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Cherenkov resonances in vortex dissipation in superconductors
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When the velocity of vortices in a superconductor in the free flux flow regime exceeds the velocity of sound,
each vortex produces Cherenkov radiation of sound waves. The velocity field of the lattice ions is localized on
the Cherenkov cone, but the forces acting on the lattice are localized on the vortex positions. When the
Cherenkov cone coincides with certain directions in the moving vortex lattice, the dissipation exhibits maxima.
Since the direction of the Cherenkov cone is determined by the vortex veleditstric field one can expect
a series of resonant peaks in the current-voltage characteristic at particular values of electric field.
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I. INTRODUCTION Cherenkov resonances under vortex motion.
A necessity for sharp resonances is the existence of a

In type-two superconductors the magnetic flux is carriedrelatively perfect lattice of moving vortices. At high vortex
by vortices. If the transport electric current greatly exceeddelocities this is indeed the case, through the well-known
the pinning critical currenj, the current-voltage character- process of dynamic crystallizatidn? Thus in the regime of
istic (1-V curve becomes linear and one might expect such dlighly driven flux flow the resonances ought to be observ-
linearity to hold up to the depairing currejf. Nevertheless able.
such a free flux flow regiméFF) does not extend up to the
depairing current. Even with the perfect removal of Joule Il. CRYSTAL LATTICE DYNAMICS
heat, the finite rate of energy relaxation between the electron
system and the lattice leads to a non-equilibrium state. As Consider a three-dimensional superconductor in wiiich
Larkin and Ovchinniko¥ (LO) have shown, such a state, is directed along the axis. At sufficiently high transport
created by a big constant electric field, results in enhancecurrent densityj there is a free flow of vortices with the
ment of superconductivity like under action of microwages. velocity
The increase of the order parameter is equivalent to a reduc-
tion of the vortex core size which, in turn, leads to a devia- E
tion of the I-V curve from linearity observed v=cg- 1)
experimentally’~®

The LO effect is not a unique mechanism for producing a " ds th d of q he Ch
deviation of thel-V curve from linearity. If the vortex ve- v exceeds the speed of sound one can expect the Cher-
ae_nkov effect resulting in some peculiarities in the current-

locity exceeds the speed of sound in the crystal the dissip . i . ;
tion increases due to Cherenkov emission of sound wave¥oltage characteristics. The equation of motion for a lattice

Each moving vortex creates an electric field acting on th&lisplacementi has the form
crystal lattice and produces a shock wawee Cherenkov

cong. In a thin film with a magnetic field perpendicular to it 220 aq 20 4\ 1. .
the situation is two dimensional and the cone reduces to two —t Yot =8|t —|= —f(r—vt), (2
lines. The velocity of a crystal lattice is localized on the at ox= ady<]  Po

shock wave but the force acting on the lattice is localized on .
the vortex positions. The Cherenkov contribution to the totawhere f is a force density acting on a crystal lattice from

dissipation is proportional to the product of the velocity andelectrons ang, is a crystal densityf will be specified later.

the force and hence the dissipgtion is enhanced when therekpis the longitudinal displacement argdis the velocity of
a maich between vortex positions and the shock wave. Ifyngitdinal sound(As we will show below, the effect of the

moving vortices are arranged into a vortex lattice then th(—i‘ ngitudinal part off(7) is more important than the trans-
matching condition can be easily reached when a direction gPngntudinal p ! 'mp

verse one.

the shock wave coincides with some direction of the vortex Th d att tion i ted oh logicall
lattice. Since the direction of the shock wave is determined € sound aftenuation IS represented phenomenologically

by vortex velocity(electric field maxima of dissipation can In Eq' (2) through the coefﬁuelr(])'y. In the Fourier represen-
be reached at some particular values of the electric fieldl0n ¥=ask wherea=s/ve.” _ _
According to this, thel-V curve should have a series of ~ With the new variable=r—vt one can find a solution of
maxima as a function of voltage. This is the origin of the Eq. (2) takingv to be alongx andv>s:
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o

wherer’ i are coordinates of vortices aréP) corresponds to
the force from a single vortex. According to this, E8) has
1 v the form

2
xJ—)ikxe"ka(ko)fO,Z__ eki=r). (10

FIG. 1. Schematic representation of the Cherenkov cone. Théf moving vortices are organized into a vortex lattice then
width & is given in the text. The angl@ is determined by the
condition sing=g/v. \%

2
w= PR
2,0052)\ (q)o

> ibxfﬁ,o)F(_ogf d?RO(R)e PR
b

- 1 e o -
ip)=— s [ RIGROR, @ ] -
PoS whereb is a reciprocal vector of the vortex lattice add,
where =gficle is the flux quantum.
Making theR integration in Eq.{11), one can obtain
- = dk B
_ y ;
q)(R)_fwﬁex4_'kyRy_X|ky|Rx>®(Rx) (4) 1 B \2 o be
Y W= _S (PT fE)O)f(P% N > 5" (12)
and) = (v2/s— 1)M2 and 28=av?/(v2—s?). Po 0/ b,#0 (Nby+iBlby|)*—by

If f(ﬁ)~5(§) the solution(3) corresponds to a Cheren-
kov cone propagating in thedirection with the velocity. lll. FORCE ON A CRYSTAL LATTICE

In the I2|m|2§ 0f1/2 small  attenuation g—0, u(p) The force acting on a crystal lattice by the electronic sys-
=0[|p,|(v?/s*—1)"*~p,]. The Cherenkov cone produced tem can be written as

by a single vortex is shown in Fig. 1. The crystal lattice

displacementi=0 to the right of the cone and to the left is fO—enk (13)
UNEE v 5) where n is the crystal density ané is the electric field
PrE VE W2—52 produced by vortex motioh:~**We ignore the Lorentz force

since it does not contribute to dissipation and we omit the
Of course, far to the left of the cone there is the boundarydrag force on the crystal lattice due to impurities. We also
conditionu=0 since the crystal does not move as a wholeneglect the drag force on vortices due to pinifrgince we
This boundary condition does not affect the solution in theare concerned with vortex motion in the free flux flow limit.
vicinity of the cone. The width of the shock wave due to  The longitudinal part o (VXElongitudinalzo) is local-
sound attenuation is ized within a distance much less than the London penetration
depth. In this region the electric field has the féPm
oS

W2-¢? - . -1
E=ZVx—-V®o, Vx(p)=—
. 2e p?
wherel is the length along the cone.
_ The additional dissipation density due to shock wave MOwhere y is the singular vortex phase arl is the gauge
tion is . . . - .
invariant scalar potentiatb(p) is screened on the distance
20 90 I e which is the penetration depth of the longitudinal electric
i (7)  fieldin superconductors. For simplicity we take the Bardeen-

S at’ Stephen approach and plg~ &, where ¢ is the coherence
length. According to this, on the distance bigger tlganom

the vortex core one can use the expressiﬁ)ﬁ(hIZe)V}(
and sincey= —vdyx/dpy in the Fourier components,

o~ [, (6)

_py), (14)

X

W:

where S is the surface area of the sample. Sina Jt
= —vauldpy, it follows from Egs.(7) and(3)

v . (d%p. . 071?(;;4-&)
w=— dZRCDRf—f —. (8 . vdyk, [ k 1
2p082)\f (R 1) IRy ® E= °—X<_Iy(), k<. (15)
X

3
The total force density is

c k2

IV. THE CHERENKOV DISSIPATION

f(p)=> fO>p—r)), 9
() Z (p=1i) © Substitution of Eq(15) into Eq. (12) yields
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where Ho,=®,/27¢2 is the upper critical field. The last
bracket term in Eq(16) is introduced according to cutoff at
k~1/¢.

To calculate theb sum in Eq.(16) let us suppose that
moving vortices are arranged into a square latfiog,b,}
=2a{m,n}/B/®,. Then theb sum in Eq.(16) has the form

: [Hez °A > im
27B 2 170 1+ (v2/s?)(B/H o)m?

1

X :
n70 N2(m+ig|m|)?—n?

17

The n summation can be done easily. Considerintp be a
small parameter one can write by means of Etf) and
expression(17)

s ( B )3’2 n # SY(V) 18
w= - nl——=|zYl<|,
avy2m\He2 po &2) & \s

where
o0 1451 1
X = — —_ —
x% 1=1 N\ 14+ n?x?B/H¢,
y 1
1+ (2/ma)qtan mnyxZ—1)]4(x2—1)/n?x*
(19

Equation(19) is valid under the conditiox?— 1> a?n?x?.
Forx=1, typicalnis of the ordern/H.,/B and forx>1 one
should taken=1. According to this, the applicability condi-
tion of Eqgs.(18) and(19) is

ch<V1-V<1 20
B |57 %% (20

o

Equationg(16) and(18) relate to the case>s. In the oppo-
site casev<<s one can easily show that instead of Ef6)
we have

a(v)S( B )2 n #%\ s
W= —| — — Nl ——|—
41s) \He po &%) &
| by}
5,70 b b2+ (1-v?/s?)bZ]? 1+b2¢%/2m

(21)

The main contribution at (+v?/s?)<1 comes from terms
with by=0. The result is
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_L(E)S/Z(| H_)_ (ﬂf)ﬁ
"= 427 \Hez "B (Sz—vz)2n po £2] &
[0<(1—vV/s)<1]. (22

Equations(18) and (22) give the Cherenkov dissipation for
moving vortices arranged in a lattice.

V. CURRENT-VOLTAGE CHARACTERISTIC

The total dissipatiorj E consists of two parts:

(23

The first term in the right-hand side of E®J) is the con-
ventional dissipation under vortex motion which occurs
mainly close to the vortex core. We have used the Bardeen-
Stephen approximation for this dissipation. The second term
in the right-hand side of Eq23) is the Cherenkov dissipa-
tion calculated above. We omit here the distortion of ithé
curve by the LO effect since away from LO instability the
non-Cherenkov part of current-voltage characteristic is
linear?! Since the vortex velocity obeys E¢l), whereE is

the mean electric field, the current-voltage characteristics has
the form

 HpE 2B h
=8, THo  \Mé
H
Y nm?. 0<(Ey—E)<E,
16(1-E/Ey)2 B’
° (24)
1y E). E,<E
o EO ’ 0 '

HereEy=Bs/c andM =p,/n is the average ion mass. One
can use the following estimatdd =m(vg/s)?, wherem is
the electron mass¢=15 A, p=10"% Qcm, and vg/s
=10%. This gives a current-voltage characteristic clos&go
of the form

10" 7j(Alcm?)
/B
=14+10 ?*n/—n(cm3)

Hc2

1075 Eo 2| Hez, 0<(E,—E)<E
Eo—E, "B’ 0 0

X E (25
— | E,<E.
Y( Eo)' °

The plot of the functionY(E/E,) at B/H;,=0.1 anda
=102 is shown in Fig. 2. The main peak is positioned at
E/Eo= 2 and has a widthE/E,~ « like some other peaks
in the regionE/Ey~1. This is valid for sufficiently perfect
moving lattice of vortices. IfR is the equilibrium vortex
position in the perfect lattice the deviation from it due to
disorder&R(ﬁ) should satisfy the conditioﬁR(ﬁ)/Rsa at
R~ J®,/B. For bigger deviation$R the peaks in Fig. 2 are
more smeared and for a completely uncorrelated vortex sys-
tem the curve becomes smooth as is shown in Sec. VI.
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— where
w
=
> (0=3+ x2 3—4x? _
X)= - arcsirx
g 1-x% x(1—x?)%?
T 1
- (1-x<1
2(1_X2)3/2
b= B 16x* 28
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FIG. 2. The plot of the functior¥(E/Ey) which determines, Close toE, the current-voltage characteristic can be pre-
according to Eqs(24) and(25), thel-V characteristic in the case of sented as the following:
the moving vortex lattice. Parameters are choseB/&k.,=0.1 and
=102, The dashed line, corresponding to the unphysical case of 10" 7j(Alem?)=1+1023n(cm %)
an uncorrelated moving vortex gas, is plotted just to show the lim-
iting positions of current-voltage characteristics. a E

- . <

4(1—E/Eq)¥?’ °

VI. UNCORRELATED VORTEX SYSTEM (29)

In the previous section we have considered the motion of 1 . E.<E

. . . . , 0 .
vortices arranged in a perfect lattice, leading to the resonant VE/IEo—1
behavior shown in Fig. 2. However, a violation of the trans-
lational invariance of the vortex lattice leads to a smearing offhe crossover between two cases occurs|BtEy— 1]
the peaks. The physical origin of peaks is the inclusion of a~ a/4~10. Here there is only one peak &=E,. At
large number of other vortices within the Cherenkov coneB/H.,= 0.1 the curve for uncorrelated vortices is represented
width. In reality a moving vortex system will not be a perfect by the dashed line in Fig. 2.
lattice, due to the effects of thermal and quenct@dning
disorders. Rather than analyzing the smearing of peaks in a
guantitative manner, we consider instead the opposite limit-
ing case of a completely uncorrelatédmorphous/liquig The Cherenkov effect can be observed at sufficiently high
vortex system. Although this limiting case is not physital, voltage across a sample. Equatit®) with v=s gives an
it nevertheless establishes a useful limit. The real situationgstimateE=Bs/c for observation of the Cherenkov effect.
and the corresponding current-voltage curve, will lie be-For a typical sound velocity in metags=10° cm/s the nec-
tween the two limiting cases of perfect lattice and uncorre-esary electric field i€(V/cm)=10B(T). In a current-biased

VII. CONCLUSIONS

lated vortices. measurement, the series of resonances become replaced by a
In the case of uncorrelated vortices the average of Egsingle step in dissipation at=s. Preliminary evidence of
(10) reads this has been observed recently in connection with the study

of low-temperature flux flow in YBgCuO, films.1

0

i B
gkri-r) ) = —g,
|3 )5

Equationg16) and(21) become modified by the substitution
>— [d?k/(2m)2. Thek integration is simple and the result M.N.K. acknowledges support from the U.S. Department of

for uncorrelated vortices is
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