T]S/]T. The details
of the calculation may be found in Ref. 39. For the diso
dered case, the Green’s function is written asG(p,vn)
51/@ ivn2jp1 i /2tsgn(vn)#, with t the scattering time for
the vortices from the impurities~which appear as a stati
gauge field in the vortex picture!.24 In this case, the factor
1/vBq appearing in the frequency term in Eqs.~E2! and~E3!
gets replaced by 2t. The coefficientsAp , Ad andT0 in Eq.
~26! are approximately given by

Ap'~2ng2/mvBc̄2!2/3/p,

Ad'ng2t/p2mc̄2,

T0'q̄c
2mc̄2/4ng2t, ~E5!
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whereq̄c denotes an upper momentum cutoff;1/j0, with j0

the Cooper pair size.

APPENDIX F: COMMUTATION RULE „6c…

In this appendix, we discuss how the commutation r
~6c! comes about. From commutators~6a! and ~6b!, we ob-
serve thatP and P† are ladder operators. Hence, in the a
gular momentum representation (LuVm&5muVm&),17,18
s.

ys

n

e

er

yi

y

.

v-

-

y

e

-

P5 i (
2$n0%11

`

uVm21&^Vmu' i(
2`

`

uVm21&^Vmu, ~F1!

P†52 i (
2$n0%

`

uVm11&^Vmu'2 i(
2`

`

uVm11&^Vmu,

~F2!

where$n0%5n0 for integern0, and the floor or ceiling ofn0
~appropriately taken! otherwise. The approximate expre
sions written on the right hold only whenn0@1.
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