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Liquid 4He near the superfluid transition in the presence of a heat current and gravity
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Sektion Physik, Universita¨t München, Theresienstrasse 37, D-80333 Mu¨nchen, Germany

~Received 4 November 1998!

The effects of a heat current and gravity in liquid4He near the superfluid transition are investigated for
temperatures above and belowTl . We present a renormalization-group calculation based on modelF for the
Green’s function in a self-consistent approximation which in quantum many-particle theory is known as the
Hartree approximation. The approach can handle the average order parameter^c&50 above and belowTl and
includes effects of vortices. We calculate the thermal conductivitylT(DT,Q) and the specific heatC(DT,Q)
for all temperature differencesDT5T2Tl and heat currentsQ in the critical regime. Furthermore, we calcu-
late the temperature profileT(z). Below Tl we find a second correlation lengthj1;Q21(Tl2T)1n which
describes the dephasing of the order-parameter field due to vortices. We find dissipation and mutual friction of
the superfluid–normal-fluid counterflow and calculate the Gorter-Mellink coefficientA. We compare our
theoretical results with recent experiments.@S0163-1829~99!04641-X#
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I. INTRODUCTION

Gravity and a heat currentQ are two sources which influ
ence the superfluid transition of liquid4He atTl'2 K and
cause inhomogeneities in the system. On earth gravity
plies a pressure variationP5P(z) where z is the altitude
coordinate. Since the superfluid transition temperatureTl

5Tl(P) is pressure dependent,Tl(z)5Tl„P(z)… depends
on the altitude coordinatez with the gradient1 ]Tl /]z5
11.273 mK/cm. On the other hand, a nonzero heat curr
Q drives the system away from equilibrium. A temperatu
gradient“T is created which implies that the temperatureT
is space dependent. We assume that the heat currentQ is
homogeneous and flows vertically~parallel to thez axis! so
that the temperatureT(z) depends on thez coordinate only.

The local properties of the system are determined by th
parameters, the local temperature differenceDT(z)5T(z)
2Tl(z), the heat currentQ, which is related to“T, and
gravity g, which is related to“Tl . The point (DT,Q,g)
5(0,0,0) is a critical point related to the superfluid tran
tion. This means that in thermal equilibrium (Q50) and in
microgravity (g50) the system shows a second-order ph
transition atT5Tl from the normal-fluid to the superfluid
state. Usually, gravity is negligible except for very small he
currentsQ and for very smallDT, i.e., very close toTl .
Since on earth the gravity accelerationg59.81 m/s2 is a
fixed quantity, in most cases theDT-Q plane is considered a
the phase diagram.

Liquid 4He close toTl in the presence of a heat currentQ
has been investigated theoretically2–4 and experimentally.5–8

In the DT-Q plane a line of critical temperatures is foun
which separates superfluid from normal-fluid helium. A no
zero heat currentQ implies that the superfluid transition tem
peratureTl is shifted to lower temperatures byDTl(Q). For
small heat currentsQ in the critical regime the theory2,4 pre-
dicts the shiftDTl(Q);2Qx with the exponentx51/2n
50.745. In the experiments5,9–11a depressionDTc(Q) of the
superfluid transition has been observed which agrees q
tatively with the theory, but not quantitatively. For smallQ
in the critical regime the shiftDTc(Q);2Q0.81 has been
PRB 600163-1829/99/60~17!/12349~24!/$15.00
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found.5 While the exponents do not agree, the experimenta
observed shiftDTc(Q) is larger than the theoretically calcu
latedDTl(Q).

While for DT*DTl(Q) the helium is normal fluid and
for DT<DTc(Q) it is superfluid, in a recent experiment Li
and Ahlers6 found a dissipative region for temperaturesDT
in the intervalDTc(Q),DT,DTl(Q). This observation in-
dicates that at a finite heat currentQ the transition from
normal-fluid to superfluid helium may possibly happen
two steps with two transition temperaturesDTl(Q) and
DTc(Q) ~relative to the equilibrium transition temperatu
Tl). While the upperDTl(Q) may be identified by the the
oretical prediction, the lowerDTc(Q) agrees with the shift of
Ref. 5. In a similar experiment performed by Murphy a
Meyer8 also two transition temperatures were found. Wh
the values ofDTl(Q) andDTc(Q) contain errors, the differ-
enceDTl(Q)2DTc(Q) is quite well reproduced by the lat
ter experiment.

Heat-transport phenomena in liquid4He close toTl are
described by modelF of Halperin, Hohenberg, and Siggia12

which is a model for the critical and hydrodynamic slo
variables including fluctuations. Most theoretical investig
tions are based on this model. In the normal-fluid region
temperaturesT aboveTl the heat is transported diffusivel
driven by the temperature gradient“T. In linear response
the heat current isQ52lT“T wherelT is the thermal con-
ductivity. For infinitesimalQ and zero gravity the therma
conductivitylT has been calculated within modelF in two-
loop order.13 Critical fluctuations, which are taken into ac
count by the renormalization-group~RG! theory, imply a
strong enhancement oflT close toTl . For infinitesimalQ
and zero gravity the thermal conductivitylT diverges in the
limit T→Tl , or more precisely in the limit (DT,Q,g)
→(0,0,0). The RG theory has been extended3 to calculatelT
for nonzero heat currentsQ but without gravity. It turns out
that for finiteQ close toTl the heat transport becomes no
linear which means thatlT becomesQ dependent. It has
been shown3 that lT remains finite in this case even forT
5Tl .
12 349 ©1999 The American Physical Society
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12 350 PRB 60RUDOLF HAUSSMANN
On the other hand, in the superfluid region whereDT(z)
,DTc(Q) the heat is transported convectively nearly wit
out friction according to the two-fluid model14 by the
superfluid–normal-fluid counterflow. In this case the te
perature gradient“T is nearly zero indicating a nearly infi
nite thermal conductivitylT . Mutual friction between the
superfluid and the normal-fluid component and dissipation
the heat current occur only by creation of vortices, whi
however, is a small effect. Nevertheless, mutual friction
the superfluid state has been measured as early as 194
Gorter and Mellink.15 For the mutual friction force the ansa
f 5Arnrs(vs2vn)

3 was made15 with a temperature-
dependent coefficientA, the so-called Gorter-Mellink coeffi
cient. This ansatz is related to a turbulent superfluid flo16

and implies a temperature gradient“T;2Q3, so that the
thermal conductivity islT;Q22. More recently, the tem-
perature gradient“T due to mutual friction in superfluid
4He was measured directly by Baddaret al.17 in the critical
regime close toTl . This experiment confirms the ansatz b
Gorter and Mellink qualitatively but with a slightly differen
exponent in theQ dependence orvs2vn dependence.

In the intermediate region a crossover between the
heat-transport mechanisms happens. Since the system is
tially inhomogeneous this crossover happens also spat
and implies an interface between superfluid and normal-fl
helium located at a certainz0. Onuki2 investigated this inter-
face by solving the model-F equations in mean-field ap
proximation, where critical fluctuations are taken into a
count by scaling theory. He calculated the temperat
profile T(z) and the order-parameter profilec(z). While in
the normal-fluid region the temperature profile has a fin
gradient related to a finite thermal conductivitylT , in the
superfluid region the temperature profile is absolutely
and the gradient is zero, so that mutual friction is not
cluded andlT is infinite.

The previous RG theories3,4 were constructed as perturb
tion theories starting with mean-field solutions of the mo
F equations. While in the normal-fluid region it is3 ^c&50,
in the superfluid region a plane-wave order parameter^c&
5heikz was assumed.4 Consequently, the temperature profi
was found to be flat in the superfluid region so that mut
friction and dissipation by vortex creation are not included
the previous RG theories. In this paper we extend the
theory in two respects. First, we include gravity. Second,
include mutual friction and dissipation in the superfluid r
gion.

Strong fluctuations of the phase of the order-param
field c can imply that the average order parameter is^c&
50 even belowTl . This fact is well known for systems o
finite size. Here for nonzeroQ the vortices cause sufficientl
strong phase fluctuations so that^c&50 not only above but
also belowTl . For this reason, in the nonequilibrium sta
with a nonzero heat currentQ we may not start a perturba
tion theory with a nonzero mean-field order parameter wh
implies a nonzerô c&. Rather we need a new approa
which can handlêc&50 above and belowTl . In this paper
we present a self-consistent approximation for the Gree
function which can do this and which in quantum man
particle theory is known as the Hartree approximation.18

The paper is organized as follows. In Sec. II we descr
the model and the necessary field theoretic tools, i.e.,
-
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Feynman rules. In Sec. III the idea of our approach and
calculations of the Green’s function and the effective para
eters are presented. The renormalization-group theory is
plied in Sec. IV to include the critical fluctuations. The the
mal conductivity and the temperature profile are calcula
in Secs. V and VI, while in Secs. VII and VIII the correlatio
lengths, the entropy, and the specific heat are considered
compare our results with experiments and investigate the
fluence of gravity. In Sec. IX we discuss dissipation a
mutual friction for superfluid helium belowTl . We show
that our approach reproduces the ansatz of Gorter
Mellink15 for the mutual friction force and calculate th
Gorter-Mellink coefficientA. The idea of the approach an
part of the results have been published already.19

II. THE MODEL AND FEYNMAN RULES

Dynamic critical and heat transport phenomena in liqu
4He close toTl are well described by modelF which is
given12 by the Langevin equations for the order parame
c(r ,t) and the entropy variablem(r ,t):

]c

]t
522G0

dH

dc*
1 ig0c

dH

dm
1uc , ~2.1!

]m

]t
5l0“

2
dH

dm
22g0ImS c*

dH

dc* D1um , ~2.2!

where

H5E ddr @ 1
2 t0~z!ucu21 1

2 u“cu21ũ0ucu41 1
2 x0

21m2

1g0mucu22h0m# ~2.3!

is the free-energy functional anduc and um are Gaussian
stochastic forces which incorporate the fluctuations. The h
currentQ is imposed by boundary conditions. The gravity
included via the temperature parametert0(z) in Eq. ~2.3!
which is related toTl(z) and depends linearly on the altitud
z. Usually, the model is treated by field-theoretic means. T
perturbation theory in terms of Feynman diagrams is gen
ated by the Janssen-De Dominicis functional integral20

Z5E DcDc̃ DmDm̃exp$J% ~2.4!

with the functional

J5E ddr E dtH l0~“m̃!21G08uc̃u2

2
1

2
c̃* F]c

]t
12G0

dH

dc*
2 ig0c

dH

dmG
2

1

2
c̃F]c*

]t
12G0*

dH

dc
1 ig0c*

dH

dmG
2m̃F]m

]t
2l0“

2
dH

dm
12g0ImS c*

dH

dc* D G J . ~2.5!

Here c̃ and m̃ are auxiliary fields21 which are needed for a
proper construction of the perturbation theory. While in t
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previous theories3,4 only the free Green’s functions wer
needed, here we will evaluate the self-energy in leading
der. For this reason, we briefly describe the Feynman r
by which the diagrams and the terms of the perturbat
series are constructed. We decompose the fields into a m
field and a fluctuating contribution according toc5cmf
1dc andm5mmf1dm wherecmf andmmf are solutions of
the model-F equations~2.1! and~2.2! without the stochastic
forces. Here we assume a zero mean-field order param
cmf50 above and belowTl , so thatc5dc. The boundary
conditions, which imply the heat current, require

mmf~z!52q~x0 /l0!~z2z0!, ~2.6!

whereq is the entropy current related to the heat currentQ in
physical units byq5Q/kBTl . We decompose the functiona
J in powers of the fluctuating fields according to

J5J21J31J4 . ~2.7!

The quadratic term is given by

J25E ddr E dt@l0~“m̃!21G08uc̃u2

2 1
2 c̃* L0c2 1

2 c* L0
1c̃2m̃N0dm# ~2.8!

with the differential operators

L05] t1G0@t0~z!2“

212g0mmf~z!#

2 i ~g0 /x0!@mmf~z!2x0h0# ~2.9!

and

N05] t2~l0 /x0!“2. ~2.10!

The third- and fourth-order terms are given by

J35E ddr E dt$m̃@l0g0“
2~c* c!1g0“ Im~c*“c!#

2b3dmc̃* c2b3* dmc* c̃% ~2.11!

and

J45E ddr E dt$2b4c̃* c* cc2b4* c* c* cc̃%,

~2.12!

respectively, where

b35G0g02 ig0 /2x0 , b452G0ũ02 ig0g0/2 ~2.13!

are complex parameters. While the free Green’s functi
are obtained from the quadratic termJ2, the interaction ver-
tices are obtained fromJ3 andJ4. In order to obtain a com-
pact notation of the Feynman rules we combine the fie
into vectors

~Ca!5S c̃

c
D , ~Ma!5S m̃

dm
D , ~2.14!

where the indexa51,2 distinguishes between fields wit
and without tilde. Then the several contributions of the fun
tional J can be written as
r-
s

n
an

ter

s

s

-

J252E ddr E dt@Ca* K0,abCb1 1
2 MaE0,abMb#,

~2.15!

J352E ddr E dt B3,abgMaCb* Cg , ~2.16!

J452 1
2 E ddr E dt B4,ab,gd~Ca* Cb!~Cg* Cd!.

~2.17!

Here

~K0,ab!5S 2G08
1

2
L0

1

2
L0

1 0
D , ~2.18!

~E0,ab!5S 2l0“
2 N0

N0
1 0 D ~2.19!

are 232 matrices with differential operators as the elemen
The free Green’s functions are obtained by inverting th
matrices according to

G0,ab~r ,t;r 8,t8!5^Ca~r ,t !Cb* ~r 8,t8!&0

5K0,ab
21 d~r2r 8!d~ t2t8!, ~2.20!

D0,ab~r ,t;r 8,t8!5^Ma~r ,t !Mb~r 8,t8!&0

5E0,ab
21 d~r2r 8!d~ t2t8!. ~2.21!

The higher rank tensorsB3,abg andB4,ab,gd , which describe
the interactions between the fields, are obtained by com
ing Eqs. ~2.16! and ~2.17! with Eqs. ~2.11! and ~2.12!, re-
spectively. While B3,abg contains differential operators
B4,ab,gd is symmetrized with respect to interchange of t
index pairs (a,b) and (g,d).

Now, from Eqs.~2.15!–~2.21! the Feynman rules are ob
tained easily. In Fig. 1 the elements for constructing
Feynman diagrams are shown. The freec-field Green’s
functionG0,ab(r ,t;r 8,t8) is identified by a directed solid line

FIG. 1. The elements for constructing the Feynman diagra
~a! free c-field Green’s function,~b! free m-field Green’s function,
~c! three vertex, and~d! four vertex.
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12 352 PRB 60RUDOLF HAUSSMANN
@Fig. 1~a!#. The free m-field Green’s function
D0,ab(r ,t;r 8,t8) is identified by a dashed line@Fig. 1~b!#.
The m field interacts with thec fields by the three vertex
shown in Fig. 1~c!. Furthermore, thec fields interact with
each other by the four vertex shown in Fig. 1~d!. For each
three or four vertex an integration*ddr *dt must be per-
formed. Further rules are applied as usual in field theory.
perturbation series is obtained as the sum of all poss
Feynman diagrams which can be constructed from the
ments shown in Fig. 1.

III. THE UNRENORMALIZED GREEN’S FUNCTION
IN HARTREE APPROXIMATION

To obtain physical quantities we must first calculate
c-field Green’s function which is defined by

Gab~r ,t;r 8,t8!5^Ca~r ,t !Cb* ~r 8,t8!&. ~3.1!

This Green’s function can be expressed via the Dyson eq
tion

G215G0
212S ~3.2!

in terms of the self-energySab(r ,t;r 8,t8). The perturbation
series of the self-energy is given by the sum of all irreduci
Feynman diagrams with two amputated external solid li
which do not fall into pieces if any internal solid line is cu
A similar Dyson equation exists also for them-field Green’s
function Dab(r ,t;r 8,t8). However, for our calculations we
do not need the latter Green’s function explicitly.

In order to account for effects beyond the perturbat
theory we must resum the Feynman diagrams partially in
appropriate way. In the critical regime close to a seco
order phase transition, infrared singularities occur wh
must be resummed by renormalization and application of
renormalization-group theory. For modelF the RG theory
was elaborated up to two-loop order by Dohm.13 All the
renormalized coupling parameters depending on a RG fl
parameter were determined13 by adjusting the superfluid den
sity, the specific heat, and the thermal conductivity to
respective experimental data. Thus modelF can be used for
explicit calculations of physical quantities in the critical r
gime nearTl without any~further! adjustable parameters.

Here we first apply an additional resummation which
well known in quantum many-particle physics.22–24 We re-
sum with respect to all self-energy subdiagrams so that
perturbation series becomes self-consistent with respec
the c-field Green’s functionG. This means that now the
solid lines are thick and identified by the exact Green’s fu
tion G as shown in Fig. 2~a!. To avoid multiple counting of
diagrams, only the irreducible diagrams are included in
perturbation series, which do not contain self-energy sub
grams or equivalently which do not fall into pieces if an
two of the internal thick solid lines are cut. The resummat
was used first by Luttinger and Ward22 and was formulated
in terms of a Legendre transformation by De Dominicis a
Martin.23 By truncating the self-consistent perturbation ser
of the self-energyS the conserving approximation of Baym
and Kadanoff25,26 is obtained.

Here, we approximate the self-energyS by including only
the tadpole diagrams as shown in Fig. 2~b!. This approxima-
e
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tion is equivalent to the Hartree approximation in quantu
mechanics.18 The Dyson equation~3.2! together with the
self-energy in Fig. 2~b! are self-consistent equations whic
enable an explicit calculation of the unrenormalized Gree
function G. However, since we consider liquid4He in the
critical regime nearTl , a second resummation is necessa
the self-consistent perturbation series and hence the Ha
approximation must be modified by renormalization and
plication of the RG theory.

We have several reasons to believe that the Hartree
proximation combined with the RG theory is successful
model F above and belowTl where the order parameter
always^c&50. Moreover, we will show that the approxima
tion includes vortices and mutual friction so that it may be
possible approach to describe the dissipation in the su
fluid state observed in the experiments.6,17 First of all, if we
generalize modelF by replacing the complex fieldc by a
vector C5(c1 , . . . ,cn) of n complex fields, then it turns
out that the Hartree approximation is exact for the Gree
function G in the limit n→`. For each closed loop of thick
solid lines there will be a factorn. If we rescale the coupling
parameters according toũ0;n21, g0;n21/2, and g0
;n21/2 so thatB3,abg;n21/2 andB4,ab,gd;n21, then only
the tadpole diagrams shown in Fig. 2~b! will be nonzero in
the limit n→`. It is well known that models involving
Ginzburg-Landau functionals like thef4 model can be
solved exactly in this limit~see, e.g., Ref. 27!. The same is
true also for modelF. While in the limitn→` the RG theory
is not needed because the Hartree approximation is exac
our case forn51 the RG theory is necessary to obtain t
correct critical behavior of the physical quantities nearTl .

We may expect that beyond the Hartree approximation
1/n expansion may yield the proper corrections. Howev
this is not true. By experience with quantum-field theory
many-particle systems with degeneracies28,29 we have found
that proper corrections are given by the modified se
consistent random-phase approximation~modified SC-RPA!,
where the modification is a gauge transformation which i
plies bosonization for a proper treatment of the low energ
collective excitations. The method has been invented
two-dimensional electron systems in the regime of the fr
tional quantum Hall effect28 and tested for simple exactl
solvable models.29 We have found that the modified SC-RP
can describe the superfluid transition and Bose-Einstein c
densation in interacting boson systems where the ave
order parameter iŝc&50 due to phase fluctuations abov
and below the transition.29 For this reason we believe that th
modified SC-RPA combined with the RG theory will be su
cessful in the present case for modelF.

FIG. 2. ~a! The exactc-field Green’s function is identified by a
thick solid directed line.~b! The self-energy in Hartree approxima
tion.
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The main feature of the modified SC-RPA is that it im
plies a nontrivial spectrum for the Green’s functionG while
the Hartree approximation does not. This fact is importan
quantum many-particle physics because the spectra of
quasiparticles are important physical results. However, in
present case for critical phenomena and second-order p
transitions nontrivial spectra are not essential while the
plication of the RG theory is important. For this reason,
Hartree approximation combined with the RG theory sho
be sufficient for our purposes. Even though the modified S
RPA combined with the RG theory would be desirable,
expect only some corrections while the calculations wo
be much more complicated.

A. Evaluation of the Green’s function

Now, we evaluate the self-energyS and determine the
unrenormalized Green’s functionG in Hartree approxima-
tion. The tadpole diagrams in Fig. 2~b! imply a self energy of
the form

Sab~r ,t;r 8,t8!52DKabd~r2r 8!d~ t2t8!, ~3.3!

whereDKab are the elements of a 232 matrix which de-
pend on the space coordinatez but do not contain differentia
operators. Applying the Feynman rules of Sec. II we obt
the matrix

~DKab!5S 0
1

2
DL

1

2
DL1 0

D , ~3.4!

where

DL52b3N0
21@l0g0“

2ns1g0“Js#12b4ns. ~3.5!

Here

ns5^ucu2&5G22~r ,t;r ,t ! ~3.6!

is a density related to the entropy and

Js5^Im@c*“c#&5 lim
r8→r

Im@“G22~r ,t;r 8,t !# ~3.7!

is the superfluid current density.N0
21 is the inverse of the

differential operator~2.10!. Sincens andJs in Eq. ~3.5! de-
pend only onz, we may drop the time derivative inN0

21.
Then, from Eq.~3.5! we obtain

DL52~b42x0g0b3!ns22b3~x0g0 /l0!~“2!21~“Js!.
~3.8!

Insertingb3 andb4 of Eq. ~2.13! we obtain

b42x0g0b352G0~ ũ02 1
2 x0g0

2!52G0u0 , ~3.9!

whereu05ũ02 1
2 x0g0

2 is the effective coupling between th
c fields in thermal equilibrium after the entropy fieldm has
been integrated out~see Ref. 13!. Since the heat currentQ
flows in z direction, only thez componentJs,z5Js of the
superfluid current is nonzero so that

~“2!21~“Js!5]z
21Js. ~3.10!
n
he
e

ase
-

e
d
-

e
d

n

Thus from Eq.~3.8! we obtain

DL5G0@4u0ns22x0g0~g0 /l0!]z
21Js#1 ig0~g0 /l0!]z

21Js.
~3.11!

Now, we define

L5L01DL. ~3.12!

Then from Eqs.~2.9! and ~3.11! we obtain

L5] t1G0@r 1~z!2“

2#2 i
g0

2x0g0
Dr 0~z!, ~3.13!

where

r 1~z!5t0~z!12x0g0F 1

x0
mmf~z!2

g0

l0
]z

21JsG14u0ns

~3.14!

and

Dr 0~z!52x0g0F 1

x0
mmf~z!2h02

g0

l0
]z

21JsG ~3.15!

are effective parameters. Furthermore, we define the ma

Kab5K0,ab1DKab ~3.16!

and obtain

~Kab!5S 2G08
1

2
L

1

2
L1 0

D . ~3.17!

Now, the Green’s functionG in Hartree approximation is
obtained easily. We find that Eqs.~3.12! and ~3.16! are
equivalent to the Dyson equation~3.2!. Thus as a result we
obtain

Gab~r ,t;r 8,t8!5Kab
21d~r2r 8!d~ t2t8!, ~3.18!

whereKab is given by Eq.~3.17! together with Eq.~3.13!.
Clearly, the Green’s functionG in Hartree approximation ha
the same structure as the free Green’s functionG0 where just
the parameters have been replaced by effective parame
As a consequence, the following calculations are consid
ably simplified because we may restrict the consideration
the effective parametersr 1(z) and Dr 0(z) only. We will
derive self-consistent equations forr 1(z) andDr 0(z) to de-
termine the effective parameters. Eventually, the Gree
function G is obtained from Eq.~3.18! together with Eqs.
~3.13! and ~3.17!.

B. Evaluation of ns and Js

Next we evaluatens andJs by inserting the Green’s func
tion ~3.18! into Eqs.~3.6! and~3.7!. In Ref. 3ns andJs were
evaluated for the free Green’s function so that here we n
not perform these calculations once again. Since the Gre
function in Hartree approximation has the same structure,
may use the results of Ref. 3 with a slight modification. W
just need to replace the free parameters by the effective
rametersr 1(z) andDr 0(z) appropriately. The basic assump
tion of the previous calculations3 was that the parameter
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r 1(z) andDr 0(z) in the Green’s function are linear function
of z. For the free Green’s function, wherens andJs in Eqs.
~3.14! and ~3.15! are omitted, this is indeed true, becau
mmf(z) defined in Eq.~2.6! and t0(z), which is related to
Tl(z), are linear functions ofz. Thus in the present case w
must assume as an approximation thatr 1(z) andDr 0(z) are
linearized locally so that only the slopesr 18 and Dr 08 are
included but the curvatures and the higher-order derivat
are neglected. We will later show in Sec. VII that this a
sumption is justified.

Now, from Eqs.~3.22! and ~3.25! in the second paper o
Ref. 3 we obtain

ns52 F211e/2~X!E ddp

~2p!d

1

r 1~z!1p2
, ~3.19!

and

Js5
g0

2G08

Dr 08

2x0g0
Fe/2~X!E ddp

~2p!d

1

@r 1~z!1p2#2
.

~3.20!

Heree is related to the space dimensiond by e542d. The
function Fa(X) is defined by the asymptotic series

Fa~X!5 (
N50

`
G~a13N!

G~a!

XN

N!
~3.21!

and contains all the effects beyond linear response theor
the integrals the parameterr̃ 0(z) of Ref. 3 has been replace
by the effective parameterr 1(z). The dimensionless param
eterX is given here by

X5
1

12@r 1~z!#3 F r 18
212

G09

G08
S g0

4x0g0G08
Dr 08D r 18

2S g0

4x0g0G08
Dr 08D 2G , ~3.22!

where

r 185]zr 1~z!, Dr 085]zDr 0~z!. ~3.23!

The entropy currentq in the formulas of Ref. 3 is here re
placed byr 18 or Dr 08 times 2l0/2x0g0. We note that our
formulas reduce to those of Ref. 3 if we omitns andJs in the
effective parameters~3.14! and ~3.15! and if we neglect
gravity. The integrals can be evaluated3,13 in dimensional
regularization so that we obtain

ns~z!52
2

e
AdF211e/2~X!@r 1~z!#12e/2, ~3.24!

and

Js~z!5
g0

2G08

Dr 08

2x0g0

1

e
AdS 12

e

2DFe/2~X!@r 1~z!#2e/2,

~3.25!

where Ad5SdG(12e/2)G(11e/2), Sd5Vd /(2p)d, and
Vd52pd/2/G(d/2) is the surface of thed-dimensional unit
s
-

In

sphere. Clearly,ns(z) and Js(z) depend onz implicitly via
r 1(z) and the derivativesr 18 andDr 08 .

C. Self-consistent equations for the effective parameters

Equations~3.14! and~3.15! together with Eqs.~3.24! and
~3.25! are self-consistent equations for the effective para
etersr 1(z) andDr 0(z). The structure of these equations c
be simplified. First of all we note that the effective param
eters and its derivatives can be related to the temperat
T(z), Tl(z), and the heat currentQ. We find

Dr 0~z!52x0g0K dH

dmL 52x0g0

T~z!2T0

Tl
. ~3.26!

To prove this relation̂ dH/dm& can be evaluated explicitly
in Hartree approximation and compared with Eq.~3.15!.
Equivalently, we take the average of Eq.~2.2! and obtain
] t^m&1“q50 whereq

q52l0“ K dH

dmL 2g0Js ~3.27!

is the entropy current. Sincez is the only space coordinate
this equation can be rewritten in the form

]

]z K dH

dmL 52
q

l0
2

g0

l0
Js

5
]

]z F 1

x0
mmf~z!2h02

g0

l0
]z

21JsG . ~3.28!

Thus integrating this equation and comparing with Eq.~3.15!
we obtain Eq.~3.26!. We note that Eq.~3.15! contains inte-
gration constants viammf(z) and]z

21Js. Sincem is the en-
tropy density divided bykB , the quantitŷ dH/dm& is a tem-
perature difference divided byTl . This fact explains the las
equality sign in Eq.~3.26!. HereT0 is a constant referenc
temperature which may be arbitrary. In the denominator thz
dependence ofTl due to gravity is very small and may b
neglected.

The temperature parameterr 0(z) is defined by3

r 0~z!5t0~z!12x0g0S h01 K dH

dmL D
5t0~z!12x0g0h01Dr 0~z!. ~3.29!

In thermal equilibrium this parameter is the coefficient
ucu2 in the energy functional after the entropy variablem has
been integrated out.13 It is related to the temperature by

r 0~z!2r 0c52x0g0

T~z!2Tl~z!

Tl
52x0g0

DT~z!

Tl
.

~3.30!

The critical value isr 0c50 in one-loop approximation13 and
hence also in Hartree approximation. We find that the fi
line on the right-hand side of Eq.~3.14! is identified by
r 0(z). Thus Eq.~3.14! simplifies into

r 1~z!5r 0~z!14u0ns. ~3.31!
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We resolve this equation with respect tor 0(z) and insert Eq.
~3.24! for ns. Then we obtain

r 0~z!5r 1~z!H 11
8u0

e
AdF211e/2~X!@r 1~z!#2e/2J .

~3.32!

Next, we take the derivative of this equation with respect
z and obtain

r 085r 18H 11
8u0

e
AdS 12

e

2DFe/2~X!@r 1~z!#2e/2J .

~3.33!

Furthermore, the derivative of Eq.~3.15! yields

Dr 08522x0g0F q

l0
1

g0

l0
JsG . ~3.34!

Resolving this equation with respect toq and inserting Eq.
~3.25! for Js we obtain

q5
Q

kBTl
52l0H 11

g0
2

2l0G08

1

e
AdS 12

e

2D
3Fe/2~X!@r 1~z!#2e/2J Dr 08

2x0g0
. ~3.35!

On the other hand, from Eq.~3.26! we find thatDr 08 is re-
lated to the temperature gradient]zT by

Dr 0852x0g0Tl
21]zT. ~3.36!

Finally, Eq. ~3.29! implies

r 085Dr 0822x0g0Tl
21]zTl , ~3.37!

where we have identifiedt08522x0g0Tl
21]zTl . Clearly,

the difference betweenr 08 andDr 08 is due to the gradient o
Tl(z) which is the effect of gravity. Thus in a microgravit
environmentr 08 andDr 08 are equal.

Now, the self-consistent equations which allow the det
mination of all the effective parameters are given by E
~3.32!, ~3.33!, and ~3.35! together with Eqs.~3.26!, ~3.30!,
~3.37!, and ~3.22!. These are seven equations for seven
known variablesr 0(z), Dr 0(z), r 1(z), r 08 , Dr 08 , r 18 , andX.
As an input we need the temperaturesT(z), Tl(z), the dif-
ferenceDT(z)5T(z)2Tl(z), the heat currentQ5kBTlq,
and the gradient]zTl for a given space variablez. Since the
seven equations do not depend explicitly onz, we do not
need the temperature profiles as functions ofz. Instead, we
obtain the temperature gradient]zT from Eq. ~3.36! so that
the temperature profileT(z) can be calculated by integration
Eventually, for givenDT andQ physical quantities like the
specific heat and the thermal conductivity can be calcula
This will be done in Secs. V and VIII.

IV. RENORMALIZATION AND APPLICATION
OF THE RENORMALIZATION-GROUP THEORY

In Eqs.~3.32!, ~3.33!, and~3.35! the first-order terms ex
hibit infrared divergences at criticality wherer 1(z)→0 while
the functionFa(X) is of order unity. For this reason th
renormalization of these equations and the application of
o

r-
.

-

d.

e

RG theory are necessary to achieve a resummation of
infrared divergences and a proper treatment of the crit
fluctuations. We use the concept of renormalization by m
mal subtraction of dimensional poles. The calculations
performed at fixed dimensiond542e ~i.e., noe expansion
is applied!. For modelF this renormalization scheme is de
scribed in Ref. 13. The renormalization factors of the fie
c andc̃ areZc5Zc̃51 in one-loop order and hence also
Hartree approximation. Thus the Green’s functionG is not
renormalized here. As a consequence, also the operatL
defined in Eq.~3.13! is not renormalized. The parameterG0

is renormalized according to13 G05ZG
21G where, however,

in one-loop order and in Hartree approximationZG51. Thus
from Eq. ~3.13! we conclude thatr 1(z) is not renormalized.

The parametersg0 andg0 are renormalized according to13

x0g05g~x0Zm!1/2Zr~me/Ad!1/2, ~4.1!

g05g~x0Zm!1/2~me/Ad!1/2. ~4.2!

Furthermore, we renormalizeDr 0(z)5ZrDr (z). Conse-
quently, we find

g0

2x0g0
Dr 0~z!5

g

2g
Dr ~z! ~4.3!

which is consistent with the requirement that the last term
Eq. ~3.13! is not renormalized. Thus in terms of the reno
malized parameters the operator~3.13! reads

L5] t1G@r 1~z!2“

2#2 i ~g/2g!Dr ~z!. ~4.4!

Next we renormalize Eq.~3.32!. For this purpose we nee
the relations13

r 0~z!2r 0c5Zrr ~z!, ~4.5!

u05uZuZc
22~me/Ad!, ~4.6!

wherer 0c50 andZc51 in Hartree approximation. We sepa
rate the ultraviolet divergence on the right-hand side of E
~3.32! which here in dimensional regularization is a po
;1/e. By choosing

Zr5Zu51/@128u/e# ~4.7!

the ultraviolet divergence is canceled. Eventually we obt

r ~z!5r 1~z!H 11
8u

e FF211e/2~X!S r 1~z!

m2 D 2e/2

21G J .

~4.8!

Analogously we separate the ultraviolet divergence on
right-hand side of Eq.~3.33!. Using Eqs.~4.5!–~4.7! we ob-
tain

r 85r 18H 11
8u

e F S 12
e

2DFe/2~X!S r 1~z!

m2 D 2e/2

21G J .

~4.9!

We replace the parameters in the dimensionless variabX
defined in Eq.~3.22! by the renormalized ones. It turns ou
that all Z factors cancel so thatX is not renormalized. Thus
we obtain



b

ef

f-
it

.
th

dd

, i
te

se

e
his

the

he
e
ee

e-
the

in-

ary

ou-

r
-
-

c-
u-
of
pa-

12 356 PRB 60RUDOLF HAUSSMANN
X5
1

12@r 1~z!#3F r 18
212

G9

G8
S g

4gG8
Dr 8D r 182S g

4gG8
Dr 8D 2G .

~4.10!

For convenience we replace the renormalized couplings
the dimensionless combinations13 w5G/l, F5g/l, and f
5F2/w8. Furthermore, we introduce the dimensionless
fective parameters

r5r ~z!/m2, r85r 8/m3, ~4.11!

Dr5Dr ~z!/m2, Dr85Dr 8/m3, ~4.12!

r15r 1~z!/m2, r185r 18/m
3. ~4.13!

Since the coordinatez does not appear explicitly in the sel
consistent equations for the effective parameters, we omz
as an argument from now on. Then, Eqs.~4.8!–~4.10! can be
rewritten as

r5r1H 11
8u

e
@F211e/2~X!r1

2e/221#J , ~4.14!

r85r18H 11
8u

e F S 12
e

2DFe/2~X!r1
2e/221G J , ~4.15!

X5
1

12r1
3 Fr18

212
w9

w8
S F

4gw8
Dr8D r182S F

4gw8
Dr8D 2G ,

~4.16!

respectively.
The entropy current is renormalized by3

q5~x0Zm!1/2qren. ~4.17!

This equation together with Eq.~4.2! implies that the ratio

Q/g0kBTl5q/g05~qren/g!~Ad /me!1/2 ~4.18!

need not be renormalized because theZ factors cancel. In Eq
~3.35! we separate the ultraviolet divergence and replace
coupling parameters by the renormalized parameters. A
tionally, we need the renormalization13 l05x0Zl

21l. Using
the Z factor product

ZmZl51/@12 f /2e# ~4.19!

we find that the ultraviolet divergence is canceled. Then
terms of the renormalized couplings and effective parame
we obtain

Qme23

g0kBTl
52

Ad

2gF H 11
f

2eF S 12
e

2DFe/2~X!r1
2e/221G J Dr8,

~4.20!

where the left-hand side need not be renormalized becau
Eq. ~4.18!. Finally, we renormalize Eqs.~3.26!, ~3.30!,
~3.36!, and~3.37! and obtain

Dr5t21@T~z!2T0#/Tl , ~4.21!

r5t21@T~z!2Tl~z!#/Tl , ~4.22!

Dr85t21~mTl!21]zT, ~4.23!
y

-

e
i-

n
rs

of

r85Dr82t21~mTl!21]zTl , ~4.24!

respectively, where

t5S Admd

x0Zm
D 1/2 1

2g
. ~4.25!

In these equationsZm does not cancel. We note that th
renormalization is exact in all the above equations. T
means that we need not expand theZ factors in powers of the
renormalized couplings. The reason of this fact is that
Hartree approximation is exact in the limitn→` for model
F with an n-component complex order parameter. On t
other hand, theZ factors do not agree with those of th
previous theories13 in one loop-order because the Hartr
approximation is not a loop expansion.~The correct one-loop
Z factors would be obtained if we would consider a Hartre
Fock approximation and include both the Hartree and
Fock term in the self-energyS.!

By the renormalization a characteristic length scale is
troduced which is described by the parameterm. The RG
theory is based on the fact that this length scale is arbitr
and may be changed according tom→m l , wherel is the RG
flow parameter. As a consequence, the renormalized c
pling parametersu( l ), g( l ), w( l ), F( l ), and f ( l ) depend on
l. Furthermore, also theZ factors depend onl. Now, the
dimensionless parameter defined in Eq.~4.25! reads

t5S Ad~m l !d

x0Zm~ l ! D
1/2 1

2g~ l !
. ~4.26!

For convenience we will uset as the RG flow paramete
instead ofl becauset is closely related to the reduced tem
perature by Eq.~4.22! and the renormalized coupling param
etersu@t#, g@t#, w@t#, F@t#, and f @t# were determined as
functions oft in Ref. 13. We identifym l 5j21 by the cor-
relation lengthj5j(t), which in the asymptotic region is
given byj(t)5j0t2n. The identificationm l 5j21 is correct
in one-loop order, corrections appear in higher orders.30

Now, we write the self-consistent equations for the effe
tive parameters in a form which is appropriate for the n
merical evaluation. For this purpose we eliminate some
the dimensionless parameters and introduce some new
rameters. First of all we note that the asymptotic series~3.21!
is not useful to evaluate the functionFa(X). In Ref. 3 an
integral representation was found by

Fa~X!5@G~a!#21zaFa~z! ~4.27!

wherez5(2X)21/3 and

Fa~z!5E
0

`

dv va21exp~2v32vz!. ~4.28!

The integral is well defined fora.0. Fora,0 the function
Fa(z) is obtained by analytical continuation ina or equiva-
lently by partial integration in Eq.~4.28! to remove the ul-
traviolet divergence. Now, we introduce the parameter
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s52
1

12Fr18
212

w9@t#

w8@t#
S F@t#Dr8

4g@t#w8@t#
D r18

2S F@t#Dr8

4g@t#w8@t#
D 2G ~4.29!

so thatX52s/r1
3 or equivalentlyr15s1/3z. In the follow-

ing we eliminater1 andX in favor of z ands. For conve-
nience we define the amplitudes

A5e21@F211e/2~X!r1
2e/221# ~4.30!

5
1

e F s2e/6

G~211e/2!
z21F211e/2~z!21G , ~4.31!

A15e21@~12e/2!Fe/2~X!r1
2e/221# ~4.32!

5
1

e F2
s2e/6

G~211e/2!
Fe/2~z!21G . ~4.33!

Then we rewrite Eq.~4.14! as

r5s1/3z$118u@t#A%. ~4.34!

To eliminater we insert this into Eq.~4.22!. Resolving with
respect to the temperature difference we obtain

DT~z!5T~z!2Tl~z!5Tlts1/3z$118u@t#A%.
~4.35!

Next we resolve Eq.~4.20! with respect toDr8 and obtain

Dr852
2g@t#F@t#

Ad
S Qjd21

g0kBTl
D Y $11~ f @t#/2!A1%.

~4.36!

Resolving Eq.~4.15! with respect tor18 and eliminatingr8
by inserting Eq.~4.24! we obtain

r185FDr82
1

t

j

Tl

]Tl

]z G Y $118u@t#A1%. ~4.37!

Finally, from Eq.~4.23! we obtain the temperature gradien

]zT5Tl~t/j! Dr8. ~4.38!

Until now the RG flow parametert is arbitrary. We must
chooset so that an optimum resummation of the infrar
divergences in the perturbation series is achieved. From
experience we find that the condition

s1/3~81z216u@t#Az!51 ~4.39!

is an optimum choice for fixing the RG flow parametert.
For Q→0 in thermal equilibrium Eq.~4.39! reduces to the
well-known flow parameter conditions of the previo
theories13 above and belowTl . The integral~4.28! can be
evaluated asymptotically for large positive and negativez.
For z@11 we find

Fa~z!'G~a!z2a ~4.40!

which impliesFa(X)'1. Consequently, from Eqs.~4.30!–
~4.33! we obtain the amplitudes
ur

A'e21@r1
2e/221#, ~4.41!

A1'e21@~12e/2!r1
2e/221#. ~4.42!

The flow parameter Eq.~4.39! reduces tor1(1216u@t#A)
51 which implies

r ~ l !/~m l !25r5r151. ~4.43!

Equation~4.22! implies T.Tl and t5(T2Tl)/Tl so that
the RG flow parametert is identified by the reduced tem
perature. Indeed, Eq.~4.43! is the flow-parameter equation o
the previous theories13 in thermal equilibrium forT.Tl . On
the other hand forz!21 we find

Fa~z!'~p/3!1/2~2z/3!a/223/4exp$2~2z/3!3/2%
~4.44!

which is exponentially large. Consequently, the amplitudeA
andA1 are exponentially large so that in Eq.~4.34! and in the
flow parameter condition~4.39! only the last terms are rel
evant. EliminatingA we obtain

22r ~ l !/~m l !2522r51 ~4.45!

which is the flow-parameter equation of the previous theo
for T,Tl . Equation~4.22! implies t522(T2Tl)/Tl and
T,Tl . We conclude that our present theory for nonzeroQ
reduces to the previous theories13 for z@11 in the normal-
fluid region well aboveTl and forz!21 in the superfluid
region well belowTl .

We have derived seven equations given by Eqs.~4.29!,
~4.31!, ~4.33!, ~4.35!–~4.37!, and~4.39! which we have pub-
lished already ford53 ande51.19 These equations contai
seven variablesz, s, t, A, A1 , Dr8, r18 which can be
determined uniquely by solving the equations supposed
temperature differenceDT5T2Tl and the heat currentQ
are known. The remaining effective parameters, which
have eliminated, can be determined afterwards. In prac
we have solved the equations ford53 dimensions ande
51 in the following way. While the heat currentQ is as-
sumed to be constant we takez as a variable which we vary
in the whole interval2`,z,1` to scan all temperatures
Equation~4.39! is solved explicitly to obtains as a function
of z and t. Then we solve the equations numerically b
adjusting the flow parametert and eventually determine th
temperature differenceDT and the temperature gradient]zT
as functions ofz by Eqs.~4.35! and ~4.38!.

As an input we need the dimensionless renormalized c
plings u@t#, g@t#, w@t#5w8@t#1 iw9@t#, F@t#, and f @t#
as functions oft which have been determined by Dohm.13

Furthermore, we need the parameterg0 which is related to
the entropy atTl . For liquid helium at saturated vapor pre
sure this parameter is31 g052.16431011 s21. To calculate
the correlation lengthj(t)5j0t2n as a function oft we use
the exponent n50.671 and the amplitudej051.45
31028 cm which were determined experimentally in Re
31 and 32. There are no adjustable parameters.
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V. THERMAL CONDUCTIVITY

A. Numerical evaluation of the thermal conductivity and
comparison with experiments

We eliminateDr8 from Eqs. ~4.36! and ~4.38! and re-
solve the resulting equation with respect toQ. Then we ob-
tain the heat transport equation

Q52lT]zT, ~5.1!

where

lT5
g0kBAd

tjd22

$11~ f @t#/2!A1%

2g@t#F@t#
~5.2!

is the thermal conductivity. Inserting the dimensionless
rameters into Eq.~5.2!, which we calculate for givenDT and
Q as described above by solving the seven equations,
obtain the thermal conductivitylT5lT(DT,Q) as a function
of DT and Q. The result is obtained without adjustable p
rameters. We plot the thermal resistivityrT51/lT logarith-
mically as a function ofDT5T2Tl for given heat currents
Q. In Fig. 3 our result is shown forQ542.9 mW/cm2 as
solid line. First of all we find thatrT is nonzero andlT is
finite for all temperatures above and belowTl . For T well
above Tl and well below Tl we approximately find
asymptotic power laws, which we will discuss in the ne
subsection.

In the intermediate region, whereT is close toTl , the
curve interpolates the two approximate power laws a
shows a point of maximum slope. We may interpret t
point as the superfluid transition and define the related s
of the critical temperatureDTl(Q), which in Fig. 3 is indi-
cated by the arrow. In the previous theory4 the formula

DTl~Q!52M TlS Qj0
d21

g0kBTl
D x

~5.3!

FIG. 3. The thermal resistivityrT51/lT logarithmically as a
function of DT5T2Tl for the heat currentQ542.9 mW/cm2.
The solid line represents our theory. The data of Liu and Ahlers6 are
shown as crosses, and the data of Baddaret al.17 ~fit formula! are
shown as dashed line. The arrow indicatesDTl(Q). The dash-
dotted line extrapolating the crosses indicatesDTc(Q). For com-
parison, the thermal resistivity forQ50 ~theory! is shown as dotted
line.
-

e

-

t

d
s
ift

was derived for the shift of the critical temperature with t
exponent x5@(d21)n#2150.745 and the constantM
52.90 for d53 dimensions. Here we use Eq.~5.3! as a fit
formula for the point of maximum slope in Fig. 3. By vary
ing the heat currentQ we find nearly the same exponentx
50.745 where deviations due to nonasymptotic effects of
dynamic RG theory are very small here. Furthermore,
find the constantM53.17 which also is nearly the sam
Thus the point of maximum slope in Fig. 3 may indeed
identified as the superfluid transition. However, in contras
the previous theory,4 hereDTl(Q) and the superfluid transi
tion are not sharply defined for nonzeroQ because the curve
of the physical quantities are smooth.

For zero heat current~linear response limit! the thermal
conductivity is shown as dotted line in Fig. 3, which is fini
for DT.0, diverges atDT50, and is infinite forDT,0.
Clearly, the solid line of our present theory@lT(DT,Q) at
nonzeroQ# approaches the dotted line (lT at Q50) asymp-
totically in the normal-fluid region for large positiveDT.
Furthermore, the present theory reproduces the prev
theory of Ref. 3 forDT*0. Some small deviations of th
two approaches from each other occur because here an
Ref. 3 the RG flow parametert is determined by different
conditions@the condition~4.39! here differs from Eq.~4.49!
in the second paper of Ref. 3#. However, these deviations ar
within the errors of the RG theory and hence are not serio

Liu and Ahlers6 considered a vertical heat flow upward
in liquid 4He. They measured the temperatures at the bot
and at the top of the cell and determined the thermal cond
tivity lT(DT,Q) in two different ways. First, they used a fi
formula with power laws forlT(DT,Q) and adjusted the
exponents and amplitudes. Second, they obtainedlT by the
differential formula~24! of the first paper of Ref. 3. In Fig. 3
the data obtained by the differential formula are shown
crosses. For lower temperatures the data are extrapolate
the fit formula shown as dash-dotted line. WhileDTl(Q) is
indicated by the arrow, the data show the second transi
temperatureDTc(Q) where the dash-dotted line drops dow
nearly vertically. In the normal-fluid region forDT
>DTl(Q) the experimental data agree with our theoreti
prediction ~solid line! within the accuracies of theory an
experiment. However, in the superfluid region forDT
<DTl(Q) the data of Liu and Ahlers6 do not agree with our
theory. For temperaturesDT in the intervalDTc(Q)<DT
<DTl(Q), the so-called dissipative region,6 the experiment
finds a much larger thermal resistivityrT51/lT , by about a
factor of 20, than our theory predicts. Then suddenly, wh
the temperatureDT approaches and drops below the seco
transition temperatureDTc(Q), the experimentally observe
thermal resistivity is so small, that it was not detected a
more in the experiment.6 Our theory does not predict th
second transition temperatureDTc(Q), which has been
found in the experiments.5,6,8 While the solid line in Fig. 3
has an inflection point with maximum slope atDTl(Q),
nothing unusual is found atDTc(Q).

The experiments of Refs. 6 and 8 were performed
measuring the temperatures at the bottom plate and at the
plate, where the heat current flows into and out of the
lium. For this reason, these experiments may be influen
considerably by surface effects. In superfluid4He the dissi-
pation of the heat current is caused by creation of vortic
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where the thermal resistivityrT51/lT is proportional to the
density of vortices in the helium. Near the bottom and t
surfaces additional vortices may be created which enha
the vortex density there. This effect may possibly explain
strong enhancement of the experimentally observed6 thermal
resistivity for temperaturesDT in the interval DTc(Q)
<DT<DTl(Q) ~see crosses in Fig. 3!.

In a recent experiment Baddaret al.17 measured the tem
perature gradient]zT in superfluid helium for several hea
currentsQ. To exclude surface effects at the bottom and
plates the temperatures were measured by sidewall therm
eters only. The thermal conductivitylT(DT,Q) was then
obtained from the heat transport equation~5.1!. A power-law
fit formula for lT(DT,Q) was found which is valid for a
wide range of heat currentsQ and temperaturesDT suffi-
ciently belowDTl(Q). In Fig. 3 the thermal resistivityrT
51/lT for Q542.9 mW/cm2 represented by this fit formula
is shown as dashed line. Clearly, the temperature depend
of the experimental data agrees qualitatively with the th
retical prediction~solid line!. However, the absolute value
of the measured thermal resistivity are about a factor of
smaller than the theoretically predicted values. While the
periment of Baddaret al.17 is believed to be a better an
more direct measurement of the thermal conductivity or
sistivity, there remains a disagreement between experim
and theory.

We may possibly explain the discrepancy in the followi
way. In superfluid4He a homogeneous heat currentQ rep-
resents a metastable state.4 For the creation of vortices en
ergy barriers must be overcome. This fact keeps the rat
vortex creation low so that the vortex density and hence
thermal resistivity are small. On the other hand, our theor
based on the approximation where the complex order par
eter c is replaced by a vectorC5(c1 , . . . ,cn) of n com-
plex components in the limitn→`. In this limit the heat
currentQ is always unstable so that the rate of vortex c
ation is higher. Consequently, in our theory the vortex d
sity and hence the thermal resistivity are expected to
larger. However, the large discrepancies in Fig. 3 indic
that the vortex density is a very sensitive quantity which m
be influenced strongly by the kind of the approximation
theory and by certain conditions in the experiment.

B. Asymptotic formulas for the thermal conductivity

For temperaturesT well aboveTl Eqs.~4.41!–~4.43! im-
ply A50 and A1521/2 so thatlT depends only ont
5DT/Tl but not on the heat current. Thus well aboveTl the
heat transport described by Eq.~5.1! is linear. From Eq.~5.2!
we recover the well-known result of Ref. 13 forlT at infini-
tesimalQ in one-loop order. Asymptotically in leading orde
we find

lT;t21j2(d22);DT211(d22)n ~5.4!

which diverges in the limitDT→0. Ford53 including non-
asymptotic effects of the dynamic RG theory one obta
lT;DT20.44. Thus nearTl the thermal conductivity is
strongly enhanced by critical fluctuations.

However, at fixed nonzeroQ for temperaturesT close to
Tl the flow parametert will reach a minimum value and th
correlation lengthj will reach a maximum value, so thatlT
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remains finite even atTl . This fact was found previously in
Ref. 3 and is seen clearly in Fig. 3. The thermal conductiv
lT5lT(DT,Q) becomesQ dependent so that the heat tran
port is nonlinear. The crossover from linear to nonlinear h
transport happens for temperaturesDT below3

DTnl~Q!5MnlTlS Qj0
d21

g0kBTl
D x

~5.5!

with the exponentx5@(d21)n#21, whereMnl is a constant
of order unity. Ford53 the valuesx50.745 andMnl'2.8
were found.3

While the previous theory3 is valid only for DT*0, the
present theory works also for lower temperatures in the
perfluid region. Well belowTl the thermal conductivity~5.2!
can be evaluated asymptotically. Forz&25 the function
Fa(z) approximated by Eq.~4.44! is exponentially large.
Consequently, the amplitudesA and A1 are exponentially
large. From Eqs.~4.31! and ~4.33! we obtain the ratio

A1

A
'2

zFe/2~z!

F211e/2~z!
'321/2~2z!3/2. ~5.6!

Equations~4.36! and ~4.37! reduce to

F@t#Dr8

4g@t#w8@t#
'2

1

Ad
S Qjd21

g0kBTl
D 1

A1
, ~5.7!

r18'2
1

t

j

Tl

]Tl

]z

1

8u@t#

1

A1
. ~5.8!

We assume that the heat currentQ is sufficiently large so that
gravity effects may be neglected and Eq.~5.8! is much
smaller than Eq.~5.7!. Then, from Eq.~4.29! we obtain

s'
1

12Ad
2 S Qjd21

g0kBTl
D 2 1

A1
2 . ~5.9!

On the other hand, the flow parameter equation~4.39! re-
duces to

s1/316u@t#A~2z!51. ~5.10!

Now, Eqs.~5.6!, ~5.9!, and~5.10! are three equations forA,
A1, ands. Eliminatings we obtain the amplitudes

A'
1

2

Ad
2

~8u@t#!3S g0kBTl

Qjd21 D 2

, ~5.11!

A1'
~2z!3/2

2A3

Ad
2

~8u@t#!3S g0kBTl

Qjd21 D 2

. ~5.12!

Eventually, from Eq.~5.2! we obtain the thermal conductiv
ity

lT'
g0kB

tjd22

F@t#

4g@t#w8@t#

1

A12
S ~2z!1/2Ad

8u@t# D 3S g0kBTl

Qjd21 D 2

,

~5.13!



g

to
e
er
ur
ch
a

d
ec

ui

.

s
r

g
r
at
L

d
so
y

ea

t
p

-

he
s
e

th
-

l
ffi-

e-
su-
oth

on.
is

-
er-
the
al
e
an-

ion

the
a-
id–

iv-
n
su-
der
ity
or

e
or
ee
at

s
riti-
i-

12 360 PRB 60RUDOLF HAUSSMANN
wheret522DT/Tl . The variablez depends only weakly
on t, i.e., logarithmically. Thus asymptotically in leadin
order we find

lT;t21j423dQ22;~2DT!(3d24)n21Q22. ~5.14!

For d53 including nonasymptotic effects we obtainlT;
(2DT)2.4Q22.

In their experiment Baddaret al.17 have found that for a
wide range of heat currentsQ the thermal conductivity can
be expressed in terms of the power-law formula

lT,exp5l0@~2DT/Tl!~Q/Q0!20.904#2.8 ~5.15!

;~2DT!2.8Q22.53, ~5.16!

where l051 W/cm K andQ05393 W/cm2. Clearly, this
power-law formula has the same structure as the asymp
formula ~5.14! of our theoretical prediction. However, th
two formulas do not agree quantitatively with each oth
The exponents of the power laws differ by about 20%. F
thermore, the amplitudes differ by a factor of 20 whi
means thatlT,exp is about 20 times larger than the theoretic
lT ~see dashed and solid line in Fig. 3!. The discrepancies
may possibly be due to the approximation we have use
our theory. Further theoretical and experimental work is n
essary to clarify the origin of the discrepancies.

C. Influence of gravity

On earth gravity implies a spatially dependent superfl
transition temperatureTl(z) with a nonzero gradient]zTl

561.273 mK/cm. Supposed the heat currentQ is flowing
in the z direction the gradient]zTl is positive for heat cur-
rent upwards and negative for heat current downwards
our theory the gradient]zTl is incorporated in Eq.~4.24! or
equivalently in Eq.~4.37!. We find that on earth the effect
of heat currentQ and of gravity have equal magnitude fo
Q'65 nW/cm2. For largerQ the heat current is dominatin
while for smallerQ gravity is dominating. We find that fo
Q*1 mW/cm2 the effects of gravity are very small so th
in this case gravity can be neglected. The experiments by
and Ahlers,6 Murphy and Meyer,8 and the experiment by
Baddaret al.17 are performed at heat currentsQ which sat-
isfy this condition.

We have performed our calculations for a positive an
negative gradient]zTl representing gravity on earth and al
for a zero gradient]zTl which corresponds to a microgravit
environment in space. As a result, for heat currentsQ
*100 nW/cm2 the thermal conductivitylT(DT,Q) is
nearly independent of gravity. On the other hand, for h
currents Q&80 nW/cm2 our theory fails if gravity is
present, becauses defined in Eq.~4.29! changes sign so tha
no solution of the seven equations for the dimensionless
rameters in Sec. IV can be found.

Day et al.33 investigated the superfluid–normal-fluid in
terface in4He and measured the thermal conductivitylT for
very small heat currentsQ in the interval 20 nW/cm2,Q
,6 mW/cm2. The heat current flows upwards so that t
gradient]zTl is positive. Clearly, this experiment explore
the crossover from the gravity dominated region to the h
current dominated region. For heat currentsQ
tic
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*100 nW/cm2 the experimental data agree quite well wi
our theoretical prediction forlT . This has been demon
strated in our previous rapid communication19 for tempera-
tures DT*DTl(Q) ~see Fig. 2 therein!. In the superfluid
region forDT&DTl(Q) the thermal resistivity is very smal
so that here experimental data are not available with su
cient accuracy on a logarithmic scale.

For very low heat currentsQ<40 nW/cm2 the data of
Day et al.33 indicate that the thermal resistivityrT
51/lT(DT,Q) is a smooth function ofDT in the limit Q
→0 if gravity is present. This fact means that gravity pr
vents the system from reaching the critical point of the
perfluid transition, so that all physical quantities are smo
and nonsingular nearTl . Unfortunately, our theory fails for
these low heat currents in the gravity dominated regi
However, an alternative approach is possible which
equivalent to Onuki’s theory.2 In mean-field approximation
the model-F equations~2.1! and~2.2! can be solved numeri
cally as partial differential equations to obtain the ord
parameter profile and the temperature profile of
superfluid–normal-fluid interface. To include the critic
fluctuations the model-F equations are renormalized and th
RG theory is applied. The approach is a renormalized me
field theory which works for all heat currentsQ and gravity,
even for very smallQ in the gravity dominated region. In
this way we obtain a thermal resistivityrT51/lT(DT,Q)
which agrees qualitatively with the experimental observat
of Day et al.:33 it is a smooth function ofDT and nearly
independent ofQ for Q&10 nW/cm2 including the limit
Q→0. In agreement with the experiment33 we find that
dTg'15 nK is the relevant temperature scale on which
critical singularity is smoothened by gravity. This temper
ture scale is related to the thickness of the superflu
normal-fluid interface jg'100 mm by dTg /jg'u]zTlu
51.273 mK/cm.

To measure the critical singularity of the thermal resist
ity or conductivity for heat currents smaller tha
100 nW/cm2 and temperatures closer than 15 nK to the
perfluid transition, the experiment must be performed un
microgravity conditions in space. Of course, for zero grav
where]zTl50 our theory presented in this paper works f
all heat currents and never fails at any lowQ.

VI. TEMPERATURE PROFILE

A. Numerical results

Once the thermal conductivitylT5lT(DT,Q) has been
determined, the temperature profileT(z) is calculated by
solving the heat transport equation~5.1! as a differential
equation which can be written in the form

]T

]z
52

Q

lT~DT,Q!
, ~6.1!

whereDT5T(z)2Tl(z). In Fig. 4 the resulting temperatur
profile of the superfluid–normal-fluid interface is shown f
Q51 mW/cm2. The several curves correspond to all thr
gravity conditions as indicated in the figure: vertical he
flow upwardsand vertical heat flowdownwardson earth and
heat flow inzero gravityin space. The temperature profile
T(z) are shown as solid lines. The spatially dependent c
cal temperaturesTl(z), which represent the gravity cond
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tions, are shown as dashed lines. While in Sec. V we h
found that lT(DT,Q) does not depend on gravity forQ
*0.1 mW/cm2, the temperature profileT(z) is considerably
influenced by gravity which is clearly seen in Fig. 4 becau
there are several solid lines.

In Fig. 4 we have chosen the coordinates so that
superfluid–normal-fluid interface, whereDT5T(z)2Tl(z)
50, is located atz50 and T(z)5T0. For this reason all
curves intersect with each other in the point (0,0). Foz
,0 the helium is normal fluid becauseDT5T(z)2Tl(z)
.0 so that the solid line is above the respective dashed
On the other hand forz.0 the helium is superfluid becaus
hereDT5T(z)2Tl(z),0 so that the respective solid line
below the respective dashed line.~Since the many curves in
Fig. 4 may be confusing, one should have in mind that o
those solid and dashed lines should be compared with e
other which belong to the same gravity condition.! Further-
more, we have chosen a strongly enlarged temperature s
~in mK) which resolves the very small temperature gradie
in the superfluid regionz.0. For this reason in the norma
fluid regionz,0 the solid line in Fig. 4@temperature profile
T(z)# has a very steep gradient and goes up nearly vertic
for decreasingz. The shifted critical temperatureDTl(Q),
which here is20.10 mK, is located approximately at thi
point where the solid line has a ‘‘round corner’’ and th
gradient changes from large negative to small negative.

In the normal-fluid regionz&0 whereDT*DTl(Q) the
three solid lines fall all together into one line which indicat
that here gravity is negligible. On the other hand in the
perfluid region z*0 where DT&DTl(Q) all three solid
lines differ from each other which means that here gravity
important. A general criterion can be found to distinguish
regions where gravity is important and where it is negligib
In the differential equation~6.1! gravity is included implic-
itly via DT5T(z)2Tl(z) by the gradient of the critical tem
peratureTl(z). Gravity will be important or not if the spatia
dependence ofTl(z) or of T(z) is dominating. We may

FIG. 4. The temperature profile of the superfluid–normal-flu
interface for the heat currentQ51 mW/cm2 for the three gravity
conditions: vertical heat flowupwardsanddownwardson earth and
heat flow inzero gravityin space. While the solid lines correspon
to the temperature profilesT(z), the dashed lines represent the sp
tially dependent critical temperaturesTl(z), which reflect the grav-
ity conditions.
e
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define theQ-dependent temperature differenceDT1(Q) by
the conditionu“Tu5u“Tlu, which in terms of Eq.~6.1! can
be written as

Q

lT„DT1~Q!,Q…

5U]Tl

]z U51.273 mK/cm. ~6.2!

For DT.DT1(Q) it is u“Tu.u“Tlu so that the heat curren
is dominating. On the other hand, forDT,DT1(Q) it is
u“Tu,u“Tlu so that gravity is dominating. Consequentl
for temperaturesDT sufficiently well aboveDT1(Q) it is
u“Tu!u“Tlu so that gravity can be neglected while othe
wise gravity effects are significant. ThusDT1(Q) may be
viewed as the temperature which separates the heat cu
dominated region from the gravity dominated region.

For the heat currentQ51 mW/cm2 in Fig. 4 we find
DT1(Q)520.14 mK which is slightly below but close to
DTl(Q)520.10 mK. Thus in this case the interface be
tween the superfluid and the normal-fluid region nearly
incides with the interface which separates the gravity do
nated region from the heat current dominated region. T
fact is clearly seen in Fig. 4. For other heat currentsQ the
situation may change, becauseDT1(Q) andDTl(Q) may be
farther apart from each other. In Fig. 5 we plotDT1(Q) and
DTl(Q) as functions ofQ on a double logarithmic scale
Our theoretical result forDT1(Q) obtained from Eq.~6.2! is
shown as solid line. Furthermore,DTl(Q) obtained from Eq.
~5.3! is shown as dashed line. For the heat currentsQ
*0.1 mW/cm2, for which our theory is valid in gravity,
both DTl(Q) andDT1(Q) are negative. While in Fig. 5 the
solid line representsDT1(Q) for vertical heat flow down-
wards, DT1(Q) for vertical heat flow upwards will be
slightly different. However, the difference is very small. It
smaller than the width of the solid line so that it can
neglected. Thus the solid line in Fig. 5 representsDT1(Q)
for both heat flow directions with sufficient accuracy.

For Q50.22 mW/cm2, in Fig. 5 the solid line and the
dashed line intersect each other so thatDT1(Q)5DTl(Q).
For larger heat currentsDT1(Q) is always belowDTl(Q) so
that the separation between the gravity dominated and
heat current dominated region is located always in the su
fluid region or equivalently the superfluid–normal-fluid in

-

FIG. 5. The temperature shiftsDT1(Q) ~solid line! andDTl(Q)
~dashed line!, obtained from Eqs.~6.2! and ~5.3!, respectively, as
functions of the heat currentQ in a double logarithmic plot.
DT1(Q) separates the gravity dominated region from the heat c
rent dominated region, whileDTl(Q) separates the superfluid re
gion from the normal-fluid region.
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terface is located in the heat current dominated region
turns out that for sufficiently large heat currents, sayQ
*10 mW/cm2, the superfluid–normal-fluid interface i
nearly free from influences of gravity, while gravity effec
rise to a significant magnitude only far away from the int
face in the superfluid region. However, since the interfa
thickness must be larger than the size of the thermome
experiments to resolve the temperature profile of
superfluid–normal-fluid interface must be performed
very small heat currentsQ&0.1 mW/cm2. For these small
heat currents, on earth the interface would be strongly in
enced by gravity. For this reason, an experiment to mea
the temperature profile of the interface is prepared to be
formed under microgravity conditions in space.34

B. Asymptotic formulas

By using the asymptotic formulas of the thermal condu
tivity lT(DT,Q) in Sec. V B, the differential equation~6.1!
can be solved explicitly so that asymptotic formulas for t
temperature profileT(z) are found in several regions. First o
all we consider the heat flow in zero gravity whereTl(z)
5Tl is constant. In this case the differential equation~6.1!
can be integrated easily by separation of the variables so

z52E
Tl

T

Q21lT~T82Tl ,Q!dT8. ~6.3!

In the normal-fluid region forT sufficiently well aboveTl

the asymptotic formula~5.4! may be inserted. Consequentl
we obtain

DT~z!5T~z!2Tl'K1~2Qz!1/[(d22)n] ~6.4!

for z!0 with a certain constantK1 . On the other hand, fo
T sufficiently well belowTl the asymptotic formula~5.14!
may be inserted which implies

DT~z!5T~z!2Tl'2K2~Q3z!1/[(3d24)n] ~6.5!

for z@0 with a certain constantK2 . Including the nonas-
ymptotic effects of the dynamic RG theory, for the tempe
ture profileT(z) we obtain the asymptotic formula

T~z!'H Tl1K1~2Qz!1.79 for z!0

Tl2K2~Q3z!0.294 for z@0
~6.6!

which is valid for the heat flow in zero gravity. This formu
can be compared with the solid line in Fig. 4 for zero gravi
Clearly, the temperature profileT(z) decreases monoton
cally with increasingz. There is no lower bound forT(z) in
the limit z→`.

Asymptotic formulas for the temperature profileT(z) can
be found also for vertical heat flows in gravity. The interfac
which separates the heat current dominated region from
gravity dominated region, is located at a coordinatez1 de-
fined by DT(z1)5DT1(Q). For Q.0.22 mW/cm2 it is z1
.0 so that the interface is located in the superfluid regi
For z!z1 gravity is negligible. Consequently, the asympto
formula ~6.6! remains valid forz!z1 whereTl5Tl(z50)
should be inserted. In the case of a vertical heat flowup-
wardsanother asymptotic formula can be found forz@z1. In
It
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Fig. 4 it is clearly seen that in this case the temperat
profile approaches a limiting value

lim
z→1`

T~z!5T`~Q! ~6.7!

which is belowTl(z50). For z@z1 the temperature differ-
ence is approximatelyDT(z)'T`(Q)2Tl(z) so that itsz
dependence is governed byTl(z), i.e., by gravity. Then, by
using the asymptotic formulalT;(2DT)2.4Q22 for the
thermal conductivity we obtain the asymptotic formula

T~z!'T`~Q!1K`Q3~z2z0!21.4 for z@z1 , ~6.8!

where K`.0 and z0,0 are certain constants andT`(Q)
5Tl(z50)1z0]zTl .

On the other hand, for a vertical heat flowdownwardsthe
solid line in Fig. 4 approaches a straight line parallel to t
dashed line forz@z1 so that the gradients]zT and]zTl are
nearly equal. The distance from criticalityDT(z)5T(z)
2Tl(z) approaches a constant value given by

lim
z→1`

DT~z!5DT1~Q!. ~6.9!

Consequently, for the temperature profile we find t
asymptotic formula

T~z!'Tl~z!1DT1~Q! for z@z1 . ~6.10!

C. Dissipative region

For the vertical heat flow upwards the asymptotic form
las ~6.6! and ~6.8! indicate the existence of a dissipative r
gion which may be related to the dissipative region obser
in the experiments by Liu and Ahlers6 and by Murphy and
Meyer.8 The superfluid transition happens in two steps az
50 and z5z1 or equivalently at the temperaturesDT
5DTl(Q) and DT5DT1(Q). The region 0&z&z1, which
corresponds toDT1(Q)&DT&DTl(Q) ~in Fig. 5 the region
between the solid and the dashed line!, may be identified as
the dissipative region, because here the temperature pr
T(z) has a finite gradient. On the other hand, the regioz
*z1 which corresponds toDT&DT1(Q) ~in Fig. 5 the re-
gion above the solid line! is the really superfluid region
because here the asymptotic formula~6.8! implies a nearly
flat temperature profile with a nearly zero gradient. Th
DT1(Q) may be interpreted as the transition temperature
tween the dissipative region and the really superfluid regi
which should be related to the temperature shift

DTc~Q!5T`~Q!2Tl~z50! ~6.11!

measured in the experiments.5,6,8 We find thatDTc(Q) ob-
tained from our theory is close toDT1(Q) and located
slightly above the solid line in Fig. 5. From the slopes of t
lines in the double-logarithmic plot we obtain effectiv
power lawsDT1(Q);2Qx andDTc(Q);2Qx with nearly
the same exponentx, which varies betweenx'0.9 for
0.1 mW/cm2&Q&1 mW/cm2 and x'1.25 for Q
*10 mW/cm2.

While our theoretical predictions for the dissipative r
gion agree qualitatively with the experiment
observations,5,6,8 there are three major quantitative disagre
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ments. First of all, the experimentally observed dissipatio
much larger than the theoretically predicted, because
DTc(Q),DT,DTl(Q) the measured thermal resistivit
rT51/lT of Ref. 6~crosses in Fig. 3! is much larger than the
theoretically predicted~solid line in Fig. 3!. Second, the ex-
perimentalDTc(Q);2Qx does not agree with the theoret
cally predicted because the exponentxexp50.81 of Duncan,
Ahlers, and Steinberg5 is considerably smaller than the th
oretical exponentx*0.9. Furthermore, our theory predicts
much larger spatial extentDz5z1 of the dissipative region
than it is in the experiments5,6. We find Dz*0.25 cm for
Q*10 mW/cm2 which is about the sample size, while th
experiments find a spatial extentDz much smaller than the
sample size.

The disagreements may possibly be due to the exp
ments of Refs. 5, 6, and 8, because in the experimen
Baddaret al.17 the dissipative region has not been observ
in this form. We may use the experimental fit formula17

~5.15! for the thermal conductivity to calculate the relat
DT1,exp(Q) andDTc,exp(Q) by Eqs.~6.2! and~6.11!, respec-
tively. As results we obtain power laws;2Qx with the
exponentxexp51.26. This exponent agrees quite well wi
our theoretical valuex51.25 for large heat currents. If w
plot DTc,exp(Q) in Fig. 5, the respective line would be pa
allel to the solid line forQ*10 mW/cm2 but located some-
what below the solid line. Thus there remains a quantita
disagreement which is related to the quantitative disag
ment oflT . However,DTc,exp(Q) does also not agree wit
the DTc(Q) of the previous experiments.5,6 Thus for the
clarification of the disagreements also further experime
work is necessary.

Since the thermal conductivitylT(DT,Q) ~solid line in
Fig. 3! is smooth and does not show any unusual behavio
DT1(Q) andDTc(Q), these temperatures are not propert
of the helium. Rather,DT1(Q) andDTc(Q) are implied by
gravity and occur when integrating the heat transport eq
tions ~5.1! or ~6.1! to calculate the temperature profile. Th
we predict that in the experiment in space,34 where gravity is
zero, theDTc(Q) of the experiments of Refs. 5, 6, and
should not be observable and not be existent, while
DTl(Q) is expected to be found.

D. Self-organized critical state

In gravity for vertical heat flows downwards the gradien
]zT and]zTl are both negative. A situation may arise whe
both gradients are equal,]zT5]zTl , so that DT(z)
5DT1(Q) is constant over a larger region in space. T
state of the helium represents a self-organized critical~SOC!
state which was considered theoretically by Onuki35 and pro-
posed for an experiment by Ahlers and Liu.36 Recently,
Moeur et al.7 have realized the SOC state and measured
distance from criticalityDT(z)5DT1(Q) as a function of
the heat currentQ for 40 nW/cm2,Q,6 mW/cm2. The
experimental result agrees quite well with our theoreti
prediction for DT1(Q), while our theory does not includ
any unknown adjustable parameters. This has been dem
strated in our previous paper19 for heat currents below
1.5 mW/cm2 ~see Fig. 3 therein!. However, for Q
*1.5 mW/cm2 deviations occur: for a given distance fro
criticality DT5DT1(Q) the related heat currentQ is larger
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in the experiment than in our theory. This fact means that
Q*1.5 mW/cm2 the dissipation observed in th
experiment7 is smaller than the dissipation predicted by o
theory.

The SOC state is stable in the following sense: the d
tance from criticalityDT(z) always converges to the con
stant valueDT1(Q) for largez according to Eq.~6.9!. This
fact is clearly seen in Fig. 4. However, there are two pos
bilities: DT(z) may converge toDT1(Q) either fromabove
or from below. In the first case an interface between norm
fluid helium and the SOC state is found, while in the seco
case an interface between superfluid helium and the S
state is found. In Fig. 4 the temperature profilesT(z) are
shown for both cases, where the superfluid-SOC interfac
represented by the lowest solid line. Both kinds of interfac
were realized in the experiment by Moeuret al.7

SinceDT(z)5DT1(Q) is constant, the SOC state is ho
mogeneous in space so that it is an ideal system for theo
ical and experimental investigations. In the Appendix w
evaluate the Green’s functionG(r ,r 8) and the related quan
tities ns andJs by assumingr 1 andDr to be linear functions
of the space coordinater given by Eqs.~A12! and ~A13!.
While in general this assumption implies an approximatio
for the SOC state the assumption isexactlysatisfied, because
r 1 and Dr are directly related to the temperature profil
DT5T(z)2Tl(z) and Tl(z) which are constant and linea
in z, respectively.

VII. CORRELATION LENGTHS

The RG theory includes a characteristic length defined
j5(m l )21, which is called the correlation length. Near crit
cality our theory yields the asymptotic resultj5j0t2n

where31,32 n50.671 andj051.4531028 cm. The correla-
tion length depends onDT andQ indirectly via the RG flow
parametert5t(DT,Q) determined in Sec. IV. In Fig. 6 the
correlation lengthj is shown logarithmically as a function o
DT for Q542.9 mW/cm2, i.e., the same heat current as
Fig. 3. Clearly,j increases whenDT approaches the supe

FIG. 6. The correlation lengths as functions ofDT for the heat
current Q542.9 mW/cm2. The correlation lengthj is shown as
solid line. The dephasing lengthj1 obtained from Eq.~7.7! is
shown as dashed line. The dotted line represents the characte
length scalej2 of the temperature variations defined by Eq.~7.11!.
The arrow indicatesDTl(Q).
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12 364 PRB 60RUDOLF HAUSSMANN
fluid transition. The nonzero heat current implies thatj is a
smooth function ofDT which has a maximum located a
DTl(Q). In Fig. 6 the maximum is clearly shown by th
solid line, where its position atDTl(Q) is indicated by the
arrow.

Correlation lengths can be observed in the equal-t
Green’s functionG(r ,r 8) because they represent the char
teristic length scales for the decay of the Green’s functi
when the separation of the two space pointsur2r 8u in-
creases. In the normal-fluid region forDT.DTl(Q) we find

G~r ,r 8!→0 for ur2r 8u@j ~7.1!

which is valid for zero and nonzero heat currentsQ. In the
superfluid region forDT,DTl(Q) the decay happens in tw
steps according to

G~r ,r 8!→H h2eik(r2r8) for j!ur2r 8u!j1

0 for ur2r 8u@j1

,

~7.2!

wherej1 is a second correlation length which will be defin
below. In this case the decay is strongly influenced by
heat current viak and j1. In thermal equilibrium whereQ
50 andk50, the long-range order implies a nonzero ord
parameter̂c&5h so thatj1 is infinite andG(r ,r 8) does not
decay to zero but only to the absolute square of the o
parameterh2. In the previous theory of Ref. 4 the heat flo
is assumed to be metastable where dissipation by creatio
vortices was neglected. Thus in this theory long-range or
is preserved also for nonzeroQ so that ^c(r )&5heikr is
again nonzero,j1 is infinite, and the Green’s function doe
not decay to zero.

However, in the present theory vortices are included
plicitly so that ^c(r )&50, j1 is finite, andG(r ,r 8) decays
to zero eventually for large distances. The second correla
length j1 represents adephasing lengthof the order-
parameter fieldc(r ) which is equal to the average distan
between the vortices. An approximate formula forj1 can be
extracted from the integral representation~A28! of the
Green’s function in the Appendix. In the superfluid regi
for DT sufficiently below DTl(Q) the exponential factor
exp$2ar̄12a3s% as a function ofa has a sharp maximum
located at

a05~2z!3/2/@31/2~2 r̄ 1!#, ~7.3!

where r̄ 1 and z5s21/3r̄ 1 are negative. Thus in the secon
line of Eq. ~A28! we may replacea approximately bya0 so
that the integral can be evaluated by Eq.~A29!. As a result
we obtain the Green’s function

G~r ,r 8!'nsexp$ ik~r2r 8!2~r2r 8!2/2j1
2%, ~7.4!

where

k5a0~F/8gw8!b ~7.5!

is the wave vector and

j15~2a0!1/2 ~7.6!

is the dephasing length. Clearly, Eq.~7.4! implies the
asymptotic decay formula~7.2! whereh25ns. Inserting Eq.
e
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~7.3! into Eq.~7.5! we find thatk is exactly the average wav
vector~A41! which we have calculated in the Appendix. B
using r̄ 15j22r1 and r15s1/3z we find that the dephasing
length ~7.6! can be written in the form

j15j@ 4
3 ~2z!#1/4s21/6. ~7.7!

This formula is suitable for a numerical evaluation ofj1
becausez ands are two of the seven dimensionless para
eters, which are determined in Sec. IV. In Fig. 6 the deph
ing length j1 is shown as dashed line. We note thatj1 is
defined only in the superfluid region forDT&DTl(Q). It
turns out thatj1 is always larger thanj. While the correla-
tion lengthj decreases with increasing distance from cr
cality, the dephasing lengthj1 increases.

By using the asymptotic formulas of Sec. V B a
asymptotic formula forj1 can be derived. Eliminating the
amplitudeA from Eqs.~5.10! and ~5.11! we obtain

s21/6'~2z!1/2
Ad

8u@t#

g0kBTl

Qjd21
. ~7.8!

Consequently, from Eq.~7.7! we obtain

j1'@ 4
3 ~2z!3#1/4

Ad

8u@t#

g0kBTl

Qjd22
. ~7.9!

Sincez is nearly constant, the leading dependences onDT
andQ are governed by

j1;Q21j2(d22);Q21~2DT!(d22)n. ~7.10!

This asymptotic formula clearly indicates that the dephas
lengthj1 diverges in the limitQ→0. Thus in thermal equi-
librium whereQ50 the second correlation lengthj1 is infi-
nite as expected, which means that in this case vortices
not present.

In the Appendix we have calculated the Green’s funct
G(r ,r 8) and the related quantitiesns and Js approximately
by linearizing the parametersr 1 andDr locally with respect
to the space variabler according to Eqs.~A12! and ~A13!.
Since r 1 and Dr are related to the temperature profil
DT(z)5T(z)2Tl(z) and T(z), respectively, and since
Tl(z) is always a linear function inz, the validity of the
approximation is proven if the curvature]z

2T of the tempera-
ture profile is negligible compared to the gradient]zT. For
this purpose we define

j25u]zTu/u]z
2Tu ~7.11!

which may be viewed as the characteristic length scale
the variations of the temperature profileT(z) with respect to
the space coordinatez. In Fig. 6 the characteristic lengthj2
is shown as dotted line. The curvature ofT(z) is negligible if
j2 is considerably larger than the intrinsic correlation leng
j andj1 of the helium. In Fig. 6 the dotted line is conside
ably above the solid line and the dashed line for temperatu
DT sufficiently far away fromDTl(Q). Consequently, the
criterion for the validity of our approximation is satisfied
the normal-fluid region and in the superfluid region suf
ciently far away from the superfluid–normal-fluid interfac
Close to the interface all three correlation lengthsj, j1, and
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j2 have the same order of magnitude so that here the cu
ture of T(z) is important and our approximation is strict
speaking invalid. However, since nothing unusual is o
served here, we believe that our theory yields reasonable
reliable interpolations for the physical quantities close to
interface.

The dotted line in Fig. 6 represents the characteri
lengthj2 for a heat flow in zero gravity. Similar results fo
j2 are obtained if we insert the temperature profile of a v
tical heat flow in gravity. Deviations are expected for te
peraturesDT&DT1(Q). In gravity we find a somewha
smaller j2, except for the downwards heat flow ifDT is
close toDT1(Q). In the latter casej2 diverges in the limit
DT→DT1(Q) which means that for the SOC state the a
proximation is exactly valid. Eventually, it turns out that th
criterion for the validity of our approximation for calculatin
G(r ,r 8), ns, andJs is not affected significantly by gravity.

VIII. ENTROPY AND SPECIFIC HEAT

In model F the field variablem(r ,t) represents a fluctu
ating entropy density divided bykB . For this reason the loca
entropy density is defined by

S5S01kB^m&, ~8.1!

whereS0 is a constant. Thus the average^m& must be evalu-
ated. From the free-energy functional~2.3! we derive

K dH

dmL 5x0
21^m&1g0^ucu2&2h0 . ~8.2!

We insert this quantity into Eq.~3.29!, replace^ucu2&5ns,
and obtain

r 0~z!5t0~z!12x0g0
2ns12g0^m&. ~8.3!

From Eq.~3.31! we obtainns5(4u0)21@r 1(z)2r 0(z)#. We
resolve Eq.~8.3! with respect to^m& and then obtain the
entropy

S5S01kB~2g0!21H 2t0~z!1r 0~z!

1
x0g0

2

2u0
@r 0~z!2r 1~z!#J . ~8.4!

Within our approximation in Secs. II and III we findr 0(z)
5r 1(z)50 at the critical point (DT,Q,g)5(0,0,0). Hence

Sl5S02kB~2g0!21t0~z! ~8.5!

is the entropy density atT5Tl in thermal equilibrium and
zero gravity. We define the entropy differenceDS5S2Sl as
the deviation from the entropy at criticalitySl . Then, from
Eqs.~8.4! and ~8.5! we obtain

DS5kB

r 0~z!

2g0
F11

x0g0
2

2u0
S 12

r 1~z!

r 0~z! D G . ~8.6!

While Sl is a constant,DS5DS(DT,Q) is strongly influ-
enced by the critical fluctuations near the superfluid tran
tion. For this reason, we must renormalize the entropyDS
a-

-
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e

ic

-
-

-
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and apply the RG theory. In analogy to the field variab
m(r ,t) the entropy is renormalized by13

DS5~x0Zm!1/2DSren. ~8.7!

In Eq. ~8.6! we replace the bare model-F parameters by the
renormalized counterparts by using Eqs.~4.1!, ~4.5!, and
~4.6!. As a result we obtain the renormalized entropy

DSren5kBS Ad

meD 1/2
r ~z!

2g F11
g2

2uS 12
r 1~z!

r ~z! D G . ~8.8!

Within the Hartree approximation allZ factors cancel, where
an expansion with respect to the coupling parameters is
necessary. By resolving Eq.~4.25! with respect tox0Zm we
obtain the renormalization factor of Eq.~8.7! as

~x0Zm!1/25~Admd!1/2@2tg#21. ~8.9!

We replacer (z) andr 1(z) by the dimensionless variablesr
andr1 according to Eqs.~4.11! and~4.13!. We apply the RG
theory to Eqs.~8.7!–~8.9! by replacing m→m l 5j21, u
→u@t#, g→g@t#, etc., so that now all dimensionless co
pling parameters depend on the RG flow parametert. Com-
bining the resulting three equations together we eventu
obtain the entropy difference

DS5kB

Ad

4tjd
rF 1

g@t#2 1
1

2u@t# S 12
r1

r D G . ~8.10!

Equation~8.10! is the final formula which can be used fo
numerical evaluation of the entropy densityS5Sl1DS.
There are no adjustable parameters present in this form
The needed dimensionless parameterst, r, andr1 and the
correlation lengthj5j(t) were determined in Sec. IV. We
note that Eq.~8.10! was derived within the Hartree approx
mation. It is not restricted to the physical situation cons
ered in this paper where the helium is influenced by a h
current and gravity. The formula can be applied also to ot
physical situations as, e.g., rotating helium whenever
Hartree approximation is used.

The entropyDS is a static quantity so that nonasymptot
effects of the dynamic RG theory are very small. For th
reason, close to criticality Eq.~8.10! can be evaluated as
ymptotically by using the asymptotic formulasj
5j0t2n, u@t#'u* 50.0362, and

1

g@t#2 5
4n

a
~12bta!, ~8.11!

wheren50.671 anda522dn520.013 ~see Refs. 13 and
30!. Equation~8.11! is obtained by solving the RG equatio
for g@t# asymptotically. Sinceg@t# is a known function,13 b
is a known constant~which actually is close to unity!. Now,
inserting the asymptotic formulas into Eq.~8.10! we eventu-
ally obtain the entropy density

S5Sl1t„B1Ã$~4n/a!1E@u* #%t2a
…, ~8.12!

where

t5tr5DT/Tl , ~8.13!

E@u#5~2u!21@12r1 /r#, ~8.14!
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Ã5kBAd /4j0
d , ~8.15!

B5Ã~24n/a!b. ~8.16!

The specific heatC is obtained by differentiation of the
entropyS with respect to temperature according to

C5Tl

]S

]T
5

]S

]t
. ~8.17!

From our experience the best way to calculate the spe
heat is first to calculate the entropySby Eqs.~8.10! or ~8.12!
and then to determine the specific heatC by numerical dif-
ferentiation via Eq.~8.17!. ~The alternative way, to differen
tiate the bare entropy~8.4! first with respect tor 0(z) and
then to apply the RG theory, is less reliable and yields a
facts, so that it should not be used.! While the constantsÃ
and B are given by Eqs.~8.15! and ~8.16!, we can alterna-
tively determine these constants by fitting the specific hea
thermal equilibrium to the data of the newest experimen32

which was performed in microgravity in space. In this w
we obtainÃ52.22 J/mol K andB5456 J/mol K. Since in
the experiments themolar specific heat is measured, we ha
multiplied the constants by the molar volumeVl , which for
saturated vapor pressure is31 Vl527.38 cm3/mol.

The specific heatC depends on the thermodynamic va
able which is kept constant when performing the differen
tion with respect to temperature in Eq.~8.17!. Since we con-
sider liquid 4He in the presence of a constant heat flow,
heat currentQ is the natural variable which should be ke
constant. For this reason we calculateCQ at constantQ. In
Fig. 7 CQ5CQ(DT,Q) is plotted as a function ofDT for
Q542.9 mW/cm2, i.e., the same heat current as in Figs
and 6. Our theoretical result is shown as solid line. For co
parison, the specific heat in thermal equilibrium atQ50 is
shown as dotted line. While in thermal equilibrium the sp
cific heat is singular atDT50, for nonzeroQ we find a

FIG. 7. The specific heatCQ(DT,Q) as a function ofDT for the
constant heat currentQ542.9 mW/cm2. Our theoretical result ob-
tained from Eqs.~8.12! and ~8.17! is shown as solid line. The
dashed line representsCQ of the previous theory,37 where vortices
were neglected. For comparison we have plotted the specific he
thermal equilibrium forQ50 as dotted line. The arrow indicate
DTl(Q).
c

i-

in

-

e

-

-

smooth curve forCQ which exhibits a strong maximum lo
cated atDTl(Q). We note that the temperatureT(z) is space
dependent, so that the specific heatCQ(z) is also space de
pendent and must be interpreted as a local quantity.

Within the framework of the previous theory,4 the specific
heatsCvs

andCQ5CJs
were calculated and a similar formul

like Eq. ~8.12! was obtained for the entropy.37 In Fig. 7 the
specific heatCQ of the previous theory is shown as dash
line. Since the heat flow is metastable below and unsta
above DTl(Q), the dashed line is defined only forDT
,DTl(Q). The specific heatCQ is enhanced by the nonzer
Q and diverges46 at DTl(Q). Experiments to measureCQ at
constantQ are in progress.38 An enhancement of the specifi
heat by a nonzero heat current was found just recently.

The self organized critical~SOC! state represents an ide
system for measuring thermodynamic quantities like the s
cific heat because it is homogeneous in space over a l
region. In this case the temperature gradient is fixed by gr
ity according to]zT5]zTl521.273 mK/cm. Thus in the
SOC state the specific heatC

“T at constant-temperature gra
dient will be measured. We calculateC

“T from Eq.~8.17! by
inserting the entropy~8.12! and keeping]zT5]zTl constant
when performing the numerical differentiation, while th
heat currentQ is varied appropriately. The result is shown
Fig. 8 as solid line. For comparison, the equilibrium spec
heat is shown as dotted line. Clearly, the nonzero temp
ture gradient]zT5]zTl of the SOC state induced by gravit
implies a rounding of the critical singularity. The solid line
smooth and exhibits a maximum atDTg5245 nK. While
in Fig. 7 the maximum ofCQ is very strong and enhanced
here in Fig. 8 the maximum ofC

“T is moderate and jus
represents a smooth and round interpolation of the equ
rium specific heat near criticality. The temperature scale
Fig. 8 indicates that nano-Kelvin resolution is sufficient for
measurement ofC

“T . Thus the rounded temperature depe
dence ofC

“T should be accessible by present-day expe
ments. Since gravity is needed for the realization of the S
state, the experiment should be performed on earth.

in

FIG. 8. The specific heatC
“T(DT,Q) as a function ofDT for

the self-organized critical~SOC! state where the temperature grad
ent is fixed by gravity according to]zT5]zTl521.273 mK/cm.
The solid line represents our theoretical result obtained from E
~8.12! and~8.17!. For comparison the specific heat in thermal eq
librium is shown as dotted line.
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IX. VORTICES AND MUTUAL FRICTION

While our theory does not include vortices explicitly, he
we present some arguments, which support that our the
includes the effect of vortices implicitly. In Sec. V we hav
calculated a finite thermal conductivitylT for DT
&DTl(Q) which implies dissipation of the heat currentQ in
the superfluid state. Since the heat is transported con
tively by the superfluid–normal-fluid counterflow, a supe
fluid current with a velocityvs is induced in the opposite
direction of the heat flow. The superfluid velocityvs is re-
lated to the phase of the order parameter fieldc(r ,t), so that
the dissipation of the superfluid current is necessarily rela
to the creation of vortices. Thus since our theory descri
dissipation, it must include vortices in some way.

Gorter and Mellink15 investigated mutual friction of the
counterflow experimentally and proposed the mutual-frict
force density

f 5Arnrs~vs2vn!
3, ~9.1!

where A is the so called Gorter-Mellink coefficient whic
may be a function of temperature but which should be in
pendent of the velocitiesvs andvn . The force density~9.1!
was added to the hydrodynamic equations of the two-fl
model @see Eqs.~8! and ~9! in Ref. 15#. For a stationary
counterflow the relation

rnrs

r
sl]zT5Arnrs~vs2vn!

3 ~9.2!

was found, where the pressure gradient is neglected clos
criticality. This relation implies]zT;(vs2vn)

3 and means
that the temperature gradient induced by the mutual frict
is proportional to the third power of the counterflow velocit
By experimental and theoretical considerations Vine16

showed that the ansatz~9.1! is related to a turbulent supe
fluid flow which generates a tangle of vortices which imp
the mutual friction. A statistical theory for the superflu
turbulence in a homogeneous counterflow was develope
Schwarz.39 This latter theory supports Eqs.~9.1! and ~9.2!.
The Gorter-Mellink coefficientA was calculated39 for tem-
peratures in the interval 1.2,T,2.05 K and agreemen
with the experiments16,40 was found~see also the review by
Tough41!.

Now, here we show that the ansatz of Gorter and Mell
@Eq. ~9.1!# can be derived from modelF by our approxima-
tion. To do this, we resolve Eq.~9.2! with respect toA,
obtain

A5
sl

r

]zT

~vs2vn!
3

, ~9.3!

and insert the results of our calculations. The coefficienA
must be proven to be independent ofQ and vs2vn . Near
criticality vn can be neglected because it is much sma
than vs. The superfluid velocityvs is related to the wave
numberk of the order parameter byvs5\k/m4. The entropy
per masssl is related to the model-F parameterg0 by31 sl

5(\/m4)(g0 /Tl). The temperature gradient]zT is related
to the thermal conductivitylT by Eq. ~6.1!. Then, from Eq.
~9.3! we obtain the Gorter-Mellink coefficient
ry

c-
-

d
s

n

-

d

to

n

by

k

r

A5S m4

\ D 2 g0

rlTl

Q

lTk3
. ~9.4!

In the previous theory4 the heat currentQ was calculated as
a function of the wave numberk where the heat flow is
metastable and dissipation by creation of vortices is
glected. In the superfluid region sufficiently well belo
DTl(Q) the dissipation is small so that the result forQ
5Q(DT,k) of Ref. 4 may be used to replacek by Q. In this
region,Q5Q(DT,k) is approximately a linear function ofk
given by

Q5
g0kBTl

jd22
AdS 1

8u@t#
1

1

dD k. ~9.5!

Consequently, we obtain

A5S m4

\ D 2 g0

rlTl

1

lTQ2 Fg0kBTl

jd22
AdS 1

8u@t#
1

1

dD G 3

.

~9.6!

The last factor@•••# does not depend explicitly onQ. It only
depends on the RG flow parametert via j5j0t2n where
u@t#'u* 50.0362. Now, inserting the asymptotic formu
~5.13! for the thermal conductivitylT we clearly see that the
heat currentQ cancels. Neglecting the one-loop contributio
in the heat-current formula~9.5! we obtain the Gorter-
Mellink coefficient

A'S m4

\ D 2 g0

rl
A 12

~2z!3/2

4g@t#w8@t#

F@t#
tj2 ~9.7!

which does not depend explicitly onQ. A weak indirectQ
dependence is included in the dimensionless variablez,
which represents the nonasymptotic effects of the dyna
RG theory. In leading order we find the asymptotic formu

A;tj2;~2DT!122n. ~9.8!

This result proves that within the approximation of o
theory the ansatz of Gorter and Mellink is correct and can
derived from modelF.

Equation~9.6! can be used for an explicit calculation o
the Gorter-Mellink coefficientA5A(DT,Q) as a function of
DT5T2Tl and Q, where our result forlT5lT(DT,Q)
from Sec. V is inserted. While most constants and para
eters are known, we additionally needm4 /\56320 s/cm2

and the densityrl of the helium atTl , which at saturated
vapor pressure is given by31 rl5NAm4 /Vl50.146 g/cm3.
In Fig. 9 our theoretical prediction forA is shown versusDT
double logarithmically for several heat currentsQ which
change by a factor of 10 between each curve. The lowest
most left curve corresponds to the smallest heat currenQ
51 pW/cm2, while the highest and most right curve corr
sponds to the largest heat currentQ51 mW/cm2. Since the
helium is superfluid only forDT&DTl(Q), all curves have
an endpoint on the left-hand side.

If the cancellation ofQ in Eq. ~9.6! is perfect, then the
curves in Fig. 9 would lie all on the same line. This, how
ever, is not the case. The nonasymptotic effects of the
namic RG theory imply thatA(DT,Q) depends weakly on
Q. While the heat currentQ is varied over 9 decades,A
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changes by a factor of 3 to 10 or by 0.5 to 1.0 decad
Consequently, we approximately find

A;Qy;~vs2vn!
y ~9.9!

with an exponenty between 0.05 and 0.1. This result slight
modifies the mutual friction force~9.1! of Gorter and Mel-
link into

f ;~vs2vn!
f ~9.10!

with the exponentf531y between 3.05 and 3.1.
The Gorter-Mellink coefficientA was measured as a func

tion of temperature by Vinen.16 The valueA'200 cm s/g
was obtained forDT'20.1 K, which can be extrapolate
to A;600 cm s/g forDT;20.01 K. Similar values forA
were obtained also in later experiments, which are review
in Ref. 41. On the other hand, the lowest values, that
theory predicts, are aboutA;104 cm s/g for DT;
20.01 K. Thus our theoretical prediction forA is about one
or two decades larger than the experimental values. Furt
more,A can be extracted from the experimental data of B
daret al.17 by inserting the power-law formula~5.15! for the
thermal conductivitylT into Eq.~9.6!. Again, our theoretical
prediction is about a factor of 20 larger than the experim
tally observed values. Thus we conclude that our theory
a tendency to overestimate the magnitude of the dissipa
and mutual friction due to creation of vortices. On the oth
hand, the experimental data of Ref. 17 imply the expon
f53.53 for the mutual friction force~9.10!, which is con-
siderably larger than the exponent proposed by Gorter
Mellink15 and obtained from our theory.

The discrepancies are possibly due the number of vort
in the helium in the presence of a homogeneous heat flowQ,
because the number of vortices appears to be an unkn
and uncontrolled quantity in theory and experiment. In rot
ing helium mutual friction can by studied in a much mo
controlled fashion,42 because in this case the number of vo
tices is related to the rotation frequency. Here the mut
friction is described by the Vinen coefficients42 B and B8.
These coefficients have been measured experimentally~see

FIG. 9. The Gorter-Mellink coefficientA obtained from Eq.
~9.6! as a function of temperature for several heat currents betw
Q51 pW/cm2 and 1 mW/cm2 ~curves from left to right, heat cur
rents increase by a factor of 10, respectively!. The left ends of the
curves are located close to the superfluid transition atDTl(Q).
s.
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Ref. 43 for review! and also calculated within modelF in
renormalized mean-field theory44 by considering the motion
of a single vortex line. We have applied our theory~the
Hartree approximation combined with the RG theory! also to
rotating helium and find the coefficients45 B
5(4m4 /\)G8@t# and 22B85(4m4 /\)G9@t#. While these
results are indeed simple, they have the same order of m
nitude than the coefficientsB andB8 of the previous theory44

and also of the experiments.43 The agreement is better forB
than forB8. Thus we conclude that our present theory inde
includes the effects of vortices. However, since a simple
proximation is applied, the Hartree approximation~see Fig.
2!, discrepancies are expected. Nevertheless, for the V
coefficientsB and B8 the discrepancies are much small
than for the Gorter-Mellink coefficientA.

X. CONCLUSIONS

We have presented a renormalization-group~RG! theory
based on modelF for liquid 4He near the superfluid trans
tion in the presence of a heat currentQ and gravity. The
fundamental concept is a self-consistent approximati
which in quantum many-particle theory is known as the H
tree approximation, combined with the RG theory. Wh
aboveTl the previous theory of Ref. 3 is recovered for a he
flow in normal-fluid 4He, belowTl in the superfluid state
our theory predicts dissipation of the heat current and mu
friction of the related superfluid–normal-fluid counterflow

We derived the ansatz of Gorter and Mellink15 for the
mutual friction force and found several indications that o
approach includes vortices indirectly. However, our a
proach appears to overestimate the magnitude of the diss
tion by vortex creation considerably compared to the exp
mental observations. This discrepancy is probably due to
number of vortices in the superfluid helium which appears
be an uncertain and very sensitive quantity strongly infl
enced by the kind of the approximation and also by the
perimental conditions. Further theoretical and experimen
work is necessary to clarify the discrepancies.

Besides the correlation lengthj5j0t2n, which is the
conventional length scale of the RG theory, in the superfl
state we find a second characteristic lengthj1 which de-
scribes the decay of the correlations by dephasing of
order parameter fieldc(r ) caused by vortices. The dephasin
lengthj1 may be viewed as the average distance between
vortices. It is much larger thanj ~see Fig. 6! and approxi-
mately given byj1'aQ21t1n wheret522DT/Tl and a
'1.0 mW/cm. Thus for superfluid4He in confined geom-
etries we expect interesting effects when the dephas
length j1 is as large as the geometry and hits the bound
walls. Future theoretical and experimental investigatio
should study the influence of vortices in superfluid4He on
finite-size effects and on boundary effects. Unexpected
sults for the thermal conductivity in confined geometries a
for the Kapitza resistance may possibly be found, which
caused by the second characteristic lengthj1.
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APPENDIX: INTEGRAL REPRESENTATION
FOR THE GREEN’S FUNCTION

In Sec. III and in Ref. 3 we have evaluatedns5^ucu2& and
Js5^Im@c*“c#& explicitly, which eventually are expresse
in terms of an integral by Eqs.~4.27! and ~4.28!. While for
our purposes we only needns and Js, it is also possible to
evaluate the complete matrix Green’s functionG explicitly.
This Green’s function is defined by Eq.~3.18!. First of all,
we need the inverse of the operator matrix~3.17! which is
given by

~Kab
21!5S 0 2~L1!21

2L21 4G8L21~L1!21D . ~A1!

Since we intend to evaluate the renormalized Green’s fu
tion, we use Eq.~4.4! for the operatorL, where all model-F
parameters are replaced by the renormalized parameter

Here we consider the Green’s function^cc* & which is
given by the lower-right elementG22 of the matrix Green’s
function G. From Eqs.~3.18! and ~A1! we obtain

^c~r ,t !c* ~r 8,t8!&54G8L21~L1!21d~r2r 8!d~ t2t8!.
~A2!

We represent the inverse operatorsL21 and (L1)21 as inte-
grals of exponential functions so that the Green’s function
rewritten as

^c~r ,t !c* ~r 8,t8!&54G8E
0

`

daE
0

`

db e2aLe2bL1

3d~r2r 8!d~ t2t8!. ~A3!

We decompose the operators in the exponentials into ti
dependent and space-dependent parts according to

2aL52a] t1aA, ~A4!

2bL151b] t1bB, ~A5!

where

A52$G@r 12“

2#2 i ~g/2g!Dr %, ~A6!

B52$G* @r 12“

2#1 i ~g/2g!Dr %. ~A7!

Since] t commutes with the space-dependent operatorsA and
B, we obtain

^c~r ,t !c* ~r 8,t8!&54G8E
0

`

daE
0

`

db eaAebB

3d~r2r 8!e(2a1b)] td~ t2t8!.

~A8!

The time-dependent factor is evaluated by the Taylor se
according to
.
-
-
-
re

c-

s

e-

s

e(2a1b)] td~ t2t8!5d~2a1b1t2t8!. ~A9!

The space-dependent factor is more complicated and ca
evaluated by using the formula

eAeB5exp$A1B1 1
2 @A,B#

1 1
12 ~@A,@A,B##2@B,@A,B## !

2 1
24 @B,@A,@A,B###1•••%. ~A10!

1. Equal time Green’s function

For simplicity we sett85t, and from now on we conside
only the equal time Green’s function. The integral overb
can be evaluated easily by the delta function~A9! so that we
obtain

G~r ,r 8!5^c~r ,t !c* ~r 8,t !&

54G8E
0

`

da eaAeaBd~r2r 8!. ~A11!

For a successful calculation of the space-dependent integ
the series in the exponential on the right-hand side of
~A10! must be finite, which means that only a finite numb
of the commutators may be nonzero. For this reason,
assumer 1 and Dr to be linear functions of the space coo
dinater given by

r 15a11b1r , ~A12!

Dr 5a1br , ~A13!

where a1 and a are constants andb1 and b are constant
vectors. In general,r 1 andDr are nonlinear functions ofr . In
this caser 1 and Dr must be linearized locally so that Eq
~A12! and~A13! are taken as an approximation whereb1 and
b are the respective gradients at the space pointR5 1

2 (r
1r 8). In the main text of this paper we assumer 1(z) and
Dr (z) to be functions of the coordinatez only so that the
gradientsb15r 18ez and b5Dr 8ez are vectors inz direction.
However, this latter assumption is not necessary here.

Now, Eqs. ~A12! and ~A13! imply the commutators
@r 1 ,“2#522b1“ and@Dr ,“2#522b“. Consequently, we
find

@A,B#52 i ~gG8/g!2b“, ~A14!

@A,@A,B##522i ~gG8/g!$Gb1b2 i ~g/2g!b2%,
~A15!

@B,@A,B##522i ~gG8/g!$G* b1b1 i ~g/2g!b2%.
~A16!

The double commutators~A15! and ~A16! are c numbers
becauseb1 and b are assumed to be constant. Hence
higher-order commutators are zero so that the series in
exponential on the right-hand side of Eq.~A10! is finite.
Eventually, inserting the commutators~A14!–~A16! into Eq.
~A10! we obtain
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eaAeaB5expH 22G8a@r 12“

2#2 i ~2G8a!2
g

4gG8
b“

1
1

12
~2G8a!3F2

G9

G8
S g

4gG8
bD b1

24S g

4gG8
bD 2G J . ~A17!

This formula is exact ifr 1 andDr are linear functions inr
given by Eqs.~A12! and ~A13!.

Next, we consider the operatorsC522G8r 1 and D
52G8(“2 ik)2 wherek is a constant wave vector. We fin
the commutators

@C,D#5~2G8!22b1~“2 ik!, ~A18!

@C,@C,D##5~2G8!32b1
2 , ~A19!

@D,@C,D##50. ~A20!

Since the double commutators arec numbers, again the
higher-order commutators are zero. Thus from Eq.~A10! we
obtain the formula

eaCeaD5exp$22G8a@r 12~“2 ik!2#

1~2G8a!2b1~“2 ik!1 1
6 ~2G8a!3b1

2%.

~A21!

We choose the wave vector

k5G8aS g

4gG8
b2 ib1D ~A22!

and then rewrite Eq.~A21! as

eaCeaD5expH 22G8a@r 12“

2#2 i ~2G8a!2
g

4gG8
b“

2
1

12
~2G8a!3Fb1

213S g

4gG8
bD 2G J . ~A23!

Now, we clearly see that the operators in the exponentials
the right-hand sides of Eqs.~A17! and~A23! are equal up to
an additive constant. Thus from comparison of Eqs.~A17!
and ~A23! we obtain the relation

eaAeaB5e2(2G8a)3s
•eaCeaD, ~A24!

where

s52
1

12Fb1
212

w9

w8
S F

4gw8
bD b12S F

4gw8
bD 2G .

~A25!

Here we have replacedG8, G9, andg by the dimensionless
ratiosw85G8/l, w95G9/l, andF5g/l. The first factor on
the right-hand side of Eq.~A24! is just a constant, while the
other exponential factors are operators. We insert the rela
n

on

~A24! together with the operatorsC522G8(a11b1r ) and
D52G8(“2 ik)2 into Eq. ~A11! and then obtain the
Green’s function

G~r ,r 8!54G8E
0

`

da e22(G8a)3se22G8a(a11b1r )

3e2G8a(“2 ik)2
d~r2r 8!. ~A26!

We substitute 2G8a→a and evaluate the last two factors b
using the Gaussian integral and the Taylor series:

ea(“2 ik)2
d~r2r 8!

5~4pa!2d/2E ddu e2(4a)21u21u(“2 ik)d~r2r 8!

5~4pa!2d/2E ddu e2(4a)21u22 ikud~r2r 81u!

5~4pa!2d/2eik(r2r8)e2(4a)21(r2r8)2
. ~A27!

Thus inserting the wave vector~A22! with the proper sub-
sitution for a and with g/G8 replaced byF/w8, for the
Green’s function we eventually obtain the formula

G~r ,r 8!5
2

~4p!d/2E0

` da

ad/2
exp$2a r̄ 12a3s%

3expS ia
F

8gw8
b~r2r 8!2

1

4a
~r2r 8!2D ,

~A28!

where r̄ 15a11 1
2 b1(r1r 8). This formula is a simple inte-

gral, there are no operators in the integrand any mo
Clearly, the Green’s function depends on the average c
dinate R5 1

2 (r1r 8) implicitly via r̄ 1 and explicitly on the
relative coordinateDr5r2r 8.

The integral~A28! has a similar but more general stru
ture than the integralFa(z) in Eq. ~4.28!. Thus it is possible
to obtainns andJs from the Green’s function~A28!. We find

ns5^ucu2&5G~r ,r !

5
2

~4p!d/2E0

` da

ad/2
exp$2ar 12a3s% ~A29!

and

Js5^Im@c*“c#&5~2i !21@“2“8#G~r ,r 8!ur85r

5
F

4gw8

b

~4p!d/2E0

` da

ad/221
exp$2ar 12a3s%. ~A30!

We identifyb15r 18ez andb5Dr 8ez and find thats defined in
Eq. ~A25! is closely related tos defined in Eq.~4.29!. We
substitutea5s21/3v, identify z5s21/3r 1, and rewritens and
Js as

ns5
2

~4p!d/2
s(d22)/6F(22d)/2~z!, ~A31!
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Js5
F

4gw8

Dr 8

~4p!d/2
s(d24)/6F(42d)/2~z!, ~A32!

whereJs5Jsez . By using the functionFa(X) defined in Eq.
~4.27! and identifying

1

~4p!d/2
52

1

e
Ad

1

G~12d/2!
~A33!

which may be viewed as the definition of the factorAd , the
formulas forns andJs can be rewritten as

ns52
2

e
AdF211e/2~X!r 1

12e/2, ~A34!

Js5
F

2w8

Dr 8

2g

1

e
Ad~12e/2!Fe/2~X!r 1

2e/2, ~A35!

whereX52s/r 1
3 ande542d. Finally, replacing the renor

malized couplings by the bare model-F parameters, we re
cover the formulas~3.24! and ~3.25!. Thus we have derived
the formulas of Sec. III B forns andJs once again. We note
that the fundamental assumption here is the linear form or 1
and Dr in Eqs. ~A12! and ~A13!, which in general is an
approximation. This assumption implies the special struct
of the integrals in Eq.~A28! and in Eq.~4.28!.

2. Fourier transformation of the Green’s function
and physical interpretation

The natural space variables of the equal time Gree
function G(r ,r 8) are the average coordinateR5 1

2 (r1r 8)
and the relative coordinateDr5r2r 8. This fact is clearly
seen in Eq.~A28!. Thus we may perform a Fourier transfo
mation with respect toDr and define the Fourier-transforme
Green’s functionG̃(R,k) by

G~r ,r 8!5E ddk

~2p!deik(r2r8)G̃~R,k!. ~A36!

We apply this Fourier transformation to Eq.~A28! and then
obtain

G̃~R,k!52E
0

`

da exp$2a r̄ 12a3s%

3expF2aS k2a
F

8gw8
bD 2G , ~A37!

where r̄ 15a11b1R. This Green’s function is positive defi
nite and may be viewed as a distribution function for t
wave vectork. We may define the average wave vector^k&R
at space pointR by
re

’s

^k&R5E ddk

~2p!d kG̃~R,k!Y E ddk

~2p!dG̃~R,k!.

~A38!

This formula can be rewritten in terms of the real-spa
Green’s functionG(r ,r 8) as

^k&R5$~2i !21@“2“8#G~r ,r 8!%/G~r ,r 8!ur85r5R .
~A39!

Thus by using Eqs.~A29!–~A32! we obtain

^k&R5Js/ns5
F

8gw8

b

2r 1

~2z!Fe/2~z!

F211e/2~z!
~A40!

so thatJs5nŝ k&R . While Js is finite for d,4, ns is ultra-
violet divergent ford.2. As a consequence, ford53 di-
mensions the average wave vector^k&R is strictly speaking
zero. In the superfluid state for temperatures well belowTl

we may use the asymptotic formula~4.44! for the function
Fa(z). In this approximation the ultraviolet divergences a
neglected so that we obtain a finite result for the aver
wave vector

^k&R5
F

8gw8

b

2r 1

~2z!3/2

31/2
. ~A41!

Since the wave vectork is related to the superfluid velocit
vs by vs5\k/m4, the Green’s function~A37! implies a dis-
tribution function for the superfluid velocity and Eq.~A41!
yields the average superfluid velocity^vs&R at space pointR.

3. Concluding remarks

We have evaluated the Green’s functionG225^cc* &
only for equal timest85t. However, it is possible to evaluat
this Green’s function also fort8Þt. To do this we apply the
formula~A10! to the factoreaAebB in Eq. ~A8!. The eventual
result is again an integral over a single variablea with, how-
ever, a somewhat more complicated integrand than
~A28!. Furthermore, the nondiagonal Green’s functionG12

5^c̃c& can be calculated. In this case there is only o
inverse operatorL21 which implies only one integral overa.
This integral is performed trivially by a delta function anal
gous to Eq.~A9! so that eventually there will be no integra
at all. The other nondiagonal Green’s functionG215G12

1 is
just the Hermitian conjugate. Finally, the upper-left diagon
elementG11 is zero. Thus we conclude that the comple
matrix Green’s functionG defined by Eq.~3.18! can be
evaluated explicitly, supposed the parametersr 1 andDr are
linear functions of the space variabler according to Eqs.
~A12! and ~A13!.
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