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Dynamic renormalization group theory of superfluid helium films
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The statistical mechanics of vortices, which is usually described in terms of the behavior of a two-
dimensional Coulomb gas, can be mapped exactly onto a sine-Gordon model. We use this duality to develop
a theoretical approach to the description of the response of a superfluid film to an oscillating substrate. Starting
from a Hamiltonian for the vortex-gas system that includes a time-dependent superflow, we derive the form of
the equivalent sine-Gordon Hamiltonian in terms of a fictitious field. A simple equation of motion is then
proposed and we proceed to renormalize it using methods developed by Nozie`res and Gallet for the roughening
transition. The renormalization program allows us to calculate the dynamic response of a superfluid film as
measured in torsional oscillator experiments. We find that our method leads to predictions which are closer to
experiment than previous phenomenological approaches.@S0163-1829~99!02941-0#
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I. INTRODUCTION

The theory of the superfluid behavior of thin helium film
is due to Kosterlitz and Thouless1,2 who showed that ther
mally activated topological defects~vortex and antivortex
pairs! are the dominant fluctuations which mediate the tr
sition from normal to superfluid phases. Kosterlitz3 used
renormalization-group techniques to analyze the phase t
sition of a dilute gas of vortex antivortex pairs in equili
rium. The vortices in the film behave as charged partic
interacting with each other as if they formed a tw
dimensional Coulomb-gas.

Attempts to verify the theory proved frustrating as t
principal experiments available had to be performed in
linear-response regime and at finite frequency,4–6 leading to
a strong broadening of the transition which could not
described accurately using the equilibrium Kosterli
Thouless theory. What was required was an extension of
theory to finite frequencies. Just such an extension was
provided by the theory of Ambegaokar, Halperin, Nelso
and Siggia~AHNS!.7

The AHNS theory described the vortex dynamics in
phenomenological way, using expressions for the superfl
density and vortex fugacity obtained from the static rec
sion relations of Kosterlitz. Recently Bowleyet al.8,9 showed
that the approach of AHNS can be refined, dispensing w
the need for fitting parameters and leading to the predic
of a universal property which is readily compared with e
periment. An alternative formulation of the dynamic theo
was also developed by Minnhagen,10 but it too relies on a
heuristic description of the dynamics very similar to that
AHNS.11 Furthermore, it leads to predictions very similar
those of the theory of Bowleyet al.8

The driven torsional oscillator is the canonical experim
used to probe the behavior of superfluid films. The per
shift and change in theQ-factor of the torsional oscillator ar
measured and can be related to the vortex response func
known as the dynamic dielectric function, which is calc
lated in the theory. As we have shown elsewhere9 previous
phenomenological theories based on the Coulomb-gas m
alone do not give agreement with experimental results
PRB 600163-1829/99/60~17!/12388~12!/$15.00
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4He films on Mylar or Grafoil substrates. It could be that t
test fails for films on a Grafoil substrate because the disor
occurs on length scales comparable with other lengths in
theory. However, it is believed that the disorder on My
substrates occurs on short length scales; therefore, the
crepancy between theory and experiment for films on My
is much more serious. It is this lack of agreement betwe
theory and experiment which caused us to develop a v
different description of the dynamics.

Here we describe a new theoretical approach based on
equivalence of the Coulomb-gas model and the sine-Gor
model for a fictitious fieldf. We propose an equation o
motion to describe the relaxation of the fictitious field ba
to equilibrium. It is the renormalization of this equation
motion in the presence of an oscillating drive which allow
us to calculate the dynamic dielectric constant and he
compare our theory with experiment. It must be acknow
edged that we are proposing this equation of motion with
proof. However, the approach has the important advant
over previous theories in that the dynamic behavior is
tained directly from a renormalization treatment of the eq
tion of motion for the system; it also has the advantage t
it leads to agreement with the main features of the exp
mental results for a wide range of coverages of4He films on
Mylar as measured by McQueeney.6 However, as we noted
elsewhere,9 the response of helium films on Mylar depen
weakly on the thickness of the film, an effect which we a
still not able to capture in the theory.

We begin the development of our theory by re-express
the Coulomb-gas model as a classical field theory. The tra
formation is performed using the well-known Hubbar
Stratonovich transformation leading to a sine-Gordon mo
with free energy densityf @f(r )#, given by

f @f~r !#5
g

2
@¹f~r !#22V cos@f~r !#, ~1!

expressed in terms of a fictitious fieldf(r ).12–15 The sine-
Gordon model has been used with great success by Noz`res
and Gallet to describe the roughening transition in the we
coupling limit.16,17 The duality of the two-dimensiona
12 388 ©1999 The American Physical Society
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Coulomb-gas and sine-Gordon models means that an e
translation exists from the language of the roughening tr
sition to that of superfluid films.12 We can use this duality to
obtain the recursion relations for the Coulomb-gas mo
using the analysis of Nozie`res and Gallet; this leads t
slightly different recursion relations for the superfluid de
sity compared to those found by Kosterlitz.3

In this paper we use the sine-Gordon model to discuss
effect of a superflow on the Coulomb gas. Our aim is
generate recursion relations which allow us to calculate
dynamic response of the system. The dynamics of vortice
films is not easy to capture using the conventional picture
which the vortices are treated as particles that make u
two-dimensional Coulomb gas.7–9 In contrast, the dynamics
of the sine-Gordon model at the roughening transition
been analyzed by Nozie`res and Gallet with considerable su
cess. Here we work the duality transform backwards and
it as the basis of our theory of the dynamics of superfl
films.

Our proposal, in its simplest form, is that the dynamics
the fictitious fieldf can be found by treating it as if were
nonconserved order parameter which obeys relaxatio
~model A! dynamics:

h
]f

]t
52

d f @f#

df
1R, ~2!

where h is a friction coefficient,R represents the random
component of the force, andf @f# is the free energy densit
functional of the resulting sine-Gordon model. This meth
allows us to develop a renormalization scheme in which
friction coefficient is renormalized as well as the superflu
density and the fugacity of vortices. By extending the the
to include the effect of an oscillating superflow we are a
to develop recursion relations that describe the response
served in torsional oscillator experiments. Of course the
of relaxational dynamics to describe the dynamics of sup
fluid films is not new. Indeed the original theory due
AHNS ~Ref. 7! was based on such an approach, and th
has been a considerable amount of work recently on
simulation ofXY model dynamics using a time depende
Landau-Ginzburg approach.18,19 However, to our knowledge
the idea that model A dynamics could be applied to the
titious field obtained from a Hubbard-Stratonovich transf
mation of the Coulomb-gas model is new.

The organization of this work is as follows. In Sec. II w
discuss the form of the Hamiltonian for a static superflu
film. First of all, we write down the Hamiltonian in th
vortex-gas picture. Then we describe how the Hubba
Stratonovich transformation can be used to rewrite
Hamiltonian in the form of a sine-Gordon model. Next w
discuss the boundary conditions which are required for a
of finite extent and then we consider the effect of a sta
superflow on the system. In Sec. III we describe the dyna
behavior of superfluid films using the sine-Gordon approa
We begin our discussion of the dynamics by postulating
equation of motion for the system. Then we derive expr
sions for the dielectric response of the system to an ac
perflow. Next we use numerical methods to calculate
dielectric function. Having calculated the dielectric respon
we compare the predictions of our theory with the results
act
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experiments and previous phenomenological theories.
nally, in Sec. IV, we discuss the strengths and weaknesse
our model, focusing in particular on the ways in which
might be extended in the future.

II. HAMILTONIAN

The local order parameter for a superfluid film is a co
plex quantity

C5C0eiS(r ) ~3!

with both C0 and S real. If the film is uniform the free
energy associated with a gradient in the phase is

E5
\2rs

0

2m2 E @¹S~r !#2d2r5
1

2
rs

0E vs
2~r !d2r , ~4!

wherers
0 is the superfluid density andvs(r )5\¹S(r )/m is

the local superfluid velocity. We dividevs into two parts,20

vs5v01v1 : v0 has zero divergence,v1 has zero curl. The
quantityv1 is the velocity fluctuation associated with colle
tive modes~third sound!; v0 is the velocity associated with
vortices. We can write

¹3v05
2p\

m
n~r !k̂, ¹•v050, ~5!

wheren(r ) is the vortex-density per unit area.
We consider a film in which there areN1 vortices of

positive circulation andN2 of negative circulation. Suppos
that for a particular configuration there are vortices w
positive circulation at sitesra and negative circulation a
sitesrb

n~r !5(
a

d~r2ra!2(
b

d~r2rb!. ~6!

In the Coulomb-gas model positive circulation is equivale
to positive charge on the particles, negative circulation,
negative charge.

We suppose that the film is rectangular, of areaA
5LxLy , and that we can impose periodic boundary con
tions so that we can define a two-dimensional Fourier tra
form of n(r ) as

n~q!5E d2r n~r !eiq•r, ~7!

n~r !5
1

A ( n~q!e2 iq•r. ~8!

Similarly we have

v0~q!5E d2r v0~r !eiq•r, ~9!

v0~r !5
1

A ( v0~q!e2 iq•r. ~10!

Using Eq.~5! we find that



a

on
-
n
bu
de
s

s

u-
rti

a
th
o

tw
-
in
he
an
c
a
e

o

ch

In
po

d

um

ral,

po-
ics
ary

of

tex.
u-
s
e

at
s

s-

en
lm

ion
e
te-

12 390 PRB 60A. D ARMOUR AND R. M. BOWLEY
v0~q!5 i
2p\

mq
n~q!. ~11!

The kinetic energy associated with vortices can be written

Hv5
1

2
rs

0E v0
2~r !d2r5

2p2

A

\2rs
0

m2 (
q

un~q!u2

q2
. ~12!

The total kinetic energy of the system also contains c
tributions that depend onv1(r ); these terms arise from non
vortex excitations in the fluid or from a superfluid flow. I
what follows we shall assume that the nonvortex contri
tions have been averaged over and subsumed into the
nitions of the microscopic parameters, as have the effect
disorder.

A. Hubbard-Stratonovich transformation

The total energy of a system ofN1 vortices of positive
circulation andN2 vortices of negative circulation include
the chemical potentialm of each vortex as well asHv . Thus
the energy is

Htotal

kBT
5

2p2K0

A (
q

n~q!n~2q!

q2
1

m~N11N2!

kBT
, ~13!

whereK05rs
0\2/m2kBT represents the unrenormalized s

perfluid density. The unrenormalized fugacities of the vo
ces are

y05e2m/kBT. ~14!

The grand partition of the system involves a sum over
configurations of vortices, taking account of the fact that
vortices are identical objects. However, as Samuel points
there is a difference between a three-dimensional and a
dimensional Coulomb gas:14 because of infrared diver
gences, a charge distribution in two-dimensions has an
nite energy unless it is strictly charge neutral. We can eit
ensure neutrality and work with an infinite area, or we c
as Samuel suggests, ‘‘enclose the system in a grounded
ducting casing. If there is excess charge then an equal
opposite charge will be induced on the conductor.’’ W
choose to deal with a finite system so that there is no c
straint of charge neutrality (N1 does not have to equalN2

for a finite system!; this choice makes the analysis mu
simpler in the presence of a superflow. Thus

J5(
N1

y0
N1

N1!
(
N2

y0
N2

N2!
)
a51

N1

E d2ra

a2 )
b51

N2

E d2rb

a2
expS 2Hv

kBT D
~15!

worked out for all positions and numbers of the vortices.
order to define the model unambiguously we define the
sitions as the lattice sites of a square lattice of sidea. The
partition function for a particular number of positive an
negative vortices is

Z5(
ra

N1

(
rb

N2

expS 2
2p2K0

A (
q

n~q!n~2q!

q2 D . ~16!

The problem is to evaluateZ.
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The Hubbard-Stratonovich transformation turns the s
into a path integral. We write

e2Hv /kBT5B21)
q
E Df~q!e2q2f(q)f(2q)/8p2AK0

3ei [n(q)f(2q)1n(2q)f(q)]/2A, ~17!

with the constantB given by

B5)
q
E Df~q!e2q2f(q)f(2q)/8p2AK0. ~18!

We can turn this back into real space to give a path integ

e2Hv /kBT5B21E Df~r !expF2E S ~¹f!2

8p2K0

2 in~r !f~r !D d2r G . ~19!

To paraphrase Samuel, if there is excess charge~that is
N1ÞN2) in the bulk then there must be an equal and op
site charge induced in the fictitious conductor which mim
the boundary conditions. We now consider the bound
conditions imposed on the system.

B. Boundary conditions

Suppose the system is confined to the region 0<x,Lx
and 0<y,Ly in such a way that the normal component
velocity is zero on they50 and y5Ly edges. To achieve
this we can create an infinite series of images of any vor
To clarify matters let us consider a vortex of positive circ
lation at (x1 ,y1). The vortex sits between two parallel line
(y50 andy5Ly) which act as mirrors, producing an infinit
set of images: there are image vortices of negative sign
(x1,2mLy2y1) with m an integer or zero, and image vortice
of positive sign at (x1,2mLy1y1). We illustrate this in Fig.
1. It follows that the system is periodic in they direction with
period 2Ly . To simplify matters let us suppose that the sy
tem has periodic boundary conditions in thex direction with
period Lx : such boundary conditions are appropriate wh
the surface is the inner lining of a cylinder covered in a fi
of helium and the film is laid flat as in Fig. 2.

We can take Fourier transforms in they direction over an
enlarged area with the vortices and their images in the reg
at 0<x,Lx and 2Ly<y,Ly . Over the enlarged area th
system obeys periodic boundary conditions. When we in

FIG. 1. Set of image charges for a positive vortex at (x1 ,y1)
confined between plates aty50 andy5Ly .
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grate over the enlarged area we have a pair of vortice
opposite sign at (x1 ,y1) and (x1 ,2y1), leading to

E
0

Lx
dxE

2Ly

Ly
dy in~r !f~r !5 i @f~x1 ,y1!2f~x1 ,2y1!#.

~20!

By taking the integral over the larger area we are doubl
the total energy of the system; but this can easily be re
edied by dividing by 2. The functionf(x1 ,y1) can be writ-
ten as

f~x1 ,y1!5f1~x1 ,y1!1f2~x1 ,y1!, ~21!

wheref1(x1 ,y1) is an even function ofy1 andf2(x1 ,y1) is
an odd function. Thef1(x1 ,y1) part of the field cancels out
and only the f2(x1 ,y1) part remains. It follows that
f(x1 ,y1) is an odd function ofy1, a symmetry condition
which arises as a direct consequence of the boundary co
tions we have imposed.

First let us suppose that there is no superflow. Substitu
the expression for the charge density, Eq.~6!, into Eq. ~19!
we obtain a phase factor for each vortex; in this way we
the grand partition function

J5B21E Df~r !expF2E S ~¹f!2

8p2K0

2
2y0 cos@f~r !#

a2 D d2r G , ~22!

which involves a path integral over the energy functional

F@f~r !#

kBT
5E S ~¹f!2

8p2K0

2
2y0 cos@f~r !#

a2 D d2r . ~23!

The Euler equation which minimizes the free energy is

1

4p2K0

¹2f0~r !2
2y0

a2
sin@f0~r !#50. ~24!

The solution of this equation isf0(r )50. Fluctuations abou
this solution cost an increase in free energy.

FIG. 2. When it is laid flat the inner lining of a cylinder i
analogous to a flat film with periodic boundary conditions along
x direction.
of

g
-
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C. Superflow

Now let us turn to the case where there is superfl
around the cylinder, that is in thex direction. We can repre-
sent superflow by supposing that there is a line of vortic
alongy5Ly with charge per unit lengths and another line at
y50 with charge per unit length2s. There are again an
infinite series of images of the lines of vorticity. These lin
of vorticity act as sources of the superflow. Using Stok
theorem for a contour which encircles the edge aty5Ly ~see
Fig. 3! we get

R vs•dl5
2p\

m E n~r !k̂•dS5
2p\

m E sdl. ~25!

It follows that the superfluid velocity is related tos as

vs5 îhs/2m. ~26!

The transformation proceeds as before only now we
the expression

e2Hv /kBT5B21E Df~r !exp F2E S ~¹f!2

8p2K0

2 i @n~r !

1dn~r !#f~r !D d2r G , ~27!

with dn(r ) the density of edge charges

dn~r !5
s

2
@d~y1Ly!1d~y2Ly!#2sd~y!. ~28!

The system of charges given by Eq.~28!, when replicated in
a periodic way in they direction, produces a charge per un
lengths at y5(2m11)Ly with m an integer.

The grand partition function now takes the form

J5B21E Df(r …expS 2
1

kBTE f @f~r !#d2r D , ~29!

with the energy functional

f @f~r !#

kBT
5S 1

8p2K0

@¹f~r !#22
2y0

a2
cos@f~r !#

2 idn~r !f~r !D . ~30!

Notice that in this case the energy functional contains
imaginary term, 2 idn(r )f(r ). However, the imaginary
term is an odd function off(r ) and so we can rewrite the
grand partition function in the form

e

FIG. 3. Contour of integration in the plane of the film for th
calculation of the edge charge.
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J5 K expS E idn~r !f~r !d2r D L 5 K cosS E dn~r !f~r !d2r D L
1 i K sinS E dn~r !f~r !d2r D L , ~31!

where the angle brackets denote an average over the
f(r ) with weight

expF2E S ~¹f!2

8p2K0

2
2y0

a2
cos@f~r !# D d2r G

which is an even function off(r ). It follows that odd pow-
ers off(r ) average to zero and we get

J5 K cosS E dn~r !f~r !d2r D L . ~32!

The partition function remains real.21 In fact imaginary terms
in the free energy functional are often generated by
Hubbard-Stratonovich transformation; in particular they ar
whenever there is a difference in chemical potential betw
plus and minus topological charges.22

The function which minimizes the free energy densi
subject to the boundary conditions, is the solution of

1

4p2K0

¹2f~r !2
2y0

a2
sin@f~r !#52 idn~r !. ~33!

It is a complex, even function of the coordinatey which we
write asf(r )5 ix(r ). As emphasized by Samuel,14 this so-
lution is the equivalent of the Debye-Hu¨ckel equation for a
coarse-grained Coulomb potential

1

4p2K0

¹2x~r !2
2y0

a2
sinh@x~r !#52dn~r !. ~34!

It is this solution which is the minimum of the thermod
namic potential; the system naturally evolves towards
minimum.

If the vortices cost an infinite amount of energy, t
fugacity y0 would be zero and there would be no vortices
the system. The solution when the fugacityy0 is zero in the
region2Ly,y,Ly is

x0~r !52p2K0s~ uyu2Ly/2!. ~35!

The corresponding free energy is

F@f~r !#

kBT
5E f @f~r !#

kBT
d2r5E S ~¹x!2

8p2K0
D d2r

5
p2K0~Lxs!2Ly

2Lx
, ~36!

which can be thought of as the energy of a charge ‘‘Lxs ’’
stored in a ‘‘capacitor’’ of capacitance

C5
Lx

p2K0Ly

~37!

with K0
21 the equivalent of the permittivity of free spacee0.

The renormalization program is a systematic way of accou
ld

e
e
n

,

is

t-

ing for the effect of vortices by taking account of terms
powers of the fugacity. The effect of renormalization of t
superfluid density~as represented byK) is the equivalent of
changing the ‘‘permittivity’’ e0 to ee0 with e the dielectric
constant

e5
K0

K
, ~38!

whereK is the renormalized parameter. In essence we h
been describing the Coulomb-gas picture of the system
which the charges form dipoles which act to screen the
ternal electric field.

III. DYNAMICS

Our aim is to develop a model of the dynamics of t
system which describes the motion of the thermally gen
ated vortices. The model must also allow the vortices to fl
tuate in all possible ways and to relax back to thermal eq
librium. For example, if the system has too many vorte
antivortex pairs, the model should allow them to decay
mutual annihilation; if there are more positive than negat
charges in a region there must be a mechanism in the m
which allows them to redistribute themselves so as to re
back to equilibrium. However, rather than use the langu
of vortices we prefer to express the decay back to equi
rium in terms of the fictitious fieldf(r ). The quantityf(r )
gives a complete specification of the instantaneous stat
the system; it is just as powerful in describing the config
ration of the system as a description of the positions of
the vortices — including those which were described
‘‘free’’ in the AHNS picture.7 A description in terms of the
fictitious field may not be as physically transparent as a
scription in terms of the vortex density, but it has the gre
advantage that it allows us to apply a systematic renorm
ization scheme even in the dynamic regime.

To obtain the dynamic response we assume that the
f(r ) is the slowest variable which describes the syste
Vortices are assumed to move slowly in a gas of therm
excitations which damp their motion; all other quantiti
which could describe the system~such as small fluctuation
in the phase of the order parameter! relax rapidly towards
equilibrium with a much shorter time scale. Under these c
cumstances the system is at each moment in a therm
namic state which is in instantaneous equilibrium as far
the faster quantities are concerned. The instantaneous sta
the system can be described by the variablef(r ) alone.
When disturbed from equilibrium the value off(r ) evolves
slowly until it reaches a minimum in the thermodynam
potential.

A. Equation of motion

The simplest proposal is that the equation of motion is
the relaxational form

h
]w~r !

]t
52

d f @w~r !#

dw~r !
1R~r ,t !, ~39!

whereh is a friction coefficient andR represents a therma
noise term with a Gaussian white spectrum and mean
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zero. Equation~39! is the simplest equation of motion w
can formulate for a system which is not constrained b
conservation law (w is not a conserved quantity! and in
which there no other relevant quantities which decay o
comparable time scale. In what follows we shall assume
this equation of motion can be used to describe the lin
response of the fictitious fieldf(r ).

When there is no superflow~no edge charges! we get

h0

]f~r !

]t
5

kBT

4p2K0

¹2f~r ,t !2
2y0kBT

a2
sin@f~r ,t !#

1R~r ,t !. ~40!

Equation~40! is mathematically equivalent to the equation

h8
]z

]t
5g̃¹2z2

2p

b
V sinS 2pz~r !

b D1R ~41!

used by Nozie`res and Gallet to describe the dynamics of t
position z of the interface for temperatures close to t
roughening transition. In their case the free energy densit

f @z~r !#5
g̃

2
@¹z~r !#22V cosS 2pz~r !

b D , ~42!

where g̃ is the surface stiffness,b is the spacing of the
planes, andV is the amplitude of the pinning potential.

In Nozières and Gallet’s theory the interface is infinite
extent, whereas our treatment has been developed for a
angular film of finite area. Let the smaller length scale as
ciated with the size of the system beLy . Suppose we exert a
time-varying force on the system which oscillates at a f
quencyv and which induces a superflow of maximum am
plitude vs . There is a length scale associated with the
namics of the system which is

r d5A kBT

4p2K0h0v
. ~43!

We therefore have two limits: whenr d@Ly the system has
plenty of time to evolve to the minimum in the thermod
namic potential. A vortex which escapes from its image
one edge of the film has sufficient time to cross the film a
be annihilated on the other edge causing the ‘‘charge on
capacitor’’ to decay; in more conventional language we
describing the decay of superflow by phase slippage. In
opposite limit,r d!Ly the vortices do not have time to mov
across the film in the time scale of an oscillation, and so
charge does not decay. In this limit we can treat the sys
as if it were effectively infinite in extent with an error o
order r d /Ly . In what follows we assume that the system
always in the limitr d!Ly .

There is also a length scale associated with the super

r F5
\

mvs
. ~44!

We are interested in the linear response of the system so
are concerned with the limitr F@r d . When r F and r d are
comparable the response is nonlinear.
a
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We can convert the renormalization group analysis of
roughening transition, due to Nozie`res and Gallet, into tha
of superfluid films using the dictionary

f~r !

2pz~r !

b
,

2yl

a2



V

kBT
,

Kl
21


b2g̃

kBT
,

h l

b2

4p2
h8,

whereyl andKl are the renormalized fugacity and Kosterli
parameter, respectively. Nozie`res and Gallet defineU
5V/L2 where L is the cutoff in momentum~which has
initial value L0), and the scaling parameterl 5 ln(L0 /L).23

The recursion relations to orderU2 take the form

dU

dl
5U~22n!, ~45!

d lng̃

dl
5

2p4U2

g̃2b4
A~n!, ~46!

d lnh8

dl
5

8p4U2

g̃2b4
B~n!, ~47!

where the functionsA(n) andB(n) are given by

A~n!5nE
0

`

dr̃ r̃3E
0

`dk

k
e21/4ke22nhJ0~ r̃ !e2 r̃2k, ~48!

B~n!5nE
0

`

dr̃ r̃3E
0

`

dke21/4ke22nhJ0~ r̃ !e2 r̃2k ~49!

with

h~ r̃,k!5E
0

1dx

x
@12J0~xr̃ !e2(kx2r̃2)#, ~50!

andn5pkBT/g̃b25pKl . The corresponding recursion rela
tions for the superfluid case can be found using our ‘‘dict
nary;’’ they are

dyl

dl
5~22pKl !yl , ~51!

dKl
21

dl
58p4KlA~pKl !S yl

a2L0
2D 2

, ~52!

d lnh l

dl
532p4Kl

2B~pKl !S yl

a2L0
2D 2

. ~53!

A detailed calculation shows that the value ofA(pKl52)
50.398. We can make this consistent with the recursion
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lation of Kosterlitz by choosing a particular value ofaL0.
The significant difference between this scheme and tha
Kosterlitz lies in the fact thatA(pKl) varies as a function o
pKl ; for example, it tends to zero aspKl goes to infinity. If
we are interested in the recursion relations away from
fixed pointKl52/p, as is the case for the dynamic respon
then the difference between the two renormalization sche
becomes important.

B. Dynamic superflow

When the substrate of a superfluid film oscillates, it c
ries with it the excitations of the normal fluid and leaves t
superfluid component behind. In the rest frame of the s
strate it is the superfluid which oscillates as if there wer
superflow. In this frame a vortex experiences a Magnus fo
due to the superflow, a force which is balanced by a frict
force as the vortex moves through the stationary excitati
of the normal fluid. The superflow acts as the driving for
that causes the vortices to move and dissipate energy.

We can generate a superflow around the surface m
ematically by putting an oscillating charge on the edges
the form

s~ t !5s0 sin~vt ! ~54!

with the maximum amplitude of the superflowvs5hs0/2m.
These charges generate the fieldix0(r ,t). The surface
charge, and hencex0(r ,t), can decay if there are phase-sl
processes in which vortices cross the film. The dynamics
f can be separated into two parts: the partix0(r ,t) which
decays due to phase slippage, and the remainderf̃5f
2 ix0(r ,t) which decays according to the equation

h0

]f̃~r ,t !

]t
5

kBT

4p2K0

¹2f̃~r ,t !2
2y0kBT

a2
sin@f̃~r ,t !

1 ix0~r ,t !#1R~r ,t !. ~55!

In principle we could set up an equation describing the
havior of x0(r ,t); however, as we are considering the ca
wherer d!Ly , the decay of the surface charge during ea
cycle will be a very small effect and we shall neglect it.

The appearance of the imaginary term in the equation
motion for f̃ is a direct consequence of the imaginary te
in the Hamiltonian. However, it leads to no mathemati
problems: the renormalization scheme can be extende
complex fields and the recursion relations obtained are
tirely real. A similar case was considered by Park a
Lubensky22 who showed that static recursion relations cou
be derived for a system with a Hamiltonian containi
imaginary terms.

Equation~55! is almost equivalent to the equation of m
tion that was used by Giorgini and Bowley24 to describe the
dynamics of driven surfaces near the roughening transit
The equation of motion in that case is

h8
]z1

]t
5g̃¹2z12

2pV

b
sinS 2p

b
~z11z0! D1R ~56!

with
of

e
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es

-
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e
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f
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n.

z05S F

bh8v
D sin~vt ! ~57!

the term arising from the external driving overpressu
F cos(vt). Mathematically we have an analogous equat
with two differences. First the corresponding quantity
2pz0 /b is now complex

2pz0

b

 ix0~r ,t !

or

2p

b S F

bh8v
D sin~vt !
 i2p2K0s0 sin~vt !~ uyu2Ly/2!.

We can think of the term 2p2K0s05E0 as if it were an
‘‘electric field’’ of magnitudeE0 emerging from the charge
s0.

The second difference from the roughening transition
that the external drive@as represented byx0(r ,t)] varies with
position. In that sense the situation is more closely analog
to the problem of a vicinal surface as treated by Nozie`res and
Gallet,16 albeit an oscillating vicinal surface. Under reno
malization vicinal surfaces exhibit an anisotropy in the s
face stiffness. Therefore the model predicts that in the su
fluid film the superfluid density should become anisotropic
the nonlinear regime.25 Here we consider only the linear
response regime.

Giorgini and Bowley evaluate the renormalization ofu0

5 ż0 as

d ln@u0~v!#

dl
52

8p4U2

g̃2b4
C~n,r d ,r ! ~58!

with r 5r d /r F the ratio of the diffusion length to the lengt
scale associated with the external force,r F5b2g̃/F. In the
linear response regimer→0 and we have

C~n, r̃ d,0!52 inr̃ d
2E

0

`

dr̃ r̃E
0

`S dk

k De21/4k22nh

3J0~ r̃ !e2 r̃2k~eikr̃2/ r̃ d
2
21!, ~59!

wherer̃ d5r dL. Use of the same technique for the superflu
case allows us to calculate the change in the electric field
long as the length scale involved is very much smaller th
the size of the film we get the recursion relation

d ln E0

dl
5232p4Kl

2S yl

a2L0
2D 2

C~pKl , r̃ d,0!. ~60!

C. Dielectric function

The dynamic ‘‘dielectric function’’«(v) is defined as the
ratio of values of the electric field before and after renorm
ization

«~v!5S E0~ l 50!

E0~ l 5`! D . ~61!
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In principle, the dielectric function may be obtained by sim
ply integrating the recursion relation for the external fie
To orderyl

2 we get

lnS E0~ l 5`!

E0~ l 50! D52
32p4

a2L0
2E0

`

Kl
2C~pKl , r̃ d,0!yl

2dl. ~62!

Hence the inverse of the dielectric constant is

«~v!215expS 2
32p4

a2L0
2E0

`

Kl
2C~pKl , r̃ d,0!yl

2dl D .

~63!

This procedure is correct for temperatures below the tra
tion whereyl tends to zero for largel. However, for tempera-
tures above the transitionyl becomes large and a theo
based on the small fugacity expansion becomes inaccur

This question was considered by Giorgini and Bowley
their analysis of the mathematically identical problem of t
roughening transition in the presence of an external h
monic drive.24 Giorgini and Bowley calculate the dielectri
function as a combination of two parts: a term from the sh
wavelength fluctuations, which is obtained via the renorm
ization approach, and a second term describing the l
wavelength behavior which is dominated by the pinning p
tential. In terms of the roughening transition this descript
is valid in the region just below the transition where t
pinning potential is finite on a macroscopic scale. This c
responds to the region just above the superfluid transitio
thin helium films, which is exactly what is probed by to
sional oscillator experiments.

Using the ansatz of Giorgini and Bowley, the express
for the dielectric function given above@Eq. ~63!# is modified:
the integration is performed up to a finite cutoffl c and a
separate term from the strong-coupling regime~i.e., when
yl;1) is then added on. The strong-coupling contribution
obtained from a solution in the long-wavelength limit of th
equation of motion for small displacements. The advant
of this method is that it provides a simple calculation
scheme; however, the exact value ofl c is not determined by
the theory.

The dielectric constant for renormalization up tol c is de-
fined by the ratio

e l c
~v!5

u0~v,l 50!

u0~v,l 5 l c!
. ~64!

At l c the equation of motion is

h̄8~ l c!
] z̄1~ l c!

]t
5ḡ~ l c!¹

2z̄1~ l c!

2
2p

b
V̄ sinS 2p„z̄1~ l c!1 z̄0~ l c!…

b
D 1R̄~ l c!,

~65!

where all quantities have been renormalized up to the p
l 5 l c , as emphasized by the overlines. This equation
now be written in terms of the quantityz̄5 z̄11 z̄0; hence
-
.
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n

h̄8~ l c!
] z̄~ l c!

]t
5ḡ~ l c!¹

2z̄~ l c!2
2p

b
V̄ sinS 2p z̄~ l c!

b
D 1R̄~ l c!

1
F̄ cos~vt1a!

b
, ~66!

where

F̄ cos~vt1a!

b
5h̄8~ l c!

] z̄0~ l c!

]t
. ~67!

HereF̄/b is the renormalized driving force anda is a phase
angle. Giorgini and Bowley neglect the random force, ta
the long wavelength limit, and solve the equation of moti
assuming that the pinning potential is strong enough to al
only small displacements of the interface around the equi
rium position so that

sinS 2p z̄~ l c!

b
D .

2p z̄~ l c!

b
. ~68!

The equation of motion for small displacements can be w
ten as a linear equation of the form

h̄8
] z̄

]t
5ḡ¹2z̄2S 2p

b D 2

V̄z̄1R̄1
F̄ cos~vt1a!

b
, ~69!

which is easily be solved if we ignore the random force.
the long wavelength limit, the Fourier component of the v
locity due to the renormalized driving force which oscillat
ase2 ivt is

u0~v,l 5`!5
1

@11 i ~4p2V̄/vh̄8b2!#

F̄e2 if

2bh̄8

5
u0~v,l 5 l c!

@11 i ~4p2V̄/vh̄8b2!#
. ~70!

The final expression for the dielectric function is

ln@e~v!#5E
0

l c8p4U2

g̃2b4
C~n, r̃ d,0!dl1 lnS 11 i

4p2V̄

vh̄8b2D .

~71!

Therefore, the procedure for calculating the full dielect
function is to evaluate the recursion relations up tol c and
then to use the renormalized values ofV̄( l c) and h̄8( l c) to
calculate the correction to the dielectric constant for largl.
Using our dictionary, and the reduced variables

X~ l ![
2

pKl
, ~72!

Y~ l ![
4pU

kBT
5

8pyl

a2L0
2

, ~73!

the equation for the dielectric function can be written as
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ln@«~v!#5E
0

l c
dl

2Y~ l !2

X~ l !2
C~2/X, r̃ d,0!

1 lnS 11 i
2Y~ l c! r̃ d~ l c!

2

X~ l c!
D . ~74!

D. Numerical method

In order to calculate the weak-coupling contribution to t
dielectric function the recursion relations must be integra
and consequently the functionsA, B, andC have to be evalu-
ated at a whole series of points. The recursion relations w
integrated numerically in a straightforward way using
fourth or fifth order Runga-Kutta scheme.26

The calculations of the functionsA, B, andC proved rela-
tively time consuming. Each of the three functions conta
three integrals, two of which run from zero to infinity. W
used Rhomberg integration in each case and evaluated
integrals from zero to infinity by splitting the integrals in
two parts and mapping them onto a finite range by a cha
of variables. The behavior ofC largely controls the renor
malization of the driving field and hence the response fu
tion. The variation of ReC(n, r̃ d,0) with r̃ d is very close to
that of a step function: it increases rapidly from zero
small r̃ d , to a constant value of 0.246 atr̃ d;0.5, for n

51.5. However, ReC(n, r̃ d,0) varies only slightly withn:
the height of the step varies from 0.246 forn51.5, to a value
of 0.195 whenn53. In contrast the function ImC(n, r̃ d,0)
takes the form of a sharp peak around the pointr̃ d;0.5, and
has a value of zero elsewhere. The effect of variation inn is
to modulate the height of the peak: forn51.5, the peak
value of ImC(n, r̃ d,0) is 0.1028, this increases slightly t
0.1035 whenn51.7, after which it declines, reaching a valu
of 0.0897 for n53. The behavior of ReC(n, r̃ d,0) and
Im C(n, r̃ d,0) for n52 is shown in Fig. 4.

In order to calculate the dielectric function in the tran
tion region we performed a series of integrations of the
cursion relations using different initial conditions. Th
choice of initial valuesr̃ d(0) andY(0) before renormaliza-
tion, which of course correspond to the microscopic para
eters of the model, is not known.

FIG. 4. The variation of functions ReC(n, r̃ d,0) and

Im C(n, r̃ d,0) with r̃ d (5r dL) for the casen52.
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Suppose first of all thatY(0) @and hencey(0)] is small.
We found that the behavior ofK0«21(v) depended only
weakly on the exact value ofr̃ d(0)5r d(0)L0 as long as it is
large. The reason is simple. The effect ofr d(0) is to effec-
tively terminate the recursion relations at this length sca
the transition then occurs at a smaller value ofn than for
infinite r d(0) where the transition occurs atn52. As long as
length r d(0) is large the change inn is small and soA(n),
B(n), andC(n, r̃ d,0) are barely affected. We have chosen
value, somewhat arbitrarily, ofr̃ d(0)523103.

In contrast, there is a strong dependence on the choic
Y(0). Figure 5 shows the variation inK0«21(v) with Y(0),
where in each case the values ofX(0) were chosen to swee
through the transition. Although the size of the curve d
pends on the exact value ofY(0), we find that to a good
approximation the shape remains the same.

We also investigated the dependence of the results on
choice of the parameterl c , as defined by the choice of th
valueY( l c) at which renormalization is stopped. The beha
ior of K0«21(v) varies quite strongly withY( l c), except of
course in the low temperature region whereyl remains small,
as is shown in Fig. 6. HereY(0)50.75. The arbitrariness in

FIG. 5. Parametric plot of the dynamic dielectric function f
superfluid films for different values of the parameterY(0), with
Y( l c)51.

FIG. 6. Parametric plot of the dynamic dielectric function f
superfluid films for different values of the cutoff parameterl c , as
defined by the value ofY( l c), and withY(0)50.75.
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the choice ofl c represents a weakness in the theory, for
have to leave it as an adjustable parameter. We selec
value to give the best agreement with the experimental d

E. Comparison with Experiment

The frequency shift and inverseQ factor measured in tor
sional oscillator experiments are related to the quantities
culated in the theory by the relations9

2DP

P
5

Am2kBT

M\2
K0 Re@«21~v!#, ~75!

DQ215
Am2kBT

M\2
K0 Im@2«21~v!#, ~76!

whereA is the area of the film,m the mass of an atom of4He
and M is the effective mass of the empty cell. The peri
shift and change inQ-factor are measured directly, the qua
tities K0 Re@«21(v)# and K0 Im@2«21(v)# are predicted
from the theory and value ofA/M is inferred from the cali-
bration of the oscillator.5

In this section the results from torsional oscillator expe
ments performed by McQueeney,6 using a Mylar substrate
are compared with the predictions of the dynamic theor27

His work is particularly important for two reasons: he me
sured the response for many helium films of different cov
ages, and he took great care to reduce the drive level so
the amplitude of oscillation is much less than oth
experiments—he used a maximum speed of 6m ms21

which means that it should be possible to describe his res
within the framework of a linear response theory. M
Queeney used the same experimental apparatus as Agnoet
al.5 for which the value ofA/M is 266 m2 kg21.

The results from torsional oscillator experiments are u
ally presented in the form of curves of 2DP/P againstT and
DQ21 againstT. However, we choose instead a parame
plot so that the real and imaginary parts ofK0«(v)21 are
plotted against each other. The parametric plot has the
vantage that it avoids the need to model the tempera
dependence ofK0 Re@«(v)21# andK0 Im@«(v)21# and so it
leads to a more direct comparison of theory and experime9

In Fig. 7 we compare the theoretical curve ofK0«(v)21,
for Y( l c)51.5 andY(0)50.25, with McQueeney’s data~ex-
cluding only the thinnest films in which the temperature
the peak in the dissipationTp arises at,0.5 K). We have
also included for comparison the prediction of the refin
phenomenological theory due to Bowleyet al.,8 which is
based on the work of Ambegaokaret al.,7 and is essentially
the same as that made by Wallin11 on the basis of Min-
nhagen’s theory.10 In order to obtain the fit we tuned th
values of two parameters: we variedY(0) until there was
good agreement at the low temperature end@large
K0 Re«21(v)] and then we variedY( l c) to fit the average
peak in the dissipation@2K0 Im «21(v)#. The theoretical
curves are not very sensitive to the value ofY(0); if we
reducedY(0) from 0.25 to half this value~0.125! the curves
would shift for largeK0 Re«21(v) by only 5%.

Looking at Fig. 7 it is clear that the method presented h
leads to a parametric curve of the dielectric function with
shape very close to those measured by McQueeney in
e
he
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sional oscillator experiments. There is some deviation
tween the new theory and experiment at the high tempera
end@small K0 Re«21(v)], but this is to be expected: this i
the strong coupling regime which we have described wit
very crude harmonic approximation to the pinning potent
There is some systematic deviation from the predicted cu
near the peak inK0 Im «21(v) which is not captured by the
present theory. Nevertheless, the agreement between
theory and experiment is extremely good; it is substantia
better than that obtained using the refined phenomenolog
theory, which itself is more accurate than AHNS.

It might be thought that the variation in the peak value
K0 Im «(v)21 with film thickness is caused by some syste
atic variation inl c with coverage. It is true that there is a
increase in the core size as the film thickness is reduce6,28

but this does not affect the value ofl c . The parameterl c is
simply an artifact of our calculational scheme which has
physical significance: it simply parameterizes the somew
arbitrary value of the fugacity at which we crossover fro
the renormalization group calculation in the weak-coupli
regime ~whereyl is small! to the strong-coupling ansatz o
Giorgini and Bowley.

However, the systematic variation in the peak value
K0 Im «(v)21 with film coverage could arise from imperfec
coupling between the atomic layers which make up the film9

an effect which is not included in our theoretical model. A
the coverage increases the first fluid layer of the film fills
and saturates, then the next fluid layer forms and fills up,
so on. There is a coupling between the layers which
scribes the transfer of particles from one layer to the nex
the coupling under renormalization becomes strong, the
ers become locked together: the effect of layering is th
negligible for the layers move as a single, uniform film.
the coupling becomes weak under renormalization the lay
decouple and move as separate entities. We can expect t
systematic variations in the data, as is observed. Never
less, it is not yet clear whether this picture will be able
describe the data correctly.

FIG. 7. Comparison of plots of real and imaginary parts
K0«(v)21 for a series of films on Mylar, measured by McQueene
with the new theoretical prediction. The units of film thickness a
mmoles. Also shown is the curve predicted by the refined phen
enological theory of Bowleyet al. ~BAB!.
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The value of the energy of a vortex is expected to incre
as the coverage increases and hence the fugacity andY(0)
should decrease. One would then expect the curves to ev
as shown in Fig. 5. Once the films become sufficiently th
one would expect the curves to tend to the smallY(0) limit
of the theory. Hence we have made our comparison w
films whereTp.0.5 K,6 omitting the data from the thinne
films. In fact nothing dramatic happens for the thinner film
the dominant effect is the variation in the peak value
K0 Im «(v)21 with film thickness and since this is not ye
captured by the theory there is no insight to be gained fr
adding the data from the thinnest plots to Fig. 7. We ha
also compared our theory with the thinnest films studied
McQueeney (Tp.0.18 K), and the fit is less good. The pea
value ofK0 Im «(v)21 is lower ~as expected!, there appears
to be an offset due to additional dissipation, and there
poorer fit at the high temperature end.

We have not compared our data with the results of t
sional oscillator studies carried out using a Graf
substrate.29 This is because the data obtained from such st
ies has a rather different form from that obtained using
Mylar substrate, as is strikingly demonstrated when the d
is plotted parametrically.9,30 The origin of the differences in
the data obtained by McQueeney using Mylar and rec
work on Grafoil is not yet clear. However, we can sugg
three possible reasons. Firstly, the morphology of Gra
differs from that of Mylar: although Grafoil is atomicall
smooth, on short length scales it is strongly disordered
length scale of order the grain size and this may well hav
greater effect on the superfluid film than the short-scale
homogeneities in Mylar, a possibility first suggested in
more general form by AHNS.7 Secondly, the geometry of th
substrate is in the form of a stack of disks in the Graf
experiment rather than a long sheet wound round itself a
the case with Mylar. Thus edge effects may play a m
important role for this geometry. Thirdly, the drive streng
used by McQueeney was very much lower than that u
either in the Grafoil experiments, or in other experime
using a Mylar substrate: we believe that it is this very lo
drive level which leads to the characteristic asymme
shape in the parametric plot of the data, a feature whic
not observed either in the Grafoil data9 or Mylar data ob-
tained using higher drive strengths.31

IV. CONCLUSIONS AND DISCUSSION

The theory presented in this paper provides a theore
framework within which the dynamics of superfluid film
can be described. We use the Hubbard-Stratonovich tran
mation to rewrite the Hamiltonian of the vortex gas as
well known sine-Gordon model which allows us to postula
e
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an equation of motion for the system. The equation of m
tion is renormalized using the systematic methods of N
zières and Gallet: this leads to a complete set of recurs
relations for the parameters of the model so the dielec
function can be calculated directly. The form of the dielect
function predicted by the theory is readily compared with t
response of torsional oscillators in the region of the sup
fluid transition and we find that agreement with experime
is substantially better than that obtained using phenome
logical approaches. However, we find that there is some
crepancy between theory and experiment in the high te
perature region.

Our theory is also an advance on previous work for r
sons apart from the improved agreement with experime
Because of the analogy with a vicinal surface, we can pre
that for a nonlinear drive the superfluid density will becom
anisotropic, a feature which is to be expected,25 but is not
contained in any of the phenomenological theories.32 In ad-
dition, the theory presented here explicitly describes the
sponse of a finite size system. So far no attempt has b
made to describe accurately the geometry of films in r
experiments, but this may now be possible using the meth
described here.

Despite its successes, there are a number of improvem
that can be made in the theory described here. Most imp
tantly, our theory does not describe the crossover betw
the weak and strong coupling regimes precisely. The adv
tage of a well-defined calculation of the crossover is tha
would both avoid the need to introduce the arbitrary cro
over parameterl c , and hopefully lead to better agreeme
with experiment in the high temperature region. One way
doing this would be to develop a scheme for renormaliz
the equation of motion in the strong coupling regime. A
alternative scheme could be based on a numerical simula
of the equation of motion in the strong coupling limit.

Also our model does not yet account for the variation
dynamic response with film thickness and so we cannot
it to understand the systematic variation in the dissipat
peak which is observed. In order to describe the effects
layering a far more complex model of the film would b
required in which there was imperfect coupling between d
ferent atomic layers. However, the approach outlined h
should form the basis of such a theory.

In summary, the new theory presented here provide
more accurate approach to the calculation of the dyna
response of superfluid films than the alternative phenome
logical theories that have been developed in the past.
only does it lead to closer agreement with experiment, it a
provides a systematic framework within which it should
possible to discuss the subtle effects of nonlinearity a
atomic layering on the dynamic response of superfluid film
ia,
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