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Self-consistent decay of superfluid turbulence
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Recent experiments have shown that the isothermal turbulent motion of helium Il is very similar to classical
turbulence. This regime is characterized by a strong coupling between the superfluid vortex tangle and the
normal-fluid component. To study this coupled regime we develop an approach to compute the evolution of the
vortex tangle. Its key feature is that it dynamically self-consistentinlike previous approaches, because it
takes into account the back rection of the vortex tangle onto the normal fluid. We implement this approach and
study a model system which, although very idealized, gives some insight into the transfer of energy between
the two fluid component$S0163-18209)00526-3

I. BACKGROUND normal fluid, and thus introduce a mutual friction fotce
which couples the normal fluid and the superfluid. The ap-
The evidence from some recent experiments is that thparent classical behavior of helium Il when turbulent must
turbulent motion of liquid helium Il can be described well therefore be associated with the vortex filaments. The experi-
using the same rules of turbulence as in a classical fluidnents indicate that the mutual friction coupling can be so
(such as water, air, or helium. IThese experiments include strong that the normal fluid and the superfluid lock together,
measurements of mass flow rates and pressure gradientlding effectively a single fluid of density, a phenomenon
along pipes, measurements of the circulation of large scalereferred to as/ortex coupled superfluidify A striking fea-
turbulent vortex ringé, visualization of turbulent Couette ture of the phenomenon is its temperature independence,
flow,> measurements of the decay of vorticity in turbulencewhich is unusual when studying helium Il flows. For ex-
generated by towing a grfti® and measurements of energy ample the measurements of vorticity det&and of the en-
power spectra in turbulence continuously excited by rotatingergy spectra give the same result in the observed range
blades’ 1.4K<T<T,. Note that at temperatures as low as 1.4 K
These results are at first surprising because helium Il is #ghere is too little normal fluid left 4,,/p=7.5%) to make
guantum fluid, and, at least at small velocities, usually bethat fluid component solely responsible for the observed
haves in a way which is very different from a classical classical behavior.
Navier-Stokes fluid. The difference arises from the existence Besides being interesting physiper se vortex coupled
in helium Il of two separate but copenetrating fluid compo-superfluidity opens the possibility of using helium Il to study
nents: the superfluidvith densityps and zero viscosityand  issues of classical turbulence: an example is the recent work
the normal fluid(with densityp,, and finite viscosityx). The  of Stalp, Skrbek, and Donnefiyo model spectra of decaying
relative proportion of normal-fluid density and superfluid turbulence from data taken in helium Il. There may also be
density to the total density of helium H=p.+p, is deter-  the possibility of developing new instrumentation to measure
mined by the temperaturé. At absolute zero helium Il is turbulent vorticity using the second-sound technique.
entirely superfluid §,/p=0, ps/p=1); increasingT in-
crease9y, until the lambda transition is reached & T)\ II. THE KINEMATIC APPROACH TO TURBULENCE
=2.172K, and helium Il becomes entirely normal,(p
=1, ps/p=0). This two-fluid theory explains well many On the theoretical side very little is known about high
nonclassical flow phenomena which occur in helium 1I, suchReynolds numbers helium Il flows and one must still con-
as second sound, thermal counterflow, and superleaks, §§ntrate on understanding the basic physical mechanisms in-
well as their strong temperature dependence. volved. So far the most fruitful approach to study the behav-

Unlike the laminar flows traditionally studied by the two- ior of the superfluid vortex tangle was pioneered by
fluid theory, the experiments of Refs. 1-7 consider flowsSchwarz:! He showed that if a vortex filament is specified in
which must be very turbulent. A convenient measure of theparametric forms=s(&,t) where¢ is arclength and is time,
turbulence intensity is provided by the Reynolds numRer then the velocity of a given poirg of the filament depends
=UL/», whereU andL are speed and length scales and ©n imposed superflows and normal flow,, in the following
=ulp is the kinematic viscosity. Typically we have  Wway:
~10° for the pipe flow experimentsR~ 10" for the vortex
ring experiment$,andR~ 10° for the towed grid®>®and the ds )
rotating blade experimenfsNow we know that if helium’s gt~ Vst Vit as X(Vp=vs=vi). @)
speed exceeds a small critical value a large number of quan-
tized vortex filaments appear in the superfluid and form aHere a prime denotes derivatives with respect to arcleigyth,
dense, disordered tangle. The vortex filaments séather is a knowr temperature-dependent coefficient which de-
thermal excitationgphonons and rotonsvhich make up the scribes the friction between the vortex filaments and the nor-
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mal fluid, anda=p,B/(2p). In writing Eq. (1) the small  calculation and never change. This limitation is present in all
transverse part of the friction force has been neglected fowork published until now. For example, when studying
simplicity. The quantityv; is the velocity which the vortex counterflow turbulence, Schwarz sgt—vg equal to a con-
filament induces onto itself because of its own curvature, andtant, proportional to the driving heat flux. Choiceswf

is determined by the Biot-Savart integral used in the literature range from uniform flowén periodic
boxes or channels, Poiseuille flodsa single vortex tub&®
Kk [ (z=9)Xxdz and ABC flows'® In each case the shape of the profilevgf
vi(s)= ypl B P - ) -
wlc |z—9 was fixed.

The difficulty of kinematic models becomes apparent,
where x=9.97x 10" *cnv/s is the quantum of circulation since the normal fluid is viscous, when flows with bound-
and the integral extends over the entire vortex configuratioyries are studied, such as channel flows. On one hand it can
L. Schwarz’s approach consists in discretizing an initial vor{e argued that,, should have a parabolic Poiseuille profile
tex configuration into a numbeM of points and then using to satisfy the no-slip boundary conditions at the wall; on the
Egs.(1) and(2) to move each individual point. The computer other hand one can also argue that the parabolic profile gets
code must allow for a variable time step and a varidle 5o flattened by the friction with the superfluid vortex tangle
more points and better temporal resolution are necessary ifhat a uniform profile may be a better choice. Aarts and
during the time evolution, a region of tight curvature appeargjewaelé® tested both these profiles and, not too surpris-
along a vortex line. The code must also allow for vortexingly, they found that the vortex tangle looks very different if
reconnection’€ which take place when two vortex filaments v, is parabolic rather than uniform.
get very close to each other. _ The same difficulty appears when one tries to determine

The practical limitation of Schwarz’s approach arisesthe normal fluid as a function of a fixed tangle rather than
from the calculation of the Biot-Savart integ(@), an opera-  yjce versa. This was attempted by Melotte and Barefighi
tion which increases quadratically with the number of pointsyyho studied the linear stability of, under the forcing of an
Schwarz’s remedy was to use the local induction approximammposed homogeneous and isotropic vortex tangle. Their cal-

tion to the exact Biot-Savart law, which is culation showed that if the vortex tangle exceeds a critical
R density the Poiseuille profile becomes unstable and possibly
vi(s)= ~ nl 2 (3)  turbulent, a transition which would clearly change the vortex
I . .
47R " \ag tangle itself.

HereR is the local radius of curvatur@y~10 8cm is the
vortex core parametédthe region from the center of the vor- IV. THE SELF-CONSISTENT APPROACH
tex over which the amplitude of the guantum-mechanical TO TURBULENCE

wave function drops from its bulk value to z¢randb is the
local unit vector in the binormal directicsi X s’. The calcu-

Iat|pn ofv; using Eq.(3) grows only I]nearly with withN, consistentapproach which takes into account the back reac-

which makes it possible to study intense vortex tangles. . .
) . . ion of the vortex tangle onto the normal fluid. The idea
which contain a very large number of points. The use of Eq, . . . . ;
; : i consists in letting the normal fluid evolve alongside the

(3) is, however, delicate. The vortex tangles studied by, X : . .

. tangle of superfluid vortex lines, according to its own equa-
Schwarz arise from turbulent heat flows and they are char: : .
. . . .tion of motion. In this way the vortex tangle and the normal-
acterized by being rather homogeneous and almost isotropi
this implies that long-range effects tend to cancel out €aclonsistent fashion. For example, in the channel flow problem

Oltggé‘ ;,ng m(zf)a;:; :ig\i/;/zrz fg:(?ﬂ;gg; tir:]et#;‘,e rcgbﬁlrﬁlg of studied by Aarts and DeWaele, the calculation would start as
P g- PP P usual with few superfluid vortex lines to act as seed, while

%Onnéigfg;;tzgfiﬂgsngfevﬂ;grr':;nitu;ljnzdt.hlg Sggeor{a(lé;é);vneverthe normal fluid would be initially in the correct parabolic
give misleading results, as we have discovered recently in ;ﬁf':g (;ZVZTS'S? t;]heebgglg r:gzgioc;loggltt;%nts;nafe thew\i/:rtex
study of the evolution of knotted vortex structutéslhis is N9 PS, . gie an

why hereafter we choose to use the exact Biot-Savart la |ct|qn WOUld. Increase, chgngmg the parabolic profile/of

(2), and restrict ourselves to the study of low-density vortex this way, if the friction is large enougly, may become
tangles. distorted, flattened, or even turbulent, as argued by Melotte

Schwarz’s vortex dynamics approach to the turbulenceand BgrengH? n th? context of heat traqsfer flow. .
problem was followed up by Samuéfs, Aarts and To |mpIemgnt th|s_ approach we cc_)n3|der the equation of
DeWaele!® and Penz, Aarts, and deWa¥lamong others! the nprmal fqu, W.h'.Ch We assume isothermal and Incom-
and the technique to perform the calculation, which has.preSSIbIe for simplicity. Neglecting any externally applied

: o uperfluid potential flow, this equation is the Navier-Stokes
rather subtle aspects—such as the desingularization of E{. . o . . o )
(2)—is now standard. @quatlon modified by the introduction of the friction force:

The aim of this paper is to overcome the difficulty of the
kinematic approach. We propose a dynamicabglf-

ﬁhid profile determine each other in a dynamically self-

IV Pn
1. DIFFICULTIES OF THE KINEMATIC APPROACH pn7+pn(\,ﬂ. V)v,=— ?VP+MV2VH+ F, (4
The drawback of Schwarz’s vortex dynamics approach is
that it is essentiallkinematicin character: the driving fields whereP is the pressure. Equatigd) must be solved together

v, and vg are imposed at the beginning of the numericalwith the continuity equation
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V-v,=0. (5) of magnitude(the current numerical simulation of Navier-
o . ) 1114 Stokes turbulence typically use from 128 to 256 mesh points
The friction force per unit volume at a given point’is in each direction, leaving a gap of four orders of magni-
tude)). Some spatial averaging is clearly necessary. Time av-
_KBpnpsl . ) I i ired unl is int ted i bl
= = | X[ X (Vy—Vs—V;)]dE, (6)  eraging is not required unless one is interested in problems
2p V¢ which involve high-frequency second sound: the reason is

. L . . that the vortex core is so small that a vortex line has negli-
where the integration is performed over the vortex lines in

the volumeV around that particular point. Note that until gible inertia and responds immediately to the friction. If one

now the calculation of the frictiof6) has been attempted for took into account the finite hydrodynamic mass of the vortex
diagnostic reasons only, in the context of kinematic modelsc°'® then vortex filaments would perform very small ampli-

A N
The self-consistent approach consists therefore in solvingJde 3oscnlat|c_)ns at .th_e cyclotron frgquenwcyc|o~ ;.dao
Egs. (1) and (2—which determine the tangle for a given % 10"%rad/s with negligibly small amplitudes proportional to

normal fluid—together with Eqs4), (5), and (6)—which vs/eycio-

determine the normal fluid for a given tangle. Essentially, we 1€ Spatial averaging which we have chosen attempts to
combine an Euler description of the normal fluid with aretaln local information about the friction. It consists in av-

Lagrange description of the superfluid tangle. eragingF over a volumeV determined by the same spatial

It is apparent that, in principle, modeling turbulent helium MeSh sizen used in the computation of, itself. What mo-
Il as a turbulent normal flow coupled to a superfluid vortexVales our approximation is that it reduces to a known limit.
tangle is a formidable task of computational fluid dynamics.'n fact, |_f the vortex fllamgnts are spf':mally ordered and if the
It is more challenging than the existing numerical simula-VOrtex Ilne length per unit VP'“”‘E IS Ia_Lrge, then our ap-
tions of classical Navier-Stokes turbulence, not only becausBoximation becomes operationally equivalent to the familiar
there are more degrees of freedom, but also because of tm],;l!I-Xlnen-Beghargwch?thala_:cnlkO\]/cEHVBKh) eq“i"_gc’g% |
very localized nature of the friction fordé), which requires  Which are used to describe uniform flovesich as solid-body
many length scales to be resolved. In the next section wE°tation or almost uniform but still laminar flowgsuch as

shall introduce and discuss a series of approximations Whicﬁaqur—Couette flow). The HVBK equations describe the
make the numerical task more manageable. ow induced by the vortex filaments as a continuum, in

which a fluid particle(numerically defined by the mesh size
h) is a small region threaded by a number of vortex filaments
which is large enough to define an averaged vorticity of the
When computing the friction forces) on the normal fluid superfluid. Physically, it means that the vorticity is spatially
a difficulty arises as to what should be the volumever  organized and that the intervortex spacibg'? is much
which F is calculated. Both Schwarz and Aarts and Smaller than any length scale in the flow. The existence of
DeWaele!® who computed- for diagnostic reasons, defined the HVBK limit at highL, however, does not mean that we
V as the entire computational box. This approximation isare able to achieve it when implementing our approach. On
clearly convenient when making comparison with the experithe contrary, because of the constraints of the computing
ments: in most cases in fact what can be observed is only thgower available, we are never in a situation in which any
average value of the frictiofor of its effect on second region of the flow contains a very large number of vortex
sound, for exampleintegrated over a large region of flow, lines, more so because we choose to use the computationally
such as the cross section of the experimental channel. If wexpensive Biot-Savart law. Nevertheless, the existence of the
followed this approach we would therefore repldeg,t)  HVBK limit makes our approach less arbitrary.
with its spatial averagéF(t)). The drawback, of course, is
that we would entirely lose any local spatial information
about the mutual friction forcing6). Penz, Aarts, and
deWaelé® attempted to retain some local information by di-
viding the volume of their circular pipe over whigli) is To implement the self-consistent approach we consider
evaluated into an inner region and an outer region of similathe simple problem of the decay of a tangle of superfluid
size, thus yielding two values of the forcing. They also timevortices coupled together with a decaying normal fluid. This
averaged the two values, but this was because of a speciptoblem is motivated by the measurements of the decay of
feature of the problem which they were studying which needvorticity created by a towed grit®® Following Schwarz, to
not concern us in general. simplify the calculation we consider a periodic Cartesian
From a physical point of view the friction force which a (x,y,z) cubic box of sizex. Even without boundaries, this
vortex line exerts on the normal fluid acts over a very smallstill leaves us with the numerical complexity of Schwarz’s
localized region, hence in principle the motion of the normalapproach with that of a three-dimensional simulation of the
fluid should be resolved over such a small length scale. IlNavier-Stokes equation. We introduce therefore the further
the temperature range 1.4KI'<T, relevant to the experi- simplifying assumption that the normal fluid t&o dimen-
ments most of the friction is caused by the scattering okional that is to say, although we do allow for motion in the
rotons from the velocity field around the vortex line over ay direction, we assume that all velocity components are in-
rangé of a few hundred times,. Unfortunately, this range dependent of. This assumption makes the model computa-
is much too small a length scale to be resolved by existingionally accessible. The model is clearly rather idealized, but
computers: the study of a realistic situation would require tahis is the initial stage of investigation of the coupled motion
calculate a flow with length scales ranging over 5 or 6 ordersf vortex lines and normal fluid. Moreover, we are careful in

V. THE CALCULATION OF THE FRICTION

VI. A SIMPLIFIED MODEL OF SELF-CONSISTENT
DECAY
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the way we proceed: for example, we select special initial V*.vE=0, (12)
conditions[Arnold-Beltrami-Childres§ABC) flows] which

have a natural tendency to retain their shape, hence remaithere V* refers to derivatives with respect i, y*, and
two dimensional, and study only decay processes. Since " andP* is the rescaled pressure. Since the normal flow is
our model the vortex configuration is not isotropic, the use oftwo dimensional it is convenient to introduce a stream func-
the exact Biot-Savart la\2) at the place of the local induc- tion ¢*:
tion approximation(3) used by others is clearly more consis-

tent and preferable. However, the use of the Biot-Savart law

also limits the density. of the tangle which we can study,

which adds to the limitations of the model. . - . -
The assumption of reduced dimensionalitg three- which guarantees that the continuity Efjl) is satisfied. We

dimensional vortex tangle interacting with a two- &S0 introduce thg* component of the vorticity
dimensional normal fluidhas never been used in the study . N
of the hydrodynamics of helium II, but is not new in other L uT o ow (13
applications of fluid dynamics. In particular, it has been used 9z*  Ix*’
with success to study magnetohydrodynamics dynamo ac- , . . .
tion. Noteworthy exa}r/nplesg are t)r/1e Pc))/nomarenk)c/) dynam ' this way we have two equations of motion fot and(™,
and the G. O. Roberts dynarf®?® in which two-
dimensional fluid motions are studied which are able to gen- _ — — ——
erate a three-dimensional magnetic field. Jrt - Ix 0z a(x*,z%)

We make the equations of motion dimensionless by call- . 5k 5k . s
ing \ the unit of length and the viscous diffusion time of the of* oot ot (L)
normal fluid\?/ v, as unit of time, where the kinematic vis- at*  ax*? T 9z*% T a(x*,z%)
cosity is defined as,,= u/p,. We indicate dimensionless
quantities with a star: we writé* =tw/\?, r*=r/\, L*
=\2L, " =9/, Vi =V \/v, andvi =v\/v. Other choices 2% 2k

: . ! > . YT I
of time units are possibl@or example\/«), but our choice —zt ==, (16)
seems more appropriate since we are interested in a decay 2 9z
process and we want to make comparison to what happens {fjnere the Jacobian of two functiohsndg is defined as
the limit T—T, in which Eq. (4) becomes the classical
Navier-Stokes equation. It must also be noticed that the non- a(f,9) of ag of dg
dimensionalization of the equations is not complete because m =0 97 a7 It (17
of the existence of the vortex core cutoff parameigin the '
desingularization of the Biot-Savart laler in the local in-  and the dimensionless frictidg* is
duction approximation, had we used E8)]. This problem
is unavoidable because it is not sensible to base the length . ps1 [ ., ., % .
scale of the flow on a quantity of atomic dimensions. So, F :arp—vLS X[ X(vq—vi)]dé*. (18
when necessary, we use the correct dimensional vajue "
~.10 8c.m,. which cgrresponds to assuming that 1 cm. The numerical calculation requires initial conditions for
Since this is the typical size of an experimental cell and Wepe normal fluid and for the vortex tangle. As the initial
are concerned only with the argument of a slowly varyingcqngition for the normal fluid we take an Arnold-Beltrami-
logarithmic function, the interpretation of the results 5h°“|dChi|dress(ABC) flow.24 This flow is an idealized model of

not be much affected. . _ an eddy, much used in the study of magnetohydrodynamics
Neglecting any imposed superflows(=0), the dimen-  ,rpylence and dynamo actidhin the context of superflu-

&w* IP*
V::(U*,v*,w*)Z(——*,v*,&%),

5 (12

ﬁv*_ﬁzv* Fv* a(v*,Pr)

+FE, (14

+(V¥XF*),, (15

together with a Poisson equation for the stream function,

sionless equation of a vortex filament is then idity, ABC flows have been used to model turbulence struc-
ds* tures of the normal fluid® In general, ABC flows are defined
I =V¥ +ast X (VE—VvF), (7) by the Cartesian components
where the self-induced velocity is u=Asin2mz/\)+Ccog2my/N), (19)
. r (z* —s*)xdz* v=Bsin(27x/\)+Acog27z/\), (20
Vi (S*):4—JW1 (8)
mTle |Z | A
w=0sin(27y/\)+B cog2mx/\), (21

andI is the dimensionless quantum of circulation, , .
whereA,B, andC are parameters. An interesting property of

F=«lv,. (9)  ABC flows is that they are solutions of Euler’s equation and
_ ' _ _ when substituted into Ed4), in the absence of friction, they
The dimensionless normal-fluid equations are decay in time as/(t)=v(0)exp4mvt/\?), in which is

V¥ (t*) =Vv* (0)exp(47t*) in dimensionless units. The ex-
istence of this precise decay law will prove particularly use-
ful in analyzing the results.

*
v

at*

F(Vr - VEVE=—V¥P* + V*2yF +F*, (10)
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FIG. 1. Contour plot ofy component of the ABC normal-fluid

; FIG. 3. Contour plot of the averagecomponent of the super-
velocity.

fluid velocity corresponding to the tangle of Fig. 2.

We obtain a two-dimensional ABC flow by settif@ 3, which must be compared with the related normal fluid of
=0 and we takeA=B for simplicity. In dimensionless form Fig. 1. Note that this calculation to produce the initial tangle
we have is kinematic in character.

In summary, our initial condition consists of a two-
u*=A* sin(27z*), (220 dimensional ABC normal flow and a vortex tangle which is
two dimensional only in an average sense.
v* =A* sin(27x*)+ A* co{2nwz*), (23 The numerical technique to integrate the motion of the
vortex tangle for a given normal fluid has been already
w* =A* cog2m7x*). (24)  described*'® in detalil, including the tests applied to the
computer code. The integration of the normal-fluid equation
Figure 1 illustrates the spatial structure of the initial normalis performed by subdividing the computational box into a
fluid. two-dimensional grid of\ equally spaced mesh points in

The initial condition for the superfluid is an arbitrary each directionh=1/N being the grid’s spacing. The time
three-dimensional vortex tangle of some line dendity.  stepping of the normal fluid is performed using the alternat-
The tangle is created by seeding a suitable two-dimensionahg direction implicit technique for the linear terms and the
ABC flow with a superfluid vortex ring. Driven by the Glab- Adams-Bashforth method for the nonlinear terms. The Pois-
erson instability, the vortex ring develops vortex wavesson equation fory is solved using the fast Fourier transform
which become unstable, grow, reconnect, and create a vortg¥ethod. The number of mesh points is typicaily: 20. This
tangle which, although three dimensional, has the same ayesolution is typical for similar flows studied in the literature,
erage spatial structure of the driving, fixed ABC normalfor example Taylor-Couette flod?. The resolution has been
flow, as we showed in a previous papéHere we stop the tested to obtain the correct decay rates of the ABC flow. At
calculation before saturation takes place because the use @hch time step the components of the friction foFcere
the Biot-Savart law limits the denSity of the tangle which we Computed as described in Sec. V and averaged ovey the
can study. The resulting initial tangle is shown in Fig. 2: thedirection. Because of the computational constraint of the
main feature is the spiral structure of the tangle which proBjot-Savart law, the number of vortex points is never large,
duces the average Superfluid velocity field illustrated in Fig.so we perform a nearest_neighbors averaging in order to
smooth the friction and facilitate the computation of its curl,
which appears in Eq15).

VII. RESULTS AND DISCUSSION

We have performed a number of numerical experiments
in which we have computed the self-consistent decay of ar-
bitrary initial vortex tangles and ABC flow configurations.
Each run is characterized by the amplitulie of the initial
ABC flow, the vortex line density.* of the initial tangle,
and the temperaturé. The temperature determines the di-
mensionless friction coefficient, the dimensionless quan-
tum of circulationl’, and the density ratip./p, . Because of
the lack of external forcing, all calculations result in the de-
cay to zero of both the motion of the normal fluid and of the
FIG. 2. Vortex tangle created by an ABC flow. vortex line density. What interests us is how and at which
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TABLE I. Parameters used in the runs showed in Figs. 4 and 5.
140 |

run T (K) A* E}/E: EX(t*)
a 2171 5 1.19 drops

b 2.16 5 0.21 rises

c 2.12 5 0.06 rises

d 2.10 5 0.05 rises

e 2.02 5 0.02 rises

f 2.0 5 0.02 rises
g 2171 13.6 8.78 drops
h 2.16 13.6 1.55 drops
i 2.15 13.6 0.99 drops
% 001 0.02 003 0.04 0.05 0.06 j 2.14 13.6 0.74 drops
¢ k 2.12 13.6 0.48 rises

FIG. 4. Dimensionless normal-fluid densiBf vs dimension- | 2.10 136 0.34 rises
less timet* for different runs(see Table)l starting withA=5. m 2.05 13.6 0.21 rises

rate this decay takes place. We concentrate our attention onto . ,
the normal fluid because very little is knowapart from the number of different temperatures, from the lambda region

linear calculation of Ref. 18about the effect which the vor- down to T=2.0K, the parameters used in each run being

tices have on the normal fluid. listed in Table I. _ ,
A global quantity which is particularly interesting is the |t is apparent from Figs. 4 and 5 that a variety of decay
energyE,, contained in the normal fluid behavior is possible, depepdlng on the parameters chosen.
The general featuressummarized by the last column of Table
pn (M2 A2 A2 ) I) is that at the higher temperatures the normal fluid decays
En=7% _de _MZdYJ_de(Vn) : (259  immediately, while at intermediate and lower temperatures
the normal-fluid energyey (t*) rises from its initial value
In dimensionless form we have E;(0) to a maximum valueEy ., before decaying. The
effect is more pronounced #&* =5 than atA* =13.6. On
- En _ Efl’z dx* fllz v+ fl’z dz* (v¥)?2 the contrary, the superfluid vortex tangle’s densitydecays
n pnyﬁ)\ 2 )1 12 y 12 nt- monotonically in all runs; see Fig. 6.
(26) To understand the initial rise & we compare the initial

_ _ ratio of the energies of the normal fluid and the superfluid. In
Figures 4 and 5 show hof&; decays as a function of the the first approximation the energy contained in the tangle is

dimensionless tim¢*. The initial vortex tangle is the same simply
in all cases [(* =29.5), and the initial ABC flow has ampli- 5
tude A* =5 in Fig. 4 andA* =13.6 in Fig. 5. Note that the Es~elN, (27)

values of A* chosen are well below the threshold of the

where

Glaberson instability: if the density of the vortex tangle in-

creased, we would need more points to represent the vortex psk® [ b
lines, and the computation of the Biot-Savart law would be- &= Nl - (28)
come unacceptably slow. The calculations are performed at a 0
250 30
28 I
286
24
L*
E; 22
20
18 |
16 |
0 001 0.02 003 008 008 (.me 0 0.005 0.1)1 o.c;; onoz o025 003 0005 004 oo 005
t* t*
FIG. 5. Dimensionless normal-fluid densiB} vs dimension- FIG. 6. Vortex line densityL* vs timet*. The labels under

less timet* for different runs(see Table)l starting withA=13.6. each curve refer to Table I.
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1(0.02)
{} 0(0.02) | | i

£ d(0.05)
\/m I < (0.06)

n
gm 0.21)

g 1039
; bo21)

* k(0.48)

L L LT PN L -
o 0.005 oo 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

13l .
FIG. 7. Dimensionless energy increaéAE: vs dimensionless FIG. 8. Decay of normal-fluid energy IBf*) vst** for differ-

drive |F| of different runs. The labels refer to Table I. The figures in ent runs, where energy and time are measured in terms of viscous

bracket represerit}, /Ey . diffusion times of thetotal helium densityp.

is the energy per unit length of vortex line abe-L =2 is
the average intervortex spacing. In dimensionless units wi
have then

gchwarz and Vinen’s phenomenological equaffofihe sec-
ond, slower stage of decay, according to Schwarz and Rosen,
was a self-consistent coupled decay regime in which energy
is transferred from the superfluid to the normal fluid through
the mutual friction and then dissipated through viscosity, and
= 5. (290  the rate of decay is no longer dominated by quantized vortex
Apnv dynamics but by normal-fluid viscous effects. Schwarz and
Rosen argued that the second stage is a regime of coupled
) ) o turbulence in which the normal fluid and the superfluid
Table | lists the ratid} /ES at the beginning of each run. It eyolve self-consistently. They analyzed the data using a
is apparent from Figs. 4 and 5 and Table | that a risEpf  simple one-dimensional model and they concluded that the
that is to say a transfer of energy from the superfluid to thesecond stage of decay takes place when energy initially

* ES
s

normal fluid, occurs only if at*=0 we haveE{>E;. stored in the superfluid flows into the normal fluid. Our find-
From the data of Table | this is thus a necessary, though nadhg illustrates Schwarz and Rosen’s interpretation.
sufficient, condition. Past the initial rise of Figs. 4 and 5, the normal-fluid en-

What determines quantitavely how much energy stored irergy decreases, and it is interesting to consider the rate at
the tangle is transferred to the normal fluid depends on thevhich this decay takes place. It is important to appreciate
actual mutual friction coupling [Eq. (18)]. The coupling is  that in the curves of Figs. 4 and 5 the unit of timé/ v,
proportional to the integrated mismatch of normal fluid andactually changes from run to run, depending on the tempera-
superfluid velocities. A simple way to estimate the magni-ture. We introduce a viscous diffusion time scafév where
tude of the initialF, and hence predict wheth& will rise v=ulp is a kinematic viscosity based on Heliumistal
or not, is to computéF|~al ps/p,L* Av* whereAv* is  densityp rather than on the normal-fluid densjty;. Corre-
the difference between the initial maximum velocity of the spondingly, we now have units of speadv and energy
normal fluid (which is 2A by construction and the initial A 1?p, at the place ok/v, and\ v2p,. We use a double star
maximum velocity of the superfluidgiven by the highest to denote the scaling of the variables and in Fig. 8 we plot
contour level of Fig. 3, for exampleFigure 7 shows that the the decay of the normal fluid ener@}* =E,/(Av?p) as a
energy increase/AE; where AE} =Ej ., —E;(0) is pro-  function of the timet** =tw/\%. Since in the absence of
portional to|F|, and the data are essentially ordered by thevortex lines the normal fluid would decay exponentially, we
ratio Ex/E% . We conclude that it is the initial mutual fric- plot the natural logarithm dE}* , so the slope gives directly
tion force that actually determines the evolution of the nor-the decay constant.
mal fluid. From the picture it appears that the initial mutual The figure shows thadll runs decay exponentially after
friction forcing must be higher than a critical value before an eventual initial rise, and, more important, the decay rate
E} is increased: what happens in rum®,h,i, andj is that  just after that rise is the same. After the eventual initial rise,
the energyE} either decreases immediately or holds itsthe normal-fluid energyE;* drops like expot*™) with
value for a time lag before decreasing, but never increasesdecay constant- approximately in the range-79<o<

The possibility that energy stored in the vortex tangle is—83 (it is difficult to definec more precisely because of the
transfered to the normal fluid was discussed by Schwarz anarbitrariness in defining the fitting region, after the initial
RoseR’ to explain their measurements of the free decay otransient and before the vortex line density is too)lowhis
guantized vortex lines in a channel. They observed two distiniform value of the decay constant is at first surprising: how
tinct stages of decay: an initial rapid decay followed by adoes the normal fluid know about thetal helium density?
slower one. They claimed that the first stage of decay idNote that the temperature range covered by the results cor-
consistent with the known vortex dynamics model ofresponds to a normal-fluid fractiop,/p which varies be-
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tween 99% aff =2.171 K and only 56% at=2.0K. In the Despite the simplicity of our model, we have been able to
absence of a tangle the energy of the normal ABC flowrecognize physical effects which have been observed and
should drop like exp—87%(p/p)t** ], that is to say the decay discussed in the experimental literature. The first effect is the
rate should change fromx=—79 at the lambda point to-  transfer of energy from the vortex tangle to the normal fluid
=—141 atT=2.0K, almost doubling its value. The data and the viscous decay of the normal fluid coupled to the
clearly show that this change does not happen. The interpreéangle. This effect has been discussed by Schwarz and
tation of the data is that the coupling between the normaRosef’ to interpret their measurements, and our result con-
fluid and the tangle is strong enough to compensate for théirm their observation.

changing relative proportion of normal fluid. Although our  The second effect which we have found is that energy
model is too idealized to make a direct quantitative comparigecay rates are independent of temperature. It appears that
son with the experiments, our result is consistent with thene friction coupling with the tangle is large enough to com-
observation by Stafif that the decay rate of helium turbu- pensate for the decreasing proportion of normal fluid at

lence is independent of temperature. Note that the actual dgsyer temperatures. This effect is in qualitative agreement
cay rate which we calculate cannot be compared with Stalp’ﬁ/ith the experiments of Staf®

measurements, since in our case we have the exponentia Further work will attempt to go beyond the simplicity of

decay of an ABC flow and in his case there is the pOV\/er'k’W\fhe current model. At the moment the major limitation is the

decay of more complex isotropic turbulence. : :
computer power available, which forces us to use a rather
The observed decay rate bf, on the contrary, does not : .
low-density vortex tangle and restrict the study to two-

follow any simple scaling rule. This is not totally unexpected . . ) .

since the tangle is forced by an anisotropic, hence somewh men5|_onal normal flows. _The am will be to per_form the

artificial, two-dimensional normal fluid. This suggests that itc@lculation with a three-dmgns:onal_ normal fluid and a
will be important in the future, when more computer powerMuch higher vortex line density™. This will allow us to

is available, to couple the superfluid tangle to a threelinvestigate what should be the best way to perform the av-

dimensional normal fluid. eraging process in the calculation Bf ideally one would
like to obtain the HVBK limit; another issue is whether there
VIIl. CONCLUSIONS is a scaling law for the decay df*, which we have not

o o o ~ found with our simplified model. A fully three-dimensional
We have identified the limitation of the existing theoreti- calculation would also allow us to study forced turbulence

cal approach to study the turbulence of helium II: that itand compute energy spectra to compare with the experiment
neglects the back reaction of the superfluid vortex lines ont@f Maurer and Tabeling.

the normal fluid. We have proposed an approach to study the
coupled evolution of normal fluid and vortex lines. Its key
feature is that it is dynamically self-consistent. We have
implemented this approach to study a rather idealized model
of decay of a two-dimensional normal-fluid eddy coupled to This work was supported by a Royal Society equipment
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