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The effects of a heat current and gravity in liquitle near the superfluid transition are investigated for
temperatures above and beldy. We present a renormalization-group calculation based on ntoftal the
Green’s function in a self-consistent approximation which in quantum many-particle theory is known as the
Hartree approximation. The approach can handle the average order pargmetérabove and below, and
includes effects of vortices. We calculate the thermal conductMyA T,Q) and the specific he@(AT,Q)
for all temperature differencesT=T—T, and heat current® in the critical regime. Furthermore, we calcu-
late the temperature profil&(z). Below T, we find a second correlation lengéh~Q *(T,—T)*” which
describes the dephasing of the order-parameter field due to vortices. We find dissipation and mutual friction of
the superfluid—normal-fluid counterflow and calculate the Gorter-Mellink coefficderitVe compare our
theoretical results with recent experimerj80163-182809)04641-X

[. INTRODUCTION found® While the exponents do not agree, the experimentally

Gravity and a heat curre@ are two sources which influ- observed shifAT(Q) is larger than the theoretically calcu-
ence the superfluid transition of liquitHe atT,~2 Kand latedAT,(Q).
cause inhomogeneities in the system. On earth gravity im- While for AT=AT, (Q) the helium is normal fluid and
plies a pressure variatioR=P(z) wherez is the altitude for AT<AT(Q) it is superfluid, in a recent experiment Liu
coordinate. Since the superfluid transition temperaflije and Ahler§ found a dissipative region for temperatuckd
=T,\(P) is pressure dependeri,(z)=T,(P(z)) depends in the intervalAT(Q)<AT<AT,(Q). This observation in-
on the altitude coordinate with the gradient JT, /dz= dicates that at a finite heat curre@ the transition from
+1.273 puK/cm. On the other hand, a nonzero heat curreninormal-fluid to superfluid helium may possibly happen in
Q drives the system away from equilibrium. A temperaturetwo steps with two transition temperaturésr,(Q) and
gradientVT is created which implies that the temperatlire AT Q) (relative to the equilibrium transition temperature
is space dependent. We assume that the heat cu@réat T,). While the uppeAT,(Q) may be identified by the the-
homogeneous and flows verticallparallel to thez axis) so  oretical prediction, the lowekT.(Q) agrees with the shift of
that the temperatur€(z) depends on the coordinate only. Ref. 5. In a similar experiment performed by Murphy and

The local properties of the system are determined by thre#leyef also two transition temperatures were found. While
parameters, the local temperature differer€(z)=T(z) the values oAT, (Q) andAT,(Q) contain errors, the differ-
—T,(2), the heat curren@, which is related toVT, and enceAT,(Q)—AT,(Q) is quite well reproduced by the lat-
gravity g, which is related toVT,. The point AT,Q,Q) ter experiment.
=(0,0,0) is a critical point related to the superfluid transi- Heat-transport phenomena in liquftHe close toT, are
tion. This means that in thermal equilibriuf@E&0) and in  described by modeF of Halperin, Hohenberg, and Sigdfa
microgravity (@=0) the system shows a second-order phaseavhich is a model for the critical and hydrodynamic slow
transition atT=T, from the normal-fluid to the superfluid variables including fluctuations. Most theoretical investiga-
state. Usually, gravity is negligible except for very small heattions are based on this model. In the normal-fluid region for
currentsQ and for very smallAT, i.e., very close torT, . temperature§ aboveT, the heat is transported diffusively
Since on earth the gravity acceleratign=9.81 m/€ is a  driven by the temperature gradieWiT. In linear response
fixed quantity, in most cases ter-Q plane is considered as the heat current iQ= — VT where\ is the thermal con-
the phase diagram. ductivity. For infinitesimalQ and zero gravity the thermal

Liquid “He close tdT, in the presence of a heat currédt  conductivity A1 has been calculated within modeélin two-
has been investigated theoreticaffyand experimentally=®  loop order: Critical fluctuations, which are taken into ac-
In the AT-Q plane a line of critical temperatures is found count by the renormalization-groufRG) theory, imply a
which separates superfluid from normal-fluid helium. A non-strong enhancement af close toT, . For infinitesimalQ
zero heat currer® implies that the superfluid transition tem- and zero gravity the thermal conductiviky diverges in the
peratureT, is shifted to lower temperatures BT, (Q). For  limit T—T,, or more precisely in the limit AT,Q,Q)
small heat current® in the critical regime the theofy pre-  —(0,0,0). The RG theory has been extentectcalculate\ 1
dicts the shiftAT,(Q)~ —Q* with the exponentx=1/2v  for nonzero heat currentd but without gravity. It turns out
=0.745. In the experimems*a depressior T(Q) of the that for finite Q close toT, the heat transport becomes non-
superfluid transition has been observed which agrees qualinear which means that; becomesQ dependent. It has
tatively with the theory, but not quantitatively. For sm@l  been showhthat At remains finite in this case even far
in the critical regime the shifdT,(Q)~ — Q%% has been =T, .
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On the other hand, in the superfluid region whArg(z) Feynman rules. In Sec. Ill the idea of our approach and the
<AT.(Q) the heat is transported convectively nearly with- calculations of the Green'’s function and the effective param-
out friction according to the two-fluid modél by the eters are presented. The renormalization-group theory is ap-
superfluid—normal-fluid counterflow. In this case the tem-plied in Sec. IV to include the critical fluctuations. The ther-
perature gradienV T is nearly zero indicating a nearly infi- mal conductivity and the temperature profile are calculated
nite thermal conductivityht. Mutual friction between the in Secs.V and VI, while in Secs. VIl and VIl the correlation
superfluid and the normal-fluid component and dissipation ofengths, the entropy, and the specific heat are considered. We
the heat current occur only by creation of vortices, which,compare our results with experiments and investigate the in-
however, is a small effect. Nevertheless, mutual friction influence of gravity. In Sec. IX we discuss dissipation and
the superfluid state has been measured as early as 1949 myitual friction for superfluid helium below, . We show
Gorter and Mellink!® For the mutual friction force the ansatz that our approach reproduces the ansatz of Gorter and
f=Appvs—vy)® was mad® with a temperature- Mellink®® for the mutual friction force and calculate the
dependent coefficier, the so-called Gorter-Mellink coeffi- Gorter-Mellink coefficientA. The idea of the approach and
cient. This ansatz is related to a turbulent superfluid fow part of the results have been published alreldy.
and implies a temperature gradieW ~—Q3, so that the
thermal conductivity is\t~Q 2. More recently, the tem- Il. THE MODEL AND FEYNMAN RULES
perature gradien¥T due to mutual friction in superfluid
“He was measured directly by Baddatrall” in the critical
regime close tdl, . This experiment confirms the ansatz by
Gorter and Mellink qualitatively but with a slightly different
exponent in the&) dependence ov,—v, dependence.

In the intermediate region a crossover between the two

Dynamic critical and heat transport phenomena in liquid
“He close toT, are well described by moddt which is

given? by the Langevin equations for the order parameter
Y(r,t) and the entropy variablea(r,t):

. ) . Ay SH . S6H
heat—tyansport mechanlsms happens. Since the system is spa- — =2 g% +igo¥==+0,, (2.2
tially inhomogeneous this crossover happens also spatially at o m
and implies an interface between superfluid and normal-fluid
helium located at a certairy. Onuk? investigated this inter- Jm 25_H_ . oH
i . . . =\oV 2golm| ¢ |+ 6, (2.2
face by solving the modd equations in mean-field ap- at om oY

proximation, where critical fluctuations are taken into ac-
count by scaling theory. He calculated the temperaturé{vhere

profile T(z) and the order-parameter profilgz). While in

the normal-fluid region the temperature profile has a finite H:f dOr[ 3 70(2) |12+ 3|V %+ Ug| ]+ § xo T m?
gradient related to a finite thermal conductivity, in the

superfluid region _the temperature profile is_; a_lbsqlutely flat + yom| ¢|>—hom] (2.3
and the gradient is zero, so that mutual friction is not in- ) )
cluded and\+ is infinite. is the free-energy functional anél, and ¢,, are Gaussian

The previous RG theoridé were constructed as perturba- stochastic forces which incorporate the fluctuations. The heat
tion theories starting with mean-field solutions of the modelcurrentQ is imposed by boundary conditions. The gravity is
F equations. While in the normal-fluid region ifiéy)=0, included via the temperature parametg(z) in Eq. (2.3
in the superfluid region a plane-wave order paraméter which is related tdr, (z) and depends linearly on the altitude
= »€e'*% was assumelConsequently, the temperature profile Z Usually, the model is treated by field-theoretic means. The
was found to be flat in the superfluid region so that mutuaPerturbation theory in terms of Feynman diagrams is gener-
friction and dissipation by vortex creation are not included inated by the Janssen-De Dominicis functional integral
the previous RG theories. In this paper we extend the RG

theory in two respects. First, we include gravity. Second, we Z:f D ¢D % DmDmexp{J} (2.9
include mutual friction and dissipation in the superfluid re-
gion. _ with the functional
Strong fluctuations of the phase of the order-parameter
field ¢ can imply that the average order parametet 4$ _ _
=0 even belowT, . This fact is well known for systems of J=f der dt) No(Vm)2+T o[ ]?

finite size. Here for nonzerQ the vortices cause sufficiently

strong phase fluctuations so tRat)=0 not only above but 1. [oy SH SH

also belowT, . For this reason, in the nonequilibrium state — ¥ E+2F0%—lgo¢%}

with a nonzero heat currei®@ we may not start a perturba-

tion theory with a nonzero mean-field order parameter which 1| dy* LoH , oH

implies a nonzera(y). Rather we need a new approach ~ oV t2lo gy 19V 5

which can handlé ) =0 above and below, . In this paper

we present a self-consistent approximation for the Green’s ~|dm ,oH , oH

function which can do this and which in quantum many- -m E_)‘Ov %JngOIm ¥ sy || (2.5

particle theory is known as the Hartree approximatfon. 5 5
The paper is organized as follows. In Sec. Il we describeHere s andm are auxiliary field$" which are needed for a
the model and the necessary field theoretic tools, i.e., thproper construction of the perturbation theory. While in the
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previous theorie¥’ only the free Green’s functions were (a) o 2 p
needed, here we will evaluate the self-energy in leading or- ’
der. For this reason, we briefly describe the Feynman rules

GO,OLB(rat;r:t’)

by which the diagrams and the terms of the perturbation (p) - ;B, = Doop(r,t;r,t)
series are constructed. We decompose the fields into a mean n ot '
field and a fluctuating contribution according 0= i, B
+ 8¢ andm=m++ dm where i, andm,; are solutions of
the modelF equationg2.1) and(2.2) without the stochastic (c) a--- = — Bjopy
forces. Here we assume a zero mean-field order parameter v
Ymi=0 above and below, , so thaty/= 6. The boundary
conditions, which imply the heat current, require a Y
Min(2) = —d(xo/No) (2~ 2o), (2.6 (d) = — Byap.p
whereq is the entropy current related to the heat cur@iira B 5
physical units byq= Q/kgT, . We decompose the functional
J in powers of the fluctuating fields according to FIG. 1. The elements for constructing the Feynman diagrams:
(a) free y-field Green'’s function(b) free m-field Green’s function,
J=1J,+J3+J,. (2.7 (c) three vertex, andd) four vertex.

The quadratic term is given by
J2: - J’ ddrf dt[’\PzKO,aﬂ\I}ﬁ—}_ %M aEO,aﬁM ,3]1

J2=J ddrf dt\o(VmM)2+Tg| 9|2 (2.19
— 39" Loy— 34" Ly h—mNgsm] (2.8 J3=—f ddrf dtByap,M WAV, (2.6
with the differential operators
Lo= i+ o[ 70(2) = V2+ 2 yoMyy(2) ] J4=—%f ddrf dt Baap,ys(Wo W) (W5 W)
. 2.1
~i(Qo/ xo)[Mu(2)— xoho] 2.9 @17
Here
and
2 1
No=dr—(Xo/x0) V<. (2.10 Lo 5bo
The third- and fourth-order terms are given by (Koap)=| 4 : (2.18
S0
~ 2
J3= f der f dt{mXo¥YoV2(4* #) + 9oV Im(4* V)]
2 V2 Ng
— b Smy* y—b% Smy* g} (2.12) (Eoap)= NGO (2.19
and are 2x 2 matrices with differential operators as the elements.
The free Green’s functions are obtained by inverting these
Ja= f ddrf dt{— bad* * ah— b % lﬂ?’h matrices according to
(2.12 Goap(r tir )= (W, (r,H)WE(r',t"))o
respectively, where :Kaalﬁé(r—r’)ﬁ(t—t'), (2.20
bgzro'yo_ig()/Z)(O, b4:2F0u0_igoy0/2 (213) Do,aﬁ(l’,t;l",t’)Z(Ma(r,t)Mﬁ(r',t'»o
are complex parameters. While the free Green’s functions =E&i55(r—r’)8(t—t’). (2.21)

are obtained from the quadratic tetdy, the interaction ver-
tices are obtained fromd; andJ,. In order to obtain a com- The higher rank tensoB3 , 45, andB, .4 ,s, Which describe
pact notation of the Feynman rules we combine the fieldshe interactions between the fields, are obtained by compar-
into vectors ing Egs.(2.16 and (2.17) with Egs.(2.11)) and (2.12), re-
5 ~ spectively. While Bs .5, contains differential operators,
W m Baup ys 1S Symmetrized with respect to interchange of the
(\Pa):<¢>' (Ma):<5m)' (214 index pairs @,3) and (y,d).

Now, from Egs.(2.15-(2.21) the Feynman rules are ob-
where the indexa=1,2 distinguishes between fields with tained easily. In Fig. 1 the elements for constructing the
and without tilde. Then the several contributions of the func-Feynman diagrams are shown. The fre¢efield Green’s
tional J can be written as functionGg ,4(r,t;r',t") is identified by a directed solid line
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[Fig. 1(@]. The free mfield Green's function o ¢ B
Doep(r.t;r',t") is identified by a dashed linfFig. 1(b)]. (a) Tt rie
The m field interacts with theys fields by the three vertex O

= Gep(r,r5r517)

shown in Fig. 1c). Furthermore, they fields interact with
each other by the four vertex shown in FigdllL For each ! ¢
three or four vertex an integratiofid’r fdt must be per- . |
formed. Further rules are applied as usual in field theory. The (B)  Zgp(roririe’) = r‘j* ff . + o r?’,,
perturbation series is obtained as the sum of all possible ' ' ' '
Feynman diagrams which can be constructed from the ele- FIG. 2. (a) The exacty-field Green’s function is identified by a
ments shown in Fig. 1. thick solid directed line(b) The self-energy in Hartree approxima-
tion.
IIl. THE UNRENORMALIZED GREEN’S FUNCTION ) . . ) . .
IN HARTREE APPROXIMATION tion is e_quwalent to the Hartree approximation in quantum
mechanics® The Dyson equation(3.2) together with the
To obtain physical quantities we must first calculate theself-energy in Fig. &) are self-consistent equations which

y-field Green’s function which is defined by enable an explicit calculation of the unrenormalized Green’s
function G. However, since we consider liquitHe in the
Gap(r,tir' t") =( W (r,)Wi(r',t")). (38.)  critical regime neafl, , a second resummation is necessary:

. , . . the self-consistent perturbation series and hence the Hartree
This Green’s function can be expressed via the Dyson equaj,,oyimation must be modified by renormalization and ap-
tion plication of the RG theory.

We have several reasons to believe that the Hartree ap-
proximation combined with the RG theory is successful for
in terms of the self-energy 4(r,t;r',t'). The perturbation model F above and belovl', where the order parameter is

series of the self-energy is given by the sum of all irreducibled/Ways(#)=0. Moreover, we will show that the approxima-
Feynman diagrams with two amputated external solid linedion includes vortices and mutual friction so that it may be a
which do not fall into pieces if any internal solid line is cut, POSSible approach to describe the dissipation in the super-
A similar Dyson equation exists also for thefield Green’s ~ fluid state observed in the e>§per|meﬁf§.F|rst of all, if we
function D ,4(r,t;r’,t’). However, for our calculations we generalize modeF by replacing the complex fielg by a
do not need the latter Green’s function explicitly. vector W= (¢, ... i) of n complex fields, then it turns

In order to account for effects beyond the perturbation@Ut that the Hartree approximation is exact for the Green’s
theory we must resum the Feynman diagrams partially in afnctionG in the limit n—ce. For each closed loop of thick
appropriate way. In the critical regime close to a second$0lid lines there will be a fgctmr. If we rescale the coupling
order phase transition, infrared singularities occur whichparameters according talg~n"1, yo~n"2 and g,
must be resummed by renormalization and application of the-n~*2 so thatB3,z,~n" "2 andB, .z ,s~n"*, then only
renormalization-group theory. For modElthe RG theory the tadpole diagrams shown in Figb2 will be nonzero in
was elaborated up to two-loop order by DofimAll the  the limit n—ce. It is well known that models involving
renormalized coupling parameters depending on a RG flowsinzburg-Landau functionals like the* model can be
parameter were determin€dy adjusting the superfluid den- solved exactly in this limitsee, e.g., Ref. 27 The same is
sity, the specific heat, and the thermal conductivity to thetrue also for modeF. While in the limitn— <o the RG theory
respective experimental data. Thus moBedan be used for is not needed because the Hartree approximation is exact, in
explicit calculations of physical quantities in the critical re- our case fom=1 the RG theory is necessary to obtain the
gime nearT, without any(furthen adjustable parameters.  correct critical behavior of the physical quantities n&qr

Here we first apply an additional resummation which is We may expect that beyond the Hartree approximation an
well known in quantum many-particle physi¢s2*We re-  1/n expansion may yield the proper corrections. However,
sum with respect to all self-energy subdiagrams so that théhis is not true. By experience with quantum-field theory of
perturbation series becomes self-consistent with respect tmany-particle systems with degenera¢iédwe have found
the y-field Green’s functionG. This means that now the that proper corrections are given by the modified self-
solid lines are thick and identified by the exact Green’s func-consistent random-phase approximatiprodified SC-RPA
tion G as shown in Fig. @). To avoid multiple counting of where the modification is a gauge transformation which im-
diagrams, only the irreducible diagrams are included in theplies bosonization for a proper treatment of the low energetic
perturbation series, which do not contain self-energy subdiacollective excitations. The method has been invented for
grams or equivalently which do not fall into pieces if any two-dimensional electron systems in the regime of the frac-
two of the internal thick solid lines are cut. The resummationtional quantum Hall effeéf and tested for simple exactly
was used first by Luttinger and Wafdand was formulated solvable modelé® We have found that the modified SC-RPA
in terms of a Legendre transformation by De Dominicis andcan describe the superfluid transition and Bose-Einstein con-
Martin.2® By truncating the self-consistent perturbation seriesdensation in interacting boson systems where the average
of the self-energy, the conserving approximation of Baym order parameter i$4)=0 due to phase fluctuations above
and Kadanof®?®is obtained. and below the transitioff. For this reason we believe that the

Here, we approximate the self-enefgyby including only  modified SC-RPA combined with the RG theory will be suc-
the tadpole diagrams as shown in Fi¢h)2 This approxima- cessful in the present case for model

G l=G,'-3 (3.2
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The main feature of the modified SC-RPA is that it im- Thus from Eq.(3.8) we obtain
plies a nontrivial spectrum for the Green’s functiGnwhile . ) .
the Hartree approximation does not. This fact is important inAL =T'o[4Ugns—2x0Y0(9o/No)d; “Isl +i90(Go/No)d, Js.
guantum many-particle physics because the spectra of the (3.11
quasiparticles are important physical results. However, in th@jow, we define
present case for critical phenomena and second-order phase
transitions nontrivial spectra are not essential while the ap- L=Ly+AL. (3.12

plication of the RG theory is important. For this reason, th .
Hartree approximation combined with the RG theory shouli-rhen from Eqs(2.9) and(3.11) we obtain

be sufficient for our purposes. Even though the modified SC- Jo
RPA combined with the RG theory would be desirable, we L=g,+Tg[r(2)—V?]—i 5 Arg(z), (3.13
expect only some corrections while the calculations would X070
be much more complicated. where
A. Evaluation of the Green’s function ry(z)= TO(Z)+2X070{immf(Z) _ %32135} +4ugng
Now, we evaluate the self-energy and determine the Xo 0 (3.14

unrenormalized Green'’s functioB in Hartree approxima-
tion. The tadpole diagrams in Fig(t8 imply a self energy of ~and

the form

1 Yo -1
%mmf(z) ho )\_Oaz Js

3,506 )=~ AK g8 1) 8t-t'), (3.3 Aro(2)=2x070 (3.19

where AK ,; are the elements of a>X22 matrix which de-  are effective parameters. Furthermore, we define the matrix
pend on the space coordinatbut do not contain differential

operators. Applying the Feynman rules of Sec. Il we obtain Kap=KoaptAKyp (3.19
the matrix and obtain
1
1
(AKap=| 4 : S (Kep)=| , . (3.17)
ALY 0 +
2 =L 0
2
where Now, the Green’s functiorG in Hartree approximation is

B 1 2 obtained easily. We find that Eq$3.12 and (3.16 are
AL=205No ThoroVnst GoVJs]+2bans. (3.9 equivalent to the Dyson equatidB.2). Thus as a result we
Here obtain

ne=(|]?)=Goor,t;1,1) (3.6) Gap(r.tir' t)=K_38(r—r")s(t—t'), (3.18

is a density related to the entropy and whereK 4 is given by Eq.(3.17 together with Eq(3.13.
_ Clearly, the Green's functio® in Hartree approximation has
Js=(Im[y* Vi ])=lim Im[VGy(r,t;r',t)] (3.7  the same structure as the free Green’s funcBgrwhere just
r'—r the parameters have been replaced by effective parameters.
is the superfluid current densitwgl is the inverse of the AS & consequence, the following calculations are consider-

differential operato(2.10. Sincen, andJ; in Eq. (3.5) de- ably simplified because we may restrict the considerations to
.10. s s . (3.

; i i —1 the effective parameters;(z) and Ary(z) only. We will
-ﬁ’-ﬁgﬁ c;g)r/nogé,(;v; w:yogtr;?] the time derivative iN, . derive self-consistent equations fior(z) andAry(z) to de-

termine the effective parameters. Eventually, the Green’s
AL =2(b,— x0¥ob3)Ns—2b3( X090 /No) (V?) H(V Iy). function G is obtained from Eq(3.18 together with Egs.
(3.9 (3.13 and(3.17.

Insertingb; andb, of Eq. (2.13 we obtain B. Evaluation of n and J,

bs— x0Yob3= 21“0(1]0— %Xo'yg) =2T U, (3.9 Next we evaluateg andJg by inserting the Green'’s func-

_ tion (3.18 into Egs.(3.6) and(3.7). In Ref. 3ng andJg were
whereu,=Uo— 3 x07} is the effective coupling between the evaluated for the free Green’s function so that here we need
¢ fields in thermal equilibrium after the entropy fieldhas  not perform these calculations once again. Since the Green’s
been integrated ousee Ref. 1B Since the heat curref®  function in Hartree approximation has the same structure, we
flows in z direction, only thez component]s,=J, of the  may use the results of Ref. 3 with a slight modification. We
superfluid current is nonzero so that just need to replace the free parameters by the effective pa-

B rameters 1(z) andArq(z) appropriately. The basic assump-
(V)X VI)=0,Js. (3.10  tion of the previous calculationsvas that the parameters
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r1(z) andAry(2) in the Green'’s function are linear functions
of z. For the free Green'’s function, wherg and Jg in Egs.
(3.14 and (3.15 are omitted, this is indeed true, because
Mmi(2z) defined in Eq.(2.6) and 74(z), which is related to
T\(2), are linear functions of. Thus in the present case we
must assume as an approximation thdiz) andAry(z) are
linearized locally so that only the slopeg and Arg are
included but the curvatures and the higher-order derivative
are neglected. We will later show in Sec. VII that this as-
sumption is justified.

Now, from EQgs.(3.22 and(3.25 in the second paper of
Ref. 3 we obtain

d%
ng=2 ®_;, (X f—d— 3.1
S 1+ /2( ) (277) rl(z)+p2 ( 9
and
gy Ar} dp 1
s— 7 E/Z(X) d .
25 2Xx070 (2m)% [r1(2) +p?)?
(3.20

Here € is related to the space dimensidiby e=4—d. The
function ® ,(X) is defined by the asymptotic series

I'(a+3N) XN

NI

P.)= 2 o

N=0

(3.21

and contains all the effects beyond linear response theory. |

the integrals the paramefeg(z) of Ref. 3 has been replaced
by the effective parameter(z). The dimensionless param-
eter X is given here by

1 r? g )
12 0 0 ' ’
=———r 2— | ——Ar{]|r
2ry(2)°| F6<4Xo7’0ro )
2
9o
— | ———=Arg ] |, (3.22
(4Xo7’oro 0)
where
r1=0,01(2), Ar{=3d,Arq(2). (3.23

The entropy currenty in the formulas of Ref. 3 is here re-
placed byr; or Arg times —\o/2xoyo. We note that our
formulas reduce to those of Ref. 3 if we omitandJg in the
effective parameter$3.14) and (3.15 and if we neglect
gravity. The integrals can be evaluatédin dimensional
regularization so that we obtain

2 1—¢€/2
ng(z)=— ;Ad¢—1+s/2(x)[f1(z)] . (3.29
and
9o Arj 1 € 2
J(2)= 210 2xovs ;Ad( 1 E) D (X)[r1(2)] %,

(3.2

where Ay=S,I'(1— e/2)[(1+€/2), Sy=Q4/(2m)%, and
Qq=279T(d/2) is the surface of the-dimensional unit
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sphere. Clearlyny(z) andJ4(z) depend orz implicitly via
r,(z) and the derivatives; andAry.

C. Self-consistent equations for the effective parameters

Equations(3.14) and(3.15 together with Eqs(3.24) and
(3.29 are self-consistent equations for the effective param-
gtersr,(z) andAr(z). The structure of these equations can
be simplified. First of all we note that the effective param-
eters and its derivatives can be related to the temperatures
T(2), T,(2), and the heat currer@. We find

T(z)— Ty

SH
Al'0(2)22)(07’0< >:2X07’o-|-—)\ (3.2

om
To prove this relation sH/ém) can be evaluated explicitly
in Hartree approximation and compared with E.15.
Equivalently, we take the average of E@.2) and obtain
d{my+Vg=0 whereq

oH
NV m —0oJds (3.27

is the entropy current. Sinceis the only space coordinate,
this equation can be rewritten in the form

q

g foH\ q goJ
gz\sm/ Ng Ao ®
: Jl1 g
— | = Rk 29,
Tz Xommf(z) hO )\0‘92 ‘]s}- (3-28)

Thus integrating this equation and comparing with 8415
we obtain Eq(3.26). We note that Eq(3.15 contains inte-
gration constants vien,(z) andd, 1J,. Sincemis the en-
tropy density divided bkg, the quantit SH/dm) is a tem-
perature difference divided bl, . This fact explains the last
equality sign in Eq(3.26). Here T, is a constant reference
temperature which may be arbitrary. In the denominatorthe
dependence of, due to gravity is very small and may be
neglected.

The temperature parametey(z) is defined by

H

=

ro(z)= To(Z)+2X070( ho+ <5_m
:T0(2)+2X0’)/0h0+Ar0(Z). (329}

In thermal equilibrium this parameter is the coefficient of
| 4|2 in the energy functional after the entropy variabidas
been integrated odf It is related to the temperature by

T(2)-T\(2)
Ty

AT(z)
:ZXOVOT—)\-

(3.30

The critical value i oc=0 in one-loop approximatidri and
hence also in Hartree approximation. We find that the first
line on the right-hand side of Eq3.14 is identified by
ro(2). Thus Eq.(3.14 simplifies into

ro(2)—roc=2x0%o0

rl(Z):ro(Z)+4U0nS.

(3.3
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We resolve this equation with respectrig{z) and insert Eq.
(3.29 for ng. Then we obtain

ro(2)=rq(2)

8
1+ %A@Hdz(xnrl(z)]f”].
(3.32

Next, we take the derivative of this equation with respect t

z and obtain

, , 8U0 € e
lo=ry 1+TAd 1_5 D (X)[r1(2)] .

(3.33
Furthermore, the derivative of E¢3.15 yields
0 0

Resolving this equation with respect ¢gpand inserting Eq.
(3.25 for J5 we obtain

Q _ 9o ( 6)
9 ety 7‘0[”27\0% Adl 173
XD (X)[r (z)]f’Z] L (3.39
€l2 1 2)(070. .

On the other hand, from Ed3.26) we find thatAry is re-
lated to the temperature gradieni by

Ar{=2x070T, 19,T. (3.36
Finally, Eq.(3.29 implies
ro=Aro—2x0voTy “9,Ty, (3.37)

where we have identified-()=—2X0y0T;1aZTA. Clearly,

the difference betweery, andAr is due to the gradient of
T\ (z) which is the effect of gravity. Thus in a microgravity

environmentr; andAr ) are equal.
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RG theory are necessary to achieve a resummation of the
infrared divergences and a proper treatment of the critical
fluctuations. We use the concept of renormalization by mini-
mal subtraction of dimensional poles. The calculations are
performed at fixed dimensiothi=4— € (i.e., noe expansion

is applied. For modelF this renormalization scheme is de-
scribed in Ref. 13. The renormalization factors of the fields

(o)

¢ and areZ,=Z3=1 in one-loop order and hence also in
Hartree approximation. Thus the Green’s functi@ris not
renormalized here. As a consequence, also the opekator
defined in Eq(3.13 is not renormalized. The paramete
is renormalized according ¥T',=Z'T" where, however,
in one-loop order and in Hartree approximatiop=1. Thus
from Eq.(3.13 we conclude that,(z) is not renormalized.
The parameters, andg, are renormalized according'fo

X0Y0= Y(X0Zm)2Z (I Ag) ™2,

Jo=9(x0Zm) YA n 1Ay Y2 (4.2

Furthermore, we renormalizé\ry(z)=2,Ar(z). Conse-
quently, we find

4.9

Yo
2X0%0
which is consistent with the requirement that the last term in

Eq. (3.13 is not renormalized. Thus in terms of the renor-
malized parameters the opera{8rl3 reads

Arg(2)= %Ar(z) (4.3

L=a,+T[ry(z)—V2]—i(g/2y)Ar(2). (4.4

Next we renormalize Eq3.32. For this purpose we need
the relations®

(4.9

(4.6

ro(z)—roc=2:r(2),
Up=UZ,Z, (uAqg),

wherer o.=0 andZ,=1 in Hartree approximation. We sepa-

“Now, the self-consistent equations which allow the deterrate the ultraviolet divergence on the right-hand side of Eq.
mination of all the effective parameters are given by EQs(3.32 which here in dimensional regularization is a pole

(3.32, (3.33, and (3.3 together with Eqs(3.26), (3.30),

~1/e. By choosing

(3.37, and(3.22. These are seven equations for seven un-

known variables o(z), Aro(2), r1(2), rg, Arg, ry, andX.
As an input we need the temperatuigz), T,(2z), the dif-
ferenceAT(z)=T(2)—T,(2), the heat currenQ=KkgT,q,
and the gradiend, T, for a given space variable Since the
seven equations do not depend explicitly arwe do not
need the temperature profiles as functionz.dinstead, we
obtain the temperature gradiemfT from Eq.(3.36 so that

Z,=Z,=1[1-8ule] .7

the ultraviolet divergence is canceled. Eventually we obtain

rl(z) —€l2
r(z)=rq(2) q)—1+e/2(x)(7) -1 ]

8u
1+ —
€

the temperature profil€(z) can be calculated by integration. Analogously we separate the ultraviolet divergence on the

Eventually, for givenAT and Q physical quantities like the

right-hand side of Eq(3.33. Using Eqs.(4.5—(4.7) we ob-

specific heat and the thermal conductivity can be calculatedajn

This will be done in Secs. V and VIII.

IV. RENORMALIZATION AND APPLICATION
OF THE RENORMALIZATION-GROUP THEORY

In Egs.(3.32, (3.33, and(3.39 the first-order terms ex-

hibit infrared divergences at criticality wherg(z) — 0 while

u € ri(z)\
el 57 )
4.9

We replace the parameters in the dimensionless varidble
defined in Eq.(3.22 by the renormalized ones. It turns out

the function® ,(X) is of order unity. For this reason the that all Z factors cancel so that is not renormalized. Thus
renormalization of these equations and the application of theve obtain
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{ 2y, ( g ) , 2 p'=Ap' =1 HuTy) 19,Ty, (4.24
= — | ——Ar'" |r;—| —

12r.(z 31 '1 ’ ’ 1 ’

Ar(2)] e arr respectively, where

For convenience we replace the renormalized couplings by Agpd| M2 1

the dimensionless combinatidisv=T/\, F=g/\, and f :( d ) _ (4.25
=F?/w’. Furthermore, we introduce the dimensionless ef- XoZm/ 2y

fective parameters _
In these equationZ,, does not cancel. We note that the

p=r(2)lu? p'=r'lu (4.11 renormalization is exact in all the above equations. This
means that we need not expand Eactors in powers of the
Ap=Ar(z)/u?, Ap'=Ar'lud, (4.12  renormalized couplings. The reason of this fact is that the
Hartree approximation is exact in the linmt—c for model
p1=r1(2)/ u?, pi=l’1/,u3. (4.13 F with an n-component complex order parameter. On the

other hand, theZ factors do not agree with those of the

previous theori€$ in one loop-order because the Hartree

approximation is not a loop expansidithe correct one-loop

Z factors would be obtained if we would consider a Hartree-

Fock approximation and include both the Hartree and the
su Fock term in the self-energy;.)

14+ —[®_ 14 oo X)p7 2= 1]}, (4.14 By the renormalization a characteristic length scale is in-
€ troduced which is described by the parameterThe RG

theory is based on the fact that this length scale is arbitrary

Since the coordinate does not appear explicitly in the self-
consistent equations for the effective parameters, we pmit
as an argument from now on. Then, E¢s8—(4.10 can be
rewritten as

pP=p1

8u € _ . .
p'=pil 1+ — (1_ §)¢e/z(X)P1 EIZ_lH' (4.15  and may be changed accordingde- ul, wherel is the RG
€ flow parameter. As a consequence, the renormalized cou-
5 pling parametersi(l), (1), w(l), F(l), andf(l) depend on
o W[ F A F , I. Furthermore, also th& factors depend oih. Now, the
X= 1293 P1 +2W Ayw' Ap"p1— AW’ Ap - dimensionless parameter defined in B425 reads
(4.19 o
1/2
respectively. _[AdlpD) 1
. . T . (4.26
The entropy current is renormalized®oy XoZm(1)]  2¥(1)
a=(xoZm) "" (4.17  For convenience we will use as the RG flow parameter

instead ofl becauser is closely related to the reduced tem-
perature by Eq(4.22 and the renormalized coupling param-
Q/goksTy=0a/go=(q"Vg)(Aq/u6)*? (4.18 etersy[r], y[aj], w[ 7], F[ 7], gndf[_a-] wereiclietermined as
) functions of 7 in Ref. 13. We identifyul = ¢~ by the cor-
need not be renormalized bepause_ZHactors cancel. In EQ. (elation length&= £(7), which in the asymptotic region is
(3.35 we separate the ultraviolet divergence and replace thﬁiven by&(r) =&, *. The identificationu! = €L is correct
coupling parameters by the renormalized parameters. Addip, one-loop order, corrections appear in higher ord@rs.
tionally, we need the renormalizatibin o= xoZ; *\. Using Now, we write the self-consistent equations for the effec-
the Z factor product tive parameters in a form which is appropriate for the nu-
merical evaluation. For this purpose we eliminate some of
ZinZy =111~ 1/2¢] (4.19 the dimensionless parameters and introduce some new pa-
we find that the ultraviolet divergence is canceled. Then, ifameters. First of all we note that the asymptotic seBe2l)
terms of the renormalized couplings and effective parameteri§ not useful to evaluate the functich,(X). In Ref. 3 an

This equation together with E@4.2) implies that the ratio

we obtain integral representation was found by
e—3 A f e
?;—Tz—#(HZ{(l—g@dz(xmlf’z—l} Ap’, D (X)=[T()] L F(0) (4.27
oRB '\

(420 \where¢=(-X) ¥ and
where the left-hand side need not be renormalized because of

Eq. (4.18. Finally, we renormalize Eqs(3.26), (3.30), w
(3.36, and(3.37) and obtain F ()= fo dv v lexp—v3-v). (4.28
Ap=7"YT(2)-To)/T,, (4.21)

The integral is well defined fo#>0. For «<<0 the function
p=7YT(2)-T\(2)]/T,, (4.22  F,(Q) is obtained by analytical continuation & or equiva-
lently by partial integration in Eq(4.28 to remove the ul-

Ap' =7 Y uTy) 14,T, (4.23  traviolet divergence. Now, we introduce the parameter
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F[r]Ap’ )p,
Ayl rw'[r]) "

o= —

, W/,[T]
12 p12+2w'[ﬂ(
_( F[7]Ap’ H

4y[7]w'[ 7]

so thatX=— a/p3 or equivalentlyp, = o**¢. In the follow-
ing we eliminatep; and X in favor of { and . For conve-
nience we define the amplitudes

(4.29

D4 o X)pg P 1] (4.30

1 r 0_75/6 .
Zz_mi f—l+e/2(é’)_1} (4.3
Ar=€ 1[(1- €l2)D p(X)p7 P*— 1] (4.32

1 r 0.75/6
el mﬂ/z(é) - 1} (4.33
Then we rewrite Eq(4.14) as

p=o3{1+8u[ F]AL. (4.39

To eliminatep we insert this into Eq4.22. Resolving with
respect to the temperature difference we obtain

AT(2)=T(2)—T\(2)=T\7a*3¢{1+ 8u[ 7]A}.
(4.35

Next we resolve Eq(4.20 with respect taAp’ and obtain

 2y[rF[7][ Q&

Ap'=
P Aq gOkBT

)/{1+(f[T]/2)A1}
(4.36

Resolving Eq.(4.15 with respect top; and eliminatingp’
by inserting Eq.(4.24) we obtain

/ {1+8u[7]A}. (4.37)

Finally, from Eq.(4.23) we obtain the temperature gradient

,T=T,(71&) Ap". (4.39

Until now the RG flow parameter is arbitrary. We must
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~ 5_1[01_6/2_ 1], (44])
~e [(1—e€l2)p; *—1]. (4.4

The flow parameter Eq4.39 reduces top;(1— 16u[ 7]A)
=1 which implies

r()/(ul)?=p=py=1. (4.43
Equation(4.22 implies T>T, and 7=(T—T,)/T, so that
the RG flow parameter is identified by the reduced tem-
perature. Indeed, E¢4.43 is the flow-parameter equation of
the previous theoriésin thermal equilibrium foff>T, . On
the other hand fof<—1 we find

Fol )=~ (ml3) YA~ £13) ¥ Fexp{2(— £13)%3
(4.49

which is exponentially large. Consequently, the amplitulles
andA; are exponentially large so that in E4.34) and in the
flow parameter conditiori4.39 only the last terms are rel-
evant. EliminatingA we obtain

—2r(H/(ul)>=-2p=1 (4.45
which is the flow-parameter equation of the previous theories
for T<T, . Equation(4.22 implies =—-2(T—-T,)/T, and
T<T, . We conclude that our present theory for nonzéo
reduces to the previous theorig$or > +1 in the normal-
fluid region well aboverl, and for{<—1 in the superfluid
region well belowT, .

We have derived seven equations given by Hds29),
(4.3)), (4.33, (4.35—(4.37), and(4.39 which we have pub-
lished already fod=3 ande=11° These equations contain
seven variableg, o, 7, A, Ay, Ap’, p; which can be
determined uniquely by solving the equations supposed the
temperature differencAT=T—T, and the heat currer®
are known. The remaining effective parameters, which we
have eliminated, can be determined afterwards. In practice
we have solved the equations fdr=3 dimensions and
=1 in the following way. While the heat curreQ is as-
sumed to be constant we takeas a variable which we vary

chooser so that an optimum resummation of the infraredin the whole interval—co<{< + to scan all temperatures.
divergences in the perturbation series is achieved. From odgduation(4.39 is solved explicitly to obtainr as a function

experience we find that the condition

38+ ¢—16u[r]A)) =1 (4.39

is an optimum choice for fixing the RG flow parameter
For Q—0 in thermal equilibrium Eq(4.39 reduces to the

well-known flow parameter conditions of the previous

theorie$® above and belowl, . The integral(4.28 can be

evaluated asymptotically for large positive and negatjve

For > +1 we find

FolO=T(a) (4.40

which implies® ,(X)~1. Consequently, from Eq$4.30—
(4.33 we obtain the amplitudes

of £ and 7. Then we solve the equations numerically by
adjusting the flow parameterand eventually determine the
temperature differencAT and the temperature gradiefyT
as functions off by Eqgs.(4.35 and(4.38.

As an input we need the dimensionless renormalized cou-
plingsu[ 7], Y[ 7], w[r]=w'[7]+iw"[ 7], F[ 7], and f[ 7]
as functions ofr which have been determined by Dolifn
Furthermore, we need the parameggrwhich is related to
the entropy aff, . For liquid helium at saturated vapor pres-
sure this parameter¥sg,=2.164< 10'* s 1. To calculate
the correlation lengtl§( ) = &7~ ¥ as a function ofr we use
the exponent »=0.671 and the amplitude&y,=1.45
X108 cm which were determined experimentally in Refs.
31 and 32. There are no adjustable parameters.
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I

—log A [W/ecmK]
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AT=T-T, [uK]

FIG. 3. The thermal resistivitp+=1/\1 logarithmically as a
function of AT=T—T, for the heat currenQ=42.9 uWi/cn?.
The solid line represents our theory. The data of Liu and Afkmrs
shown as crosses, and the data of Baddaall (fit formula) are
shown as dashed line. The arrow indicate$, (Q). The dash-
dotted line extrapolating the crosses indicateb,(Q). For com-
parison, the thermal resistivity f@ =0 (theory) is shown as dotted
line.

V. THERMAL CONDUCTIVITY

A. Numerical evaluation of the thermal conductivity and
comparison with experiments

We eliminateAp’ from Egs. (4.36 and (4.38 and re-
solve the resulting equation with respectQo Then we ob-
tain the heat transport equation

Q=—N\7d,T, (5.9

where

_ 9okeAqg {1+ (fF[7]/12) A}
Torge2 29[rF[r]

(5.2

is the thermal conductivity. Inserting the dimensionless pa

rameters into Eq(5.2), which we calculate for giveAT and
Q as described above by solving the seven equations,
obtain the thermal conductivityt=A+(AT,Q) as a function

of AT and Q. The result is obtained without adjustable pa-

rameters. We plot the thermal resistivigy= 1/\ 1 logarith-

mically as a function oAT=T-T, for given heat currents

Q. In Fig. 3 our result is shown fo@=42.9 uW/cn? as
solid line. First of all we find thap; is nonzero and\; is
finite for all temperatures above and beldy. For T well
above T, and well below T, we approximately find

asymptotic power laws, which we will discuss in the next

subsection.
In the intermediate region, wherkis close toT, , the

curve interpolates the two approximate power laws an
shows a point of maximum slope. We may interpret this
point as the superfluid transition and define the related shiff

of the critical temperaturd T, (Q), which in Fig. 3 is indi-
cated by the arrow. In the previous thebtiie formula

d—1\ x
Q& ) 5.3

ATV(Q)=—M T, —2—
NQ) x(QOkBT)\

RUDOLF HAUSSMANN
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was derived for the shift of the critical temperature with the
exponent x=[(d—1)»] '=0.745 and the constanM
=2.90 ford=3 dimensions. Here we use E¢.3) as a fit
formula for the point of maximum slope in Fig. 3. By vary-
ing the heat curren® we find nearly the same exponent
=0.745 where deviations due to nonasymptotic effects of the
dynamic RG theory are very small here. Furthermore, we
find the constanM =3.17 which also is nearly the same.
Thus the point of maximum slope in Fig. 3 may indeed be
identified as the superfluid transition. However, in contrast to
the previous theor§ hereAT,(Q) and the superfluid transi-
tion are not sharply defined for nonz&pdbecause the curves
of the physical quantities are smooth.

For zero heat currenfinear response limjitthe thermal
conductivity is shown as dotted line in Fig. 3, which is finite
for AT>0, diverges alAT=0, and is infinite forAT<O0.
Clearly, the solid line of our present theo{(AT,Q) at
nonzeroQ] approaches the dotted lina{ at Q=0) asymp-
totically in the normal-fluid region for large positivAT.
Furthermore, the present theory reproduces the previous
theory of Ref. 3 forAT=0. Some small deviations of the
two approaches from each other occur because here and in
Ref. 3 the RG flow parameter is determined by different
conditions[the condition(4.39 here differs from Eq(4.49
in the second paper of Ref].3However, these deviations are
within the errors of the RG theory and hence are not serious.

Liu and Ahler§ considered a vertical heat flow upwards
in liquid “He. They measured the temperatures at the bottom
and at the top of the cell and determined the thermal conduc-
tivity N1(AT,Q) in two different ways. First, they used a fit
formula with power laws for\{(AT,Q) and adjusted the
exponents and amplitudes. Second, they obtaledy the
differential formula(24) of the first paper of Ref. 3. In Fig. 3
the data obtained by the differential formula are shown as
crosses. For lower temperatures the data are extrapolated by
the fit formula shown as dash-dotted line. WhA&, (Q) is
indicated by the arrow, the data show the second transition
temperatureAT.(Q) where the dash-dotted line drops down
nearly vertically. In the normal-fluid region forAT

=AT,(Q) the experimental data agree with our theoretical

W%rediction (solid line) within the accuracies of theory and

experiment. However, in the superfluid region farT
<AT,(Q) the data of Liu and AhlePsdo not agree with our
theory. For temperatureAT in the interval AT(Q)<AT
<AT,(Q), the so-called dissipative regi8rthe experiment
finds a much larger thermal resistivips=1/\, by about a
factor of 20, than our theory predicts. Then suddenly, when
the temperaturd T approaches and drops below the second
transition temperatura T (Q), the experimentally observed
thermal resistivity is so small, that it was not detected any
more in the experimerit.Our theory does not predict the
second transition temperatur&T,(Q), which has been

iound in the experiments®® While the solid line in Fig. 3

as an inflection point with maximum slope AfT,(Q),
othing unusual is found & T4 Q).

The experiments of Refs. 6 and 8 were performed by
measuring the temperatures at the bottom plate and at the top
plate, where the heat current flows into and out of the he-
lium. For this reason, these experiments may be influenced
considerably by surface effects. In superfldide the dissi-
pation of the heat current is caused by creation of vortices,
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where the thermal resistivityr=1/\ is proportional to the remains finite even &I, . This fact was found previously in
density of vortices in the helium. Near the bottom and topRef. 3 and is seen clearly in Fig. 3. The thermal conductivity
surfaces additional vortices may be created which enhander=A1(AT,Q) becomeX) dependent so that the heat trans-
the vortex density there. This effect may possibly explain theport is nonlinear. The crossover from linear to nonlinear heat
strong enhancement of the experimentally obséttleermal  transport happens for temperature$ below?
resistivity for temperaturesAT in the interval AT(Q)
<AT=<AT,(Q) (see crosses in Fig,)3

In a recent experiment Baddat al!’ measured the tem- ATy(Q)=MyT,
perature gradiend,T in superfluid helium for several heat
currentsQ. To exclude surface effects at the bottom and topwith the exponenk=[(d—1)»]"*, whereM,, is a constant
plates the temperatures were measured by sidewall thermoraf order unity. Ford=3 the valuesx=0.745 andM,~2.8
eters only. The thermal conductivity;(AT,Q) was then were found’

d—1\x
Q& ) 5.5

9okgTy

obtained from the heat transport equat{éri). A power-law While the previous theofyis valid only for AT=0, the
fit formula for A{(AT,Q) was found which is valid for a present theory works also for lower temperatures in the su-
wide range of heat current® and temperatureAT suffi-  perfluid region. Well belowl, the thermal conductivity5.2)

ciently belowAT,(Q). In Fig. 3 the thermal resistivity;  can be evaluated asymptotically. Fé= —5 the function
=1/\ for Q=42.9 uWi/cn? represented by this fit formula F,({) approximated by Eq(4.44 is exponentially large.
is shown as dashed line. Clearly, the temperature dependen€@nsequently, the amplitudes and A; are exponentially
of the experimental data agrees qualitatively with the theolarge. From Eqs(4.31) and(4.33 we obtain the ratio
retical prediction(solid line). However, the absolute values

of the measured thermal resistivity are about a factor of 20 Ap {F Q) 1 3

smaller than the theoretically predicted values. While the ex- Al ]_-_—(0%3 (=0~ (5.6
periment of Baddaet all’ is believed to be a better and Lrel2

more direct measurement of the thermal conductivity or reEquations(4.36 and(4.37) reduce to

sistivity, there remains a disagreement between experiment

and theory. F[T]Ap, 1 di—l 1
We may possibly explain the discrepancy in the following Dot T A gkaT | AL (5.7
way. In superfluid*He a homogeneous heat curr@trep- dylriw'7] d 1 GoKe i/ A1

resents a metastable stAtBor the creation of vortices en-
ergy barriers must be overcome. This fact keeps the rate of
vortex creation low so that the vortex density and hence the P~ T_)\ oz m A_1 (5.8
thermal resistivity are small. On the other hand, our theory is

based on the approximation where the complex order paranWe assume that the heat curr@nis sufficiently large so that
eter ¢ is replaced by a vecto¥ = (¢, ... ,,) of ncom-  gravity effects may be neglected and E.8) is much
plex components in the limih—c. In this limit the heat smaller than Eq(5.7). Then, from Eq(4.29 we obtain
currentQ is always unstable so that the rate of vortex cre-

ation is higher. Consequently, in our theory the vortex den- 1 ( Q¢i~t\21 5.9
i ictivi o=~ —_— . .
sity and hence the thermal resistivity are expected to be _212Ad 9oKs Ty Kf

larger. However, the large discrepancies in Fig. 3 indicate
that the vortex density is a very sensitive quantity which mayOn the other hand, the flow parameter equatiér89 re-
be influenced strongly by the kind of the approximation induces to

theory and by certain conditions in the experiment.

aB6u[ F]A(—¢)=1. (5.10

] Now, Eqgs.(5.6), (5.9), and(5.10 are three equations fd,
For temperature§ well aboveT, Egs.(4.41)-(4.43 im- A  andg. Eliminating o we obtain the amplitudes
ply A=0 and A;=—1/2 so that\{ depends only onr

=AT/T, but not on the heat current. Thus well abdygthe

B. Asymptotic formulas for the thermal conductivity

2 2
heat transport described by E§.1) is linear. From Eq(5.2) A~ } Ag /gokBTA (5.11)
we recover the well-known result of Ref. 13 fiof at infini- 2 (8u[ ]| Qegd-1) '
tesimalQ in one-loop order. Asymptotically in leading order
we find 2
A (CO% AL [goksT, 5.12
N~ 7 tg @7 AT 142 (5.4 23 (8u[])?| Qg1 '

which diverges in the limiAT—0. Ford=3 including non-  Eventually, from Eq(5.2) we obtain the thermal conductiv-
asymptotic effects of the dynamic RG theory one obtalns,ty

At~AT %% Thus nearT, the thermal conductivity is
strongly enhanced by critical fluctuations. U2A 1\ 3 2
However, at fixed nonzer@ for temperatureg close to Ay~ 9oks FL7] i<(_§) Ad) 9oksTy ,
T, the flow parameter will reach a minimum value and the 8972 4y[ FIW'[ 7] J12\ 8u[7] Qg¢it
correlation lengthé will reach a maximum value, so that (5.13
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where 7= —2AT/T, . The variable/ depends only weakly =100 nwi/cnf the experimental data agree quite well with
on 7, i.e., logarithmically. Thus asymptotically in leading our theoretical prediction foh;. This has been demon-
order we find strated in our previous rapid communicatidfor tempera-
tures AT=AT,(Q) (see Fig. 2 therein In the superfluid
Ny~ 7 LgA30Q 2 (—AT)Bd-4r-10-2 (514  region forAT=<AT,(Q) the thermal resistivity is very small
) ] ) ) so that here experimental data are not available with suffi-
For d=3 including nonasymptotic effects we obtair~ cient accuracy on a logarithmic scale.
(—AT)> Q2. For very low heat currentQ<40 nW/cn? the data of
In their experiment Baddaet al!’ have found that for a pay etal®® indicate that the thermal resistivitypr
wide range of heat current3 the thermal conductivity can  =1/\(AT,Q) is a smooth function ofAT in the limit Q
be expressed in terms of the power-law formula —0 if gravity is present. This fact means that gravity pre-
vents the system from reaching the critical point of the su-
M exp=No[ (—AT/T))(Q/Qo) 29428 (5.15  perfluid transition, so that all physical quantities are smooth
and nonsingular nedr, . Unfortunately, our theory fails for
~(—AT)%8Q 258 (5.1  these low heat currents in the gravity dominated region.
) However, an alternative approach is possible which is
whereAo=1 W/cmK andQy=393 Wicnf. Clearly, this equivalent to Onuki’s theor§.In mean-field approximation
power-law formula has the same stru<_:tu_re as the asymptoti¢,c modelF equations2.1) and(2.2) can be solved numeri-
formula (5.14 of our theoretical prediction. However, the g1y as partial differential equations to obtain the order-
two formulas do not agree quantltauvely with each Other-parameter profile and the temperature profile of the
The exponents of the power laws differ by about 20%. Fur-g serfluid—normal-fluid interface. To include the critical
thermore, the amplitudes differ by a factor of 20 which fctyations the modek equations are renormalized and the
means thak ey, is about 20 times larger than the theoretical R theory is applied. The approach is a renormalized mean-
A1 (see dashed and solid line in Figl. Ihe discrepancies - field theory which works for all heat curren@and gravity,
may possibly be due to the approximation we have used igyen for very smallQ in the gravity dominated region. In
our theory. Further theoretical and experimental work is nectis way we obtain a thermal resistivigyy= 1A (AT,Q)

essary to clarify the origin of the discrepancies. which agrees qualitatively with the experimental observation
_ of Day et al:* it is a smooth function oAT and nearly
C. Influence of gravity independent ofQ for Q<10 nW/cnt including the limit

On earth gravity implies a spatially dependent superfluid@—0. In agreement with the experiméhtwe find that
transition temperaturd@,(z) with a nonzero gradiens,T,  9Tg~15 nKiis the relevant temperature scale on which the
=+1.273 uK/cm. Supposed the heat curre@tis flowing critical smgglamy is smootheneq by gravity. This tempera-
in the z direction the gradiend,T, is positive for heat cur- ture scale_ is related to the thickness of the superfluid—
rent upwards and negative for heat current downwards. Iformal-fluid interface £;~100 um by 8Tq/é3~[d,T,|
our theory the gradient, T, is incorporated in Eq(4.24 or ~ =1.273 pK/cm. o _ o
equivalently in Eq.(4.37). We find that on earth the effects To measure the_ critical singularity of the thermal resistiv-
of heat currentQ and of gravity have equal magnitude for ity or conductivity for heat currents smaller than
Q~65 nWicnf. For largerQ the heat current is dominating 100 nWi/cnt and temperatures closer than 15 nK to the su-
while for smallerQ gravity is dominating. We find that for Perfluid transition, the experiment must be performed under
Q=1 pWicn? the effects of gravity are very small so that Microgravity conditions in space. Of course, for zero gravity
in this case gravity can be neglected. The experiments by LiWhered,T,=0 our theory presented in this paper works for
and Ahlers$® Murphy and Meyef, and the experiment by all heat currents and never fails at any |Qw

Baddaret all’ are performed at heat currer@swhich sat-
isfy this condition. VI. TEMPERATURE PROFILE
We have performed our calculations for a positive and a A. Numerical results

negative gradiend, T, representing gravity on earth and also
for a zero gradiend, T, which corresponds to a microgravity de
environment in space. As a result, for heat curre@ts
=100 nWi/cnt the thermal conductivity A t(AT,Q) is

nearly independent of gravity. On the other hand, for heaf

Once the thermal conductivityt=A1(AT,Q) has been
termined, the temperature profil€z) is calculated by
solving the heat transport equatidb.l) as a differential
quation which can be written in the form

currents Q<80 nWi/cnt our theory fails if gravity is aT o)

present, because defined in Eq(4.29 changes sign so that —_— = (6.1

no solution of the seven equations for the dimensionless pa- 9z A(AT.Q)

rameters in Sec. IV can be found. whereAT=T(z) —T,(2). In Fig. 4 the resulting temperature
Day et al® investigated the superfluid—normal-fluid in- profile of the superfluid—normal-fluid interface is shown for

terface in*He and measured the thermal conductivityfor Q=1 pW/cn?. The several curves correspond to all three
very small heat current® in the interval 20 nW/ch<Q  gravity conditions as indicated in the figure: vertical heat
<6 uWi/cn?. The heat current flows upwards so that theflow upwardsand vertical heat flovdownwardson earth and
gradientd, T, is positive. Clearly, this experiment explores heat flow inzero gravityin space. The temperature profiles
the crossover from the gravity dominated region to the heal(z) are shown as solid lines. The spatially dependent criti-
current dominated region. For heat currentQ  cal temperatured,(z), which represent the gravity condi-
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FIG. 4. The temperature profile of the superfluid—normal-fluid
interface for the heat curre@=1 uWi/cn? for the three gravity (dashed ling obtained from Eqs(6.2) and (5.3), respectively, as
conditions: vertical heat flompwardsanddownwardson earth and  functions of the heat curren® in a double logarithmic plot.
heat flow inzero gravityin space. While the solid lines correspond AT,(Q) separates the gravity dominated region from the heat cur-
to the temperature profilé§(z), the dashed lines represent the spa-rent dominated region, whilaT, (Q) separates the superfluid re-
tially dependent critical temperatur&g(z), which reflect the grav-  gion from the normal-fluid region.
ity conditions.

FIG. 5. The temperature shiftsT,(Q) (solid line) andAT, (Q)

define theQ-dependent temperature differenad;(Q) by

_ . o the condition|VT|=|VT,|, which in terms of Eq(6.1) can
tions, are shown as dashed lines. While in Sec. V we havge written as

found that\(AT,Q) does not depend on gravity fdp Q
=0.1 uWicn?, the temperature profil€(z) is considerably )\(?(Q)Q): 7
influenced by gravity which is clearly seen in Fig. 4 because T eh
there are several solid lines. ForAT> AT]_(Q) itis |VT|>|VT)\| so that the heat current

In Fig. 4 we have chosen the coordinates so that thé{5 dominating. On the other hand, fa&T<AT,(Q) it is
superfluid—normal-fluid interface, whe®T=T(2)~T,(z)  |V1/<IVT,| so that gravity is dominating. Consequently,
0, is located az=0 andT(z)=T,. For this reason all for temperatureA T suff|c_|ently well aboveATl(Q)_ it is

. . . ) |VT|<|VT,| so that gravity can be neglected while other-

curves |nter-sect. with each o_ther in the point (0,0). Eor wise gravity effects are significant. ThusT;(Q) may be
<0 the helium is normal fluid becausET=T(z)~T\(2)  yiewed as the temperature which separates the heat current
>0 so that the SO“d I|ne IS abOVe the I’espeCtlve dashed I|n%ominated region from the gravity dominated region_
On the other hand far>0 the helium is superfluid because  For the heat curren@=1 uW/cn? in Fig. 4 we find
hereAT=T(z) —T,(z) <0 so that the respective solid line is AT,(Q)=—0.14 uK which is slightly below but close to
below the respective dashed lin&ince the many curves in AT, (Q)=—0.10 xK. Thus in this case the interface be-
Fig. 4 may be confusing, one should have in mind that onlytween the superfluid and the normal-fluid region nearly co-
those solid and dashed lines should be compared with eadhcides with the interface which separates the gravity domi-
other which belong to the same gravity conditioRurther- ~ nated region from the heat current dominated region. This

more, we have chosen a strongly enlarged temperature scdift IS clearly seen in Fig. 4. For other heat curreQtshe
(in «K) which resolves the very small temperature gradientsfSItuatlon may change, becaus&,(Q) andAT,(Q) may be
in the superfluid regioz>0. For this reason in the normal- arther apart from_ each other. In Fig. 5 we mel(Q) and
. . o . AT,(Q) as functions ofQ on a double logarithmic scale.
fluid regionz< 0 the solid line in Fig. 4temperature profile Our theoretical result foAT,(Q) obtained from Eq(6.2) is
T(2)] has a very steep gradient and goes up nearly verticallghown as solid line. Furthermor& T, (Q) obtained from Eq.
for decreasingz. The shifted critical temperatur&T,(Q),  (5.3) is shown as dashed line. For the heat currets
which here is—0.10 uK, is located approximately at this =0.1 xWj/cn?, for which our theory is valid in gravity,
point where the solid line has a “round corner” and the poth AT,(Q) andAT,(Q) are negative. While in Fig. 5 the
gradient changes from large negative to small negative.  solid line representaT,(Q) for vertical heat flow down-
In the normal-fluid regiore<=0 whereAT=AT,(Q) the  wards, AT,(Q) for vertical heat flow upwards will be
three solid lines fall all together into one line which indicatesslightly different. However, the difference is very small. It is
that here gravity is negligible. On the other hand in the susmaller than the width of the solid line so that it can be
perfluid regionz=0 where AT=AT,(Q) all three solid neglected. Thus the solid line in Fig. 5 represeAis;(Q)
lines differ from each other which means that here gravity isfor both heat flow directions with sufficient accuracy.
important. A general criterion can be found to distinguish the  For Q=0.22 uWi/cn?, in Fig. 5 the solid line and the
regions where gravity is important and where it is negligible.dashed line intersect each other so that, (Q)=AT,(Q).
In the differential equatiori6.1) gravity is included implic-  For larger heat currentsT,(Q) is always belowA T, (Q) so
itly via AT=T(z) — T, (z) by the gradient of the critical tem- that the separation between the gravity dominated and the
peratureT, (z). Gravity will be important or not if the spatial heat current dominated region is located always in the super-
dependence off,(z) or of T(z) is dominating. We may fluid region or equivalently the superfluid—normal-fluid in-

aT,
—1.273 uKlcm. (6.2
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terface is located in the heat current dominated region. IFig. 4 it is clearly seen that in this case the temperature
turns out that for sufficiently large heat currents, @y profile approaches a limiting value

=10 uWicn?, the superfluid—normal-fluid interface is

nearly free from influences of gravity, while gravity effects lim T(z2)=T.(Q) (6.7)

rise to a significant magnitude only far away from the inter- zote

face in the superfluid region. However, since the interfacgyhich is belowT, (z=0). Forz>z, the temperature differ-
thickness must be larger than the size of the thermometergqce is approximatelAT(z) ~T..(Q) —T,(z) so that itsz
experiments to resolve the temperature profile of thedependence is governed By(2), i.e., by gravity. Then, by
superfluid—normal-fluid interface must be performed forusing the asymptotic formula~(—AT)24Q~2 for the

very small heat current®=0.1 uW/cn¥. For these small thermal conductivity we obtain the asymptotic formula
heat currents, on earth the interface would be strongly influ-

enced by gravity. For this reason, an experiment to measure T(2)~T.(Q)+K.Q3%z—25) ¥ for z=z,, (6.9
the temperature profile of the interface is prepared to be per- )
formed under microgravity conditions in spate. where K..>0 andz,<<0 are certain constants anid.(Q)
=T,(z=0)+2y9,T,.
On the other hand, for a vertical heat flalewnwardshe
solid line in Fig. 4 approaches a straight line parallel to the
By using the asymptotic formulas of the thermal conduc-dashed line foz>z; so that the gradients,T andJ,T, are
tivity Nr(AT,Q) in Sec. VB, the differential equatiof®.1)  nearly equal. The distance from criticalitT(z)=T(2)
can be solved explicitly so that asymptotic formulas for the—T, (z) approaches a constant value given by
temperature profil@(z) are found in several regions. First of
all we consider the heat flow in zero gravity wherg(z) lim AT(z)=AT.(Q). (6.9
=T, is constant. In this case the differential equat{éri) ot

can be integrated easily by separation of the variables so th@onsequently, for the temperature profile we find the
asymptotic formula

B. Asymptotic formulas

T
— -1 ' ’
2== ), @ T =T QT 6.3 T(2)~T\(2)+ATL(Q) for z>7,.  (6.10
In the normal-fluid region fofT sufficiently well aboveT,
the asymptotic formul#5.4) may be inserted. Consequently,
we obtain For the vertical heat flow upwards the asymptotic formu-
las (6.6) and (6.8 indicate the existence of a dissipative re-
AT(2)=T(2)—Ty~K, (—Qz)/(d=2)"] (6.4  gion which may be related to the dissipative region observed
) ) in the experiments by Liu and Ahlérand by Murphy and
for z<0 with a certain constari{ . . On the other hand, for neyer8 The superfluid transition happens in two stepg at
T sufﬁmgntly well b§|0V\'IT>\ Fhe asymptotic formuld5.14) =0 and z=z, or equivalently at the temperaturesT
may be inserted which implies =AT,(Q) andAT=AT4(Q). The region Gsz=z,;, which
corresponds ta T1(Q)<AT=AT,(Q) (in Fig. 5 the region
between the solid and the dashed Jinmay be identified as
the dissipative region, because here the temperature profile
T(2) has a finite gradient. On the other hand, the region
=z, which corresponds taT<AT,(Q) (in Fig. 5 the re-
gion above the solid lineis the really superfluid region,

C. Dissipative region

AT(2)=T(2)-T\=-K_(Q®)1C=91 (6.5

for z=0 with a certain constark _ . Including the nonas-
ymptotic effects of the dynamic RG theory, for the tempera
ture profileT(z) we obtain the asymptotic formula

T,+K, (—Q2)L7™ for z<0 because here the asymptotic form@8) implies a nearly
T(z)~ Mo 30204 (6.6) flat temperature profile with a nearly zero gradient. Thus
T\ —K_(Q*2)™ for >0 AT,(Q) may be interpreted as the transition temperature be-

tween the dissipative region and the really superfluid region,

which is valid for the heat flow in zero gravity. This formula which should be related to the temperature shift

can be compared with the solid line in Fig. 4 for zero gravity.

Clearly, the temperature profil€(z) decreases monotoni- AT =T —T(z=0 6.1
cally with increasingz. There is no lower bound foF(z) in {Q)=T(Q)~T\(z=0) (613
the limit z—oc. measured in the experimerit&® We find thatAT(Q) ob-

Asymptotic formulas for the temperature profiléz) can  tained from our theory is close taT;(Q) and located
be found also for vertical heat flows in gravity. The interface,slightly above the solid line in Fig. 5. From the slopes of the
which separates the heat current dominated region from thines in the double-logarithmic plot we obtain effective
gravity dominated region, is located at a coordinatede-  power lawsAT;(Q)~—Q* andAT,Q)~ —Q* with nearly
fined by AT(z;)=AT,(Q). For Q>0.22 uW/cn¥ it is z, the same exponent, which varies betweerx~0.9 for
>0 so that the interface is located in the superfluid region0.1 uW/cm?’=Q=<1 uW/cn? and x~1.25 for Q
For z<z, gravity is negligible. Consequently, the asymptotic =10 uW/cn?.
formula (6.6) remains valid forz<z, whereT,=T,(z=0) While our theoretical predictions for the dissipative re-
should be inserted. In the case of a vertical heat flgw  gion agree qualitatively with the experimental
wardsanother asymptotic formula can be found #8z;. In  observations;®® there are three major quantitative disagree-
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ments. First of all, the experimentally observed dissipation isn the experiment than in our theory. This fact means that for
much larger than the theoretically predicted, because fo®=1.5 uW/cn? the dissipation observed in the
AT(Q)<AT<AT,(Q) the measured thermal resistivity experimentis smaller than the dissipation predicted by our
pr=1/\; of Ref. 6(crosses in Fig. Bis much larger than the theory.
theoretically predictedsolid line in Fig. 3. Second, the ex- The SOC state is stable in the following sense: the dis-
perimentalAT(Q)~ — Q* does not agree with the theoreti- tance from criticalityAT(z) always converges to the con-
cally predicted because the exponept,=0.81 of Duncan, stant valueAT,(Q) for largez according to Eq(6.9). This
Ahlers, and Steinbergs considerably smaller than the the- fact is clearly seen in Fig. 4. However, there are two possi-
oretical exponenx=0.9. Furthermore, our theory predicts a bilities: AT(z) may converge tAAT,(Q) either fromabove
much larger spatial exte¥z=z; of the dissipative region or from below In the first case an interface between normal-
than it is in the experimems. We find Az=0.25 c¢m for  fluid helium and the SOC state is found, while in the second
Q=10 xW/cn? which is about the sample size, while the case an interface between superfluid helium and the SOC
experiments find a spatial exteAz much smaller than the state is found. In Fig. 4 the temperature profileg) are
sample size. shown for both cases, where the superfluid-SOC interface is
The disagreements may possibly be due to the experiepresented by the lowest solid line. Both kinds of interfaces
ments of Refs. 5, 6, and 8, because in the experiment byere realized in the experiment by Moeetral.”
Baddaret all’ the dissipative region has not been observed SinceAT(z)=AT,(Q) is constant, the SOC state is ho-
in this form. We may use the experimental fit formdla mogeneous in space so that it is an ideal system for theoret-
(5.15 for the thermal conductivity to calculate the relatedical and experimental investigations. In the Appendix we
ATy efQ) andA T, ¢,{ Q) by Egs.(6.2 and(6.11), respec- evaluate the Green’s functidd(r,r’) and the related quan-
tively. As results we obtain power laws —Q* with the titiesngandJg by assuming; andAr to be linear functions
exponentx.,,=1.26. This exponent agrees quite well with of the space coordinate given by Eqgs.(A12) and (A13).
our theoretical valuex=1.25 for large heat currents. If we While in general this assumption implies an approximation,
plot AT; .{Q) in Fig. 5, the respective line would be par- for the SOC state the assumptioreisactlysatisfied, because
allel to the solid line forQ=10 wWi/cn? but located some- r; and Ar are directly related to the temperature profiles
what below the solid line. Thus there remains a quantitativeA T=T(z) — T,(z) andT,(z) which are constant and linear
disagreement which is related to the quantitative disagreen z, respectively.
ment of A;. However,AT; Q) does also not agree with
the ATQ) of the previous experiment€ Thus for the
clarification of the disagreements also further experimental
work is necessary. The RG theory includes a characteristic length defined by
Since the thermal conductivity(AT,Q) (solid line in  £=(,I)~*, which is called the correlation length. Near criti-
Fig. 3) is smooth and does not show any unusual behavior atality our theory yields the asymptotic resujt= &7 "
AT,(Q) andAT(Q), these temperatures are not propertiesyheré:32 ,=0.671 and&,=1.45<10 8 cm. The correla-
of the helium. RatherAT,(Q) andAT(Q) are implied by  tjon length depends oAT andQ indirectly via the RG flow
gravity and occur when integrating the heat transport equaparameterr= r(AT,Q) determined in Sec. IV. In Fig. 6 the
tions (5.1) or (6.1) to calculate the temperature profile. Thus correlation lengttt is shown logarithmically as a function of
we predict that in the experiment in spaCayhere gravity is AT for Q=42.9 xWi/cn?, i.e., the same heat current as in

zero, theAT((Q) of the experiments of Refs. 5, 6, and 8 Fig. 3. Clearly,¢ increases when T approaches the super-
should not be observable and not be existent, while the

VIl. CORRELATION LENGTHS

AT, (Q) is expected to be found. | | : | |
D. Self-organized critical state 0r ' N
In gravity for vertical heat flows downwards the gradients gk -
d,T andd, T, are both negative. A situation may arise where B _
both gradients are equaly,T=4,T,, so that AT(z) % ok _
=AT,(Q) is constant over a larger region in space. This N R - .
state of the helium represents a self-organized critsalO L 3k \\';: T

state which was considered theoretically by Orftind pro- a ;
posed for an experiment by Ahlers and EfuRecently,
Moeur et al.” have realized the SOC state and measured the l

distance from criticalityAT(z)=AT,(Q) as a function of -5 ' L ' L
the heat currenQ for 40 nW/cnf<Q<6 uWi/cn?. The
experimental result agrees quite well with our theoretical AT [uK]

prediction for AT,(Q), while our theory does not include g, 6. The correlation lengths as functionsoT for the heat

any unknown adjustable parameters. This has been demogyrrentQ=42.9 uWicr?. The correlation lengtt is shown as
strated in our previous papérfor heat currents below sgjig fine. The dephasing length, obtained from Eq.(7.7) is

1.5 uW/cn? (see Fig. 3 thereln However, for Q  shown as dashed line. The dotted line represents the characteristic
=1.5 uWi/cn? deviations occur: for a given distance from length scalet, of the temperature variations defined by Eg11).
criticality AT=AT4(Q) the related heat currel@ is larger  The arrow indicated T, (Q).

>‘
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fluid transition. The nonzero heat current implies thas a  (7.3) into Eq.(7.5) we find thatk is exactly the average wave
smooth function ofAT which has a maximum located at vector(A41) which we have calculated in the Appendix. By
AT, (Q). In Fig. 6 the maximum is clearly shown by the using ;= ¢ 2p, and p; =03 we find that the dephasing

solid line, where its position ai T, (Q) is indicated by the length (7.6) can be written in the form
arrow.

Cor’relation' Iengths; can be observed in the equal-time Ei=¢4(— )] V4o 18, 7.7
Green'’s functionG(r,r') because they represent the charac-
teristic length scales for the decay of the Green’s functionThis formula is suitable for a numerical evaluation &f
when the separation of the two space poiptsr’| in-  because ando are two of the seven dimensionless param-
creases. In the normal-fluid region faT>AT, (Q) we find  eters, which are determined in Sec. IV. In Fig. 6 the dephas-
ing length ¢, is shown as dashed line. We note tlgatis
G(r,r')—0 for [r—r'|>¢ (7.1)  defined only in the superfluid region faxT<AT,(Q). It

which is valid for zero and nonzero heat curre@isin the ~ turns out that, is always larger thag. While the correla-
superfluid region foA T<AT, (Q) the decay happens in two tion length ¢ decreases with increasing distance from criti-

steps according to cality, the dephasing lengt#y increases.
By using the asymptotic formulas of Sec. VB an
,,72eik(r*r’) for é<|r—r'|<¢; asymptotic formula foré; can be derived. Eliminating the
G(r,r')— 0 for [r—r'[>¢, amplitudeA from Egs.(5.10 and(5.11) we obtain
—r'|>&

_ ) . . (7'2? 16 _ »\12 i 9okeT\
whereé; is a second correlation length which will be defined o~ (=0) 8u[7] Qg1
below. In this case the decay is strongly influenced by the
heat current vik and &;. In thermal equilibrium wher& Consequently, from Eq.7.7) we obtain
=0 andk=0, the long-range order implies a nonzero order
parametel ) = 5 so that¢, is infinite andG(r,r’) does not . 31a Ad GoksTy
decay to zero but only to the absolute square of the order &~[5(=9) 8u[ 7] Q-2 (7.9
parameter;?. In the previous theory of Ref. 4 the heat flow
is assumed to be metastable where dissipation by creation &ince{ is nearly constant, the leading dependences\dn
vortices was neglected. Thus in this theory Iong-ra'rllge ordeand Q are governed by
is preserved also for nonzei®@ so that{y(r))=ne'" is
again nonzero¢, is infinite, and the Gre<en’s ?unction does £~Q 1A~ QT (— AT, (7.10
not decay to zero.

However, in the present theory vortices are included im
plicitly so that{y(r))=0, &, is finite, andG(r,r’) decays
to zero eventually for large distances. The second correlatio
length &, represents adephasing lengthof the order-
parameter fields(r) which is equal to the average distance
between the vortices. An approximate formula f§grcan be
extracted from the integral representatioA28) of the

Green's fun.cﬁon in the Appendix. In the superf_luid region; the space variable according to Egqs(A12) and (A13).
for AT sufficiently belowAT,(Q) the exponential factor  gjnce 1. and Ar are related to the temperature profiles

exp(—ar;—a’s} as a function ofa has a sharp maximum AT(2)=T(2)-T,\(2) and T(z), respectively, and since
located at T,(2) is always a linear function irz, the validity of the
B Aol — approximation is proven if the curvatuﬁéT of the tempera-
ap=(=5)[3"(—ry], (7.3 ture profile is negligible compared to the gradiegl. For
this purpose we define

(7.9

This asymptotic formula clearly indicates that the dephasing
length &, diverges in the limitQ— 0. Thus in thermal equi-
librium whereQ=0 the second correlation leng#j is infi-
Rite as expected, which means that in this case vortices are
not present.

In the Appendix we have calculated the Green'’s function
G(r,r') and the related quantitias; and J; approximately
by linearizing the parameters andAr locally with respect

wherer; and {=s %, are negative. Thus in the second
line of Eq.(A28) we may replacer approximately bya, so _ 2
that the integral can be evaluated by E429). As a result €2=10:TI/12;T| (7.19
we obtain the Green’s function which may be viewed as the characteristic length scale for
, ) , 2rm2 the variations of the temperature profiléz) with respect to
G(r.r')~nexplik(r—r")=(r—r")%2&}, (7.4 the space coordinate In Fig. 6 the characteristic length
where is shown as dotted line. The curvatureldkz) is negligible if
&, is considerably larger than the intrinsic correlation lengths
k= ay(F/8yw')b (7.5 & andé; of the helium. In Fig. 6 the dotted line is consider-
ably above the solid line and the dashed line for temperatures
AT sufficiently far away fromAT, (Q). Consequently, the
£1=(2a)Y? (7.6) criterion for the validity of our approximation is satisfied in
! 0 ' the normal-fluid region and in the superfluid region suffi-
is the dephasing length. Clearly, E@7.4) implies the ciently far away from the superfluid—normal-fluid interface.
asymptotic decay formuléZ.2) where?=ng. Inserting Eq.  Close to the interface all three correlation lengghst;, and

is the wave vector and
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&, have the same order of magnitude so that here the curvand apply the RG theory. In analogy to the field variable
ture of T(z) is important and our approximation is strictly m(r,t) the entropy is renormalized by

speaking invalid. However, since nothing unusual is ob- o

served here, we believe that our theory yields reasonable and AS=(x0Zm)"“ASten- 8.7

reliable interpolations for the physical quantities close to thq £q. (8.6) we replace the bare modElparameters by the
interface. renormalized counterparts by using Edd.1), (4.5, and

The dotted line in Fig. 6 represents the Characteristiq4_6). As a result we obtain the renormalized entropy
length &, for a heat flow in zero gravity. Similar results for
r(z)

’)/2

2u

&, are obtained if we insert the temperature profile of a ver- q 12 ry(z)
tical heat flow in gravity. Deviations are expected for tem- ASen=kg| — > T
peraturesAT<AT,(Q). In gravity we find a somewhat M Y

smaller £,, except for the downwards heat flow AT is  Within the Hartree approximation afl factors cancel, where
close toAT4(Q). In the latter cas&, diverges in the limit an expansion with respect to the coupling parameters is not
AT—AT,(Q) which means that for the SOC state the ap-necessary. By resolving E@.25 with respect toyyZ,, we
proximation is exactly valid. Eventually, it turns out that the obtain the renormalization factor of E(8.7) as

criterion for the validity of our approximation for calculating

1+

(8.9

G(r,r'), ng, andJq is not affected significantly by gravity. (XoZm) 2= (AguhH Vi 27y] % 8.9
We replace (z) andr,(z) by the dimensionless variables
VIIl. ENTROPY AND SPECIFIC HEAT andp, according to Eqs4.11) and(4.13. We apply the RG

theory to EQs.(8.7—(8.9) by replacingu—pul=¢"1, u
—u[ 7], y—1v[7], etc., so that now all dimensionless cou-
pling parameters depend on the RG flow paramet&om-
bining the resulting three equations together we eventually

In model F the field variablem(r,t) represents a fluctu-
ating entropy density divided g . For this reason the local
entropy density is defined by

S=Sy+kg(m), (8.1)  obtain the entropy difference
whereS; is a constant. Thus the averagae) must be evalu- AS—K Ay . 1 (1 p1 8.1
ated. From the free-energy function(@l3) we derive - B4r§dp V2 2u[7] ; . (810

oH 1 ) Equation(8.10 is the final formula which can be used for
S/ = Xo (M) +vo{[#]%) —ho. 82 humerical evaluation of the entropy densi§=S,+AS.
There are no adjustable parameters present in this formula.
We insert this quantity into Eq3.29, replace(|¢|?)=ns,  The needed dimensionless parameterg, andp, and the
and obtain correlation lengthé= £(7) were determined in Sec. IV. We
) note that Eq(8.10 was derived within the Hartree approxi-
ro(2)=70(2)+2x07gNst+270(M). (8.3 mation. It is not restricted to the physical situation consid-
From Eq.(3.31) we obtainng=(4ug) " {[r1(2)—ro(2)]. We ered in this paper where the helium is influenced by a heat

resolve Eq.(8.3 with respect to(m) and then obtain the current and gravity. The formula can be applied also to other
entropy physical situations as, e.g., rotating helium whenever the

Hartree approximation is used.
The entropyAS is a static quantity so that nonasymptotic
S:SOJrkB(ZYO)l{ — 10(2)+1o(2) effects of the dynamic RG theory are very small. For this
reason, close to criticality Eq8.10 can be evaluated as-

Xo?’cz) ymptotically by using the asymptotic formulast
50 [ro(Z)—rl(Z)]]. (8.4  =é&7 ", u[7]=~u*=0.0362, and
0
Within our approximation in Secs. Il and Il we fingy(z) Lz: 4_V(1_b7a), (8.11)
=r41(2)=0 at the critical point AT,Q,g)=(0,0,0). Hence 7] a
_ 1 whererv=0.671 anda=2—dv=—0.013(see Refs. 13 and
S\=So—ke(270) 70(2) 8.9 3, Equation(8.11) is obtained by solving the RG equation

is the entropy density &=T, in thermal equilibrium and ~for ¥[ 7] asymptotically. Since/ 7] is a known functiort* b
zero gravity. We define the entropy differens6=S—S, as IS @ known constantwhich actually is close to unily Now,
the deviation from the entropy at criticali§, . Then, from  inserting the asymptotic formulas into E@.10 we eventu-
Egs. (8.4 and (8.5 we obtain ally obtain the entropy density

_ A * —a
ASek ro(Z) 1+Xo,yé/ L rl(Z) (8 6) S—S)\+t(B+A{(4V/a)+E[U ]}7’ ), (812
B 290 2u\ T ro(2)) ] ' where
While S, is a constantAS=AS(AT,Q) is strongly influ- t=7p=ATIT,, (8.13

enced by the critical fluctuations near the superfluid transi-
tion. For this reason, we must renormalize the entra% E[u]=(2u) Y[1—p,/p], (8.19
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FIG. 7. The specific hedo(AT,Q) as a function oA T for the FIG. 8. The specific hea@y(AT,Q) as a function ofAT for

constant heat curre=42.9 wW/cn?. Our theoretical result ob- the §elf_—organized c_ritica(lSOQ_ state where the temperature gradi-
tained from Eqgs.(8.12 and (8.17) is shown as solid line. The €ntis fixed by gravity according t6,T=0d,T,=—1.273 uK/cm.
dashed line represen@, of the previous theory’ where vortices The solid line represents our theoretical result obtained from Egs.
were neglected. For comparison we have plotted the specific heat #§-12 and(8.17. For comparison the specific heat in thermal equi-
thermal equilibrium forQ=0 as dotted line. The arrow indicates llPrium is shown as dotted line.

ATV(Q).
5 smooth curve foiCq which exhibits a strong maximum lo-
A=kgAy/4€5, (8.159  cated aiAT,(Q). We note that the temperatuféz) is space
dependent, so that the specific h€gj(z) is also space de-
B=A(—4v/a)b. (8.16 pendent and must be interpreted as a local quantity.

Within the framework of the previous theotyhe specific

The specific heaC is obtained by differentiation of the N€atsCy andCq=C, were calculated and a similar formula
entropy S with respect to temperature according to like Eq. (8.12 was obtained for the entropy.In Fig. 7 the
specific heaCq of the previous theory is shown as dashed
IS 4S line. Since the heat flow is metastable below and unstable
=T, —=—. (8.17  above AT,(Q), the dashed line is defined only fakT
Jr. ot <AT,(Q). The specific heaC, is enhanced by the nonzero

From our experience the best way to calculate the specifi® @nd d'Vergel_gﬁ atATX(Q%. Experiments to measut@, at
heat is first to calculate the entrofypy Egs.(8.10 or (8.12 ~ constanQ are in progres&® An enhancement of the specific
and then to determine the specific h€by numerical dif- heat by a nonzero heat current was found just recently.
ferentiation via Eq(8.17). (The alternative way, to differen-  The self organized criticalSOQ state represents an ideal
tiate the bare entropy8.4) first with respect tor,(z) and  System for measuring thermodynamic quantities like the spe-
then to apply the RG theory, is less reliable and yields articific heat because it is homogeneous in space over a large
facts, so that it should not be usgdlvhile the constant® region. In this case the temperature gradient is fixed by grav-
and B are given by Eqs(8.15 and (8.16), we can alterna- ity according tod,T=4,T)=—1.273 uK/cm. Thus in the
tively determine these constants by fitting the specific heat ifOC state the specific he@yr at constant-temperature gra-
thermal equilibrium to the data of the newest experiniént, dient will be measured. We calcula®s, 1 from Eq.(8.17) by
which was performed in microgravity in space. In this way inserting the entropy8.12 and keeping),T=4,T, constant
we obtainA=2.22 J/molK andB=456 J/molK. Since in When performing the numerical differentiation, while the
the experiments thenolar specific heat is measured, we have heat currenQ is varied appropriately. The result is shown in
multiplied the constants by the molar volurdg, which for ~ Fig. 8 as solid line. For comparison, the equilibrium specific
saturated vapor pressuré’i§/, =27.38 cni/mol. heat is shown as dotted line. Clearly, the nonzero tempera-
The specific hea€ depends on the thermodynamic vari- ture gradient,T=4,T, of the SOC state induced by gravity
able which is kept constant when performing the differentiaimplies a rounding of the critical singularity. The solid line is
tion with respect to temperature in Eg.17). Since we con-  smooth and exhibits a maximum AfT,=—45 nK. While
sider liquid “He in the presence of a constant heat flow, thein Fig. 7 the maximum ofCq is very strong and enhanced,
heat currenQ is the natural variable which should be kept here in Fig. 8 the maximum o€yt is moderate and just
constant. For this reason we calcul&lg at constanQ. In  represents a smooth and round interpolation of the equilib-
Fig. 7 Cq=Cq(AT,Q) is plotted as a function oAT for  rium specific heat near criticality. The temperature scale in
Q=42.9 uW/cn?, i.e., the same heat current as in Figs. 3Fig. 8 indicates that nano-Kelvin resolution is sufficient for a
and 6. Our theoretical result is shown as solid line. For commeasurement d€y+. Thus the rounded temperature depen-
parison, the specific heat in thermal equilibrium@t0 is  dence ofCyt should be accessible by present-day experi-
shown as dotted line. While in thermal equilibrium the spe-ments. Since gravity is needed for the realization of the SOC
cific heat is singular ahT=0, for nonzeroQ we find a state, the experiment should be performed on earth.

C



PRB 60 LIQUID “He NEAR THE SUPERFLUID TRANSITION . .. 12 367

g0 Q
Ty )\Tk3'

my

h

(9.9

IX. VORTICES AND MUTUAL FRICTION (

While our theory does not include vortices explicitly, here
we present some arguments, which support that our theore/ )
includes the effect of vortices implicitly. In Sec. V we have [N the previous theofythe heat curren@ was calculated as
calculated a finite thermal conductiviyhy for AT @ function of the wave numbek where the heat flow is
<AT,(Q) which implies dissipation of the heat curre@in metastable and d|SS|pat!on by_ creation of vortices is ne-
the superfluid state. Since the heat is transported conveglected. In the superfluid region sufficiently well below
tively by the superfluid—normal-fluid counterflow, a super-AT\(Q) the dissipation is small so that the result fQr
fluid current with a velocityvs is induced in the opposite =Q(AT,k) of Ref. 4 may be used to replakedy Q. In this
direction of the heat flow. The superfluid velocity is re-  '€gion,Q=Q(AT,k) is approximately a linear function df
lated to the phase of the order parameter fig(d,t), so that ~ diven by
the dissipation of the superfluid current is necessarily related
to the creation of vortices. Thus since our theory describes _ YokeT\ ( 1 i }) K (9.5
dissipation, it must include vortices in some way. ga-2 dgu[r] d '
Gorter and Mellink® investigated mutual friction of the _
counterflow experimentally and proposed the mutual-frictionConsequently, we obtain

force density
A:(%)Z % 1
h] paTh A1Q?

goksT, ( 1 1”3
d .

f=Apupsve—vy)?, (9.1 g2 M d

where A is the so called Gorter-Mellink coefficient which 9.6
may be a function of temperature but which should be indeThe last factof - - - ] does not depend explicitly a@. It only
pendent of the velocitieg, andv,,. The force density9.1) depends on the RG flow parametewia ¢é=§&,7 ¥ where
was added to the hydrodynamic equations of the two-fluidu[ 7]~u* =0.0362. Now, inserting the asymptotic formula
model [see Egs.(8) and (9) in Ref. 15. For a stationary (5.13 for the thermal conductivity ; we clearly see that the
counterflow the relation heat current cancels. Neglecting the one-loop contribution
in the heat-current formuld9.5 we obtain the Gorter-

Pnp Mellink coefficient
”p 25,0,T=AppdVe—V;)3 9.2
o A%(%)Z@ [ 12 47[T]W’[T]T§2 ©.7
was found, where the pressure gradient is neglected close to il o V(=0 F[7] :

criticality. This relation impliesd, T~ (vs—v,)® and means

that the temperature gradient induced by the mutual frictionwhich does not depend explicitly 0. A weak indirectQ

is proportional to the third power of the counterflow velocity. dependence is included in the dimensionless variahle

By experimental and theoretical considerations Vifien Which represents the nonasymptotic effects of the dynamic

showed that the ansat®.1) is related to a turbulent super- RG theory. In leading order we find the asymptotic formula

fluid flow which generates a tangle of vortices which imply 5 1-2y

the mutual friction. A statistical theory for the superfluid A~ 16 ~(—AT) : ©.8

turbulence in a homogeneous counterflow was developed byhjs result proves that within the approximation of our

Schwarz?® This latter theory supports Eqé9.1) and (9.2.  theory the ansatz of Gorter and Mellink is correct and can be

The Gorter-Mellink coefficienA was calculatet for tem-  gerived from modeE.

peratures in the interval 1s2T<2.05 K and agreement  Equation(9.6) can be used for an explicit calculation of

with the experiment$-“’was found(see also the review by the Gorter-Mellink coefficiena=A(AT,Q) as a function of

Tough'?). AT=T-T, and Q, where our result font=\1(AT,Q)
Now, here we show that the ansatz of Gorter and Mellinkfrom Sec. V is inserted. While most constants and param-

[Eq. (9.1)] can be derived from modél by our approxima-  eters are known, we additionally need, /% =6320 s/cr

tion. To do this, we resolve Eq9.2) with respect t0A,  and the density, of the helium atT, , which at saturated

obtain vapor pressure is given Byp, =N,m,/V,=0.146 g/cm.
In Fig. 9 our theoretical prediction fak is shown versuaT
A:S_x 21 9.3 double logarithmically for several heat currer@ which

p (Vs_vn)?” : change by a factor of 10 between each curve. The lowest and

most left curve corresponds to the smallest heat cur@nt
and insert the results of our calculations. The coefficikent =1 pWi/cn?, while the highest and most right curve corre-
must be proven to be independent@fand vs—v,. Near sponds to the largest heat curr@w=1 mWi/cnt. Since the
criticality v,, can be neglected because it is much smallehelium is superfluid only foAT<AT, (Q), all curves have
thanvg. The superfluid velocity is related to the wave an endpoint on the left-hand side.
numberk of the order parameter by,=#k/m,. The entropy If the cancellation ofQ in Eqg. (9.6) is perfect, then the
per masss, is related to the modd¥ parameteig, by®! s, curves in Fig. 9 would lie all on the same line. This, how-
=(h/m,)(go/T,). The temperature gradiedtT is related ever, is not the case. The nonasymptotic effects of the dy-
to the thermal conductivityt by Eq.(6.1). Then, from Eq. namic RG theory imply thaA(AT,Q) depends weakly on
(9.3) we obtain the Gorter-Mellink coefficient Q. While the heat curren@ is varied over 9 decades\
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7 B N B E— Ref. 43 for review and also calculated within modél in
renormalized mean-field thedby considering the motion

of a single vortex line. We have applied our thedthe

6 . Hartree approximation combined with the RG theaiso to
rotating helium and find the coefficiefits B
=(4m,/h)T'[7] and 2-B’'=(4m,/h)I""[ 7]. While these

51 . results are indeed simple, they have the same order of mag-
nitude than the coefficienBandB’ of the previous theofy

and also of the experimerftd The agreement is better f&

4r X 4 than forB’. Thus we conclude that our present theory indeed
— | includes the effects of vortices. However, since a simple ap-
proximation is applied, the Hartree approximati@ee Fig.

3 1) 2), discrepancies are expected. Nevertheless, for the Vinen
-10 -8 —6 -4 2 0 coefficientsB and B’ the discrepancies are much smaller
log, [(T;~DV/T;) than for the Gorter-Mellink coefficiena.

FIG. 9. The Gorter-Mellink coefficienA obtained from Eq.

log,[A (cm s/g)]

(9.6) as a function of temperature for several heat currents between X. CONCLUSIONS

Q=1 pW/cnf and 1 mWi/cr (curves from left to right, heat cur- o

rents increase by a factor of 10, respectiyelyhe left ends of the We have presented a renormalization-gr¢R@) theory
curves are located close to the superfluid transitioA Bt(Q). based on modefF for liquid *He near the superfluid transi-

tion in the presence of a heat curré@tand gravity. The
changes by a factor of 3 to 10 or by 0.5 to 1.0 decadesfundamental concept is a self-consistent approximation,

Consequently, we approximately find which in quantum many-particle theory is known as the Har-
tree approximation, combined with the RG theory. While
A~QY~(vg—vy)Y (9.9 aboveT, the previous theory of Ref. 3 is recovered for a heat

flow in normal-fluid “He, belowT, in the superfluid state
our theory predicts dissipation of the heat current and mutual
friction of the related superfluid—normal-fluid counterflow.

with an exponeny between 0.05 and 0.1. This result slightly
modifies the mutual friction forc€9.1) of Gorter and Mel-

link into We derived the ansatz of Gorter and MelftRkor the
f~(ve—v,)? (9.10 mutual frict_ion force and_ foun_d s_everal indications that our
approach includes vortices indirectly. However, our ap-
with the exponentp=3+y between 3.05 and 3.1. proach appears to overestimate the magnitude of the dissipa-

The Gorter-Mellink coefficienA was measured as a func- tion by vortex creation considerably compared to the experi-
tion of temperature by Vinetf The valueA~200 cms/g mental observations. This discrepancy is probably due to the
was obtained foAT~—0.1 K, which can be extrapolated number of vortices in the superfluid helium which appears to
to A~600 cms/g forAT~—0.01 K. Similar values foA  be an uncertain and very sensitive quantity strongly influ-
were obtained also in later experiments, which are reviewe@nced by the kind of the approximation and also by the ex-
in Ref. 41. On the other hand, the lowest values, that ouperimental conditions. Further theoretical and experimental
theory predicts, are aboutA~10* cms/g for AT~ work is necessary to clarify the discrepancies.

—0.01 K. Thus our theoretical prediction féris about one Besides the correlation lengtéi=§,7~ ", which is the

or two decades larger than the experimental values. Furthegonventional length scale of the RG theory, in the superfluid
more,A can be extracted from the experimental data of Badstate we find a second characteristic lengthwhich de-
daret all’ by inserting the power-law formulés.15 for the ~ scribes the decay of the correlations by dephasing of the
thermal conductivity\ 1 into Eq.(9.6). Again, our theoretical ~order parameter fielg(r) caused by vortices. The dephasing
prediction is about a factor of 20 larger than the experimenlengthé; may be viewed as the average distance between the
tally observed values. Thus we conclude that our theory hagortices. It is much larger tha# (see Fig. 6 and approxi-

a tendency to overestimate the magnitude of the dissipatiomately given byé,~aQ 17" wherer=—2AT/T, anda

and mutual friction due to creation of vortices. On the other~1.0 mW/cm. Thus for superflui¢He in confined geom-
hand, the experimental data of Ref. 17 imply the exponenetries we expect interesting effects when the dephasing
¢=23.53 for the mutual friction forc€9.10, which is con- lengthé; is as large as the geometry and hits the boundary
siderably larger than the exponent proposed by Gorter and/alls. Future theoretical and experimental investigations
Mellink*® and obtained from our theory. should study the influence of vortices in superfldide on

The discrepancies are possibly due the number of vorticeinite-size effects and on boundary effects. Unexpected re-
in the helium in the presence of a homogeneous heat@pw sults for the thermal conductivity in confined geometries and
because the number of vortices appears to be an unknoviar the Kapitza resistance may possibly be found, which are
and uncontrolled quantity in theory and experiment. In rotatcaused by the second characteristic lergth
ing helium mutual friction can by studied in a much more
controlled fashiorf? because in this case the number of vor-
tices is related to the rotation frequency. Here the mutual
friction is described by the Vinen coefficieftsB and B'. | would like to thank Professor G. Ahlers, Professor V.
These coefficients have been measured experimer(s&dly Dohm, Professor R. Duncan, and Professor H. Meyer for
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tion to the 1998 NASA/JPL workshop on fundamental phys-The space-dependent factor is more complicated and can be
ics in microgravity, held in Oxnard, CA, where many ques-evaluated by using the formula

tions about the relation between theory and experiment were

discussed and clarified. eeB=exp{A+B+ 3[A,B]

1
APPENDIX: INTEGRAL REPRESENTATION T(AABI=IBAB]L
FOR THE GREEN'S FUNCTION — L[B,[A[A,B]]]+---). (A10)

In Sec. lll and in Ref. 3 we have evaluateg-(|#|?) and
J=(Im[&* V ¢]) explicitly, which eventually are expressed 1. Equal time Green’s function
in terms of an integral by Eq$4.27) and(4.28. While for o , .
our purposes we only nead, andJg, it is also possible to For simplicity we set :t; and frqm nowon we consider
evaluate the complete matrix Green’s functi@rexplicitly. only the equal time Qreen $ function. The integral oyer
This Green's function is defined by E¢B.18. First of all, ~ can be evaluated easily by the delta functié®) so that we
we need the inverse of the operator matf®17) which is ~ ©Ptain
given by

G(r,r")=(p(r,t)y*(r',1))

0 2Lt
2L Y 4rLiLh )
Since we intend to evaluate the renormalized Green’s func-
tion, we use Eq(4.4) for the operatoL., where all modeF For a successful calculation of the space-dependent integrand
parameters are replaced by the renormalized parameters. the series in the exponential on the right-hand side of Eqg.

Here we consider the Green’s functi¢g¢* ) which is  (A10) must be finite, which means that only a finite number
given by the lower-right elemer,, of the matrix Green’s of the commutators may be nonzero. For this reason, we
function G. From Egs.(3.18 and (A1) we obtain assume; and Ar to be linear functions of the space coor-

dinater given by

(Kap)= (AD) =4F’fwdae“Ae“35(r—r’). (AL1)
0

(p(r g (' )y =4 L~ YLT) " 18(r—r') s(t—t").

(AZ) M= a1+ bll’, (A12)
We represent the inverse operatbrst and L") ! as inte-
grals of exponential functions so that the Green’s function is Ar=a+br, (A13)

rewritten as
. B where a; and a are constants antl; and b are constant
(:,Z/(r,t)z/r*(r’,t’))=4l“’f daf dg e algBL" ve_ctors. In generat,; andAr are no_nlinear functions of. In
0 0 this caser; and Ar must be linearized locally so that Egs.
A12) and(A13) are taken as an approximation whéreand
Xo(r—r")s(t=t'). (A3) E’) art)a the( res;ective gradients g’? the space paigrt%(r
We decompose the operators in the exponentials into time+r’). In the main text of this paper we assumgz) and

dependent and space-dependent parts according to Ar(z) to be functions of the coordinateonly so that the
gradientsb,;=r;e, andb=Ar"e, are vectors irz direction.
—al=—ad+aA, (A4) However, this latter assumption is not necessary here.
. Now, Egs. (Al12) and (A13) imply the commutators
—BL"=+pBo+ BB, (A5)  [r,,V2]=—2b,V and[Ar,V?2]=—2bV. Consequently, we
where find
A=—{T[r,—V?]—i(g/2y)Ar}, (AB) [A,B]=—i(gl''/y)2bV, (A14)
— 2 H
B=—{I7[r = Vil +ilgi2y) Ary. (A7) [A[A,B]]=—2i(gI" /1 7){I'bb—i(g/2y)b?},
Sinced, commutes with the space-dependent operaiasd (A15)
B, we obtain

[B,[A,B]]=—2i(gl'"/y){T'*b;b+i(g/2y)b%}.
<¢//(r,t)z/f*(r’,t’)>=4f’f daf dﬂe"AeﬁB (A].G)
0 0 The double commutator6A15) and (A16) are ¢ numbers
X &(r—r")el" e Aagt—t"). becauseb; and b are assumed to be constant. Hence all
(A8) higher-order commutators are zero so that the series in the
exponential on the right-hand side of EEL10) is finite.
The time-dependent factor is evaluated by the Taylor serieBventually, inserting the commutatais14)—(A16) into Eq.
according to (A10) we obtain
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e*Pe®=exp —2I'"a[r;— V2]—i(2I'' a)? bv
4T
1 1"!! g
+—=(2I'" )| 2—| ——b|b
P F’(47F’ '
g 2
—4| ——b . (A17)
44T

This formula is exact iff; and Ar are linear functions in
given by Eqs(Al12) and(Al13).
Next, we consider the operatolS=—2I'"r; and D

=2TI""(V—ik)? wherek is a constant wave vector. We find

the commutators

[C,D]=(2I"")?2by(V —ik), (A18)
[C,[C,D]]=(2I'")%2b?, (A19)
[D,[C,D]]=0. (A20)

Since the double commutators acenumbers, again the
higher-order commutators are zero. Thus from &d.0) we
obtain the formula

e*CeP=exp[—2I'"a[r,— (V—ik)?]
+ (2T @)?by(V—ik)+ :(2T" a)®b?}.

(A21)

We choose the wave vector

, 9 .
k=T"«a b—ib; (A22)
4TI’
and then rewrite EqA21) as
e*Ce®P=expl —2I'"a[r;— VZ]—i(2I'" a)? bv
4T

1 or’ 3
—pela)

2
2. Al 9
b1+3(4yr, b) “ (A23)

Now, we clearly see that the operators in the exponentials on

the right-hand sides of EqA17) and(A23) are equal up to

an additive constant. Thus from comparison of Ed@sl7)

and(A23) we obtain the relation
eaAeaB: e (ZF'a)SS. eaCeaD, (A24)

where

(A25)

Here we have replaced’, I'”, andg by the dimensionless
ratiosw’ =I""/\, w'=T"/\, andF=g/\. The first factor on
the right-hand side of EqA24) is just a constant, while the

other exponential factors are operators. We insert the relation

RUDOLF HAUSSMANN
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(A24) together with the operatoil§=—2I"'(a;+b,r) and
D=2I'"(V—ik)? into Eg. (A11) and then obtain the
Green'’s function

G(r,r')=4T" J'wdae—2(r’a)3se—2r’a(al+blr)
0

x & (V=1 5(r —p 1), (A26)

We substitute P’ «— o and evaluate the last two factors by
using the Gaussian integral and the Taylor series:

ea(v—ik)25(r_r,)

:(47m)—d/2J du e—(4a)’1u2+u(V—ik)5(r_r/)

:(47Ta)—dlzf d% e—(4a)—1u2—iku5(r_r/+u)

:(47Ta)7dlzeik(rfr’)ef(4a)’l(r7r’)2_ (A27)
Thus inserting the wave vectdA22) with the proper sub-
sitution for @ and with g/T"" replaced byF/w’, for the
Green'’s function we eventually obtain the formula

L2 = da —
G(r,r )_(477-—)dlzfo ﬁexp[—arl—a S}
xexp| ia— b(r—r’) : (r=r")?
exp la r—r)———({or—-r ,
8yw’ 4a

(A28)

wherer,;=a;+ sb,(r+r’). This formula is a simple inte-
gral, there are no operators in the integrand any more.
Clearly, the Green’s function depends on the average coor-
dinate R=3(r-+r’) implicitly via r, and explicitly on the
relative coordinate\r=r—r’.

The integral(A28) has a similar but more general struc-
ture than the integraF,(¢{) in Eq. (4.28. Thus it is possible
to obtainng andJ, from the Green'’s functiofA28). We find

ng=(||?)=G(r,r)

2 » da ,
:(4w)d/2f —p®Pari—a’sh  (A29)

0 o
and
Js=(IM[* V)= (20) 1 [V=V'1G(r,r")|;

da 3
G- X —ar;—a’st. (A30)

_F b fw
4yw' (4m)%%)0 a

We identifyb, =r1e, andb=Ar'e, and find thas defined in
Eq. (A25) is closely related tar defined in Eq.4.29. We
substitutea=s~ 3, identify {=s~ 3, and rewriteng and
Js as

SU2RF D), (A31)

Ng

- (47T)d/2
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3 FAr’
T Ayw' (42

whereJs=Je,. By using the functiorb ,(X) defined in Eq.
(4.27) and identifying

111
(4m¥2 € T(1-d/2)

gld-4)/6

Fa-dy2 ), (A32)

(A33)

which may be viewed as the definition of the facky, the
formulas forng and Jg can be rewritten as

Ne=——A4P (X)rl*E’Z (A34)

s € d¥ —1+¢€/2 1 '
Jo=—" _I” —Aq4(1 12)D X €l2 A35
S w' 2’}’ € d( € ) 5/2( )I’l ’ ( )

whereX= —s/rf and e=4—d. Finally, replacing the renor-
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[ d% o d%
<k>R_JWkG(R.k) fWG(R,k).
(A38)

This formula can be rewritten in terms of the real-space
Green’s functionG(r,r') as

(K)r={(20) "V =V"1G(r,r"YG(r,r")|;r—r_gr-
A39)

Thus by using EqsiA29)—(A32) we obtain

b (=) FeA{)
8yw' —r1 Fo1sead)

(k)g=Js/ng= (A40)

so thatds=ngk)r. While Jq is finite for d<4, ngis ultra-
violet divergent ford>2. As a consequence, far=3 di-
mensions the average wave vect&pr is strictly speaking
zero. In the superfluid state for temperatures well belgw

we may use the asymptotic formuld.44) for the function
F,(&). In this approximation the ultraviolet divergences are
neglected so that we obtain a finite result for the average
wave vector

malized couplings by the bare modelparameters, we re-
cover the formulag3.24 and(3.25. Thus we have derived
the formulas of Sec. Il B fong andJs once again. We note
that the fundamental assumption here is the linear form of

and Ar in Egs. (A12) and (A13), which in general is an

approximation. This assumption implies the special structure

of the integrals in Eq(A28) and in Eq.(4.28.

2. Fourier transformation of the Green'’s function
and physical interpretation

F b (—93?
(K)r= ; 12
8yw’ —fi1 3

(A41)

Since the wave vectdt is related to the superfluid velocity
Vg by ve=%k/m,, the Green’s functiotA37) implies a dis-
tribution function for the superfluid velocity and E@\41)

The natural space variables of the equal time Green’§,ie|dS the average superfluid velocity)s at space poinR.

function G(r,r’) are the average coordinaR=3(r+r’)
and the relative coordinatar=r—r'. This fact is clearly

seen in EQq(A28). Thus we may perform a Fourier transfor-
mation with respect tar and define the Fourier-transformed

Green's functionG(R,k) by

&
G(r,r’)zf(;j—)de'k(” )G(R,k).

w

(A36)

We apply this Fourier transformation to E@\28) and then
obtain

é(R,k)IZJ da exp{— ar;—ads}
0

=
Xex;{—a<k—a
8

2
b)
yw'

, (A37)

3. Concluding remarks

We have evaluated the Green's functi@p,= (¢ y™)
only for equal timeg’ =t. However, it is possible to evaluate
this Green'’s function also far #t. To do this we apply the
formula(A10) to the factore®*e?® in Eq. (A8). The eventual
result is again an integral over a single variablevith, how-
ever, a somewhat more complicated integrand than Eg.
(A28). Furthermore, the nondiagonal Green'’s functi@p,
=(Tﬂ¢> can be calculated. In this case there is only one
inverse operatok ~* which implies only one integral over.
This integral is performed trivially by a delta function analo-
gous to Eq(A9) so that eventually there will be no integral
at all. The other nondiagonal Green’s functiGp,= G, is
just the Hermitian conjugate. Finally, the upper-left diagonal
elementG,, is zero. Thus we conclude that the complete

wherer,;=a;+b;R. This Green’s function is positive defi- matrix Green's functionG defined by Eq.(3.18 can be
nite and may be viewed as a distribution function for theevaluated explicitly, supposed the parametgrandAr are

wave vectok. We may define the average wave vegiorg
at space poinR by

linear functions of the space variabteaccording to Egs.
(A12) and(A13).
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