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Dynamic renormalization group theory of superfluid helium films
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The statistical mechanics of vortices, which is usually described in terms of the behavior of a two-
dimensional Coulomb gas, can be mapped exactly onto a sine-Gordon model. We use this duality to develop
a theoretical approach to the description of the response of a superfluid film to an oscillating substrate. Starting
from a Hamiltonian for the vortex-gas system that includes a time-dependent superflow, we derive the form of
the equivalent sine-Gordon Hamiltonian in terms of a fictitious field. A simple equation of motion is then
proposed and we proceed to renormalize it using methods developed bydsaaiel Gallet for the roughening
transition. The renormalization program allows us to calculate the dynamic response of a superfluid film as
measured in torsional oscillator experiments. We find that our method leads to predictions which are closer to
experiment than previous phenomenological approads€d.63-18209)02941-7

. INTRODUCTION “He films on Mylar or Grafoil substrates. It could be that the
test fails for films on a Grafoil substrate because the disorder
The theory of the superfluid behavior of thin helium films occurs on length scales comparable with other lengths in the
is due to Kosterlitz and Thoules5who showed that ther- theory. However, it is believed that the disorder on Mylar
mally activated topological defectortex and antivortex substrates occurs on short length scales; therefore, the dis-
pairg are the dominant fluctuations which mediate the tran<repancy between theory and experiment for films on Mylar
sition from normal to superfluid phases. Kosteflizsed is much more serious. It is this lack of agreement between
renormalization-group techniques to analyze the phase tratheory and experiment which caused us to develop a very
sition of a dilute gas of vortex antivortex pairs in equilib- different description of the dynamics.
rium. The vortices in the film behave as charged particles Here we describe a new theoretical approach based on the
interacting with each other as if they formed a two- equivalence of the Coulomb-gas model and the sine-Gordon
dimensional Coulomb-gas. model for a fictitious field¢. We propose an equation of
Attempts to verify the theory proved frustrating as themotion to describe the relaxation of the fictitious field back
principal experiments available had to be performed in théo equilibrium. It is the renormalization of this equation of
linear-response regime and at finite frequetidyleading to  motion in the presence of an oscillating drive which allows
a strong broadening of the transition which could not beus to calculate the dynamic dielectric constant and hence
described accurately using the equilibrium Kosterlitz-compare our theory with experiment. It must be acknowl-
Thouless theory. What was required was an extension of thedged that we are proposing this equation of motion without
theory to finite frequencies. Just such an extension was firgiroof. However, the approach has the important advantage
provided by the theory of Ambegaokar, Halperin, Nelson,over previous theories in that the dynamic behavior is ob-
and Siggia(AHNS).” tained directly from a renormalization treatment of the equa-
The AHNS theory described the vortex dynamics in ation of motion for the system; it also has the advantage that
phenomenological way, using expressions for the superfluitt leads to agreement with the main features of the experi-
density and vortex fugacity obtained from the static recur-mental results for a wide range of coveragegide films on
sion relations of Kosterlitz. Recently Bowley al®°showed  Mylar as measured by McQueen&y{owever, as we noted
that the approach of AHNS can be refined, dispensing witrelsewheré, the response of helium films on Mylar depends
the need for fitting parameters and leading to the predictiomveakly on the thickness of the film, an effect which we are
of a universal property which is readily compared with ex-still not able to capture in the theory.
periment. An alternative formulation of the dynamic theory = We begin the development of our theory by re-expressing
was also developed by Minnhag¥hbut it too relies on a the Coulomb-gas model as a classical field theory. The trans-
heuristic description of the dynamics very similar to that offormation is performed using the well-known Hubbard-
AHNS ! Furthermore, it leads to predictions very similar to Stratonovich transformation leading to a sine-Gordon model
those of the theory of Bowlegt al® with free energy density[ ¢(r)], given by
The driven torsional oscillator is the canonical experiment
used to probe the behavior of superfluid films. The period Yy )
shift and change in th@-factor of the torsional oscillator are flo(r)]=5[Ve(r]°—Veog (r], (W)
measured and can be related to the vortex response function,
known as the dynamic dielectric function, which is calcu-expressed in terms of a fictitious fielt(r).**=*° The sine-
lated in the theory. As we have shown elsewAgmevious Gordon model has been used with great success by Nszie
phenomenological theories based on the Coulomb-gas modehd Gallet to describe the roughening transition in the weak-
alone do not give agreement with experimental results focoupling limit*®” The duality of the two-dimensional
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Coulomb-gas and sine-Gordon models means that an exaekperiments and previous phenomenological theories. Fi-
translation exists from the language of the roughening trannally, in Sec. IV, we discuss the strengths and weaknesses of
sition to that of superfluid film& We can use this duality to our model, focusing in particular on the ways in which it
obtain the recursion relations for the Coulomb-gas modemight be extended in the future.
using the analysis of Nozies and Gallet; this leads to
slightly different recursion relations for the superfluid den- 1. HAMILTONIAN
sity compared to those found by Kosterfitz.
In this paper we use the sine-Gordon model to discuss the The local order parameter for a superfluid film is a com-
effect of a superflow on the Coulomb gas. Our aim is toplex quantity
generate recursion relations which allow us to calculate the .
dynamic response of the system. The dynamics of vortices in W =qe's ()
f"”?s IS not easy to capture using the cqnventlonal picture "yith both ¥, and S real. If the film is uniform the free
which the vortices are treated as particles that make up 2 er iated with a aradient in the phase is
two-dimensional Coulomb gds?® In contrast, the dynamics enhergy associa 9 P
of the sine-Gordon rpodel at the roughening transition has 52,0 1
been analyzed by Nozies anql Gallet with considerable suc- E= pSf [VS(r)]2d?r= _pof v3(r)d?r, (4)
cess. Here we work the duality transform backwards and use 2m? 2"s s
it as the basis of our theory of the dynamics of superfluid
films. wherepg is the superfluid density and,(r)=AVS(r)/m is
Our proposal, in its simplest form, is that the dynamics ofthe local superfluid velocity. We divide into two parts’’
the fictitious field¢ can be found by treating it as if were a Vs=Vo+V;: Vo has zero divergencey; has zero curl. The
nonconserved order parameter which obeys relaxationguantityv; is the velocity fluctuation associated with collec-
(model A dynamics: tive modes(third sound; v, is the velocity associated with
vortices. We can write

o Sf¢]

T g TR @

27h .
VXVOZWn(r)k, V'VOZO, (5)

where 7 is a friction coefficient,R represents the random
component of the force, anfd ¢] is the free energy density
functional of the resulting sine-Gordon model. This method
?rlilcot\ilt\ﬁl li:?)é?ﬁ((j:iee\;etl?sprir:glr’]rzglri]?géa;?r\]/éﬁhaesmti(—I:‘ns\:JVhleCrgL}% hat for a particular configuration there are vortices with
: . : . b ositive circulation at sites, and negative circulation at

density and the fugacity of vortices. By extending the theor)}).

, o sitesr g
to include the effect of an oscillating superflow we are able
to develop recursion relations that describe the response ob-
served in torsional oscillator experiments. Of course the use nry=> 8(r—r,)—2, S(r—rp). (6)
of relaxational dynamics to describe the dynamics of super- @ B

gﬂf\lgl?gzsefw?)ns\:aget\;\; Slerédiﬁdsbii ggg;nalrégiﬂryaggihtgrln the Coulomb-gas model positive circulation is equivalent
) PP ! fo positive charge on the particles, negative circulation, to

has been a considerable amount of work recently on the .
simulation of XY model dynamics using a time dependentne(‘:]atlve charge. o
. 19 We suppose that the film is rectangular, of ar@a

Landau-Ginzburg approach!® However, to our knowledge —L,L,, and that we can impose periodic boundary condi-
the idea that model A dynamics could be applied to the fiC_tionxs éo that we can define a two-dimensional Fourier trans-
titious field obtained from a Hubbard-Stratonovich transfor-]corm of n(r) as
mation of the Coulomb-gas model is new.

The organization of this work is as follows. In Sec. Il we
discuss the form of the Hamiltonian for a static superfluid n(q):J' d?r n(r)e'ar, (7)
film. First of all, we write down the Hamiltonian in the
vortex-gas picture. Then we describe how the Hubbard-
Stratonovich transformation can be used to rewrite the
Hamiltonian in the form of a sine-Gordon model. Next we
discuss the boundary conditions which are required for a film_
of finite extent and then we consider the effect of a staticSimilarly we have
superflow on the system. In Sec. Ill we describe the dynamic
behavior of superfluid films using the sine-Gordon approach. _ 2 iq-r
We begin our discussion of the dynamics by postulating an Vo(@) f drvo(re, ©
equation of motion for the system. Then we derive expres-
sions for the dielectric response of the system to an ac su- 1 .
perflow. Next we use numerical methods to calculate the Vo(r) =% > vo(@)e 4. (10)
dielectric function. Having calculated the dielectric response,
we compare the predictions of our theory with the results olUsing Eq.(5) we find that

wheren(r) is the vortex-density per unit area.
We consider a film in which there amd, vortices of
ositive circulation andN_ of negative circulation. Suppose

1 _
n(r)=;2 n(q)e 9. (8)
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_i 2 11 o .
Vo(Q) =i m_qn(q)' (11
L
The kinetic energy associated with vortices can be written as !
o Q (xy¥4) 2 =vor.tex
1 2772 ﬁzpo |n(q)|2 . =anti-vortex
_— 0 2 20 _ S -
HV—Zpsfvo(r)d A % o (12 L,
. . . -2Ly O
The total kinetic energy of the system also contains con- ®

trcl)t:-gélogséng'gﬁse:?hoev%fr')& :)hrefsr gr;[]e;mss arelff? T:jog]onor:;] FIG. 1. Set of image charges for a positive vortex a,{;)
v X excriatl ! Ul upertiul W confined between plates gt=0 andy=L, .

what follows we shall assume that the nonvortex contribu-
tions have been averaged over and subsumed into the defi-
nitions of the microscopic parameters, as have the effects
disorder.

The Hubbard-Stratonovich transformation turns the sum
%to a path integral. We write

. . —H, IkgT — p— -2 —q)/872
A. Hubbard-Stratonovich transformation e "/keT=pB 11;[ fD¢(Q)e A A~ /BT AK,

The total energy of a system &f, vortices of positive
circulation andN_ vortices of negative circulation includes
the chemical potentigk of each vortex as well a&, . Thus it the constanB given by
the energy is

><ei[n(q)¢(7q)+n(fq)z/)(q)]/ZA’ (17)
_q2 _ 2

Hiotar 27K B=]] fqu(q)e DA~ /BT AK,, (18

= q

D n(q)
kgT A5
We can turn this back into real space to give a path integral,
where K o= p242/m?kgT represents the unrenormalized su-

n(—q) (N +N_)
= + KaT , (13

perfluid density. The unrenormalized fugacities of the vorti- (V)2
ces are e’HV’kBTzBflf De(r)ex —f .
8’7T KO
yo=e #keT, (14
H 2
The grand partition of the system involves a sum over all - m(r)d;(r)) dr . (19

configurations of vortices, taking account of the fact that the

vortices are identical objects. However, as Samuel points out 1 paraphrase Samuel, if there is excess chéitygt is
there is a difference between a three-dimensional and a tWGN*;&N*) in the bulk then there must be an equal and oppo-

dimensional Coulomb gd$: because of infrared diver- gjte charge induced in the fictitious conductor which mimics

gences, a charge distribution in two-dimensions has an infig,e boundary conditions. We now consider the boundary
nite energy unless it is strictly charge neutral. We can eithegqnditions imposed on the system.

ensure neutrality and work with an infinite area, or we can,
as Samuel suggests, “enclose the system in a grounded con-
ducting casing. If there is excess charge then an equal and
opposite charge will be induced on the conductor.” We Suppose the system is confined to the regieaxeL
choose to deal with a finite system so that there is no conand O<y<L, in such a way that the normal component of

B. Boundary conditions

straint of charge neutralityN* does not have to equal™ velocity is zero on they=0 andy=L, edges. To achieve
for a finite systeny this choice makes the analysis much this we can create an infinite series of images of any vortex.
simpler in the presence of a superflow. Thus To clarify matters let us consider a vortex of positive circu-

B lation at (x;,y;). The vortex sits between two parallel lines
d°r,, N erB —H, (y=0 andy=L,) which act as mirrors, producing an infinite
—zexp< KT ) set of images: there are image vortices of negative sign at
B (x1,2mL,—y,) with man integer or zero, and image vortices
(15 of positive sign at X;,2mL,+y,). We illustrate this in Fig.
worked out for all positions and numbers of the vortices. Inl. It follows that the system is periodic in tlyalirection with
order to define the model unambiguously we define the poperiod 2, . To simplify matters let us suppose that the sys-
sitions as the lattice sites of a square lattice of siddhe  tem has periodic boundary conditions in thdirection with
partition function for a particular number of positive and periodL,: such boundary conditions are appropriate when

I

Nt N NT
Zz yO E yO H f
v NN Nla=1) a?2p=1) a

negative vortices is the surface is the inner lining of a cylinder covered in a film
N of helium and the film is laid flat as in Fig. 2.
A 27K n(q)n(—q) We can take Fourier transforms in tiaalirection over an
Z= Z ’EB exp( A E 9 ) . (16 enlarged area with the vortices and their images in the region

at Osx<L, and —L,<y<L,. Over the enlarged area the
The problem is to evaluaté. system obeys periodic boundary conditions. When we inte-
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D y=Ly‘( “I5 )
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FIG. 3. Contour of integration in the plane of the film for the
calculation of the edge charge.

C. Superflow

Vx Now let us turn to the case where there is superflow
0 L around the cylinder, that is in thedirection. We can repre-
sent superflow by supposing that there is a line of vorticity
FIG. 2. When it is laid flat the inner lining of a cylinder is alongy=L, with charge per unit lengthr and another line at
analogous to a flat film with periodic boundary conditions along they=0 with charge per unit length-o. There are again an
x direction. infinite series of images of the lines of vorticity. These lines
of vorticity act as sources of the superflow. Using Stokes’
grate over the enlarged area we have a pair of vortices aheorem for a contour which encircles the edggal , (see

opposite sign atx;,y;) and x;,—Y;), leading to Fig. 3) we get
Lx I-y ) ) 27h ~ 27h
fo de ) dy in(r)e(r)=i[ ¢(x1,y1) = ¢(X1,—y1)]. ﬂgvs-dl=7f n(r)k-ds= 7] odl. (25
Ry
(20 It follows that the superfluid velocity is related toas
By taking the integral over the larger area we are doubling R
the total energy of the system; but this can easily be rem- Vs=iho/2m. (26)
edied by dividing by 2. The functio(x4,y;) can be writ-
ten as The transformation proceeds as before only now we get
the expression
d(X1,Y1) = P1(X1,Y1) + da(X1,Y1), (21 Vo)
whereg,(x4,y;) is an even function of; and ¢,(x;,y;) is e_H"/kBT=B_1J De(r)exp —f (877‘2K —i[n(r)
0

an odd function. Theb,(x4,y;) part of the field cancels out,
and only the ¢,(Xx;,y;) part remains. It follows that

¢(X1,y1) is an odd function ofy;, a symmetry condition +5n(r)]¢(r))d2r], (27)
which arises as a direct consequence of the boundary condi-

tions we have imposed. . .

First let us suppose that there is no superflow. Substitutiné\/Ith an(r) the density of edge charges
the expression for the charge density, ), into Eq.(19) o
we obtain a phase factor for each vortex; in this way we get on(r)= 5[5(y+ Ly+ay—Ly]l-odly). (29
the grand partition function

The system of charges given by E@8), when replicated in

o1 (Vo)? a periodic way in they direction, produces a charge per unit
5=B De(r)exn = 2 lengtho aty=(2m+ 1)L, with m an integer.
8’77 KO . y .
The grand partition function now takes the form
2y co r
_ 2Yocod (D]}, | . o L 2
a? E=8B De(r)expg — T flp(r)]d?r|, (29
B

which involves a path integral over the energy functional | i ihe energy functional

FLo(1)] J (V)2 2y0C0§L¢(r)]) fLb(r)] 2
= - d’r. (23 _ 2_ Yo
KaT Bn2Ke 2 @3 e AL R KA
The Euler equation which minimizes the free energy is
—i5n(r)¢(r)). (30
B TRhon) - Rsi ()] =0. (24
472K, 0 a2 0 ' Notice that in this case the energy functional contains an

imaginary term, —ién(r)¢(r). However, the imaginary
The solution of this equation i$(r) =0. Fluctuations about term is an odd function o#(r) and so we can rewrite the
this solution cost an increase in free energy. grand partition function in the form
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E=<ex;{f i5n(r)¢>(r)d2r)>=<cos<J’ 5n(r)¢(r)d2r)>

A. D ARMOUR AND R. M. BOWLEY PRB 60
ing for the effect of vortices by taking account of terms in
powers of the fugacity. The effect of renormalization of the
superfluid densityas represented ki) is the equivalent of

- changing the “permittivity” €y to e€q with € the dielectric
+|<sm f §n(r)¢(r)d2r)>, (31 constgantg P Yo 0
where the angle brackets denote an average over the field K
#(r) with weight e= 0 (39)
2
ox _f (Vo) %coiqs(r)] d2r whereK is the renormalized parameter. In essence we have
8m’K, a’ been describing the Coulomb-gas picture of the system in

which the charges form dipoles which act to screen the in-

which is an even function of(r). It follows that odd pow- ;o 41 electric field.

ers of ¢(r) average to zero and we get

E=<cos(f 5n(r)q§(r)d2r)>.
Our aim is to develop a model of the dynamics of the

The partition function remains rel In fact imaginary terms ~ system which describes the motion of the thermally gener-
in the free energy functional are often genera‘[ed by théited vortices. The model must also allow the vortices to fluc-
Hubbard-Stratonovich transformation; in particular they arisguate in all possible ways and to relax back to thermal equi-
whenever there is a difference in chemical potential betweefPrium. For example, if the system has too many vortex-

lil. DYNAMICS
(32

plus and minus topological charg&s.

antivortex pairs, the model should allow them to decay by

The function which minimizes the free energy density,mutum annihilation; if there are more positive than negative

subject to the boundary conditions, is the solution of

1
472K,

2 2o . .
\Y ¢(r)—¥su’[¢(r)]=—|5n(r). (33
It is a complex, even function of the coordinatevhich we
write as¢(r)=ix(r). As emphasized by Samu¥lthis so-
lution is the equivalent of the Debye-kkel equation for a
coarse-grained Coulomb potential

2
sz(r)—%sinr[x(r)]=—5n(r). (34)

472K,

charges in a region there must be a mechanism in the model
which allows them to redistribute themselves so as to relax
back to equilibrium. However, rather than use the language
of vortices we prefer to express the decay back to equilib-
rium in terms of the fictitious fields(r). The quantitys(r)
gives a complete specification of the instantaneous state of
the system:; it is just as powerful in describing the configu-
ration of the system as a description of the positions of all
the vortices — including those which were described as
“free” in the AHNS picture! A description in terms of the
fictitious field may not be as physically transparent as a de-
scription in terms of the vortex density, but it has the great
advantage that it allows us to apply a systematic renormal-

It is this solution which is the minimum of the thermody- ization scheme even in the dynamic regime. _
namic potential; the system naturally evolves towards this TO obtain the dynamic response we assume that the field

minimum.

¢(r) is the slowest variable which describes the system.

If the vortices cost an infinite amount of energy, the Vortices are assumed to move slowly in a gas of thermal
fugacity yo, would be zero and there would be no vortices in€Xxcitations which damp their motion; all other quantities

the system. The solution when the fugaaityis zero in the
region—L,<y<L,is

xo(r)=2mKoo(|y|—L,/2). (35
The corresponding free energy is
F[(r flp(r Vx)?
[4( )]:f [¢( ”dzr:j (V02 o
kgT KgT 87K,
m?Ko(Lyo)2Ly
=2—Lx, (36)

1:1]

which can be thought of as the energy of a chargigd
stored in a “capacitor” of capacitance

Lx
C= 37

Kol

with Kgl the equivalent of the permittivity of free spaeg.

which could describe the systefauch as small fluctuations

in the phase of the order parameteglax rapidly towards
equilibrium with a much shorter time scale. Under these cir-
cumstances the system is at each moment in a thermody-
namic state which is in instantaneous equilibrium as far as
the faster quantities are concerned. The instantaneous state of
the system can be described by the variathlgr) alone.
When disturbed from equilibrium the value @f{r) evolves
slowly until it reaches a minimum in the thermodynamic
potential.

A. Equation of motion

The simplest proposal is that the equation of motion is of
the relaxational form

de(r)  offe(r)]
gt Se(r)

+R(r,t), (39

where 5 is a friction coefficient andR represents a thermal

The renormalization program is a systematic way of accountnoise term with a Gaussian white spectrum and mean of
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zero. Equation(39) is the simplest equation of motion we  We can convert the renormalization group analysis of the
can formulate for a system which is not constrained by aoughening transition, due to Norés and Gallet, into that
conservation law ¢ is not a conserved quantjtyand in  of superfluid films using the dictionary

which there no other relevant quantities which decay on a

comparable time scale. In what follows we shall assume that 2mz(r)

this equation of motion can be used to describe the linear ¢r)= b
response of the fictitious fielg(r).
When there is no superflogmo edge chargesve get @é L
a2 kgT’
do(r) kgT 2yokgT
—= V2¢(r,t)— sin o(r,t
L i vl UL AT s
Kl_lx:\_'
+R(r,t). (40 kgT
Equation(40) is mathematically equivalent to the equation b2
m=—7n,
2y M 2mAD)| " 4m
Mg TYVE T VSN Ty (41) wherey, andK; are the renormalized fugacity and Kosterlitz

. ) ) parameter, respectively. Norés and Gallet defineU
used by Noziees and Gallet to describe the dynamics of the_\/; A2 \where A is the cutoff in momentur{which has

position z of the interface for temperatures close to thejhitial value Ao), and the scaling parameter In(Aq/A). 23
roughening transition. In their case the free energy density isne recursion rélations to order take the form

0 27rz(r) du

flz(r)]= E[Vz(r)]z—Vcos< b | (42 a7 ~v@-n, (45)
where y is the surface stiffness) is the spacing of the diny 27*U?
planes, and/ is the amplitude of the pinning potential. T ?A(n), (46)

In Nozieres and Gallet’s theory the interface is infinite in y°b

extent, whereas our treatment has been developed for a rect- ) 412
angular film of finite area. Let the smaller length scale asso- diny _ 87U B(n) (47)
ciated with the size of the system hg¢. Suppose we exert a dl ¥?b* '

time-varying force on the system which oscillates at a fre- ) )
quencyw and which induces a superflow of maximum am-Where the functiong\(n) andB(n) are given by
plitude vg. There is a length scale associated with the dy-

namics of the system which is A(n):nfxd;;;sfwd_"e—l/AKe—zthO("’;)e—;zx, (48)
0 0 K

keT

_ 43
4772K0770a) “3

fa= B(n)=n fo dpp® fo die™V4e=20n3 (B)e P°x  (49)
We therefore have two limits: when;>L, the system has \yith

plenty of time to evolve to the minimum in the thermody-

namic potential. A vortex which escapes from its image at ~ 1dx ~

one edge of the film has sufficient time to cross the film and h(p, k)= J'O ~ [17Jo(xp)e (9], (50

be annihilated on the other edge causing the “charge on the

capacitor” to decay; in more conventional language we areandn= kg T/yb?= 7K, . The corresponding recursion rela-
describing the decay of superflow by phase slippage. In théions for the superfluid case can be found using our “dictio-
opposite limit,r y<L, the vortices do not have time to move nary;” they are

across the film in the time scale of an oscillation, and so the

charge does not decay. In this limit we can treat the system dy, (27— K 51
as if it were effectively infinite in extent with an error of W_( 7Ky, (5)
orderry/Ly. In what follows we assume that the system is

always in the limitry<L, . dK; y \?

There is also a length scale associated with the superflow al =87*K A(TK ) 202 (52
aAg
" (44) 2
= . din 7 Y|
mv _ 4402

s di 327°K; B(WK,)(aZAg . (53

We are interested in the linear response of the system so we
are concerned with the limite>ry. Whenrg andry are A detailed calculation shows that the value Af7K,=2)
comparable the response is nonlinear. =0.398. We can make this consistent with the recursion re-
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The significant difference between this scheme and that of -
Kosterlitz lies in the fact thal(7K,) varies as a function of by’ w

7K, ; for example, it tends to zero asK, goes to infinity. It yhe term arising from the external driving overpressure
we are interested in the recursion relations away from the- cos@t). Mathematically we have an analogous equation

fixed pointK,= 2/, as is the case for the dynamic response,yiin wo differences. First the corresponding quantity to
then the difference between the two renormalization scheme§ﬂo/b is now complex

becomes important.

lation of Kosterlitz by choosing a particular value af\ . (
ZO:

)Sin(wt) (57

27720 )
B. Dynamic superflow o =ixo(r,t)

When the substrate of a superfluid film oscillates, it car-q,

ries with it the excitations of the normal fluid and leaves the
superfluid component behind. In the rest frame of the sub- 20
strate it is the superfluid which oscillates as if there were a —(
superflow. In this frame a vortex experiences a Magnus force

due to the superflow, a force which is balanced by a frictior\N
force as the vortex moves through the stationary excitationg
of the normal fluid. The superflow acts as the driving force

that causes the vortices to move and dissipate energy. The second difference from the roughening transition is
We can generate a superflow around the surface math:

) X — hat the external driveas represented by,(r,t)] varies with
;ehrga}gcr:ﬁqlly by putting an oscillating charge on the edges 0f:)osition. In that sense the situation is more closely analogous

to the problem of a vicinal surface as treated by Neseand
Gallet!® albeit an oscillating vicinal surface. Under renor-
malization vicinal surfaces exhibit an anisotropy in the sur-
face stiffness. Therefore the model predicts that in the super-
fluid film the superfluid density should become anisotropic in
the nonlinear regim& Here we consider only the linear-

)sin(wt):iZﬂ-ZKoao sin(wt)(|y|—L,/2).
bn' @

e can think of the term 2°K,0,=E, as if it were an
electric field” of magnitudeE, emerging from the charge

o(t)=ogsin(wt) (54)

with the maximum amplitude of the superflowy=hao/2m.
These charges generate the fidlgy(r,t). The surface
charge, and hencgy(r,t), can decay if there are phase-slip )
processes in which vortices cross the film. The dynamics oféSPONS€e regime. o

4 can be separated into two parts: the fiai(r,t) which _G|org|n| and Bowley evaluate the renormalization ugf

decays due to phase slippage, and the remainfterp ~ — %0 3S
—ixo(r,t) which decays according to the equation 4 In[ug(w)] 642
olw m
¢ dl == =5 C(nrq,r) (58
dp(r,t)  kgT _ ~ 2yokgT . ~ 72b
7 = VZ(r,t)— S B(r,t)
0 2 1 2 y i . ) ]
4 4mKo a with r=r4/rg the ratio of the diffusion length to the length
+ixo(r,H]+R(r,1). (55) scale associated with the external forces= bZ")'//F. In the

linear response reginre—0 and we have

In principle we could set up an equation describing the be-
havior of xo(r,t); however, as we are considering the case C(NT4.0)= —in?ﬁfmdffﬁfw(
wherer <L, the decay of the surface charge during each 0 0
cycle will be a very small effect and we shall neglect it. ey ey
The appearance of the imaginary term in the equation of X Jo(p)e P x(el P Tra—1), (59
motion for ¢ is a direct consequence of the imaginary term
in the Hamiltonian. However, it leads to no mathematical
problems: the renormalization scheme can be extended
complex fields and the recursion relations obtained are e
tirely real. A similar case was considered by Park and
Lubensky? who showed that static recursion relations could
be derived for a system with a Hamiltonian containing din EO:—32774K,2( Yi

d_”) o Udxc—2nh
K

wherer 4=r4A. Use of the same technique for the superfluid

se allows us to calculate the change in the electric field. As
ong as the length scale involved is very much smaller than
he size of the film we get the recursion relation

2
C(7K,,r4,0. (60

imaginary terms. dl aZA
Equation(55) is almost equivalent to the equation of mo-

tion that was used by Giorgini and Bowféyto describe the

dynamics of driven surfaces near the roughening transition.

2
0

C. Dielectric function

The equation of motion in that case is The dynamic “dielectric function”s () is defined as the
ratio of values of the electric field before and after renormal-
zy ., 27V (27 ization
7;’?=7V Z— TSIH T(zﬁzo) +R  (56)

E0(|:O)) 61)

with 8(“’):(Eo(lﬂo)
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In principle, the dielectric function may be obtained by sim- az(1,)
ply integrating the recursion relation for the external field. 7’ (l,)——

— — 27— 277?(|C) —
=y(|c)V22(|C)—FVSln( 5 >+R(Ic)

To ordery? we get at
F coq wt+ a)
' Eoll =) _ 32774FK20 K,.T4,0y2dl. (62 T (66)
"\ Eg1=0)| =~ qaazlo |IC(TKI T Oyl (62
where
Hence the inverse of the dielectric constant is B B
Fcogwtt+a) — = dzq(lc)
AT (67)

-1 327 (= , = 2
e(w) "=exp — aZAzfo KiC(wK,,rg,0)yydl|.
0 (63 HereF/b is the renormalized driving force andis a phase

angle. Giorgini and Bowley neglect the random force, take
This procedure is correct for temperatures below the transithe long wavelength limit, and solve the equation of motion
tion wherey, tends to zero for large However, for tempera- assuming that the pinning potential is strong enough to allow
tures above the transitiop, becomes large and a theory only small displacements of the interface around the equilib-
based on the small fugacity expansion becomes inaccuraterium position so that

This question was considered by Giorgini and Bowley in
their analysis of the mathematically identical problem of the 2wzl 27zl
roughening transition in the presence of an external har- sin b ="
monic drive?® Giorgini and Bowley calculate the dielectric
function as a combination of two parts: a term from the shortrhe equation of motion for small displacements can be writ-
wavelength fluctuations, which is obtained via the renormalep a5 3 linear equation of the form
ization approach, and a second term describing the long
wavelength behavior which is dominated by the pinning po- — 2 —
tential. In terms of the roughening transition this description ;% =yV2z— (2_77) Vz+ R+ W,
is valid in the region just below the transition where the ot b b
pinning potential is finite on a macroscopic scale. This cor-
responds to the region just above the superfluid transition i
thin helium films, which is exactly what is probed by tor-
sional oscillator experiments. ol
Using the ansatz of Giorgini and Bowley, the expressior®S€

for the dielectric function given aboVyé&g. (63)] is modified: _
the integration is performed up to a finite cutdff and a (. =) = 1 Fe '?
separa?e term from the strong-coupling (eglme., yvhgn . oL [1+i(47VIwy'b?)] 2by’
y,~1) is then added on. The strong-coupling contribution is
obtained from a solution in the long-wavelength limit of the uo(w,l=1,)

(68)

(69

hich is easily be solved if we ignore the random force. In
the long wavelength limit, the Fourier component of the ve-
locity due to the renormalized driving force which oscillates
iot ;

is

equation of motion for small displacements. The advantage = o o (70
of this method is that it provides a simple calculational [1+i(4mV/wn'b%)]
fﬁ:?&%r;owever, the exact valuel pis not determined by - 1, jpq expression for the dielectric function is
The dielectric constant for renormalization upltas de- Lo dp)2 b
fined by the ratio _ (87U ~ 4V
In[e(w)]= > C(n,rg,0)dl+In{ 1+i— 5|
0 yb wn'b
uo(w,|=0) (71)
6|C(a) = m (64)
O e Therefore, the procedure for calculating the full dielectric
At |, the equation of motion is function is to evaluate the recursion relations upl tand
then to use the renormalized values\dfl;) and »'(l;) to
_ ozl — . calculate the correction to the dielectric constant for ldrge
7' (l¢) i?t = =y(10)V?z(l¢) Using our dictionary, and the reduced variables
2m_ [2m(@(l)+20(l0)| = <
- FV Silgl Cb ¢ + R(lc): X(1) 7K, ! (72)
9 _4mU 8wy,
where all quantities have been renormalized up to the point Y= keT azAé' (73

I=1., as emphasized by the overlines. This equation can
now be written in terms of the quantia~ z, + z; hence the equation for the dielectric function can be written as
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0.2} d . 1 N N Y(0)=2.0
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FIG. 4. The variation of functions R®&(n,ry0) and FIG. 5. Parametric plot of the dynamic dielectric function for
Im C(nF4,0) With Ty (=r4A) for the casen=2 superfluid films for different values of the parame¥{0), with
ne i ' Y(l)=1.
e 2Y(1)? ~
In[e(w)]= . dl X(1)2 C(2/X,r4,0) Suppose first of all tha¥(0) [and hencey(0)] is small.
We found that the behavior df,e *(w) depended only
2Y(1 )T g(10)? weakly on the exact value of,(0)=r4(0)A, as long as it is
+In 1+IT (74)  large. The reason is simple. The effectrg{0) is to effec-
Cc

tively terminate the recursion relations at this length scale;
the transition then occurs at a smaller valuenothan for
infinite r 4(0) where the transition occursiat 2. As long as
In order to calculate the weak-coupling contribution to thelengthr4(0) is large the change inis small and sA(n),
dieollectric functioln tEe ;ecur.sionE;elatLogsF] must bt()a integiratecg(n), andC(n,T4,0) are barely affected. We have chosen a
o consecenty he fnclons B andC have o be eVl yalus, somewnat oy, (0)-2 10
P : In contrast, there is a strong dependence on the choice of

integrated numerically in a straightforward way using aY(O). Figure 5 shows the variation oz~ 1(w) with Y(0),

fourth or fifth order Runga-Kutta scherfie. where in each case the valuesX{f0) were chosen to sweep
The calculations of the functior, B, andC proved rela- through the transition. Although the size of the curve de-

tively time consuming. Each of the three functions contains .
three integrals, two of which run from zero to infinity. We pends on the exact value of(0), we findthat to a good

used Rhomberg integration in each case and evaluated tf%’ ?,{,ZX;E%U%T,;ZE S;;dethr:rgzlnesnzjheensgrgﬁhe results on the
integrals from zero to infinity by splitting the integrals into g P

: . hoice of the parametdf, as defined by the choice of the
two parts and mapping them onto a finite range by a chang . o
of vgriables. The pbpeh(:;]lvior ot largely controlg they renor- gvalueY(Ic) at which renormalization is stopped. The behay-

. 71 - - .
malization of the driving field and hence the response func’ of K.°8 (@) varies quite strongly withv (1), Qxcept of
. - ~ o~ course in the low temperature region whgreemains small,
tion. The variation of R€(n,ry,0) with ry is very close to

. A ) as is shown in Fig. 6. Herg(0)=0.75. The arbitrariness in
that of a step function: it increases rapidly from zero for

small Ty, to a constant value of 0.246 ay~0.5, for n

=1.5. However, RE(n,ry,0) varies only slightly withn: 0.16 — ()=t
the height of the step varies from 0.246 for 1.5, to a~value S
of 0.195 whenn=3. In contrast the function Il@(n,ry4,0) 012k

takes the form of a sharp peak around the pBJjﬁt 0.5, and
has a value of zero elsewhere. The effect of variationis - e
to modulate the height of the peak: for=1.5, the peak 0081

1)

~ E

value of ImC(n,ry,0) is 0.1028, this increases slightly to °
0.1035 whem= 1.7, after which it declines, reaching avalue ' o.04}

of 0.0897 forn=3. The behavior of R@(n,?d,O) and

Im C(n,T4,0) forn=2 is shown in Fig. 4. 0.00 ,
In order to calculate the dielectric function in the transi- . . ' —L . '
. X ; . . 0.0 0.2 0.4 0.6
tion region we performed a series of integrations of the re- K Re(c")
0

cursion relations using different initial conditions. The

choice of initial valueg 4(0) andY(0) before renormaliza- FIG. 6. Parametric plot of the dynamic dielectric function for
tion, which of course correspond to the microscopic paramsuperfluid films for different values of the cutoff parameltgr as
eters of the model, is not known. defined by the value of(l;), and withY(0)=0.75.

D. Numerical method

)
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the choice ofl . represents a weakness in the theory, for we
have to leave it as an adjustable parameter. We select th = 1291
value to give the best agreement with the experimental data e 138
=y A 1569
4 o %0 v 2227
E. Comparison with Experiment 0.16 Vb P 0 2543
The frequency shift and invers@ factor measured in tor- | o LSRN N 23?:
sional oscillator experiments are related to the quantities calvz \ \\ o 2088
culated in the theory by the relatichs E 0.08+ ;!i‘ \\ New thoory
SAP Amzk - ;O ———-BAB theory
_ B -1 '
P - Mﬁz KO Rq&‘ ((1))], (75)
0.00 -
Q=T e, (79
e — m| —e w) |, T T T T T T T
MA2 O 0.0 0.2 0.4 0.6 0.8
-1
whereA is the area of the filmn the mass of an atom dHe KoRe(8 )

and M is the effective mass of the empty cell. The period
shift and change iQ-factor are measured directly, the quan-
tities Ko R e ()] and Ko Im[—& ™~ *(w)] are predicted
from the theory and value &&/M is inferred from the cali-
bration of the oscillator.

In this section the results from torsional oscillator experi-
ments performed by McQueenysing a Mylar substrate, sional oscillator experiments. There is some deviation be-
are compared with the predictions of the dynamic thédry. tween the new theory and experiment at the high temperature
His work is particularly important for two reasons: he mea-end[small K, Res ~*(w)], but this is to be expected: this is
sured the response for many helium films of different coverthe strong coupling regime which we have described with a
ages, and he took great care to reduce the drive level so th@éry crude harmonic approximation to the pinning potential.
the amplitude of oscillation is much less than otherThere is some systematic deviation from the predicted curve
experiments—he used a maximum speed ofuBns '  near the peak i, Im &~ 1(w) which is not captured by the
which means that it should be possible to describe his resuligresent theory. Nevertheless, the agreement between our
within the framework of a linear response theory. Mc-theory and experiment is extremely good; it is substantially
Queeney used the same experimental apparatus as Agholetetter than that obtained using the refined phenomenological
al.® for which the value ofA/M is 266 nf kg™ ™. theory, which itself is more accurate than AHNS.

The results from torsional oscillator experiments are usu- |t might be thought that the variation in the peak value of
ally presented in the form of curves oAP/P againstT and K, Im &(w) ~* with film thickness is caused by some system-
AQ™* againstT. However, we choose instead a parametricatic variation inl. with coverage. It is true that there is an
plot so that the real and imaginary partsofe(w) * are  increase in the core size as the film thickness is rediféed
plotted against each other. The parametric plot has the agut this does not affect the value kf. The parameter, is
vantage that it avoids the need to model the temperaturgimply an artifact of our calculational scheme which has no
dependence df, Re £(w) '] andKyIm[e(w) '] and soit  physical significance: it simply parameterizes the somewhat
leads to a more direct comparison of theory and experithentarbitrary value of the fugacity at which we crossover from

In Fig. 7 we compare the theoretical curvekafe(w) "', the renormalization group calculation in the weak-coupling
for Y(I¢) = 1.5 andY(0)=0.25, with McQueeney's dat@x-  regime (wherey, is smal) to the strong-coupling ansatz of
cluding only the thinnest films in which the temperature ofGiorgini and Bowley.
the peak in the dissipatiof, arises at<0.5 K). We have However, the systematic variation in the peak value of
also included for comparison the prediction of the refinedk, Im ¢(w) ~* with film coverage could arise from imperfect
phenomenological theory due to Bowlet al.® which is  coupling between the atomic layers which make up the $ilm,
based on the work of Ambegaokat al.,” and is essentially an effect which is not included in our theoretical model. As
the same as that made by Walfiron the basis of Min-  the coverage increases the first fluid layer of the film fills up
nhagen’s theory? In order to obtain the fit we tuned the and saturates, then the next fluid layer forms and fills up, and
values of two parameters: we varie{0) until there was so on. There is a coupling between the layers which de-
good agreement at the low temperature efldrge scribes the transfer of particles from one layer to the next. If
KoRee !(w)] and then we varied/(l,) to fit the average the coupling under renormalization becomes strong, the lay-
peak in the dissipatiofi—KyIme *(w)]. The theoretical ers become locked together: the effect of layering is then
curves are not very sensitive to the value ¥(0); if we  negligible for the layers move as a single, uniform film. If
reducedy(0) from 0.25 to half this valu€0.125 the curves the coupling becomes weak under renormalization the layers
would shift for largeK, Ree ~1(w) by only 5%. decouple and move as separate entities. We can expect to see

Looking at Fig. 7 it is clear that the method presented hergystematic variations in the data, as is observed. Neverthe-
leads to a parametric curve of the dielectric function with aless, it is not yet clear whether this picture will be able to
shape very close to those measured by McQueeney in todescribe the data correctly.

FIG. 7. Comparison of plots of real and imaginary parts of
Koe(w) ! for a series of films on Mylar, measured by McQueeney,
with the new theoretical prediction. The units of film thickness are
pmoles. Also shown is the curve predicted by the refined phenom-
enological theory of Bowlegt al. (BAB).
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The value of the energy of a vortex is expected to increasan equation of motion for the system. The equation of mo-
as the coverage increases and hence the fugacityyédyl  tion is renormalized using the systematic methods of No-
should decrease. One would then expect the curves to evolvéeres and Gallet: this leads to a complete set of recursion
as shown in Fig. 5. Once the films become sufficiently thickrelations for the parameters of the model so the dielectric
one would expect the curves to tend to the srivgD) limit ~ function can be calculated directly. The form of the dielectric
of the theory. Hence we have made our comparison witfiunction predicted by the theory is readily compared with the
films whereT,>0.5 K omitting the data from the thinner response of torsional oscillators in the region of the super-
films. In fact nothing dramatic happens for the thinner films:fluid transition and we find that agreement with experiment
the dominant effect is the variation in the peak value ofiS Substantially better than that obtained using phenomeno-
Kolme(w) ™! with film thickness and since this is not yet logical approaches. However, we find that there is some dis-
captured by the theory there is no insight to be gained fronfrepancy between theory and experiment in the high tem-
adding the data from the thinnest plots to Fig. 7. We haveX€rature region. .
also compared our theory with the thinnest films studied by Our theory is also an advance on previous work for rea-
McQueeney T,=0.18 K), and the fit is less good. The peak SONS apart from the improved agreement with experiment.
value ofKyIme(w) 1 is lower (as expectex there appears Because of th(_a analog_y with a vicinal _surface_, we can predict
to be an offset due to additional dissipation, and there is &at for a nonlinear drive the superfluid density will become
poorer fit at the high temperature end. anisotropic, a feature which is to be e.xpe&?-.\dnu.t is not

We have not compared our data with the results of torcontained in any of the phenomenological theotfel ad-
sional oscillator studies carried out using a Grafoil dition, the the_or_y pr_esented here explicitly describes the re-
substraté? This is because the data obtained from such studSPonse of a finite size system. So far no attempt has been
ies has a rather different form from that obtained using dnade to describe accurately the geometry of films in real
Mylar substrate, as is strikingly demonstrated when the dat§XPeriments, but this may now be possible using the methods
is plotted parametricall§2° The origin of the differences in described here. _
the data obtained by McQueeney using Mylar and recent Despite its successes, there arean_umber of improvements
work on Grafoil is not yet clear. However, we can suggeslthat can be made in the theory dgscrlbed here. Most impor-
three possible reasons. Firstly, the morphology of Grafoiff@ntly, our theory does not describe the crossover between
differs from that of Mylar: although Grafoil is atomically the weak and strong coupling regimes precisely. The advan-
smooth, on short length scales it is strongly disordered at §9€ of a WeII—d'eflned calculat|.on of the crossover is that it
length scale of order the grain size and this may well have yvould both avoid the need to introduce the arbitrary cross-
greater effect on the superfluid film than the short-scale inover parametef., and hopefully lead to better agreement
homogeneities in Mylar, a possibility first suggested in aWith experiment in the high temperature region. One way of
more general form by AHNS Secondly, the geometry of the doing this would be to develop a scheme for renormalizing
substrate is in the form of a stack of disks in the Grafoilthe equation of motion in the strong coupling regime. An
experiment rather than a long sheet wound round itself as igltérnative scheme could be based on a numerical simulation
the case with Mylar. Thus edge effects may play a moreof the equation of motion in the strong coupling I|m_|t.. _
important role for this geometry. Thirdly, the drive strength  Also our model does not yet account for the variation in
used by McQueeney was very much lower than that usedynamic response with film thickness and so we cannot use
either in the Grafoil experiments, or in other experimentsit t0 understand the systematic variation in the dissipation
using a Mylar substrate: we believe that it is this very |0Wpeak_ which is observed. In order to descrlbe_ the effects of
drive level which leads to the characteristic asymmetridayering a far more complex model of the film would be
shape in the parametric plot of the data, a feature which i§eduired in which there was imperfect coupling between dif-
not observed either in the Grafoil ditar Mylar data ob- ferent atomic layers. However, the approach outlined here

tained using higher drive strengths. should form the basis of such a theory.
In summary, the new theory presented here provides a
IV. CONCLUSIONS AND DISCUSSION more accurate approach to the calculation of the dynamic

response of superfluid films than the alternative phenomeno-

The theory presented in this paper provides a theoreticdbgical theories that have been developed in the past. Not
framework within which the dynamics of superfluid films only does it lead to closer agreement with experiment, it also
can be described. We use the Hubbard-Stratonovich transfoprovides a systematic framework within which it should be
mation to rewrite the Hamiltonian of the vortex gas as thepossible to discuss the subtle effects of nonlinearity and
well known sine-Gordon model which allows us to postulateatomic layering on the dynamic response of superfluid films.

1J. M. Kosterlitz and D. J. Thouless, J. Phys6C1181(1973. 5G. Agnolet, D. F. McQueeney, and J. D. Reppy, Phys. Re39B
2J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp. PHgs. 8934(1989.

371(1978. 5D. F. McQueeney, Ph.D. thesis, Cornell University, 1988.
3J. M. Kosterlitz, J. Phys. @, 1046(1974). [AV2 Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia,
4D. J. Bishop and J. D. Reppy, Phys. Rev. Léf), 1727(1978; Phys. Rev. Lett40, 783(1978; Phys. Rev. B21, 1806(1980.

Phys. Rev. B22, 5171(1980. 8R. M. Bowley, A. D. Armour, and K. A. Benedict, J. Low Temp.



PRB 60

Phys.113 71(1998.

9A. D. Armour and R. M. Bowley, J. Low Temp. Phy&o be
published.

10p, Minnhagen, Rev. Mod. Phy59, 1001(1987.

1M, Wallin, Phys. Rev. BA1, 6575(1990.

12p M. Chaikin and T. C. Lubenskfrinciples of Condensed Mat-
ter Physics (Cambridge University Press, Cambridge, UK,
1995.

13D, J. Amit, Y. Y. Goldschmidt, and G. J. Grinstein, J. Physl3
585(1980.

143, samuel, Phys. Rev. D8, 1916(1978.

5p. Minnhagen, Rev. Mod. Phy§9, 1001(1987.

8p_ Noziees and F. Gallet, J. Phy&rance 48, 353 (1987).

7P, Noziees, in Solids Far from Equilibrium edited by C. Go-
dreche (Cambridge University Press, Cambridge, UK, 1991

18 Jonsson and P. Minnhagen, Phys. Re\63 9035(1997).

9B, J. Kim, P. Minnhagen, and P. Olsson, Phys. Re%9B811 506
(1999.

20B, |. Halperin, inProceedings of Kyoto Summer Insitute 1979
Physics of Low-Dimensional Systeradited by Y. Nagaoka and
S. Hikami (Publication Office, Progress in Theoretical Physics,
Kyoto, 1979.

21T, C. Lubensky(private communication

223.-M. Park and T. C. Lubensky, Phys. Rev58 2665(1996.

2n the vortex picturd =In(1/aA).

DYNAMIC RENORMALIZATION GROUP THEORY OF ...

12 399

243, Giorgini and R. M. Bowley, J. Phys.5, 815(1995.

25G. A. Williams and E. Varoquaux, J. Low Temp. Phy43 405
(1998.

28\W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in Fortrar2nd ed.(Cambridge Uni-
versity Press, Cambridge, UK, 1992

27/ possible complication is the effect of substrate disorder on the
system: Mylar is known to be highly disordered over short
ranges. Our theoretical model does not explicitly include the
effects of disorder; its applicability to the Mylar system rests
implicitly on the assumption that the disorder is sufficiently
short-ranged that its effects can be subsumed into our definitions
of the unrenormalized parameters.

28H. Cho and G. A. Williams, J. Low Temp. Phyk10, 533(1998.

2Results from the most recent torisonal oscillator studies carried
out using a Grafoil substrate preplated with Hydrogen Deuteride
are presented in J. Nigg R. Ray, G. Sheshin, V. Maidanov, V.
Mikheev, B. Cowan, and J. Saunders, J. Low Temp. PB$s.
379(1997.

30R. M. Bowley, A. D. Armour, J. Nyki, B. Cowan, and J. Saun-
ders, J. Low Temp. Phy4.13 399(1998.

31D, Tulimieri, N. Mulders, and M. H. W. Chan, J. Low Temp.
Phys.110, 609 (1998.

32R. M. Bowley and S. Giorgini, J. Low Temp. Phy83, 987
(1993.



