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We study the problem of a boundary magnetic impurity coupled with the soltablehain. This model
provides a good starting point to understand the Kondo problem in a Luttinger liquid as well as in a strongly
correlated host. As the Kondo coupling constinnay take arbitrary values without breaking the integrability,
we can study the ferromagnetic and antiferromagnetic Kondo problems simultaneously. It is shown that the
boundary coupling generally splits the impurity spin into two effective spins and induces the interaction-
dependent residual entropy. The absence of Kondo screening in an antiferromagnetic Kondo coupling regime
is found, which indicates a genuine competing effect between the Kondo codphimgl the impurity potential
V;. A local Landau-Luttinger liquid description is proposed to calculate the specific heat of the impurity.
[S0163-182699)05341-3

[. INTRODUCTION Nagaosd® who addressed a conjecture that ferromagnetic
Kondo screening may occur in 1D due to the special topol-
With the development of nanofabrication techniques forogy. Boundary conformal field thedrygave out a classifi-
quantum wires and the prediction of edge states in the fraccation of critical behavior for the 1D Kondo problewith-
tional quantum Hall effect, the interest in one-dimensionalout impurity potential. It turns out that there are only two
(1D) quantum Systems has been renewed in recent &éars_possibilitiesz a..St.a.ndard |0W—temperatur(_9 thermodynamics or
In fact, much of the interest in 1D quantum systems is due t& hon-Fermi-liquid observed by Furusaki and Nagaosa. It has
Anderson’s observatidrthat the normal state properties of been argued that the non-Fermi-liquid behavior is induced by
the quasi-2D highF, superconductors are strikingly different the tunneling effect of conduction electrons through the im-
from all known metalgFermi liquid) but are more similar to  Purity, which depends only on the bulk properties but not on
properties of 1D metald_uttinger liquid). On the other hand, the details of the_lmpurltfl.
the impurity problem has been a current interest in the field Despite such important progress, the problem of a few
of condensed matter physics. A well-known example is thdmpurities(potential, magnetic, especially botembedded in
Kondo problem, which stimulated a strong challenge to tra2 Strongly correlated 1D system is still not very well under-
ditional perturbation theory and provided a possible “labo-Stood. We note that the study of integrable models generally
ratory” to realize non-Fermi-liquid behavior. The local per- gives some useful information to understand a variety of
turbation problem in a 1D Fermi system has been the subjedthysical situations in 1D. There are a few integrable models
of an intensive theoretical investigation in recent years, forelated to the impurity problem in 1D quantum systems: an
both its interesting anomalies with respect to that of a higherimpurity spin embedded in a spin-1/2 Heisenberg chain
dimensional system and its relevance to a variety of physicafolved many years ago by Andrei and JohanneSsmmd an
situations such as the transport behavior of quantum fires integrable impurity in the supersymmetrieJ or other re-
and the tunneling through a constriction in the quantum Hallated models® The impurities in these models are exactly
regime® Kane and Fishémhave argued that a single impurity transparent due to the unphysical terms in the Hamiltonians
inalD repu|sive interacting System in fact Corresponds to @.nd the results obtained from these models contradict the
chain disconnected at the impurity site at low-energy scaleg2redictions of Kane and Fish€fhis shortcoming was over-
Their observation was also justified in the framework of theCOme in some other integrable mod&is’ by introducing
renormalization group analysis of boundary conformal fieldthe open boundary condition at the impurity site. Unlike in
theory”® which shows that the open boundary condition is3D. the scalar potentiel and the bond deformatiohhave
indeed the stable fixed point for repulsive interactions. Thesignificant effects on the low-temperature thermodynamics
Kondo problem in a 1D metal was considered by Lee ancPf the impurity.
Toner? who found the crossover of the Kondo temperature [N this paper, we consider a boundary magnetic impurity
from the power-law dependence on the Kondo coupling conwith arbitrary spin coupled with the integrable chain
stant to an exponential one, when the electron correlatiod he Hamiltonian we shall study reads
goes from the strong limit to the weak limit. Subsequently, a
poor man’'s scaling was performed by Furusaki and H=Hy+H,,
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L-1 Let us consider the two-particle case. There are two
Ho=—t2 X P(¢],Cjs1,+H.COP ways from an initial state k;.,k,,|) to a final state
I=1 % (—ks,—ka,)):
L-1
+2 (Jsj'3j+1+annj+1), (" (klakz:|)H(k2vk11|)ﬂ(k2'_k1’|)ﬂ(_klvk2a|)
=1
_)(_klv_k21|)v
Hi=2Ji8 - StVin,, @ (1) (ke ko, )= (ke =Ko, )= (= ka ke |)
where L is the length or site number of the system:; —(—ka, —kq,[)=(=ky, —ka,[),

Cjo (Cj,,) are the creatior(annihilation operators of the \yhere the symbo| denotes the open boundary. Since the

: _ t : . ) HE . )
conduction electronsg;=1/2%, ,.¢{ ,7,,,/Cj . @ré the Spin  physical process is unique, the following equation must hold:
operators of the conduction electrong (epresent the Pauli

matrices; n,:E,,cJ-T’,,cj,,, is the number operator of the con- Sia(kq,Ko)R1(Kp)S1o(kq, — ko) Ro(ky)
duction electrons on sitg; Sis the impurity moment with
spinS; t, J, V, J;, andV; are all constants; an®---P = Ra(ka)Siaky, —ka)Ru(ky) Spalky ko). )

indicates the single occupation conditiopi<1. In a previous  apove s, is the two-electron scattering matrix. Equatic
paper,” we studied a model of two spin-1/2 boundary impu-js just the reflection equatioi. For the multiparticle cases,
rities coupled with an SU(39-J chain. We note that there is a5 |ong as the scattering matrix is factorizable or the two-

no genuine correlation between the two impurities and theipody scattering matrix satisfies the Yang-Baxter rel&fion
physical effects are in fact additive: i.e., the problem is still

in the single-impurity level. This is a common feature of the S1a(K1,K2)S15(Ky ,K3) Soa(Ks , K3)
impurities in integrable models. In some sense, the present
model is a generalization of the previous one but the bound- = Sp3(ka,K3) Spa(ky, Ka) Sia(ky ko), (4)

ary impurity has an arbitrary spin. We shall give a detailed

description of our methad and study the arbitrargdefini- Eq. (3) is the only restriction to the integrability of an open

. ' boundary systertf Generally, ac-number reflection matrix
tion see bglchases. As we st\all show,. thf nonmteg'e'r 2 indicates either a boundary field in the spin-chain models or
ger)erally induces seconda_lry ghc_Jst spins aﬂd addltlonala scalar potential in a fermion system. However, in the
residual entropy(not considered in the previous work —, ocent model, the boundary impurity has internal degrees of
wh|ch allows us to ObSGT"e the quaptum phase tranS|t.|ons eedom and spin-exchange processes must be included
2c=|nteg¢r. Without losing generality, we shall it 1in -\ hen an electron is reflected by the boundary. That means
the following text.

. : that the reflection matrilR; must be an operator one rather
The structure of the present paper is the following: In thethan ac-number one
subsequent section, we derive the integrable conditions '\, .onsider first fhel=2 V=3/2 case. Since the reflec-

gﬁzgi c;n Jgﬁo%icéﬁ? at}%”?ﬁ?%?i;ggﬁff&ﬁﬁeBsg]rﬁil_ tion process only consists of a one-electron effect, it is con-
q 9 venient to consider the single-particle eigenstdte)

tonian for the integrable cases will be given. In Sec. Ill, we  J| ¥ . i .
study the ground state properties. The competing effedt of =Z,=1%(X)0x ,/0). With the Bethe-type wave function

— ikx —ikx H
andV; on the Kondo screening will be discussed in de'[alil.q,()()_A+e +A_e"™, we obtain

Section 1V is attributed to the derivation of the thermody- A eik+(v'+\]_7__s)

namics. A different method, i.e., the local Landau-Luttinger R(k)=—e 2ki=_ — L _ (5)
P o 16,17 A e K+ (V;+J;7-9

liquid descriptiont®! is used to study the low-temperature + iTYT

thermodynamics of the impurity. Such a method can also bg,, arbitraryN-particle caseR; (k;) must satisfy the reflec-

applied to nonintegrable models and is thus general to thg,, equation(3). It is known that the two-body scattering
impurity problem in 1D quantum systems. Concluding re- -+ takes the forf:22

marks will be given in Sec. V. The Appendix is attributed to
the eigenvalue problem of the nested Bethe ansatz. q—q+iPj

Sj(gj—a)= q—q—i
j

whereq;=tank;/2)/2, andP;, is the spin-exchange operator.
It is well known thatH, is exactly solvable fod=2, Vv  Substituting Eqs(5) and(6) into Eq. (3), we readily obtain
= —1/2,3/21°%°By including the impurity, any electron im- the integrable condition for the present model as
pinging on the impurity will be completely reflected and suf-

(6)
Il. BETHE ANSATZ

2

fer a reflection matrixR; . The waves are therefore reflected Pisi1—|co =
at either end as 1 2
Ji=r—rz— Vi= 172 )
. . 2 2
kX, —gTikx w1 S+§ —C S+§ —C

_ 4 _ _ The reflection matrix in the integrable case can be rewritten
elij_> Rj (k]_)eflijlekjL, X~L. (2) as
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i By following the same procedure, we can derive the inte-

. _ql'—ij_iCH(T,SJrl) qj+ictir-S . grable conditions fod=2,V=—-1/2 as
()= g Ficri(s+1) qricris - @
4T3
For anN-particle system, suppose the wave function initially Pisi1_ ( ot = 2
has an amplitud€,. When thejth particle moves across 1
another particlé, it suffers anS matrix S;(q;—q). At the Ji=r—rz— Vi= 172 (14)
right boundary, it is completely reflected back and suffers a S+ =] —c? S+ > —c?

factor exp(Z%;L)R(g;). Then it begins to move toward the
left boundary. At the left boundary, it will be kicked back
and suffers a factor- 1. Finally it arrives at the initial site

a_md finishes a periodic motion. Therefore we have the equagj,ce the physics of the two models are almost the same, we
tion study only theV=3/2 case in the following text.

— — k — —
_Sjjil...sjl ;rl...sjfjil ﬁ+1"' j*NRjeZI JszN...Sjngo
={o )
or, more neatly Ill. GROUND STATE PROPERTIES
S, S3ST S St SRS STl As in most of many-body systems, the ground state prop-
R L erties reveal the main features of the fixed point physics. For
i\ 2t the Kondo problem, the central point is the residual magne-
a;+ 2 tization of the impurity, which measures the screening effect
== — Lo, (10 of the conduction electrons on the local moment. In the con-
q;— > ventional Kondo system, one conduction electron is bounded

by the impurity at low temperatures and reduces the residual
where S;j =S;;(9;=q,). Equation(10) is just the reflection ~magnetization fromS to S—1/2. However, in the present
version of Yang’s eigenva|ue prob|e%+]|ts solution gives mOdel, the situation is more Compllcated. Both the bulk cor-
out the BAE's. To keep the continuity of the text, we consignrelation and the scalar potenti| may have significant ef-
the solution of Eq(10) to the Appendix. The BAE's read  fects on the Kondo screening. Especially, there is a compe-
tition between the Kondo coupling; and a repulsiveV;
L becausel; enhances the formation of the local composite
9 2 gj—i(S+1-¢) (bound state of the local moment and a conduction elettron
i - m while a positiveV; prevents its formation. In the integrable
q;+ 2 case,J; andV; are not independent of each other but are
parametrized by a unique real constantven so, the com-
N gj—rq,—i petition effect can be shown exactly by varyingand ana-
X H W lyzing the ground state configuration of the BAE's. The
! boundary coupling has two direct effects on the impurity.
i First, it splits the impurity spin into two effective spins with
amplitudesS+ 1/2—c and S—1/2+c, respectively, as we
x ]I — (1) can read off from the BAE'$12). That means the in waves
a—rh,— 5 and the out waves of the conduction electrons “see” differ-
ent values of the impurity spin. Notice that the mean value of
the two effective spins is stilb. Second, one of the conduc-
)\a—rqurz tion electrons may be pinned by the impurity in some
regions. The local bound state then behaves as an effective
r=+ j=1 i impurity and the effective spins will be further renormalized.
From the BAE's(11) we can see that an imaginary mogle
=i(S+1—c) is a possible solution as long as<S+1.
However, such a mode is not always stable in the ground
state. As we can read off from E@L3), the real modes form
_ . a band—2=e€(q)=<2. The energy of the imaginary mode
whereM <N/2 is the number of spin-down electrons angd 4|5 ejther below the band or above it. Therefore, the imagi-

are the rapidities of the spinons. The eigenvalue of théary q mode defines a true bound state around the impurity.
Hamiltonian is given by (i) c=S+ 1. In this case, the Kondo coupling is ferromag-

netic and the boundary coupling cannot induce any stable
— (13) bound state. In the ground state, all the moftg$ and{\ .}
j=14q;+1 take real values. Define the quantities

i 2L+1

Il
= TSN N

r=+ a#p N~ TAg—i’ (12)
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1 M N to N=2M and M =S. It seems that the local spin is still
ZH(q)=5— oL Z 0.(q—r\,)— E —rq;) unscreened. However, we note that the localized electron and
Tz == the impurity form a spin-$+ 1/2) composite due to the fer-

romagnetic Kondo couplingd;. When ¢—S+1/2+0",
+6,(q), Ji,V;— —. Both J; andV, enhance the formation of the
local composite and the composite behaves as a perfect local
N M moment with spin §+1/2). It is the composite rather than
the original impurity interacting with the host effectively. In
Zi(M)= _| — 2 al(x_rqi)_mt ﬁz::l 02(N =T p) such agsense,pwenéan say thgt the local moment is p);rtially
screened because the residual magnetization is@nlfywe

+¢%(q) + ¢i(q)

. i include another half chain interacting with the impurity, the
T (M) +ds(N) 1, (15 problem becomes a two-channel Kondo profé#hand we
expect the realization of Furusaki-Nagaosa’'s conjecture
where 6,(q) =2 arctan(®/n) and (M =S-1/2).

o i (iii) —(S—1/2)<c<S+1/2. The Kondo coupling is an-
$c()=2601(q),  bc(Q)=b2c-s-1)(Q), (1) tiferromagnetic. The boundary bound stgtei (S+1—c) is
R ; no longer a stable state since it has much higher energy. The
bs(M)=02(N),  P(N)=0rac+25-1)(N) — O(2c—25-1)(N). ground state is still described by closely packed ceaiodes
17 and\ modes. The residual magnetizationSs 1/2, indicat-
Notice that the zero modes are forbidden in an open boundhg an usual Kondo screening as in conventional Kondo
ary systen?3 Obviously, zf(q]) ml;/L and ZE(\p) system€® Such a result suggests that the Kondo coupling
=mJ,/L give the logarithmic version of the BAE’s, where J;>0 is dominant ovel; even in the strong coupling limit
¥ andJa are integers. In the ground state, bfkj} and{J,} ~ ¢—=S+1/2+07(J;,Vi—+).
are closely packed numbers from 1 upNoandM, respec- (iv) —S<c<—(S—1/2). The Kondo coupling is antifer-
tively. The cutoffs ofq and\ are defined aZ¢(Q)= (N romagnetic and no stable bound state exists in the ground

+1/2)/L and Z$(A)=m(M+1/2)/L. Define the density state. By following the same procedure, we derive that the
functions as residual magnetization 1S, indicating the absence of Kondo

screening. Though the Kondo couplidg>0, it seemsV; is
1 dzZ{(q) 1 dominant oved; and prevents the conduction electrons from
pL(q)= 27 dg 2L (a), screening the impurity. In the conventional Kondo problem,
19) the impurity potential does not change the fixed point and
1.dZ0N) 1 only mdt{;gces the re_normahzatlon of the Kondo couplmg
PLU\)_ P Z5()\)_ constant® However, in the present case, the strong coupling
fixed point predicted in 3D is no longer stable. Such a phe-
We have the relations nomenon strongly suggests that the charge-spin cooperation
plays an important role in the 1D Kondo problem and gives
Q . 1 A 1 a typical example of the competition betweg&nandV; .
f_QPL(q)dq: N f_ prVdA =M. (19 (v) — (S+1/2)<c<—S. In this case, the system is still in
the regime of antiferromagnetic Kondo coupling. From the
As demonstrated by many authdfsA — for the ground  BAE’s (11) and(12) we can see that an imaginary spin mode
state in the thermOdynamiC "I'Tﬁ.tHOO, since any hole in the A=] (S_ 1/2+ C) may assist the formation of a boundary
real \ axis induces an excited stéteSubstituting Eq(18)  pound state witly=i(S+c). This mode carries much lower
into the second equation of E@19), we deduce thaN  energy than those of the real modes and is therefore stable in

=2M, which means the residual magnetization is the ground state. Taking these bound states into account, the
1 two effective spins rea®. =S—1/2+(1—c). In the ther-
M=S+-N-M=S. (200  Modynamic limit, a direct calculation give§=2M—1 in

2 the ground state. Therefore, the residual magnetization takes

Therefore, the impurity moment cannot be screened anymorjt—r:‘e value ofS—1/2, which indicates a typical Kondo screen-
in this case. ing. In fact, both the positivd; and negativeV; assist one

(i) S+ 1/2<c<S+1. In this case, the Kondo coupling is conduction electron to form tight-bonding pair with the local
still ferromagnetic. Due to the strong Kondo coupling and'ﬁorr?e?t Tlhe boundci:‘;jzs%ln mgde is a signal of the formation
the weak impurity potential, one boundary bound state oc®' the local spin 6—1/2) bound state.

curs with q=i(S+1—c). Since|q|<1/2, we can see that (vi) c<—(S+1/2). In this case, both the ferromagnetic
the energy level of this mode Kondo coupling §;<<0) and the repulsive impurity potential

prevent the conduction electrons screening the impurity. The
residual magnetization iS and no Kondo screening occurs.
€Q)=2— —F =7 2<"2 (21 The above discussion shows that the boundary coupling
1-4(S+1-c) S )
does have a significant effect on the Kondo screening. The
is below the conduction band. Therefore this state is a stableentral point is the spin splitting. By taking the stable bound
bound state. Taking the local bound state into account, thstates into account, suppose we have two effective Spins
two effective spins becom®. =S+ 1/2+(1—c). Thisleads The Kondo effect on these effective spins is as usual. The
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only difference is that ifS_ <0, its residual magnetization is INnZ;=—GIn(1+ 7 H+GIn(1+¢,), (27)
—(|S_|—1/2) rather tharS_—1/2. Therefore, the total re-

sidual magnetization of the impurity iM.=S,+S.  wheren(a)=pl(a)/pc(a), {n(N)=p2,(\)/psa(X), andG
+[sgn@,)+sgnG_)]/2. SinceS. are interaction dependent, is an integral operator with the kerrjed cosh¢r\)] % Since

we naturally get two results: i.e., the impurity is either we are only interested in the Kondo effect, we consider here
screened M ;=S—1/2) or unscreened\s=YS). the spin part of the impurity free energy, which reads

IV. THERMODYNAMICS T o , _
F?mp:_ﬂnzl f ¢s,n()\)|n[1+§n 1()\)]d)\- (28)

In this section, we derive the thermodynamic equations of
the present model via the thermal Bethe anéatZWe shall
omit the excitations which break the stable boundary bound B. Residual entropy
states since these excitations are accompanied by finite en-
ergy gaps and their contributions to the Iow—temperatureth
thermodynamic quantities are exponentially small.

To give further information of the ground state, we study
e residual entropy of the impurity. Whei—0, 7
—exXf(e.—u)/T], for e.<u. Therefore the driving term in

) Eq. (27) tends to—«. That meang;— 0 and all the othet,,

A. Thermodynamic Bethe ansatz take constant valuds3? ng with

At finite temperatures, the solution of the BAE's is de-

scribed by a sequence of regl;} and a variety of{\,} N sinkP(nxg)
strings. From the Bethe ansatz equations we obtain o (X0) = —gimw X, L XoTaT (29
1, 1 From Eq.(28) we deduce the residual entropy as
pel(Q)+pl(a) =ay(a) + 7 #4(a) — 51 (@) ~[2]pe() | i
” S, ! i J BL (V)] 1+ —lax (30)
=— n .
+mzz1 [M]psm(a), (22) L B £ (0)

For simplicity, we consider the>S+1 case. Other cases
. 1 1 can be studied by following the same method without any
Psm(M) = 7 bsm(N) = 5 6N +[m]pc(N) difficulty. The only little difference is that when the bound-
ary bound state occurs, its contribution #g , should be
’ taken into account. Since at zero temperatfyrare variable
—Z AmnPsn(N), (23 independent, the integral operatdms] are equivalent to
=t unity anda,(\) are equivalent to5(\) under integration.

where pgm (pl ) are the densities of thea-string (holeg, ~ This makes the calculations very simple. Wherc 2
[n] is an integral operator with the kerneh,(q) =integer, the impurity spin is split into two effective spins
—n/{2m[ g+ (/2)2]}, Apn=[m+n]+2[m+n—2]+---  S:=S*(c—1/2). NoticeS_<0 and contributes a negative
+[Im=—n[+1], andeg == LON+I[(m+1)/2—]}. In value to ¢ ,. Therefore, its contribution to the entropy is

a magnetic fieldH, the free energy of the system can be also negative. The total entropy o_f the ir_npu_rity is just th(_a
written as mean value of the two effective spins, which is always posi-

tive:
F/L:f

oo

1 2c+2S-1

H o]
€o(®) = 5 |pe(a@)dat 2, nH | pgp(\)dA 1
) 2'2c—25-1

Sres_iln(ZSJr)_ §|n(2|S,|)—

h h h h (31)
=T [ [(pctp)In(pctpc) —peInpe—pcInpcldq . . o .
When Z+#integer, the situation is somewhat complicated.
% In this case, the effective spins take noninteger and non-half-
—T2 | [(psnt Pl )IN(psntpl )= psnin psn integer values and there is a mismatch between the impurity
n=1 ’ ' and the conduction electrons. Put; 2 integer part of 2 and
=2(c—c,). We have
—pll Il Jd, (249 @27
where eg(q)=—2ma,(q)+2 andu is the chemical poten- Y B
tial. At the equilibrium state, by minimizing the free energy 2W¢Sl“()‘)ﬁa“'2°|+25‘ (M) =an 2 —25-12(N)
we obtain
2S
€0— 1 _aa(}\)gl On 2, ~25+21 -2+ (32)

In 7= +{[2]-[1]G}In(1+ " H—GIn(1+¢y),

(25  wherea, n=21"™"a,, 1 m 2. Obviously,c, splits the
impurity spin into two effective spinS. = S=(c¢,—1/2) and
InZ,=G[In(1+,-1)+In(1+¢,41)], n>1, (26) the nonzerax induces secondary “ghost spins” with values

T
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between 2,—2S and X, +2S— 2, which reveals a local dif-
fraction effect in the spin sector. By substituting E§2) Os(N) = s (M) + Z+ 2 Osd\.rq)dng(q)
into Eq. (30), we obtain ==

+ OsN,rN")SNg(N"), 38
s 1 2c+25-1 2 2(c;—S—1+1) rzi ER sl Jons(A') 69
=—lN0—oe—>— n .
#272¢-25-1 =1 Ja(c,-S-1+1)%-1 where 8. o and &5y are the bare phase shifts induced by the

(33 impurity, 6's are the phase shifts of the particle-particle scat-
tering, anddng s=nc s— c ¢ is the change of the quasiparti-
Obviously, there is a finite jump of the residual entropy atcle distributions induced by the impurity. On the other hand,

c=c¢(>S+1): on. s in the ground state take the form
=i - - S.(q) Ss(N\)
ASres (ISILnO[SreS(CI+ 5) Sres(cl 5)] 5nc(q): cd , 5nc()\): S . (39)
2L 2L
i (¢ +S—1/2)(c;—S-1) 34 Equations(37) and (38) are thus reduced in the thermody-
=N s 12(crs-1)|" (34 hamic limit L—o to
The discontinuity of the residual entropy@t ¢, indicates a S a) =4 + _J o' N (ada'
first-order quantum phase transition. Such a behavior shows (@=dcol@t 57 |, Fecl@a)oc(a)da
that the local spin configuration is strongly interaction de- 1
pendent rather than simply screened or decoupled as under- i 6.(q,\) SL(N)dA (40)
stood in the conventional Kondo problem. This strongly sug- 27 )y ST '
gests that both the bulk correlation and the scalar potential
have nontrivial effects on the ground state configuration of , , 1 (9 | ,
the impurity. Ss(M)= 050N+ 5~ . Os(N,q)dc(q)dq
—AF
. - . 1 (N\e , s ,
C. Local Landau-Luttinger liquid description 4+ OLAN ) SLN )N, (41)

2
Despite the finite residual entropy in the ground state, the T

temperature dependence of the impurity specific heat shouMihereq: and\( are the Fermi “momenta.” Notice(1/L)

not be affected in its leading order since there are no extrgerms have been omitted in the above equations. The low-
degrees of freedom to induce the overscreening effectemperature thermodynamics of the impurity is therefore
Therefore, Noziees’ local Fermi liquid theor can be used characterized by two constants

with a slight modification. Consider a noninteracting 1D

open chain. The “momentak’ is quantized as 9'(qe) S5(Np)
P ! D)= = or 0 g np == (4
c(q ) s()\F)
Kk’ k+ ! 50(k) (35)  Wheree. s are the quasiparticle energies.
In our case,
wherek=mn/L (n positive integer are the “momenta” of Oco(A)=e(d),  Fso(N)=es(N), (43
the pure open boundary system adyfk) is the phase shift
due to the particle-impurity scattering. The change of the 0L (N, Q)= 0.(g,N)=2ma(g—N\), (44

density of states is therefore
0¢(0,9")=0:40,9") = —2max(d—q’). (45

1 84(k y i ; ;
SD(K)= o(k) (36) As the low-temperature specific heat is proportional to the

e (k) densities of states, the following relation holds:
wheree(k) is the single-particle energy. For the interacting 8C _5:(Q)  &(A) (46)
1D electron systems, the quasiparticles can be defined in the Co p(Q)  psA)’

charge and spin sectors, respectivélithe phase shifts are
generally functionals of the distributions of the quasiparticle
n.(q) andng(\) and can be expressed as

§Nhere 6C is the specific heat induced by the impurity and
he open boundaries ar@, is the specific heat of the bulk
(per unit length; p.(q) andps(\) are the quasiparticle dis-
tributions in the ground state. We note that this method is not
5.(d)=6 i 0..(0.rq" )8 / applicable to the susceptibility f@&>1/2 since the residual
(=T @+ 2 2 elarq’)oNe(a’) magnetization is finite and the low-temperature susceptibility
is Curie type. However, wheB=1/2 and 0<c<1 or —1
n 0.(A.TN)SN(N), 3 <c<—1/2, M4 =0, the leading order of the impurity suscep-
rin PILECISLURIN S tibility is Pauli type and the present method works.

== q'#q
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V. CONCLUDING REMARKS S-S 1S 1 SRSk S; 418, 1S 10
In conclusion, we propose an integrable model of a _ _

boundary impurity spin coupled with the integrable opeh =X{ o= €(qj) 0. (A4)

chain. In our model, The “fine-tuned” effect in the periodic

integrable models is overcome and the interaction term takeSor convenience, we introduce an auxiliary spaand de-

a very simple form. The coupling constait can take an fine

arbitrary value with a proper boundary potentigl without

destroying the integrability of the Hamiltonian. This allows U.(q)

us to study the antiferromagnetic and ferromagnetic Kondo ”

problem simultaneously. Some new phenomena driven by :S:j MTEL jjfl... :NRTOS;N'"S;jJrls;jfl'”S;lS;j'

the boundary coupling have been found, which can never

appear in the periodic models as well as in the conventional (AS)

Kondo problems: (i) The boundary coupling splits the im- ) B

purity spin into two effective “ghost spins’S—c+1/2 and  With q.=q. Obviously,S;(q;)=P; and

S+c—1/2. That means the coupling not only changes the

energy scalegsKondo temperatupeas in the conventional 2q;+2iy

Kondo problem but also renormalizes the effective strength tr-U(q;)= !

of the impurity spin. Such a phenomenon reveals a pure cor-

relation effect.(ii) Depending on the strength of the cou-

pling, the system may show behavior differing from those ofsinceS]; satisfy the Yang-Baxter relation

the conventional Kondo problems. A typical example is that

the scalar potential may destruct the Kondo screening even _ . .

in the antiferromagnetic Kondo coupling regim@i) The S.(a=0")S;(axq)S,;(a"=q))

residual entropy is strongly coupling dependent which indi- . . B

cates that the local spin configuration near the impurity is =S,;(9"*0))S;(a*a)S,.(a—q"), (A7)

very complicated rather than simply screened or decouple . -

as understood in the conventional Kondo problem. The misfirom I_Eq. (3) we can easily show thalil (q) satisfies the

match between the effective spins and the conduction eIeJ—eﬂectlon equation

trons drives a series of quantum phase transitions cat 2

=integes. S_.(a—a")UA9)S’ . (q+a")U.(q")

W i (AB)

ACKNOWLEDGMENTS =U,(q)S.(a+a)U (S, .(a—q").

One of the author§Y.W.) acknowledges the financial aid (A8)
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Therefore, the eigenvalue probldis3) is reduced to Sklya-
APPENDIX nin’s eigenvalue problertf By following the same proce-

) ) . dure introduced in Ref. 18, we obtain the eigenvalue of
In dealing with the open boundary integrable models, wex_,(q_) as
i \Hj

often encounter the following eigenvalue problem:

M .
- - — — qj+Aa qj_Aa_Iy
Sjj-1 " SaS S 1S SNRSiv St e(qj)=£1 Q= Ay G FAFiy (A9)
=X;¥o=e(d;) o, (A1)
The parameterd , are determined by
whereSjtI andR; are the scattering matrix and the reflection
matrix, respectively. In our case, up to constant factors they A,—iy(S+c—1) A, ,—iy(S—c)
take the forms A Tiy(Stc) A,tiy(S—c+1)
N
Si_qjiq|+i7le A2 <T1 (Aa+.qj)(Aa_qj) .
j__jSQ|+i7 , (A2) j=1 (A ta;+iy)(A,—qj+iy)
] et AR e Agmiy)
R_qj—iCy-i-iy(Tj-S-l-l) gjticy+iyr-S (A3) pra (At Agt+2iy)(A,—Agtiy)
I gj—icy+iy(S+1l) qjticy+iyS ' (A10)

where y==1. Define E0=(Sj‘j_1-~~sj_l)‘1¢0. Equation By replacingA , with A ,—iy/2 in Egs.(A9) and (A10), we
(A1) can be rewritten as readily obtain the BAE's.
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