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Self-consistent decay of superfluid turbulence

Carlo F. Barenghi* and David C. Samuels†
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~Received 23 February 1999!

Recent experiments have shown that the isothermal turbulent motion of helium II is very similar to classical
turbulence. This regime is characterized by a strong coupling between the superfluid vortex tangle and the
normal-fluid component. To study this coupled regime we develop an approach to compute the evolution of the
vortex tangle. Its key feature is that it isdynamically self-consistent, unlike previous approaches, because it
takes into account the back rection of the vortex tangle onto the normal fluid. We implement this approach and
study a model system which, although very idealized, gives some insight into the transfer of energy between
the two fluid components.@S0163-1829~99!00526-3#
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I. BACKGROUND

The evidence from some recent experiments is that
turbulent motion of liquid helium II can be described we
using the same rules of turbulence as in a classical fl
~such as water, air, or helium I!. These experiments includ
measurements of mass flow rates and pressure grad
along pipes,1 measurements of the circulation of large sc
turbulent vortex rings,2 visualization of turbulent Couette
flow,3 measurements of the decay of vorticity in turbulen
generated by towing a grid,4–6 and measurements of energ
power spectra in turbulence continuously excited by rotat
blades.7

These results are at first surprising because helium II
quantum fluid, and, at least at small velocities, usually
haves in a way which is very different from a classic
Navier-Stokes fluid. The difference arises from the existe
in helium II of two separate but copenetrating fluid comp
nents: the superfluid~with densityrs and zero viscosity! and
the normal fluid~with densityrn and finite viscositym!. The
relative proportion of normal-fluid density and superflu
density to the total density of helium IIr5rs1rn is deter-
mined by the temperatureT. At absolute zero helium II is
entirely superfluid (rn /r50, rs /r51); increasingT in-
creasesrn , until the lambda transition is reached atT5Tl

52.172 K, and helium II becomes entirely normal (rn /r
51, rs /r50). This two-fluid theory explains well man
nonclassical flow phenomena which occur in helium II, su
as second sound, thermal counterflow, and superleaks
well as their strong temperature dependence.

Unlike the laminar flows traditionally studied by the two
fluid theory, the experiments of Refs. 1–7 consider flo
which must be very turbulent. A convenient measure of
turbulence intensity is provided by the Reynolds numbeR
5UL/n, whereU andL are speed and length scales andn
5m/r is the kinematic viscosity. Typically we haveR
'106 for the pipe flow experiments,1 R'104 for the vortex
ring experiments,2 andR'105 for the towed grid4,5,6 and the
rotating blade experiments.7 Now we know that if helium’s
speed exceeds a small critical value a large number of q
tized vortex filaments appear in the superfluid and form
dense, disordered tangle. The vortex filaments scatter8 the
thermal excitations~phonons and rotons! which make up the
PRB 600163-1829/99/60~2!/1252~9!/$15.00
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normal fluid, and thus introduce a mutual friction forc9

which couples the normal fluid and the superfluid. The a
parent classical behavior of helium II when turbulent mu
therefore be associated with the vortex filaments. The exp
ments indicate that the mutual friction coupling can be
strong that the normal fluid and the superfluid lock togeth
yielding effectively a single fluid of densityr, a phenomenon
referred to asvortex coupled superfluidity.10 A striking fea-
ture of the phenomenon is its temperature independe
which is unusual when studying helium II flows. For e
ample the measurements of vorticity decay4–6 and of the en-
ergy spectra7 give the same result in the observed ran
1.4 K,T,Tl . Note that at temperatures as low as 1.4
there is too little normal fluid left (rn /r57.5%) to make
that fluid component solely responsible for the observ
classical behavior.

Besides being interesting physicsper se, vortex coupled
superfluidity opens the possibility of using helium II to stud
issues of classical turbulence: an example is the recent w
of Stalp, Skrbek, and Donnelly6 to model spectra of decayin
turbulence from data taken in helium II. There may also
the possibility of developing new instrumentation to meas
turbulent vorticity using the second-sound technique.

II. THE KINEMATIC APPROACH TO TURBULENCE

On the theoretical side very little is known about hig
Reynolds numbers helium II flows and one must still co
centrate on understanding the basic physical mechanism
volved. So far the most fruitful approach to study the beh
ior of the superfluid vortex tangle was pioneered
Schwarz.11 He showed that if a vortex filament is specified
parametric forms5s(j,t) wherej is arclength andt is time,
then the velocity of a given points of the filament depends
on imposed superflowvs and normal flowvn in the following
way:

ds

dt
5vs1vi1as83~vn2vs2vi !. ~1!

Here a prime denotes derivatives with respect to arclengtB
is a known9 temperature-dependent coefficient which d
scribes the friction between the vortex filaments and the n
1252 ©1999 The American Physical Society
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PRB 60 1253SELF-CONSISTENT DECAY OF SUPERFLUID TURBULENCE
mal fluid, anda5rnB/(2r). In writing Eq. ~1! the small
transverse part of the friction force has been neglected
simplicity. The quantityvi is the velocity which the vortex
filament induces onto itself because of its own curvature,
is determined by the Biot-Savart integral

vi~s!5
k

4p E
L

~z2s!3dz

uz2su3 , ~2!

where k59.9731024 cm2/s is the quantum of circulation
and the integral extends over the entire vortex configura
L. Schwarz’s approach consists in discretizing an initial v
tex configuration into a numberN of points and then using
Eqs.~1! and~2! to move each individual point. The comput
code must allow for a variable time step and a variableN;
more points and better temporal resolution are necessar
during the time evolution, a region of tight curvature appe
along a vortex line. The code must also allow for vort
reconnections12 which take place when two vortex filamen
get very close to each other.

The practical limitation of Schwarz’s approach aris
from the calculation of the Biot-Savart integral~2!, an opera-
tion which increases quadratically with the number of poin
Schwarz’s remedy was to use the local induction approxim
tion to the exact Biot-Savart law, which is

vi~s!5
k

4pR
lnS R

a0
Db. ~3!

Here R is the local radius of curvature,a0'1028 cm is the
vortex core parameter~the region from the center of the vo
tex over which the amplitude of the quantum-mechani
wave function drops from its bulk value to zero!, andb is the
local unit vector in the binormal directions83s9. The calcu-
lation of vi using Eq.~3! grows only linearly with withN,
which makes it possible to study intense vortex tang
which contain a very large number of points. The use of
~3! is, however, delicate. The vortex tangles studied
Schwarz arise from turbulent heat flows and they are ch
acterized by being rather homogeneous and almost isotro
this implies that long-range effects tend to cancel out e
other, and in fact Schwarz found that the use of Eq.~3! in
place of Eq.~2! is a fair approximation in the problems o
conterflow turbulence which he studied. In general, howev
long-range effects are important, and the use of Eq.~3! can
give misleading results, as we have discovered recently
study of the evolution of knotted vortex structures.13 This is
why hereafter we choose to use the exact Biot-Savart
~2!, and restrict ourselves to the study of low-density vor
tangles.

Schwarz’s vortex dynamics approach to the turbule
problem was followed up by Samuels,14 Aarts and
DeWaele,15 and Penz, Aarts, and deWaele16 among others,17

and the technique to perform the calculation, which h
rather subtle aspects—such as the desingularization of
~2!—is now standard.

III. DIFFICULTIES OF THE KINEMATIC APPROACH

The drawback of Schwarz’s vortex dynamics approach
that it is essentiallykinematicin character: the driving fields
vn and vs are imposed at the beginning of the numeric
or
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calculation and never change. This limitation is present in
work published until now. For example, when studyin
counterflow turbulence, Schwarz setvn2vs equal to a con-
stant, proportional to the driving heat flux. Choices ofvn
used in the literature range from uniform flows11 in periodic
boxes or channels, Poiseuille flows,15 a single vortex tube,16

and ABC flows.18 In each case the shape of the profile ofvn
was fixed.

The difficulty of kinematic models becomes appare
since the normal fluid is viscous, when flows with boun
aries are studied, such as channel flows. On one hand it
be argued thatvn should have a parabolic Poiseuille profi
to satisfy the no-slip boundary conditions at the wall; on t
other hand one can also argue that the parabolic profile
so flattened by the friction with the superfluid vortex tang
that a uniform profile may be a better choice. Aarts a
deWaele15 tested both these profiles and, not too surpr
ingly, they found that the vortex tangle looks very different
vn is parabolic rather than uniform.

The same difficulty appears when one tries to determ
the normal fluid as a function of a fixed tangle rather th
vice versa. This was attempted by Melotte and Bareng19

who studied the linear stability ofvn under the forcing of an
imposed homogeneous and isotropic vortex tangle. Their
culation showed that if the vortex tangle exceeds a criti
density the Poiseuille profile becomes unstable and poss
turbulent, a transition which would clearly change the vort
tangle itself.

IV. THE SELF-CONSISTENT APPROACH
TO TURBULENCE

The aim of this paper is to overcome the difficulty of th
kinematic approach. We propose a dynamicallyself-
consistentapproach which takes into account the back re
tion of the vortex tangle onto the normal fluid. The ide
consists in letting the normal fluid evolve alongside t
tangle of superfluid vortex lines, according to its own equ
tion of motion. In this way the vortex tangle and the norm
fluid profile determine each other in a dynamically se
consistent fashion. For example, in the channel flow prob
studied by Aarts and DeWaele, the calculation would star
usual with few superfluid vortex lines to act as seed, wh
the normal fluid would be initially in the correct parabol
profile to satisfy the boundary conditions; as the vort
tangle develops, the back reaction of the tangle ontovn via
friction would increase, changing the parabolic profile ofvn .
In this way, if the friction is large enough,vn may become
distorted, flattened, or even turbulent, as argued by Mel
and Barenghi19 in the context of heat transfer flow.

To implement this approach we consider the equation
the normal fluid, which we assume isothermal and inco
pressible for simplicity. Neglecting any externally applie
superfluid potential flow, this equation is the Navier-Stok
equation modified by the introduction of the friction force

rn

]vn

]t
1rn~vn•¹!vn52

rn

r
¹P1m¹2vn1F, ~4!

whereP is the pressure. Equation~4! must be solved togethe
with the continuity equation
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1254 PRB 60CARLO F. BARENGHI AND DAVID C. SAMUELS
¹•vn50. ~5!

The friction force per unit volume at a given point is11,14

F5
kBrnrs

2r

1

V E
L
s83@s83~vn2vs2vi !#dj, ~6!

where the integration is performed over the vortex lines
the volumeV around that particular point. Note that un
now the calculation of the friction~6! has been attempted fo
diagnostic reasons only, in the context of kinematic mod

The self-consistent approach consists therefore in solv
Eqs. ~1! and ~2!—which determine the tangle for a give
normal fluid—together with Eqs.~4!, ~5!, and ~6!—which
determine the normal fluid for a given tangle. Essentially,
combine an Euler description of the normal fluid with
Lagrange description of the superfluid tangle.

It is apparent that, in principle, modeling turbulent heliu
II as a turbulent normal flow coupled to a superfluid vort
tangle is a formidable task of computational fluid dynami
It is more challenging than the existing numerical simu
tions of classical Navier-Stokes turbulence, not only beca
there are more degrees of freedom, but also because o
very localized nature of the friction force~6!, which requires
many length scales to be resolved. In the next section
shall introduce and discuss a series of approximations w
make the numerical task more manageable.

V. THE CALCULATION OF THE FRICTION

When computing the friction force~6! on the normal fluid
a difficulty arises as to what should be the volumeV over
which F is calculated. Both Schwarz11 and Aarts and
DeWaele,15 who computedF for diagnostic reasons, define
V as the entire computational box. This approximation
clearly convenient when making comparison with the exp
ments: in most cases in fact what can be observed is only
average value of the friction~or of its effect on second
sound, for example! integrated over a large region of flow
such as the cross section of the experimental channel. I
followed this approach we would therefore replaceF(r ,t)
with its spatial averagêF(t)&. The drawback, of course, i
that we would entirely lose any local spatial informatio
about the mutual friction forcing~6!. Penz, Aarts, and
deWaele16 attempted to retain some local information by d
viding the volume of their circular pipe over whicĥF& is
evaluated into an inner region and an outer region of sim
size, thus yielding two values of the forcing. They also tim
averaged the two values, but this was because of a sp
feature of the problem which they were studying which ne
not concern us in general.

From a physical point of view the friction force which
vortex line exerts on the normal fluid acts over a very sm
localized region, hence in principle the motion of the norm
fluid should be resolved over such a small length scale
the temperature range 1.4 K,T,Tl relevant to the experi-
ments most of the friction is caused by the scattering
rotons from the velocity field around the vortex line over
range8 of a few hundred timesa0 . Unfortunately, this range
is much too small a length scale to be resolved by exis
computers: the study of a realistic situation would require
calculate a flow with length scales ranging over 5 or 6 ord
n
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of magnitude~the current numerical simulation of Navie
Stokes turbulence typically use from 128 to 256 mesh po
in each direction, leaving a gap of four orders of mag
tude!!. Some spatial averaging is clearly necessary. Time
eraging is not required unless one is interested in proble
which involve high-frequency second sound: the reason
that the vortex core is so small that a vortex line has ne
gible inertia and responds immediately to the friction. If o
took into account the finite hydrodynamic mass of the vor
core, then vortex filaments would perform very small amp
tude oscillations at the cyclotron frequencyvcyclo'k/a0

2

'1013rad/s with negligibly small amplitudes proportional
vs /vcyclo.

The spatial averaging which we have chosen attempt
retain local information about the friction. It consists in a
eragingF over a volumeV determined by the same spati
mesh sizeh used in the computation ofvn itself. What mo-
tivates our approximation is that it reduces to a known lim
In fact, if the vortex filaments are spatially ordered and if t
vortex line length per unit volumeL is large, then our ap-
proximation becomes operationally equivalent to the fami
Hall-Vinen-Bekharevich-Khalatnikov~HVBK ! equations20

which are used to describe uniform flows~such as solid-body
rotation! or almost uniform but still laminar flows~such as
Taylor-Couette flow21!. The HVBK equations describe th
flow induced by the vortex filaments as a continuum,
which a fluid particle~numerically defined by the mesh siz
h! is a small region threaded by a number of vortex filame
which is large enough to define an averaged vorticity of
superfluid. Physically, it means that the vorticity is spatia
organized and that the intervortex spacingL21/2 is much
smaller than any length scale in the flow. The existence
the HVBK limit at high L, however, does not mean that w
are able to achieve it when implementing our approach.
the contrary, because of the constraints of the compu
power available, we are never in a situation in which a
region of the flow contains a very large number of vort
lines, more so because we choose to use the computatio
expensive Biot-Savart law. Nevertheless, the existence of
HVBK limit makes our approach less arbitrary.

VI. A SIMPLIFIED MODEL OF SELF-CONSISTENT
DECAY

To implement the self-consistent approach we consi
the simple problem of the decay of a tangle of superfl
vortices coupled together with a decaying normal fluid. T
problem is motivated by the measurements of the deca
vorticity created by a towed grid.4,5,6 Following Schwarz, to
simplify the calculation we consider a periodic Cartesi
(x,y,z) cubic box of sizel. Even without boundaries, thi
still leaves us with the numerical complexity of Schwarz
approach with that of a three-dimensional simulation of
Navier-Stokes equation. We introduce therefore the furt
simplifying assumption that the normal fluid istwo dimen-
sional, that is to say, although we do allow for motion in th
y direction, we assume that all velocity components are
dependent ofy. This assumption makes the model compu
tionally accessible. The model is clearly rather idealized,
this is the initial stage of investigation of the coupled moti
of vortex lines and normal fluid. Moreover, we are careful
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PRB 60 1255SELF-CONSISTENT DECAY OF SUPERFLUID TURBULENCE
the way we proceed: for example, we select special ini
conditions@Arnold-Beltrami-Childress~ABC! flows# which
have a natural tendency to retain their shape, hence rem
two dimensional, and study only decay processes. Sinc
our model the vortex configuration is not isotropic, the use
the exact Biot-Savart law~2! at the place of the local induc
tion approximation~3! used by others is clearly more consi
tent and preferable. However, the use of the Biot-Savart
also limits the densityL of the tangle which we can study
which adds to the limitations of the model.

The assumption of reduced dimensionality~a three-
dimensional vortex tangle interacting with a tw
dimensional normal fluid! has never been used in the stu
of the hydrodynamics of helium II, but is not new in oth
applications of fluid dynamics. In particular, it has been us
with success to study magnetohydrodynamics dynamo
tion. Noteworthy examples are the Ponomarenko dyna
and the G. O. Roberts dynamo,22,23 in which two-
dimensional fluid motions are studied which are able to g
erate a three-dimensional magnetic field.

We make the equations of motion dimensionless by c
ing l the unit of length and the viscous diffusion time of th
normal fluidl2/nn as unit of time, where the kinematic vis
cosity is defined asnn5m/rn . We indicate dimensionles
quantities with a star: we writet* 5tn/l2, r* 5r /l, L*
5l2L, s* 5s/l, vn* 5vnl/n, andvs* 5vsl/n. Other choices
of time units are possible~for examplel2/k!, but our choice
seems more appropriate since we are interested in a d
process and we want to make comparison to what happe
the limit T→Tl in which Eq. ~4! becomes the classica
Navier-Stokes equation. It must also be noticed that the n
dimensionalization of the equations is not complete beca
of the existence of the vortex core cutoff parametera0 in the
desingularization of the Biot-Savart law@or in the local in-
duction approximation, had we used Eq.~3!#. This problem
is unavoidable because it is not sensible to base the le
scale of the flow on a quantity of atomic dimensions. S
when necessary, we use the correct dimensional valuea0
'1028 cm, which corresponds to assuming thatl51 cm.
Since this is the typical size of an experimental cell and
are concerned only with the argument of a slowly varyi
logarithmic function, the interpretation of the results shou
not be much affected.

Neglecting any imposed superflow (vs* 50), the dimen-
sionless equation of a vortex filament is then

ds*

dt*
5vi* 1as* 83~vn* 2vi* !, ~7!

where the self-induced velocity is

vi* ~s* !5
G

4p E
L

~z* 2s* !3dz*

uz* 2s* u3
, ~8!

andG is the dimensionless quantum of circulation,

G5k/nn . ~9!

The dimensionless normal-fluid equations are

]vn*

]t*
1~vn* •¹* !vn* 52¹* P* 1¹* 2vn* 1F* , ~10!
l
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¹* •vn* 50, ~11!

where¹* refers to derivatives with respect tox* , y* , and
z* andP* is the rescaled pressure. Since the normal flow
two dimensional it is convenient to introduce a stream fu
tion c* :

vn* 5~u* ,v* ,w* !5S 2
]c*

]z*
,v* ,

]c*

]x* D , ~12!

which guarantees that the continuity Eq.~11! is satisfied. We
also introduce they* component of the vorticity

z* 5
]u*

]z*
2

]w*

]x*
. ~13!

In this way we have two equations of motion forv* andz* ,

]v*

]t*
5

]2v*

]x* 2 1
]2v*

]z* 2 1
]~v* ,c* !

]~x* ,z* !
1Fy* , ~14!

]z*

]t*
5

]2z*

]x* 2 1
]2z*

]z* 2 1
]~z* ,c* !

]~x* ,z* !
1~¹* 3F* !y , ~15!

together with a Poisson equation for the stream function

]2c*

]x* 2 1
]2c*

]z* 2 52z* , ~16!

where the Jacobian of two functionsf andg is defined as

]~ f ,g!

]~x* ,z* !
5

] f

]x*
]g

]z*
2

] f

]z*
]g

]x*
, ~17!

and the dimensionless frictionF* is

F* 5aG
rs

rn

1

V E
L
s* 83@s* 83~vn* 2vi* !#dj* . ~18!

The numerical calculation requires initial conditions f
the normal fluid and for the vortex tangle. As the initi
condition for the normal fluid we take an Arnold-Beltram
Childress~ABC! flow.24 This flow is an idealized model o
an eddy, much used in the study of magnetohydrodynam
turbulence and dynamo action.25 In the context of superflu-
idity, ABC flows have been used to model turbulence str
tures of the normal fluid.18 In general, ABC flows are defined
by the Cartesian components

u5A sin~2pz/l!1C cos~2py/l!, ~19!

v5B sin~2px/l!1A cos~2pz/l!, ~20!

w5O sin~2py/l!1B cos~2px/l!, ~21!

whereA,B, andC are parameters. An interesting property
ABC flows is that they are solutions of Euler’s equation a
when substituted into Eq.~4!, in the absence of friction, they
decay in time asv(t)5v(0)exp(24p2nnt/l

2), in which is
v* (t* )5v* (0)exp(24p2t* ) in dimensionless units. The ex
istence of this precise decay law will prove particularly us
ful in analyzing the results.
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1256 PRB 60CARLO F. BARENGHI AND DAVID C. SAMUELS
We obtain a two-dimensional ABC flow by settingC
50 and we takeA5B for simplicity. In dimensionless form
we have

u* 5A* sin~2pz* !, ~22!

v* 5A* sin~2px* !1A* cos~2pz* !, ~23!

w* 5A* cos~2px* !. ~24!

Figure 1 illustrates the spatial structure of the initial norm
fluid.

The initial condition for the superfluid is an arbitrar
three-dimensional vortex tangle of some line densityL* .
The tangle is created by seeding a suitable two-dimensi
ABC flow with a superfluid vortex ring. Driven by the Glab
erson instability, the vortex ring develops vortex wav
which become unstable, grow, reconnect, and create a vo
tangle which, although three dimensional, has the same
erage spatial structure of the driving, fixed ABC norm
flow, as we showed in a previous paper.18 Here we stop the
calculation before saturation takes place because the us
the Biot-Savart law limits the density of the tangle which w
can study. The resulting initial tangle is shown in Fig. 2: t
main feature is the spiral structure of the tangle which p
duces the average superfluid velocity field illustrated in F

FIG. 1. Contour plot ofy component of the ABC normal-fluid
velocity.

FIG. 2. Vortex tangle created by an ABC flow.
l

al

s
ex
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l
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3, which must be compared with the related normal fluid
Fig. 1. Note that this calculation to produce the initial tang
is kinematic in character.

In summary, our initial condition consists of a two
dimensional ABC normal flow and a vortex tangle which
two dimensional only in an average sense.

The numerical technique to integrate the motion of t
vortex tangle for a given normal fluid has been alrea
described14,18 in detail, including the tests applied to th
computer code. The integration of the normal-fluid equat
is performed by subdividing the computational box into
two-dimensional grid ofN equally spaced mesh points i
each direction,h51/N being the grid’s spacing. The tim
stepping of the normal fluid is performed using the altern
ing direction implicit technique for the linear terms and t
Adams-Bashforth method for the nonlinear terms. The Po
son equation forc is solved using the fast Fourier transfor
method. The number of mesh points is typicallyN520. This
resolution is typical for similar flows studied in the literatur
for example Taylor-Couette flow.26 The resolution has bee
tested to obtain the correct decay rates of the ABC flow.
each time step the components of the friction forceF are
computed as described in Sec. V and averaged over ty
direction. Because of the computational constraint of
Biot-Savart law, the number of vortex points is never larg
so we perform a nearest-neighbors averaging in orde
smooth the friction and facilitate the computation of its cu
which appears in Eq.~15!.

VII. RESULTS AND DISCUSSION

We have performed a number of numerical experime
in which we have computed the self-consistent decay of
bitrary initial vortex tangles and ABC flow configuration
Each run is characterized by the amplitudeA* of the initial
ABC flow, the vortex line densityL* of the initial tangle,
and the temperatureT. The temperature determines the d
mensionless friction coefficienta, the dimensionless quan
tum of circulationG, and the density ratiors /rn . Because of
the lack of external forcing, all calculations result in the d
cay to zero of both the motion of the normal fluid and of t
vortex line density. What interests us is how and at wh

FIG. 3. Contour plot of the averagey component of the super
fluid velocity corresponding to the tangle of Fig. 2.
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PRB 60 1257SELF-CONSISTENT DECAY OF SUPERFLUID TURBULENCE
rate this decay takes place. We concentrate our attention
the normal fluid because very little is known~apart from the
linear calculation of Ref. 19! about the effect which the vor-
tices have on the normal fluid.

A global quantity which is particularly interesting is th
energyEn contained in the normal fluid

En5
rn

2 E
2l/2

l/2

dxE
2l/2

l/2

dyE
2l/2

l/2

dz~vn!2. ~25!

In dimensionless form we have

En* 5
En

rnnn
2l

5
1

2 E21/2

1/2

dx* E
21/2

1/2

dy* E
21/2

1/2

dz* ~vn* !2.

~26!

Figures 4 and 5 show howEn* decays as a function of the
dimensionless timet* . The initial vortex tangle is the same
in all cases (L* 529.5), and the initial ABC flow has ampli-
tudeA* 55 in Fig. 4 andA* 513.6 in Fig. 5. Note that the
values of A* chosen are well below the threshold of th
Glaberson instability: if the density of the vortex tangle in
creased, we would need more points to represent the vo
lines, and the computation of the Biot-Savart law would b
come unacceptably slow. The calculations are performed

FIG. 4. Dimensionless normal-fluid densityEn* vs dimension-
less timet* for different runs~see Table I! starting withA55.

FIG. 5. Dimensionless normal-fluid densityEn* vs dimension-
less timet* for different runs~see Table I! starting withA513.6.
to

ex
-
t a

number of different temperatures, from the lambda reg
down to T52.0 K, the parameters used in each run be
listed in Table I.

It is apparent from Figs. 4 and 5 that a variety of dec
behavior is possible, depending on the parameters cho
The general feature~summarized by the last column of Tab
I! is that at the higher temperatures the normal fluid dec
immediately, while at intermediate and lower temperatu
the normal-fluid energyEn* (t* ) rises from its initial value
En* (0) to a maximum valueEn,max* before decaying. The
effect is more pronounced atA* 55 than atA* 513.6. On
the contrary, the superfluid vortex tangle’s densityL* decays
monotonically in all runs; see Fig. 6.

To understand the initial rise ofEn* we compare the initial
ratio of the energies of the normal fluid and the superfluid.
the first approximation the energy contained in the tangle
simply

Es'esLl3, ~27!

where

es5
rsk

2

4p
lnS b

a0
D ~28!

TABLE I. Parameters used in the runs showed in Figs. 4 and

run T ~K! A* En* /Es* En* (t* )

a 2.171 5 1.19 drops
b 2.16 5 0.21 rises
c 2.12 5 0.06 rises
d 2.10 5 0.05 rises
e 2.02 5 0.02 rises
f 2.0 5 0.02 rises
g 2.171 13.6 8.78 drops
h 2.16 13.6 1.55 drops
i 2.15 13.6 0.99 drops
j 2.14 13.6 0.74 drops
k 2.12 13.6 0.48 rises
l 2.10 13.6 0.34 rises
m 2.05 13.6 0.21 rises

FIG. 6. Vortex line densityL* vs time t* . The labels under
each curve refer to Table I.
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is the energy per unit length of vortex line andb'L21/2 is
the average intervortex spacing. In dimensionless units
have then

Es* 5
Es

lrnnn
2 . ~29!

Table I lists the ratioEn* /Es* at the beginning of each run. I
is apparent from Figs. 4 and 5 and Table I that a rise ofEn* ,
that is to say a transfer of energy from the superfluid to
normal fluid, occurs only if att* 50 we haveEs* .En* .
From the data of Table I this is thus a necessary, though
sufficient, condition.

What determines quantitavely how much energy store
the tangle is transferred to the normal fluid depends on
actual mutual friction couplingF @Eq. ~18!#. The coupling is
proportional to the integrated mismatch of normal fluid a
superfluid velocities. A simple way to estimate the mag
tude of the initialF, and hence predict whetherEn* will rise
or not, is to computeuFu'aGrs /rnL* Dv* whereDv* is
the difference between the initial maximum velocity of t
normal fluid ~which is 2A by construction! and the initial
maximum velocity of the superfluid~given by the highest
contour level of Fig. 3, for example!. Figure 7 shows that the
energy increaseADEn* whereDEn* 5En,max* 2En* (0) is pro-
portional to uFu, and the data are essentially ordered by
ratio En* /Es* . We conclude that it is the initial mutual fric
tion force that actually determines the evolution of the n
mal fluid. From the picture it appears that the initial mutu
friction forcing must be higher than a critical value befo
En* is increased: what happens in runsa,g,h,i , and j is that
the energyEn* either decreases immediately or holds
value for a time lag before decreasing, but never increas

The possibility that energy stored in the vortex tangle
transfered to the normal fluid was discussed by Schwarz
Rosen27 to explain their measurements of the free decay
quantized vortex lines in a channel. They observed two
tinct stages of decay: an initial rapid decay followed by
slower one. They claimed that the first stage of decay
consistent with the known vortex dynamics model

FIG. 7. Dimensionless energy increaseADEn* vs dimensionless
drive uFu of different runs. The labels refer to Table I. The figures
bracket representEn* /Es* .
e
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Schwarz and Vinen’s phenomenological equation.28 The sec-
ond, slower stage of decay, according to Schwarz and Ro
was a self-consistent coupled decay regime in which ene
is transferred from the superfluid to the normal fluid throu
the mutual friction and then dissipated through viscosity, a
the rate of decay is no longer dominated by quantized vo
dynamics but by normal-fluid viscous effects. Schwarz a
Rosen argued that the second stage is a regime of cou
turbulence in which the normal fluid and the superflu
evolve self-consistently. They analyzed the data using
simple one-dimensional model and they concluded that
second stage of decay takes place when energy initi
stored in the superfluid flows into the normal fluid. Our fin
ing illustrates Schwarz and Rosen’s interpretation.

Past the initial rise of Figs. 4 and 5, the normal-fluid e
ergy decreases, and it is interesting to consider the rat
which this decay takes place. It is important to appreci
that in the curves of Figs. 4 and 5 the unit of timel2/nn
actually changes from run to run, depending on the temp
ture. We introduce a viscous diffusion time scalel2/n where
n5m/r is a kinematic viscosity based on Helium’stotal
densityr rather than on the normal-fluid densityrn . Corre-
spondingly, we now have units of speedl/n and energy
ln2rn at the place ofl/nn andlnn

2rn . We use a double sta
to denote the scaling of the variables and in Fig. 8 we p
the decay of the normal fluid energyEn** 5En /(ln2r) as a
function of the timet** 5tn/l2. Since in the absence o
vortex lines the normal fluid would decay exponentially, w
plot the natural logarithm ofEn** , so the slope gives directly
the decay constant.

The figure shows thatall runs decay exponentially afte
an eventual initial rise, and, more important, the decay r
just after that rise is the same. After the eventual initial ri
the normal-fluid energyEn** drops like exp(2st** ) with
decay constants approximately in the range279<s<
283 ~it is difficult to defines more precisely because of th
arbitrariness in defining the fitting region, after the initi
transient and before the vortex line density is too low!. This
uniform value of the decay constant is at first surprising: h
does the normal fluid know about thetotal helium density?
Note that the temperature range covered by the results
responds to a normal-fluid fractionrn /r which varies be-

FIG. 8. Decay of normal-fluid energy ln(En** ) vs t** for differ-
ent runs, where energy and time are measured in terms of vis
diffusion times of thetotal helium densityr.
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tween 99% atT52.171 K and only 56% atT52.0 K. In the
absence of a tangle the energy of the normal ABC fl
should drop like exp@28p2(r/rn)t** #, that is to say the deca
rate should change froms5279 at the lambda point tos
52141 at T52.0 K, almost doubling its value. The da
clearly show that this change does not happen. The inter
tation of the data is that the coupling between the norm
fluid and the tangle is strong enough to compensate for
changing relative proportion of normal fluid. Although o
model is too idealized to make a direct quantitative comp
son with the experiments, our result is consistent with
observation by Stalp5,6 that the decay rate of helium turbu
lence is independent of temperature. Note that the actua
cay rate which we calculate cannot be compared with Sta
measurements, since in our case we have the expone
decay of an ABC flow and in his case there is the power-
decay of more complex isotropic turbulence.

The observed decay rate ofL* , on the contrary, does no
follow any simple scaling rule. This is not totally unexpect
since the tangle is forced by an anisotropic, hence somew
artificial, two-dimensional normal fluid. This suggests tha
will be important in the future, when more computer pow
is available, to couple the superfluid tangle to a thr
dimensional normal fluid.

VIII. CONCLUSIONS

We have identified the limitation of the existing theore
cal approach to study the turbulence of helium II: that
neglects the back reaction of the superfluid vortex lines o
the normal fluid. We have proposed an approach to study
coupled evolution of normal fluid and vortex lines. Its ke
feature is that it is dynamically self-consistent. We ha
implemented this approach to study a rather idealized mo
of decay of a two-dimensional normal-fluid eddy coupled
a three-dimensional vortex tangle.
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Despite the simplicity of our model, we have been able
recognize physical effects which have been observed
discussed in the experimental literature. The first effect is
transfer of energy from the vortex tangle to the normal flu
and the viscous decay of the normal fluid coupled to
tangle. This effect has been discussed by Schwarz
Rosen27 to interpret their measurements, and our result c
firm their observation.

The second effect which we have found is that ene
decay rates are independent of temperature. It appears
the friction coupling with the tangle is large enough to co
pensate for the decreasing proportion of normal fluid
lower temperatures. This effect is in qualitative agreem
with the experiments of Stalp.5,6

Further work will attempt to go beyond the simplicity o
the current model. At the moment the major limitation is t
computer power available, which forces us to use a rat
low-density vortex tangle and restrict the study to tw
dimensional normal flows. The aim will be to perform th
calculation with a three-dimensional normal fluid and
much higher vortex line densityL* . This will allow us to
investigate what should be the best way to perform the
eraging process in the calculation ofF: ideally one would
like to obtain the HVBK limit; another issue is whether the
is a scaling law for the decay ofL* , which we have not
found with our simplified model. A fully three-dimensiona
calculation would also allow us to study forced turbulen
and compute energy spectra to compare with the experim
of Maurer and Tabeling.7
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