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Boundary Kondo problem in the integrable t-J model
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We study the problem of a boundary magnetic impurity coupled with the solvablet-J chain. This model
provides a good starting point to understand the Kondo problem in a Luttinger liquid as well as in a strongly
correlated host. As the Kondo coupling constantJi may take arbitrary values without breaking the integrability,
we can study the ferromagnetic and antiferromagnetic Kondo problems simultaneously. It is shown that the
boundary coupling generally splits the impurity spin into two effective spins and induces the interaction-
dependent residual entropy. The absence of Kondo screening in an antiferromagnetic Kondo coupling regime
is found, which indicates a genuine competing effect between the Kondo couplingJi and the impurity potential
Vi . A local Landau-Luttinger liquid description is proposed to calculate the specific heat of the impurity.
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I. INTRODUCTION

With the development of nanofabrication techniques
quantum wires and the prediction of edge states in the f
tional quantum Hall effect, the interest in one-dimensio
~1D! quantum systems has been renewed in recent yea1,2

In fact, much of the interest in 1D quantum systems is due
Anderson’s observation3 that the normal state properties
the quasi-2D high-Tc superconductors are strikingly differen
from all known metals~Fermi liquid! but are more similar to
properties of 1D metals~Luttinger liquid!. On the other hand
the impurity problem has been a current interest in the fi
of condensed matter physics. A well-known example is
Kondo problem, which stimulated a strong challenge to t
ditional perturbation theory and provided a possible ‘‘lab
ratory’’ to realize non-Fermi-liquid behavior. The local pe
turbation problem in a 1D Fermi system has been the sub
of an intensive theoretical investigation in recent years,
both its interesting anomalies with respect to that of a high
dimensional system and its relevance to a variety of phys
situations such as the transport behavior of quantum wire2,4

and the tunneling through a constriction in the quantum H
regime.5 Kane and Fisher6 have argued that a single impurit
in a 1D repulsive interacting system in fact corresponds t
chain disconnected at the impurity site at low-energy sca
Their observation was also justified in the framework of t
renormalization group analysis of boundary conformal fi
theory,7,8 which shows that the open boundary condition
indeed the stable fixed point for repulsive interactions. T
Kondo problem in a 1D metal was considered by Lee a
Toner,9 who found the crossover of the Kondo temperatu
from the power-law dependence on the Kondo coupling c
stant to an exponential one, when the electron correla
goes from the strong limit to the weak limit. Subsequently
poor man’s scaling was performed by Furusaki a
PRB 600163-1829/99/60~17!/12309~8!/$15.00
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Nagaosa,10 who addressed a conjecture that ferromagne
Kondo screening may occur in 1D due to the special top
ogy. Boundary conformal field theory11 gave out a classifi-
cation of critical behavior for the 1D Kondo problem~with-
out impurity potential!. It turns out that there are only two
possibilities, a standard low-temperature thermodynamic
a non-Fermi-liquid observed by Furusaki and Nagaosa. It
been argued that the non-Fermi-liquid behavior is induced
the tunneling effect of conduction electrons through the i
purity, which depends only on the bulk properties but not
the details of the impurity.12

Despite such important progress, the problem of a f
impurities~potential, magnetic, especially both! embedded in
a strongly correlated 1D system is still not very well unde
stood. We note that the study of integrable models gener
gives some useful information to understand a variety
physical situations in 1D. There are a few integrable mod
related to the impurity problem in 1D quantum systems:
impurity spin embedded in a spin-1/2 Heisenberg ch
solved many years ago by Andrei and Johannesson13 and an
integrable impurity in the supersymmetrict-J or other re-
lated models.14 The impurities in these models are exac
transparent due to the unphysical terms in the Hamiltoni
and the results obtained from these models contradict
predictions of Kane and Fisher.6 This shortcoming was over
come in some other integrable models15–17 by introducing
the open boundary condition at the impurity site. Unlike
3D, the scalar potential15 and the bond deformation17 have
significant effects on the low-temperature thermodynam
of the impurity.

In this paper, we consider a boundary magnetic impu
with arbitrary spin coupled with the integrablet-J chain.19

The Hamiltonian we shall study reads

H5H01Hi ,
12 309 ©1999 The American Physical Society
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H052t (
j 51

L21

(
s

P~cj ,s
† cj 11,s1H.c.!P

1 (
j 51

L21

~JSj•Sj 111Vnjnj 11!,

Hi52JiSL•S1VinL , ~1!

where L is the length or site number of the system
cj ,s

† (cj ,s) are the creation~annihilation! operators of the
conduction electrons,Sj51/2(s,s8cj ,s

† ts,s8cj ,s8 are the spin
operators of the conduction electrons (t j represent the Paul
matrices!; nj5(scj ,s

† cj ,s is the number operator of the con
duction electrons on sitej ; S is the impurity moment with
spin S; t, J, V, Ji , and Vi are all constants; andP¯P
indicates the single occupation conditionnj<1. In a previous
paper,15 we studied a model of two spin-1/2 boundary imp
rities coupled with an SU(3)t-J chain. We note that there i
no genuine correlation between the two impurities and th
physical effects are in fact additive: i.e., the problem is s
in the single-impurity level. This is a common feature of t
impurities in integrable models. In some sense, the pre
model is a generalization of the previous one but the bou
ary impurity has an arbitrary spin. We shall give a detai
description of our method and study the arbitraryc ~defini-
tion see below! cases. As we shall show, the nonintegerc
generally induces secondary ‘‘ghost spins’’ and additio
residual entropy~not considered in the previous work!,
which allows us to observe the quantum phase transition
2c5 integer. Without losing generality, we shall putt51 in
the following text.

The structure of the present paper is the following: In
subsequent section, we derive the integrable conditi
based on the reflection Yang-Baxter equation.18 The Bethe
ansatz equations~BAE’s! and the eigenvalues of the Hami
tonian for the integrable cases will be given. In Sec. III, w
study the ground state properties. The competing effect oJi
and Vi on the Kondo screening will be discussed in deta
Section IV is attributed to the derivation of the thermod
namics. A different method, i.e., the local Landau-Lutting
liquid description,16,17 is used to study the low-temperatu
thermodynamics of the impurity. Such a method can also
applied to nonintegrable models and is thus general to
impurity problem in 1D quantum systems. Concluding
marks will be given in Sec. V. The Appendix is attributed
the eigenvalue problem of the nested Bethe ansatz.

II. BETHE ANSATZ

It is well known thatH0 is exactly solvable forJ52, V
521/2,3/2.19,20 By including the impurity, any electron im
pinging on the impurity will be completely reflected and su
fer a reflection matrixRj . The waves are therefore reflecte
at either end as

eik jx→2e2 ik j x, x;1,

eik jx→Rj
21~kj !e

2 ik j x22ik j L, x;L. ~2!
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Let us consider the two-particle case. There are t
ways from an initial state (k1 ,k2 ,u) to a final state
(2k1 ,2k2 ,u):

~ I! ~k1 ,k2 ,u!→~k2 ,k1 ,u!→~k2 ,2k1 ,u!→~2k1 ,k2 ,u!

→~2k1 ,2k2 ,u!,

~ II ! ~k1 ,k2 ,u!→~k1 ,2k2 ,u!→~2k2 ,k1 ,u!

→~2k2 ,2k1 ,u!→~2k1 ,2k2 ,u!,

where the symbolu denotes the open boundary. Since t
physical process is unique, the following equation must ho

S12~k1 ,k2!R1~k1!S12~k1 ,2k2!R2~k2!

5R2~k2!S12~k1 ,2k2!R1~k1!S12~k1 ,k2!. ~3!

AboveS12 is the two-electron scattering matrix. Equation~3!
is just the reflection equation.18 For the multiparticle cases
as long as the scattering matrix is factorizable or the tw
body scattering matrix satisfies the Yang-Baxter relation21

S12~k1 ,k2!S13~k1 ,k3!S23~k2 ,k3!

5S23~k2 ,k3!S13~k1 ,k3!S12~k1 ,k2!, ~4!

Eq. ~3! is the only restriction to the integrability of an ope
boundary system.18 Generally, ac-number reflection matrix
indicates either a boundary field in the spin-chain models
a scalar potential in a fermion system. However, in t
present model, the boundary impurity has internal degree
freedom and spin-exchange processes must be inclu
when an electron is reflected by the boundary. That me
that the reflection matrixRj must be an operator one rath
than ac-number one.

We consider first theJ52, V53/2 case. Since the reflec
tion process only consists of a one-electron effect, it is c
venient to consider the single-particle eigenstateu1&
5(x51

L C(x)cx,s
† u0&. With the Bethe-type wave function

C(x)5A1eikx1A2e2 ikx, we obtain

R~k![
A2

A1
e22ikL52

eik1~Vi1Jit•S!

e2 ik1~Vi1Jit•S!
. ~5!

For arbitraryN-particle case,Rj (kj ) must satisfy the reflec-
tion equation~3!. It is known that the two-body scatterin
matrix takes the form19,22

Sjl ~qj2ql !52
qj2ql1 iP jl

qj2ql2 i
, ~6!

whereqj5tan(kj/2)/2, andPjl is the spin-exchange operato
Substituting Eqs.~5! and ~6! into Eq. ~3!, we readily obtain
the integrable condition for the present model as

Ji5
1

S S1
1

2D 2

2c2

, Vi5

S21S112S c2
1

2D 2

S S1
1

2D 2

2c2

. ~7!

The reflection matrix in the integrable case can be rewrit
as
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Rj~qj !5

qj2
i

2

qj1
i

2

qj2 ic1 i ~t•S11!

qj1 ic1 i ~S11!

qj1 ic1 i t•S

qj1 ic1 iS
. ~8!

For anN-particle system, suppose the wave function initia
has an amplitudez0 . When the j th particle moves acros
another particlel , it suffers anS matrix Sjl (qj2ql). At the
right boundary, it is completely reflected back and suffer
factor exp(2ikjL)Rj(qj). Then it begins to move toward th
left boundary. At the left boundary, it will be kicked bac
and suffers a factor21. Finally it arrives at the initial site
and finishes a periodic motion. Therefore we have the eq
tion

2Sj j 21
2

¯Sj 1
2 Sj 1

1
¯Sj j 21

1 Sj j 11
1

¯SjN
1 Rje

2ik j LSjN
2
¯Sj j 11

2 z0

5z0 ~9!

or, more neatly,

Sj j 21
2

¯Sj 1
2 Sj 1

1
¯Sj j 21

1 Sj j 11
1

¯SjN
1 RjSjN

2
¯Sj j 11

2 z0

52S qj1
i

2

qj2
i

2

D 2L

z0 , ~10!

whereSjl
65Sjl (qj6ql). Equation~10! is just the reflection

version of Yang’s eigenvalue problem.21 Its solution gives
out the BAE’s. To keep the continuity of the text, we consi
the solution of Eq.~10! to the Appendix. The BAE’s read

S qj2
i

2

qj1
i

2

D 2L11

52
qj2 i ~S112c!

qj1 i ~S112c!

3 )
r 56

)
lÞ j

N
qj2rql2 i

qj2rql1 i

3 )
a51

M qj2rla1
i

2

qj2rla2
i

2

, ~11!

la1 i S S1
1

2
2cD

la2 i S S1
1

2
2cD

la1 i S S2
1

2
1cD

la2 i S S2
1

2
1cD )

r 56
)
j 51

N la2rq j1
i

2

la2rq j2
i

2

5 )
r 56

)
aÞb

M
la2rlb1 i

la2rlb2 i
, ~12!

whereM<N/2 is the number of spin-down electrons andla
are the rapidities of the spinons. The eigenvalue of
Hamiltonian is given by

E52N2(
j 51

N
4

4qj
211

. ~13!
a

a-

e

By following the same procedure, we can derive the in
grable conditions forJ52, V521/2 as

Ji5
1

S S1
1

2D 2

2c2

, Vi5

S21S112S c1
1

2D 2

S S1
1

2D 2

2c2

. ~14!

Since the physics of the two models are almost the same
study only theV53/2 case in the following text.

III. GROUND STATE PROPERTIES

As in most of many-body systems, the ground state pr
erties reveal the main features of the fixed point physics.
the Kondo problem, the central point is the residual mag
tization of the impurity, which measures the screening eff
of the conduction electrons on the local moment. In the c
ventional Kondo system, one conduction electron is boun
by the impurity at low temperatures and reduces the resid
magnetization fromS to S21/2. However, in the presen
model, the situation is more complicated. Both the bulk c
relation and the scalar potentialVi may have significant ef-
fects on the Kondo screening. Especially, there is a com
tition between the Kondo couplingJi and a repulsiveVi

becauseJi enhances the formation of the local compos
~bound state of the local moment and a conduction electr!
while a positiveVi prevents its formation. In the integrabl
case,Ji and Vi are not independent of each other but a
parametrized by a unique real constantc. Even so, the com-
petition effect can be shown exactly by varyingc and ana-
lyzing the ground state configuration of the BAE’s. Th
boundary coupling has two direct effects on the impuri
First, it splits the impurity spin into two effective spins wit
amplitudesS11/22c and S21/21c, respectively, as we
can read off from the BAE’s~12!. That means the in wave
and the out waves of the conduction electrons ‘‘see’’ diffe
ent values of the impurity spin. Notice that the mean value
the two effective spins is stillS. Second, one of the conduc
tion electrons may be pinned by the impurity in somec
regions. The local bound state then behaves as an effe
impurity and the effective spins will be further renormalize
From the BAE’s~11! we can see that an imaginary modeq
5 i (S112c) is a possible solution as long asc,S11.
However, such a mode is not always stable in the grou
state. As we can read off from Eq.~13!, the real modes form
a band22<e(q)<2. The energy of the imaginary mod
falls either below the band or above it. Therefore, the ima
nary q mode defines a true bound state around the impur

~i! c>S11. In this case, the Kondo coupling is ferroma
netic and the boundary coupling cannot induce any sta
bound state. In the ground state, all the modes$qj% and$la%
take real values. Define the quantities
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ZL
c~q!5

1

2L H (
r 56

(
a51

M

u1~q2rla!2 (
r 56

(
j 51

N

u2~q2rq j !

1fc
e~q!1fc

i ~q!J 1u1~q!,

ZL
s~l!5

1

2L H (
r 56

(
j 51

N

u1~l2rq j !2 (
r 56

(
b51

M

u2~l2rlb!

1fs
e~l!1fs

i ~l!J , ~15!

whereun(q)52 arctan(2q/n) and

fc
e~q!52u1~q!, fc

i ~q!5u2(c2S21)~q!, ~16!

fs
e~l!5u2~l!, fs

i ~l!5u (2c12S21)~l!2u (2c22S21)~l!.
~17!

Notice that the zero modes are forbidden in an open bou
ary system.23 Obviously, ZL

c(qj )5pI j /L and ZL
s(la)

5pJa /L give the logarithmic version of the BAE’s, wher
I j andJa are integers. In the ground state, both$I j% and$Ja%
are closely packed numbers from 1 up toN andM , respec-
tively. The cutoffs ofq and l are defined asZL

c(Q)5p(N
11/2)/L and ZL

s(L)5p(M11/2)/L. Define the density
functions as

rL
c~q!5

1

2p

dZL
c~q!

dq
2

1

2L
d~q!,

~18!

rL
s~l!5

1

2p

dZL
s~l!

dl
2

1

2L
d~l!.

We have the relations

E
2Q

Q

rL
c~q!dq5

1

L
N, E

2L

L

rL
s~l!dl5

1

L
M . ~19!

As demonstrated by many authors,24 L→` for the ground
state in the thermodynamic limitL→`, since any hole in the
real l axis induces an excited state.25 Substituting Eq.~18!
into the second equation of Eq.~19!, we deduce thatN
52M , which means the residual magnetization is

Ms5S1
1

2
N2M5S. ~20!

Therefore, the impurity moment cannot be screened anym
in this case.

~ii ! S11/2,c,S11. In this case, the Kondo coupling
still ferromagnetic. Due to the strong Kondo coupling a
the weak impurity potential, one boundary bound state
curs with q5 i (S112c). Since uqu,1/2, we can see tha
the energy level of this mode,

e~q!522
4

124~S112c!2,22, ~21!

is below the conduction band. Therefore this state is a st
bound state. Taking the local bound state into account,
two effective spins becomeS65S11/26(12c). This leads
d-

re

-

le
e

to N52M and Ms5S. It seems that the local spin is sti
unscreened. However, we note that the localized electron
the impurity form a spin-(S11/2) composite due to the fer
romagnetic Kondo couplingJi . When c→S11/2101,
Ji ,Vi→2`. Both Ji and Vi enhance the formation of th
local composite and the composite behaves as a perfect
moment with spin (S11/2). It is the composite rather tha
the original impurity interacting with the host effectively. I
such a sense, we can say that the local moment is part
screened because the residual magnetization is onlyS. If we
include another half chain interacting with the impurity, th
problem becomes a two-channel Kondo problem26,27 and we
expect the realization of Furusaki-Nagaosa’s conject
(Ms5S21/2).

~iii ! 2(S21/2),c,S11/2. The Kondo coupling is an
tiferromagnetic. The boundary bound stateq5 i (S112c) is
no longer a stable state since it has much higher energy.
ground state is still described by closely packed realq modes
andl modes. The residual magnetization isS21/2, indicat-
ing an usual Kondo screening as in conventional Kon
systems.28 Such a result suggests that the Kondo coupl
Ji.0 is dominant overVi even in the strong coupling limi
c→S11/2102(Ji ,Vi→1`).

~iv! 2S,c,2(S21/2). The Kondo coupling is antifer
romagnetic and no stable bound state exists in the gro
state. By following the same procedure, we derive that
residual magnetization isS, indicating the absence of Kond
screening. Though the Kondo couplingJi.0, it seemsVi is
dominant overJi and prevents the conduction electrons fro
screening the impurity. In the conventional Kondo proble
the impurity potential does not change the fixed point a
only induces the renormalization of the Kondo coupli
constant.28 However, in the present case, the strong coupl
fixed point predicted in 3D is no longer stable. Such a p
nomenon strongly suggests that the charge-spin coopera
plays an important role in the 1D Kondo problem and giv
a typical example of the competition betweenJi andVi .

~v! 2(S11/2),c,2S. In this case, the system is still i
the regime of antiferromagnetic Kondo coupling. From t
BAE’s ~11! and~12! we can see that an imaginary spin mo
l5 i (S21/21c) may assist the formation of a bounda
bound state withq5 i (S1c). This mode carries much lowe
energy than those of the real modes and is therefore stab
the ground state. Taking these bound states into account
two effective spins readS65S21/26(12c). In the ther-
modynamic limit, a direct calculation givesN52M21 in
the ground state. Therefore, the residual magnetization ta
the value ofS21/2, which indicates a typical Kondo scree
ing. In fact, both the positiveJi and negativeVi assist one
conduction electron to form tight-bonding pair with the loc
moment. The bounded spin mode is a signal of the forma
of the local spin (S21/2) bound state.

~vi! c,2(S11/2). In this case, both the ferromagnet
Kondo coupling (Ji,0) and the repulsive impurity potentia
prevent the conduction electrons screening the impurity. T
residual magnetization isS and no Kondo screening occur

The above discussion shows that the boundary coup
does have a significant effect on the Kondo screening.
central point is the spin splitting. By taking the stable bou
states into account, suppose we have two effective spinsS6 .
The Kondo effect on these effective spins is as usual. T
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only difference is that ifS2,0, its residual magnetization i
2(uS2u21/2) rather thanS221/2. Therefore, the total re
sidual magnetization of the impurity isMs5S11S2

1@sgn(S1)1sgn(S2)#/2. SinceS6 are interaction dependen
we naturally get two results: i.e., the impurity is eith
screened (Ms5S21/2) or unscreened (Ms5S).

IV. THERMODYNAMICS

In this section, we derive the thermodynamic equations
the present model via the thermal Bethe ansatz.29,32We shall
omit the excitations which break the stable boundary bo
states since these excitations are accompanied by finite
ergy gaps and their contributions to the low-temperat
thermodynamic quantities are exponentially small.

A. Thermodynamic Bethe ansatz

At finite temperatures, the solution of the BAE’s is d
scribed by a sequence of real$qj% and a variety of$la%
strings. From the Bethe ansatz equations we obtain

rc~q!1rc
h~q!5a1~q!1

1

4pL
fc8~q!2

1

2L
d~q!2@2#rc~q!

1 (
m51

`

@m#rs,m~q!, ~22!

rs,m
h ~l!5

1

4pL
fs,m8 ~l!2

1

2L
d~l!1@m#rc~l!

2 (
n51

`

Amnrs,n~l!, ~23!

wherers,m (rs,m
h ) are the densities of them-string ~holes!,

@n# is an integral operator with the kernelan(q)
5n/$2p@q21(n/2)2#%, Amn5@m1n#12@m1n22#1¯

1@ um2nu11#, andfs,m5( j 51
m fs

i $l1 i @(m11)/22 j #%. In
a magnetic fieldH, the free energy of the system can
written as

F/L5E Fe0~q!2m2
H

2 Grc~q!dq1 (
n51

`

nHE rs,n~l!dl

2TE @~rc1rc
h!ln~rc1rc

h!2rc ln rc2rc
h ln rc

h#dq

2T(
n51

` E @~rs,n1rs,n
h !ln~rs,n1rs,n

h !2rs,n ln rs,n

2rs,n
h ln rs,n

h #dl, ~24!

wheree0(q)522pa1(q)12 andm is the chemical poten
tial. At the equilibrium state, by minimizing the free energ
we obtain

ln h5
e02m

T
1$@2#2@1#G% ln~11h21!2G ln~11z1!,

~25!

ln zn5G@ ln~11zn21!1 ln~11zn11!#, n.1, ~26!
f

d
n-

e

ln z152G ln~11h21!1G ln~11z2!, ~27!

whereh(q)5rc
h(q)/rc(q), zn(l)5rs,n

h (l)/rs,n(l), andG
is an integral operator with the kernel@2 cosh(pl)#21. Since
we are only interested in the Kondo effect, we consider h
the spin part of the impurity free energy, which reads

Fimp
s 52

T

4p (
n51

` E fs,n8 ~l!ln@11zn
21~l!#dl. ~28!

B. Residual entropy

To give further information of the ground state, we stu
the residual entropy of the impurity. WhenT→0, h
→exp@(ec2m)/T#, for ec,m. Therefore the driving term in
Eq. ~27! tends to2`. That meansz1→0 and all the otherzn

take constant values28,30 zn
1 with

zn
1~x0!5

sinh2~nx0!

sinh2 x0
21, x05

H

2T
. ~29!

From Eq.~28! we deduce the residual entropy as

Sres5
1

4p (
n51

` E fs,n8 ~l!lnF11
1

zn
1~0!Gdl. ~30!

For simplicity, we consider thec.S11 case. Other case
can be studied by following the same method without a
difficulty. The only little difference is that when the bound
ary bound state occurs, its contribution tofs,n should be
taken into account. Since at zero temperaturezn are variable
independent, the integral operators@n# are equivalent to
unity and an(l) are equivalent tod(l) under integration.
This makes the calculations very simple. Whenc
5 integer, the impurity spin is split into two effective spin
S65S6(c21/2). NoticeS2,0 and contributes a negativ
value tofs,n8 . Therefore, its contribution to the entropy
also negative. The total entropy of the impurity is just t
mean value of the two effective spins, which is always po
tive:

Sres5
1

2
ln~2S1!2

1

2
ln~2uS2u!5

1

2
ln

2c12S21

2c22S21
.

~31!

When 2cÞ integer, the situation is somewhat complicate
In this case, the effective spins take noninteger and non-h
integer values and there is a mismatch between the impu
and the conduction electrons. Put 2cI5 integer part of 2c and
a52(c2cI). We have

1

2p
fs,n8 ~l!→an,2cI12S21~l!2an,2cI22S21~l!

2aa~l!(
l 51

2S

dn,2cI22S12l 22 , ~32!

wherean,m5(k51
min(m,n)an111m22k . Obviously,cI splits the

impurity spin into two effective spinsS65S6(cI21/2) and
the nonzeroa induces secondary ‘‘ghost spins’’ with value
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between 2cI22S and 2cI12S22, which reveals a local dif-
fraction effect in the spin sector. By substituting Eq.~32!
into Eq. ~30!, we obtain

Sres5
1

2
ln

2cI12S21

2cI22S21
2(

l 51

2S

ln
2~cI2S211 l !

A4~cI2S211 l !221
.

~33!

Obviously, there is a finite jump of the residual entropy
c5cI(.S11):

DSres5 lim
d→0

@Sres~cI1d!2Sres~cI2d!#

5 lnF ~cI1S21/2!~cI2S21!

~cI2S21/2!~cI1S21!G . ~34!

The discontinuity of the residual entropy atc5cI indicates a
first-order quantum phase transition. Such a behavior sh
that the local spin configuration is strongly interaction d
pendent rather than simply screened or decoupled as un
stood in the conventional Kondo problem. This strongly su
gests that both the bulk correlation and the scalar poten
have nontrivial effects on the ground state configuration
the impurity.

C. Local Landau-Luttinger liquid description

Despite the finite residual entropy in the ground state,
temperature dependence of the impurity specific heat sh
not be affected in its leading order since there are no e
degrees of freedom to induce the overscreening eff
Therefore, Nozie`res’ local Fermi liquid theory31 can be used
with a slight modification. Consider a noninteracting 1
open chain. The ‘‘momenta’’k8 is quantized as

k85k1
1

2L
d0~k!, ~35!

wherek5pn/L (n positive integer! are the ‘‘momenta’’ of
the pure open boundary system andd0(k) is the phase shift
due to the particle-impurity scattering. The change of
density of states is therefore

dD~k!5
1

p

d08~k!

e8~k!
, ~36!

wheree(k) is the single-particle energy. For the interacti
1D electron systems, the quasiparticles can be defined in
charge and spin sectors, respectively.32 The phase shifts are
generally functionals of the distributions of the quasipartic
nc(q) andns(l) and can be expressed as

dc~q!5dc,0~q!1 (
r 56

(
q8Þq

ucc~q,rq8!dnc~q8!

1 (
r 56

(
l

ucs~q,rl!dns~l!, ~37!
t

s
-
er-
-
al
f

e
ld
ra
t.

e

he

s

ds~l!5ds,0~l!1 (
r 56

(
q

usc~l,rq !dnc~q!

1 (
r 56

(
l8Þl

uss~l,rl8!dns~l8!, ~38!

wheredc,0 andds,0 are the bare phase shifts induced by t
impurity, u’s are the phase shifts of the particle-particle sc
tering, anddnc,s5nc,s2nc,s

0 is the change of the quasipart
cle distributions induced by the impurity. On the other han
dnc,s in the ground state take the form

dnc~q!5
dc8~q!

2L
, dnc~l!5

ds8~l!

2L
. ~39!

Equations~37! and ~38! are thus reduced in the thermod
namic limit L→` to

dc8~q!5dc,08 ~q!1
1

2p E
2qF

qF
ucc8 ~q,q8!dc8~q8!dq8

1
1

2p E
2lF

lF
ucs8 ~q,l!ds8~l!dl, ~40!

ds8~l!5ds,08 ~l!1
1

2p E
2qF

qF
usc8 ~l,q!dc8~q!dq

1
1

2p E
2lF

lF
uss8 ~l,l8!ds8~l8!dl8, ~41!

whereqF andlF are the Fermi ‘‘momenta.’’ Noticeo(1/L)
terms have been omitted in the above equations. The l
temperature thermodynamics of the impurity is therefo
characterized by two constants

dDc~qF!5
1

p

d8~qF!

ec8~qF!
, dDs~lF!5

1

p

ds8~lF!

es8~lF!
, ~42!

whereec,s are the quasiparticle energies.
In our case,

dc,0~q!5fc~q!, ds,0~l!5fs~l!, ~43!

usc8 ~l,q!5ucs8 ~q,l!52pa1~q2l!, ~44!

ucc8 ~q,q8!5uss8 ~q,q8!522pa2~q2q8!. ~45!

As the low-temperature specific heat is proportional to
densities of states, the following relation holds:

dC

C0
5

dc8~Q!

rc~Q!
1

ds8~L!

rs~L!
, ~46!

wheredC is the specific heat induced by the impurity an
the open boundaries andC0 is the specific heat of the bulk
~per unit length!; rc(q) andrs(l) are the quasiparticle dis
tributions in the ground state. We note that this method is
applicable to the susceptibility forS.1/2 since the residua
magnetization is finite and the low-temperature susceptib
is Curie type. However, whenS51/2 and 0,c,1 or 21
,c,21/2, Ms50, the leading order of the impurity susce
tibility is Pauli type and the present method works.
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V. CONCLUDING REMARKS

In conclusion, we propose an integrable model of
boundary impurity spin coupled with the integrable opent-J
chain. In our model, The ‘‘fine-tuned’’ effect in the period
integrable models is overcome and the interaction term ta
a very simple form. The coupling constantJi can take an
arbitrary value with a proper boundary potentialVi without
destroying the integrability of the Hamiltonian. This allow
us to study the antiferromagnetic and ferromagnetic Kon
problem simultaneously. Some new phenomena driven
the boundary coupling have been found, which can ne
appear in the periodic models as well as in the conventio
Kondo problems: ~i! The boundary coupling splits the im
purity spin into two effective ‘‘ghost spins’’S2c11/2 and
S1c21/2. That means the coupling not only changes
energy scales~Kondo temperature! as in the conventiona
Kondo problem but also renormalizes the effective stren
of the impurity spin. Such a phenomenon reveals a pure
relation effect.~ii ! Depending on the strength of the co
pling, the system may show behavior differing from those
the conventional Kondo problems. A typical example is th
the scalar potential may destruct the Kondo screening e
in the antiferromagnetic Kondo coupling regime.~iii ! The
residual entropy is strongly coupling dependent which in
cates that the local spin configuration near the impurity
very complicated rather than simply screened or decoup
as understood in the conventional Kondo problem. The m
match between the effective spins and the conduction e
trons drives a series of quantum phase transitions atc
5 integes.
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APPENDIX

In dealing with the open boundary integrable models,
often encounter the following eigenvalue problem:

Sj j 21
2

¯Sj 1
2 Sj 1

1
¯Sj j 21

1 Sj j 11
1

¯SjN
1 RjSjN

2
¯Sj j 11

2 c0

[XjC05e~qj !c0 , ~A1!

whereSjl
6 andRj are the scattering matrix and the reflecti

matrix, respectively. In our case, up to constant factors t
take the forms

Sjl
65

qj6ql1 igPjl

qj6ql1 ig
, ~A2!

Rj5
qj2 icg1 ig~t j•S11!

qj2 icg1 ig~S11!

qj1 icg1 igt j•S

qj1 icg1 igS
, ~A3!

where g561. Define c̄05(Sj j 21
2

¯Sj 1
2 )21c0 . Equation

~A1! can be rewritten as
a

es

o
y

er
al

e

h
r-

f
t
en

-
s
d

s-
c-

e

y

Sj 1
1
¯Sj j 21

1 Sj j 11
1

¯SjN
1 RjSjN

2
¯Sj j 11

2 Sj j 21
2

¯Sj 1
2 c̄0

[Xj8c̄05e~qj !c̄0 . ~A4!

For convenience, we introduce an auxiliary spacet and de-
fine

Ut~q!

5St j
1St1

1
¯St j 21

1
¯StN

1 Rt0StN
2
¯St j 11

2 St j 21
2

¯St1
2 St j

2 ,

~A5!

with qt5q. Obviously,St j
2(qj )5Pt j and

trt Ut~qj !5
2qj12ig

2qj1 ig
Xj8 . ~A6!

SinceSt l
6 satisfy the Yang-Baxter relation

Stt8
2

~q2q8!St j
6~q6qj !St8 j

6
~q86qj !

5St8 j
6

~q86qj !St j
6~q6qj !Stt8

2
~q2q8!, ~A7!

from Eq. ~3! we can easily show thatUt(q) satisfies the
reflection equation

Stt8
2

~q2q8!Ut~q!Stt8
1

~q1q8!Ut8~q8!

5Ut8~q8!Stt8
1

~q1q8!Ut~q!Stt8
2

~q2q8!.

~A8!

Therefore, the eigenvalue problem~A3! is reduced to Sklya-
nin’s eigenvalue problem.18 By following the same proce-
dure introduced in Ref. 18, we obtain the eigenvalue
Xj8(qj ) as

e~qj !5 )
a51

M
qj1La

qj2La

qj2La2 ig

qj1La1 ig
. ~A9!

The parametersLa are determined by

La2 ig~S1c21!

La1 ig~S1c!

La2 ig~S2c!

La1 ig~S2c11!

3)
j 51

N
~La1qj !~La2qj !

~La1qj1 ig!~La2qj1 ig!

5 )
bÞa

~La1Lb!~La2Lb2 ig!

~La1Lb12ig!~La2Lb1 ig!
.

~A10!

By replacingLa with la2 ig/2 in Eqs.~A9! and~A10!, we
readily obtain the BAE’s.
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