PHYSICAL REVIEW B VOLUME 60, NUMBER 2 1 JULY 1999-II

Nonlinear spin dynamics in ferromagnets with electron-nuclear coupling
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Nonlinear spin motion in ferromagnets is considered with nonlinearity due to three fg¢rdh&e sample is
prepared in a strongly nonequilibrium state, so that evolution equations cannot be linearized as would be
admissible for spin motion not too far from equilibriurtii) the system considered consists of interacting
electron and nuclear spins coupled with each other via hyperfine forcesijiaride sample is inserted into a
coil of a resonant electric circuit producing a resonator feedback field. Due to these nonlinearities, coherent
motion of spins can develop, resulting in their ultrafast relaxation. A complete analysis of mechanisms trig-
gering such a coherent motion is presented. This type of ultrafast coherent relaxation can be used for studying
intrinsic properties of magnetic material$0163-182609)02726-5

[. INTRODUCTION thrust on spins at the initial time, so that spin interactions are
of no importance and only the resonator field plays a role.
There are several different types of spin dynamics in conHowever, the most interesting case is when the coherent re-
densed matter, which can be distinguished according ttaxation develops in a self-organized way from an initially
whether the sample studied is in equilibrium, weak nonequiincoherent state, with no external coherent pulses triggering
librium, or strong nonequilibrium. Microscopic spin oscilla- the process. For such self-organized coherent relaxation
tions in equilibrium magnetic materials are related to mag-spin interactions are of crucial importance. Then the Bloch
nons and are studied by scattering techniques, such agjuations become inapplicable and one has to resort to mi-
neutrort or light? scattering. Small deviations from equilib- croscopic models.
rium, caused by an alternating external field, are characteris- A microscopic approach for describing coherent processes
tic of resonance experiments, like electron-spin resorfancén spin systems has been recently develdp&dand applied
or nuclear magnetic resonaritélowever, when the initial to a system of nuclear spins interacting through dipole
state of a spin system is made strongly nonequilibrium, sevforces. It was shown that the main role in initiating self-
eral types of spin relaxation can occur. If there are no transerganized coherent relaxation is played by the anisotropic
verse external fields acting on the spins, they relax to arso-called nonseculppart of the dipole interactions.
equilibrium state by an exponential law with a longitudinal  In the present paper we extend the microscopic theory of
relaxation timeT;. When the motion of spins is triggered, at coherent-spin relaxatidh'?to a much wider class of mate-
the initial time, by a transverse magnetic field, the relaxatiorrials. We consider a rather general Hamiltonian including
is again exponential, but with a transverse relaxation fime both nuclear as well as electron subsystems interacting with
which is usually much shorter than,. each other through hyperfine forces. The electrons can pos-
A rather different relaxation regime from a strongly non- sess a long-range magnetic order as in ferromagnets or fer-
equilibrium initial state arises if the spin system is coupled torimagnets, and magnetocrystalline anisotropy is taken into
a resonator. This can be done by inserting the sample into account. A general investigation of strongly nonequilibrium
coil connected with a resonance electric circuit. Because ofionlinear processes in realistic magnetic materials is of in-
the action of the resonator feedback field, the motion of spingerest by itself and can also be useful for many applications.
can become highly coherent resulting in their ultrafast relaxfor instance, the self-organized coherent relaxation, being
ation during a characteristic time much shorter tfiait This  quite different from other types of relaxations, may give ad-
latter type of coherent-spin relaxation from a strongly non-ditional information on intrinsic properties of magnetic ma-
equilibrium state in the presence of coupling with a resonatoterials. The ultrafast relaxation can be employed for repolar-
is the most difficult to realize experimentally and to describeizing solid-state targets used in scattering experim#&hs.
theoretically. Experimental difficulties have been overcomeCoherent effects in spin systems, being similar to their co-
in a series of observations of this phenomenon for a systererent counterparts in opti¢$!® could be used for analo-
of nuclear spins in a paramagnetic maffix® A theory of  gous purposes but in another frequency region. For example,
the coherent-spin relaxation could be based on the phenonspin maser€~8can be realized. The sensitivity of the char-
enological Bloch equations, but solely for the case when thacteristic times of coherent relaxation to initial conditions
process is triggered by a sufficiently strong coherent pulseould be used for creating ultrasensitive particle detecfors.
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Il. ELECTRON-NUCLEAR SPIN HAMILTONIAN and for nucleii= . N,. The corresponding electron
nd nuclear denS|t|e$,e Ne/V andp,=N,/V, whereV is
he volume of a sample, are, in general, dlfferent
The resonator coil is directed along tkaxis, so that the
current induced in it is caused by the motion of the trans-
verse magnetization
describing a realistic situation where the sample contains

. . .~ . . 1
electrons with a Hamiltoniai, and nuclei with a Hamil =5 Z (e S+ n(1%)), (8)

N . M, =
tonianH,,, their interaction being given bi;,.. The elec-
tron Hamiltonian is

To make our consideration applicable to a wide class o
magnetic materials, we take a rather general Hamiltonian

H=H.+H,+H,y, 1)

where the angle brackets mean statistical averaging. The
1 resonant electric circuit is characterized by a natural fre-
-5 2 JijSi.Sj—luez |_:7,.§i , 2 quencyw, ringing time y3, and quality factoQ, given by

%] i
where J;; is an exchange interaction; the indicésj _ 1 _v _oL 9

> . W= ) 73_ 2 1 R ’ ( )
=1,2, ... N here enumerate electror$;is a spin operator; yLC Q

Me=eps, With g; being the electronic gyromagnetic ratio wherelL, C, andR are inductance, capacity, and resistance,

andug being the Bohr magnetol is a magnetic field. The  yagpectively. The resonator feedback field is giiesy the
nuclear Hamiltonian has the foffhcommonly accepted in Kirchhoff equation

the theory of nuclear magnetic resonance,

H t
.1 - ——+2 H+2jH dr=—4mp——, (10
Hn=5 2 2, CifIfIf—pn2 BT, ) gt Pt et Rindr=dm g, (10
%] aB i
: S S . in which # is a filling factor.
in whichi,j=1,2,... N, enumerate nuclei with dipole in-
teractions
Ill. COUPLED SYSTEM OF EQUATIONS
Caﬁ_an —3nenf) 4) Spin dynamics is defined by the Heisenberg equations for
r3 E the electron spin operato®” and S?, and for the nuclear-

ij

between each other, wherg,=g,un, d, being the
nuclear gyromagnetic ratigey, is the nuclear magneton,

spin operatorsl;” and I7, where S"=S'*iS)/, I/ =I}
+ilY. These equations are coupled to each other by hyper-
o S N 2 fine interactions between electron and nuclear spins. Besides
andrij=[r;|, ny=rj/rj,ri=r;—r;; the indicesa and  that, both types of spin motion are coupled with the resonator
B label the components of Cartesian vectors, £  through the resonator feedback field, defined by Ed),
=x,y,z); I; is a nuclear-spin operator. The general formand the average transverse magnetizatBnexpressed by

of the hyperfine interactioR%?! between electrons and nu- means of the average spins. To describe the dynamics of

clei is spins coupled with each other as well as with a resonator, we
need to derive the time evolution equations for the average
~ = - 1 lectron and nuclear spin
Hint:Az S'|i+§;EAﬁ'BSia|-B, ) electron and nuclear spins
I I
i ap 1 1
containing an isotropic contact part with an interaction inten- X= N_ E (S), z= N_ E. (11

sity A and a dipole part with the interactions

1 1
wp Mokt u=— =_— 17, 12
AP =—(8,5—3n500). (6) N, 2.: Nn2i<'> (12
]
o The main steps of deriving these equations are the same as in
The total magnetic field is the sum Refs. 11,12 except that now the Hamiltoniéh is more
- - - complicated.
B=Hoe,+Hi€, Hi=Ha+H, () We introduce the Zeeman frequencies
of an external magnetic field in ttedirection and of a trans- L H L H 13
verse field including an effective field of a transverse mag- @We=HMeMo,  @n=MnMo. (13

netocrystalline anisotropyand a feedback fieltl of a reso-  gnd the anisotropy parameters
nator. The longitudinal part of the magnetocrystalline
anisotropy can be included into the external magnetic field ae=peHa, ap=pu Ha, (14)
Ho.

In the preceding formulas we have used, for simplicity, where the Planck constant is get=1. We use the notation
the same indices,andj, to enumerate electrons and nuclei, 1
keeping in mind that for each particular case these indices i A UD+ o1+ (1~ 15
run over different sets, so that for electrans1,2, ... N, f=5 2, @lDre) i) (9
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1 - — — where v, and vy, are attenuation parameters aadis the
£=5 D (eI +2b(1y+2¢i(17), (160  stationary value ok The variablex is complex, whilez is
S real, so we should add either an equationxbror for |x|. It

in which is convenient to consider
_ _ 1 d|x|? .
=AY, e;=5(A+AY), —gr = 27X (et peH — £ —Au*)zx
_ 1 1 —i(aet+ uH—E—Au)zx*. (21
bij = Z(Aﬁx_Aﬁy_ZiAixjy)* Cij= §(Aisz_iA¥jz)' In the case of nuclear spins, we obtain

Af}ﬁ being given in Eq(6). Also we write %—i(w T = po— AZU—i(ay+ pH— o— AX)S
n n n )

dt
‘POEJ(;) [(aj—e{IH+ci(1; ) +ck1)) (22)
ds i
+ 3 (a(S) +e(S))+ei(S ], (17) i~ 2@t uH—e—Axu
i
o= 2 | 2(by{1)+ci(If) — 5 (ant paH—@* —AX")u-Ty(s=s), (23
i(#1)

1 wherel'; andT’, are the longitudinal and transverse attenu-
+§(eij(3f>+2bij<31+>+ZCij(sz>) , (18)  ations, respectively, and is the stationary value os. In
addition, we shall need
where d|ul?

T —2T,|ul?+i(an+ upH—@* —AX*)su

1

—i(ap+ u,H—@—AX)SU*. (29

1 VY o mxy 1 ve All equations (19)—(24) contain the resonator feedback
2(Ciy —Ciy—2iCi), ;=5 (Cii—ICy), field H described by E¢(10). The latter can be transforméd
to the integral feedback equation

Ci‘}ﬁ being defined in Eq(4). Equations(15)—(18) describe

local random fields caused by spin fluctuations. In the uni- __ jt _

form approximation, all these quantities would be zero, be- H 4mn OG(t 7)AMy(7), (25
cause of the properties of dipole interactions. However, these o . )
local fields cannot be neglected, since they play a crucial rol€Xpressed through a Stieltjes integral with the Green function
at the initial stage of spin relaxation. Therefore, they must be

retaingd and treaped as qual randqm variables. For other G(t)z(co&ugt—ﬁsinwgt
terms in the evolution equations, having a long-range nature w3

in real space, one may employ the semiclassical approximasn the differential measutiM, with M, defined in Eq(8).

tion. This approach of using for long-range terms the SemiHere the effective frequency i8s= \/wz—_yz
. - 3.

classipal .approximation complemented by the stochast[c The system of seven nonlinear equatioh®—(25) deter-
quantization of short-range terms has been developed 'Mines the dynamics of electron and nuclear spins coupled

Refs. 11,12. . :
Following these steps and taking into account the Iongi-Wlth each other as well as with a resonator.

tudinal y,,I'; and transverse,,I", attenuations for the elec-
tron and nuclei, respectively, we obtain the evolution equa-

exp(— yst)

IV. SCALE SEPARATION APPROACH

tions for the electron-spin variablgd1) and nuclear-spin Our aim here is to study the strongly nonequilibrium re-
variables(12). For the transverse and longitudinal electrongimes of spin motion. This problem is different from consid-
spins we have, respectively, ering the equilibrium properties of coupled electron and

nuclear sping>~2® An additional complication, in our case,
arises from the coupling of spins with a resonator by means
of the feedback equatiof25). To solve Eqs(19)—(25), we
(19 employ the scale separation approdcfiwhich is a gener-
_ alization of the averaging techniques of dynamical th&c?y/
dz_i o H— At to statistical systems.
dt 2 (are peH == Au)x To understand what different time scales exist for the sys-
tem considered, we need to specify what small parameters
we have. Since we have a sample coupled with a resonator,
some small parameters should appear by concretizing the

dx
a=i(we+i72—§o—AS)X—i(ae+ meH—E—Au)z,

— 5@t peH— & — AU )X— yi(2-0), (20)
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corresponding resonance conditions, assuming the ringing I |
width is much smaller than the natural frequency, on <1, o <1. (39
ﬁ<1_ (26) Using conditiong30) and(32), we may simplify the feed-
() back equatior(25) to
The resonator natural frequency can be tuned either to the dx du
frequency of electron spin resonaneg, so that H=-2 Re( ,3ea + Bn a) , (36)
ﬁf <1, A=0—w,, 27) in which the parameters
We
; _ o MePe _ o MnPn
or to the frequency of nuclear magnetic resonance Be=Tn——, PB=minp——0 (37)
w
WN= ©n~ Alerf, (28) characterize the effective coupling of the sample with the
in which z is the longitudinal electron spinaveraged over resonator. The details are given in the Appendix. Substitut-
the period 27/ w, so that ing into Eq.(36) the derivatives from Eq$19) and(22), we
find
Ay
on <1, Ay=o-oy. (29 H=—2 Rei B (we— AS— &g+iyo)X+ (Au+ £)Z]

We assume that the external magnetic fielg is suffi- ~2Rei Byl (0n = AZ= @o FiT)ut (Axt @)s].

ciently strong that (39
e eH i A The feedback field38) is to be substituted into Eq$19)—
—l<1, <1, |—|<1, (30)  (24).
@We We @We Then we solve Eq(19) treating there all slow variables as

whereH is the resonator feedback field averaged over #luasi-integrals of motion. The solution reads
period 27/ w. We also assume

x=(Xo—X)eXp{(iQe—y2)t}+X, (39
7 <1, 2 <1. (31  wherexy,=x(0) and
We We
Then from Eqs(19) to (21) it follows that the variableg and Qe=0we=As— o~ teBe¥2Z,
|x|? are to be treated as slow compared to the fast variable _
Similarly, for nuclei we assume Y2= "2t teBe(we— AS—&p)Z,
an anHeff| Axeﬁ‘ 1
— << < < _ H 2
o <1, ‘ o |<1, o ‘<1, (32 =5—{(ae—Au—§)z+|,ueBe[A(u*—u)+§*—§]z 1.

e

where the subscript eff means again that the correspondin/g%f,[er this, we solve Eq(22), keeping the slow variables
guantity is averaged overi# v, and we keep in mind the ' X

i It fixed and averaging the fast variabkgg) andz(t) to obtain
usualinequaities Xeff aNd zgg. Sincex(t) is already known, we have

<1. (33) X AeZ/‘Qe: W= we
e
O!

Dy, Lo
wN wN w~wy,
Then Egs(22), (23), and(24) show that the variablesand
|u|? are slow compared to the fast variableAs the nuclear
magnetic momeng,, is much smaller than that of an elec-

tron ., we have the inequalities

where Q.= w,—As— &, and A.=a.— Au—&. The solution
of Eqg. (22) is

u=(up—u)exp((iQ,— Tt} +u, (40)

Hn (34) whereuy=u(0) and

Me

Then, comparing Eq$19) and(22), we see that the variable
u is slow compared to the fast variable And the compari- =
son of Egs(21) and(24) tells us thafu|? is slow compared I'o=To+ unBn(@n—AZr— ¢o)s,
to the fasterx|2. L

One more condition assumed is related to the local ran- — . "
dom fields(15)—(18). These local fields define the param- _ﬁ_n[(a“ P)SFipinBe( €7~ £)SZ].
eters of inhomogeneous broadening due to the electron-
nuclear,I's,, and nuclear-nucleafl ,, interactions. These The solutiong39) and (40) are to be substituted into the
widths are assumed to satisfy equations for the slow variables, with the right-hand sides of

I'y I'>
<], —<1, —<1.
Y1 Y2

ﬁnE 0= A(L+ wnBeS) Zet— o~ mnBnl 2S,
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the latter equations being averaged over time and over ran-

dom local fields according to the rule

dm(y),

2
0

) 7lw
ﬂf f(t,¢)dt

ieom= [
with the stochastic measure() such that
(€)= ()= (ot =0,
(o) =((e) = (o)) =0,
(Eawol) = ((Eue)) = ((£00) = (£)) =0.
(N =)= =T,

(o) =((le|?)=T% =T +T¢,
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w
T 2I'5(1+g,S)w. (50)
Equations(47)—(50) define the averaged motion of slow
variables. We require their solutions, since all observable
quantities can be expressed through them.

V. NUCLEAR-SPIN DYNAMICS

Equationg47) to (50) show that the electron-spin dynam-
ics is qualitatively similar to that of nuclear spins, but there
are three main points distinguishing electron from nuclear
relaxation. First, electron-spin processes are usually much
faster than nuclear processewhich is related to the fact
that v,>T",. Second, as the electronic magnetic moment is
three orders of magnitude larger than the nuclear magneton,
electron-spin motion is much less influenced by the presence

The constantsy, andl', are the parameters of inhomoge- of nuclei than the motion of nuclear spins by the existence of
neous broadening caused by hyperfine electron-nuclear dglectrons. Third, the stronger influence of electrons on the

pole interactions and by nuclear dipole interactions.
We introduce the effective coupling parameters

2
Pelle® As
0= 2 eMe E(l-l— Pntn , (41)
Y2w PeMeWE
2
PnMpn@N PeleA Zes
I
=77 (1+ ), (42
" I'r0 PnMn®N

motion of nuclear spins is caused by a long-range magnetic
order that more readily occurs in electronic systems than in
nuclear ones. Therefore, nuclear-spin dynamics is a little
more complicated but at the same time richer than the dy-
namics of electron spins.

Suppose that the electron spins either were not perturbed
at the initial time or, if perturbed, that fast electron processes
have already been relaxed to their stationary state. Let us
study the dynamics of nuclear spins that were initially pre-

characterizing the strength of coupling between electron opared in a strongly nonequilibrium state. We denote the ini-
nuclear spins, respectively, and the resonator. The effectivgy| conditions for the nuclear-spin variables as

frequencies are

W= we—AS, wn=w,—AZg, (43

s(0)=sg, W(0)=wy, u(0)=ug. (51

which are the frequencies of the electron-spin resonance and If relaxation of nuclear spins lasts for times of order

nuclear magnetic resonance.
Also, we define slow variables for electrons,

agt A+ o,

v=|x*~ > (44
WE
and for nuclei
2 2 2
as+T's+ 6
w=|u]2- ———¢, (45)
wy
where
o= \2m . " . (46)

Accomplishing all these steps, we obtain from E@Q)—
(29)

dz
qr 729V~ Y1(z—0), (47)
dv
52—27’2(1+ ge2)v, (48)
ds
E=F29nW—F1(S— 0, (49

=TI'; %, this would mean that coherent processes do not de-
velop. Such a case would be of no interest for us, since our
aim here is to investigate the fast coherent relaxation. Hence,
we shall consider times such thia&T';*. In this case, we
may omit in Eq.(49) the term containind’;. Then we can
solve Eqs(49) and(50) analytically obtaining for the longi-
tudinal nuclear spin

Yo t_t0> 1
s= ——tan - =, 52
al’, ?( 70 g %2
where, for the sake of simplicity, we wrigg=g,,, and
2
Yo t_to>
WE secﬁ( ) 53
<9F2) 70 ®3

Here yo= 7-51 is the relaxation width given by the equation

Yo=T2[(1+9s0)*+g?Wo] ™ (54)
with 75 being the relaxation time, ant} being the delay
time,

N Yo~ I'2(1+9%)
Yo+ Ta(1+9s)|

According to Eq(45), the modulus squared of the transverse
nuclear spin is

70
tOZE

(55
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2 _ 2,724 s2 Let us consider theelf-organized relaxatiomn the sys-
Yo t—to| aptI'i+é . :
ul?=|—=<=| sech s2. (56 tem of nuclear spins strongly coupled with a resonator. That
r T 2 . . »
912 0 Wy is, we analyze the case corresponding to the conditions:

If the coupling parametey, is small,g<1, then Eqs(49) Up=0, So#0, glso[>1. (60)
and(50) show that the relaxation of nuclear spins follows theif =0, then, according to relatioid5), we have |wp|
standard exponential law with the relaxation tim&s <s§. This permits us to simplify the relaxation widts7)
=I'; " andT,=I',". This trivial regime is not interesting for getting
us, SO we concentrate attention on the case of strong cou-
pling, wheng>1. Then the relaxation widtli54) can be r,
written as ¥0= 1 0lSol (256 +Wo) +2(255-wo)]. (61)

0

wheree= sgns,. The delay timg58) becomes

S
70:F2<9V50+W0+—0 (57

> .
\S§+ W Lo 2(1—&)s5+wy 62
For the delay tim&55), we find 2 2(1+e)S2+wp|’
and for the relaxation timés9), we get
7o, | 9(S5+Wo) +So— (1+0Sp) Vsg+Wo
toz_ n > > . (58) 2 2_W T
2| g(s§+Wo) +So+ (1+9Sp) VSh+Wo _S0Wo T2 63
To= 3~ : (63
. . . . . . 29|SO| FZ g|so|
For the relaxation time, after using again the inequaljty
>1, we have The delay time(62) strongly depends on the sign of the
initial polarization of nuclear sping= sgn s;. When this
T, initial polarization is directed along the external magnetic
To=———. (59)  field Hy, i.e., along thez axis, then
gvsg+Wo
r
A large value of the coupling constagimeans, according to to=§oln —02 (e=1), (64)
its definition in Eq.(42), that nuclear spins are strongly cor- 4sp

related with each other by means of an effective interactionng if the initial polarization is directed opposite to the ex-
through the resonator feedback field. As a result of this corternal field, then

relation they move coherently, which leads to the nonzero

value of w~|u|2. Recall that, by definitior(12), u=0 for o
incoherent spins. Coherent motion of the spins results in tozfm
their ultrafast relaxation, which follows from E¢9) yield-

ing 7o0<T, wheng>1. This is why the characteristic time  |n the case when the initial polarization is along feis,
(59 can be called theoherent relaxation timeNotice also  Eq. (64) shows thaty<0, since|wy|<s2. Then the function
that the coupling parameté42) is proportional to the num- (53) quickly decreases starting from=0. This function
ber of nucleiN,,, and soro~1/g~1/N,. Such a dependence y(t), being proportional tgu|2, describes the degree of co-
of the relaxation time7o~1/N,,, on the number of radiators  herence in the motion of nuclear spins. In turn, the function
is typical for coherent processes that in optics are callegy|2 is proportional to the power flow in the resonator circuit
superradiance™ o _ . and, thus, is a directly measurable quantity?Hence, when
The relaxation characteristics, as is seen, essentially d%v(t) quickly decreases starting from the initial tire 0 and

pend on the initial conditiong31). If uy#0 at the initial |wo|<s3, this means that no noticeable coherence develops
time, this implies that an initial coherence is imposed on the, ihe system.

spins, which can be done by means of a short external pulse |, contrast, if the initial polarization of nuclear spins is

. — 2 ) . ) )
of a transverse field. Whem,~1, then we h"’_‘V@"’0”|U0| »  directed opposite to the external magnetic field, so that the
since the second term in EGS) is small. In this case we get gysiem is prepared in a strongly nonequilibrium state, then,

the regime of triggered relaxatidfi. from Eq. (65), there is a positive solution for the delay time
A much more interesting question concerns how the ré; ~ o |n such a case, the functiad3) increases from its
laxation of nuclear spins starts when no initial coherence it value wy, reaching a maximum at=t,, when

thrust upon the spins. This problem is also more important

than consideration of the case when relaxation is triggered by 1

external fields. For, when the relaxation is initiated not by W(tg)=s5, S(to)=——. (66)
external forces but by internal interactions, the relaxation 9

characteristics, such as the delay time and the relaxatiofhis means that a self-organized coherent pulse develops
time, significantly depend on the parameters of these internalith a maximum at =t,, which explains why, is called the
interactions. Therefore, the self-organized relaxation reflectdelay time.

(and provides information abguthe intrinsic properties of Combining both the cases, Eq$4) and (65), into one
matter. and substituting the expressions fgy andw,, we obtain

4s?
— (e=-1). (65)

Wo
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T WP+T2+T2 + 52‘ as such. The effective Suhl-Nakamura force describes an in-

2 n en nn . . . . .

to= n . ) (67) direct interaction of nuclear spins through magnetically or-
29 4oy ‘ dered electron&:

. i L . For strongly nonequilibrium processes, such as those con-
This is t_he centrallformula for analy_zmg which internal Mi- sidered in this paper, the role of the magnetic order of the
croscopic mechanisms are responsible for the self-organizefacirons is essentially different. This order does strongly
development of coherent relaxation. Each of these intergh ence several important characteristics. For instance, in

mechanisms is related to the corresponding parameter entefggition to the usual shift of the nuclear magnetic resonance
ing formula(67). Among such internal causes that may tr'g'frequencwa=wn—Azeff, it leads to the appearance of pa-

ger self-organized coherence, we have the transverse magigmeter(46) playing for nuclei the role of an additional in-
tocrystalline anisotropyq,; the dipole part of the hyperfine ), m,geneous width. Nevertheless, even if this order is ab-
interactions, characterized by the paramétgy; the dipole  gont go that,;—0, coherent nuclear-spin relaxation can
interactions between nuclear spifig,; and the paramete¥  qyist \Whenz;—0, the Suhl-Nakamura force is not well
defined in Eq.(46), which is due to the simultaneous exis- yefined, but the hyperfine interactions do not stop existing.
tence of the hyperfine interactions, of couplmg with @ resorhase interactions define the width,,, which is not zero
natorr], ancli of the magnetlza:ctlonr?f eIectror; spll?s. _ even if the electronic magnetic order is absent. Thus, the
The relaxation time(54), for the case of self-organized (rasence of hyperfine interactions is already important, even

relaxation, wheru,=0, reads when there is no long-range magnetic order, when the Suhl-
_1y2 Nakamura force and nuclear-spin waves are not well defined.
af+ T2 +T2+ 6 However, it is worth emphasizing that the appearance of
=T, (1+ )2+ 252 n en nn 4 ) _ p g pp
7o~ I2 9%)" T 9750 wﬁ ' electronic magnetic order can strongly change the values of

(68) the characteristic parameters. Thus, one of the most impor-
tant parameters is the effective coupliG) describing the
This demonstrates that the value of the relaxation tig8&  coupling of nuclear spins with a resonator. The value of this
depends mainly on the strenggtof coupling with a resona- parameter essentially depends on whetitgris zero or not.
tor. In this way, the delay timé67) and the relaxation time The appearance of magnetic order in the electronic system
(68) are related to different characteristics of the system conean change the value of the paramé#®) by several orders
sidered. of magnitude which, in turn, drastically changes the values
In order to decide what kind of interactions, direct dipole of the delay timet, and the relaxation time,.
interactions between nuclei or hyperfine interactions, influ-
ences more the values of the characteristic times, we should
compare the corresponding Widthnn~pnMﬁ and Ty,
~piemn, Where p~min{ps,ont.- There are two limiting To understand better the role of different factors in the
cases. The first is whem,<p,., and then coherent relaxation of nuclear spins and the magnitudes of
the related characteristic parameters, let us now make nu-
| T . _ merical estimates. We take the values of parameters that are
F_enN ENlO (Pn=pe)- (69) typical of many ferromagnetic materials in which one usu-
ally studies nuclear magnetic resonance and nuclear spin
Hence, when the density of nuclei is lower or comparableecho?>?>*°These can be pure materials, such as Co, or vari-
with that of electrons, nuclear dipole interactions are negli-ous ferromagnetic alloys and compourds® Since ferri-
gibly small compared to the hyperfine interactions betweemmagnets are often treated by effective ferromagnetic models,
nuclei and electrons. Another case is when the density oferrimagnetic materials, such as Mg, are also included

VI. CHARACTERISTIC NUMERICAL VALUES

nuclei is much higher than that of electrons; then here3!
For the characteristic magnetic fields and the correspond-
Con pokn Pn, 4 ing frequencies we have the following values. The contact
F—er]““mNElO (Pn>pe)- (70 hyperfine fieldH =A/u,~10° G, the related frequency

wa=Alh~10° s 1. The hyperfine field is smaller than the
Thus, the nuclear dipole interactions become stronger thaglectron exchange fieltl ;=J/u.~10° G, the correspond-
the hyperfine interactions only when the density of nucleiing frequency beingw;=pu.H;/A~10" s™1. However,
surpasses by three orders of magnitude the density of eleboth these fields are important for nonequilibrium processes
trons. in the nuclear-spin system, although the role of these fields is
In equilibrium theory, the influence of hyperfine interac- different. The hyperfine field acts directly on the nuclear
tions is often modeled by the effective Suhl-Nakamuraspins, and the exchange field influences nuclear-spin relax-
forces directly acting between nuclear spth§hese forces ation indirectly, through the formation of magnetic order in
are responsible for the appearance of nuclear-spin waves cdhe electronic subsystem. If we take an external magnetic
responding to well-defined excitations, even at those temfield Ho~10% G, then the Zeeman frequenci€id) are w,
peratures where the nuclear spins are completely disordereg ueHo/fi~10" s71 and w,=u,Ho/hi~10° st The
The underlying cause of the formation of the nuclear-spirmagnetocrystalline anisotropy field,<10° G, depending
waves is the existence of magnetic long-range order in then the particular structure of matter. The anisotropy param-
electronic subsystem, which defines both the long-range ineters (14) are a,=ueH,/A<10"° s™! and ay=pu,H,/%
teraction radius of the Suhl-Nakamura force and its existences10” s, respectively. The longitudinal widthg, andTI";
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can vary within rather wide intervals, but usually<y, and  characteristic times and influencing the behavior of solutions
I'y<T',. For the transverse widths we may take the estimatets the coupling parametey; which is drastically different for
72~peﬂ§/ﬁ and P2~pn,uﬁ/ﬁ, This, with u, the case when there is magnetic order in the electron system
~10"% erg/G, un~10"% erg/G, and  pe.~pn compared to the case when the magnetization is absent. For
~10?% cm 3, gives y,~10° s7! andI',~10* s 1. The the latter case, when,;=0, we haveg~ 10. When a ferro-
value for vy, is to be treated as the upper limit, since themagnetic material is considered, so thgt~ 1, then the sec-
density of electrons is usually less thard@m 3, being, ond term in Eq.(42) can become much larger than the first
for instance, 1& cm2 for typical ordinary metalé? In the ~ one. Thus, folpe~p,, we have
case when the considered electrons are related to impurity
ions inside an insulator, as in Refs. 6—10 then their density PetePAZeft e 10°
can bepe~10%° cm™3, resulting iny,~10" s 1. The esti- Poin®N
mated value ofl', is in agreement with experimental
measurement®. For the resonator ringing width, we may  Therefore, the coupling parametgrcan be increased by
take a typical experimental value of;~10° s™'. Then three orders by the presence of electron magnetization,
y3lwe~10"° and y3/w,~10"2, so that inequality26) is  reaching the valug~10*. The system of magnetized elec-
satisfied. trons acts as an additional resonator strongly strengthening
Since y;<1v, and y,/we.<10"1, condition(31) is valid. ~ the coupling between the resonance electric circuit and
The nuclear magnetic resonance freque(®8) is wy~ oy, nuclear spins.
~10° s tif zx=0, that is if the magnetic order is absent, To evaluate the characteristic values of the delay time
and if zeg#0, thenwy~10° s Hence,I'y/wy~T5/w, (67) and relaxation timg68), we made calculations for sev-
~1074, when z,=0, andI',/wy~10° for a ferromag- eral ferromagnetic materials with typical parameters taken
netic material withz.z#0. This, together withI';<I',,  from Ref. 30. In our formulas we take the filling factar
shows that conditiori33) holds true. =1, consider the purely resonance case, wher wy|, also
For electronsge/we<10"' andw,/we~10"2, while for  take z.4=73, pe=p, and assume that the transverse anisot-
nuclei, a,/wy=<10"2 and x.+=0. The resonator feedback ropy parameter is small compared Ifg,. We analyze the
field (38) is He~Bewa. For electrons, with a resonator case of purely self-organized coherent relaxation when at the
natural frequency close to the electron spin resonance franitial time nuclear spins are polarized against the external
quency, o~ w,, we haveuHqs/we.~10 3, and for nuclei, magnetic field, so that,=—I, wherel is an absolute value
whenw~ oy, we findu,Heg/ wy~1072. Thus, all inequali-  of a nuclear spin, and there is no initial coherence imposed
ties in Egs.(30) and (32) are valid. Sinceu,/ue~10"2  upon the system, so thay=0. The high initial polarization
and T';/y, and T',/y, are of the order ofp,u2/peus  Of nuclear spins can be achieved by the dynamic nuclear
~(pnlpe)1078, the inequalities in Eq(34) hold true if p,, polarization technique. The transverse relaxation time

and p,, are not drastically different. Conditior(85) are also =I', ' can be measured by several methods, e.g., the two-
satisfied, sincelgn/ N~ tny2/pmewn~10"2 and I'y,/wy  Pulse echo technique or the single-pulse echo techriftoie,
~Tlwy~10"°. which the former is likely to be more reliable. Our results are

Among the parameters defining the characteristic times opresented in Table I.
the coherent nuclear spin relaxation, we have the anisotropy
parameter,<10" s !, the inhomogeneous broadening due VII. DISCUSSION
to hyperfine dipole interactionsI o ~ppepn With p
=min{pe.pn}, the inhomogeneous broadening due to nuclear N(_)nl_inear spin dynamics is considered for ferromagnets
dipole interactions]",,~ pnu2~10* s71, and the parameter consisting of electron and nuclear subsystems coupled

5 is given by Eq.(46), from which 52~1o—21~2n22ﬁ_ The through hyperfine forces. The sample is prepared in a
’ e strongly nonequilibrium initial state. In addition, the ferro-

width I',,, according to Eqs(69) and(70), is always larger i . . ; . .

thanT,,,, provided that the density of electrops is not magnetic sample is considered inserted into a coil of a reso-

three 8?&8[‘5 smaller than the density of nuglgi which nant electric circuit. All this makes the spin dynamics highly

follows from the relation o~ 10%(pe/ py) Ty FOT éxample nonlinear. The evolution of the system is described by seven

it oo~ then T 1GT- . If we take o.—2  Nonlinear equations, six of which are differential equations
Lg Pn k. " Pe for electron and nuclear spins and one equation is an inte-

X 10%° cm 2 andp,~ (5X 107>~ 10%%) cm 3, as in the ex- : : : .
. N Yy ' . grodifferential equation for the feedback field of the resona-
periments(Refs. 6-19, then ey~ (1= 10)["ny. In this way, tor. These are solved by using the scale separation

the hyperfine widtH' ¢y is usually larger thair, and always approacht}? |t is shown that due to the resonator feedback

larger thané, althoughl',,, may be comparable witk,,, if . . i
Zp. Wheno.~o.  the largest parameters amon thoseﬂeld an ultrafast coherent relaxation of spins can occur. The
ggnsfi)aéred abg\‘ie g;e’ andl"g~1(§; <1 Insuch a gase system of magnetized electrons serves as an additional reso-
n en . 1

: » . .nator for the nuclear spins, significantly enhancing the effec-
other parameters entering additively with these can be omi tive coupling of the nuclear spins with the resonator circuit
ted. For instance, the delay tint&7) may be written as pling P )

Such an enhancement can reach three orders of magnitude,
as compared to the coupling in a paramagnetic material.

The ultrafast coherent relaxation of nuclear spins may be
either triggered by an initial pulse or can be self-organized.
The latter case is the more interesting, since then all relax-
An important parameter entering the expressions for thetion characteristics, such as the delay time and relaxation

2, 2
ap+T'g,

2
4wy,

= 20%

In
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TABLE I. The characteristic parameters related to the self-organized coherent nuclear-spin relaxation in
several ferromagnetic materials.

wy T, 7o to

Sample Nucleus I (10° Hz) (1074 s) (108 s) (108 s)
LigFe <0, SFe 1/2 0.47 40 88.2 400
Mng 5:Sty 4404 1233 712 1.31 1.70 0.54 2.98

55Mn 5/2 1.61 0.60 0.26 1.53
Ni-Mn-Sb 55Mn 5/2 1.88 0.95 0.42 2.49
Ni-Mn-Si 55Mn 5/2 2.01 0.60 0.26 1.59
Co,MnSi 5Co 712 0.91 0.38 0.12 0.62

55Mn 5/2 1.59 0.80 0.35 2.03
Co (fcc) 5%Co 712 1.37 0.30 0.09 0.53
Co (hcp) %co 712 1.38 0.65 0.21 1.15

time, depend strongly on the values of the internal paramfrom the analysis of Sec. V thag>0 requiress;<<0. Thus
eters. The most important such parameters, starting the prthe valuesyty in the formula forI', is negative, making
cess of self-organized coherent relaxation and, therefore, d&-, <w)y . The exponential dependence bf on the delay
fining the main relaxation characteristics, are the transverséme t, makes the value df , very sensitive td,,.
magnetocrystalline anisotropy and the dipole hyperfine inter- Another possibility for exploiting the effect of coherent-
actions. If the density of electrons is more than three orderspin relaxation is its sensitivity to initial conditions, in par-
of magnitude lower than the density of nuclei, then the directicular, to the initial amplitude of the transverse sping|.
nuclear dipole interactions also become important. An interThe latter, in order to influence the delay tir(®8) and re-
esting extension of the present approach could be the incluaxation time(59), should be such that
sion of external alternating magnetic fields, as has been done
for nuclear magnet&~% 2, 2
By studying the peculiarities of the coherent spin relax- lug| 2> n_*
ation, it is possible to extract information on the intrinsic wy
properties of magnetic materials. This especially concerns
the regime of self-organized coherent relaxation, whose charthis is always small, and can be made arbitrarily smaller by
acteristics are very sensitive to the values of the parameteféducings,. Hence, we conclude that even quite weak exter-
of the material studied. By observing a coherent pulse in th&@al pulses, resulting in nonzefaoy|, can trigger the process
power flow, one can measure, with a very high precision, th@f coherent relaxation. For example, from E(f39) and(45)
delay timet,. The latter can be accurately measured becaus@e get
it exactly corresponds to the maximum of the functie(t),

s2<1074.

which is proportional to the power flow in the resonant 2 2,12

. . 12 . . . 2 T2 an+ * 2
circuit.” If the delay timety is measured experimentally, |uol?= P >——1/sp
then, inverting Eq.{67), one may find the sum o&ﬁ and 9 WN

r2=Tr2+T? as : . .
* en o This allows us, by measuring the coherent relaxation tige

to find the initial amplitudeu,|. The sensitivity of coherent-
, spin relaxation to initial conditions could be employed for
creating ultrasensitive detectors of weak external pulses. In
where the inequalityy<T ., is taken into account. This rela- turn, this can be used to construct sensitive particle
tion, when a, is known from other experiments, makes it detectors?
possible to define the inhomogeneous broadehipg As is In conclusion, the main results obtained in this paper can
mentioned in Sec. VI, one usually has,<I,. The be summarized in the following:
transverse-anisotropy parametey depends on the orienta- (i) A theory of nonlinear spin dynamics is developed for
tion of the sample with respect to the external magnetic fieldthe systems of electron and nuclear spins coupled with each

t
a?+T2 =40} ex;{ ngo_l_—o2

It is possible to choose an orientation such that<I', .  other through hyperfine forces and also coupled to a resona-
Then we obtain a simple formula giving the inhomogeneoud0r electric circuit. This essentially generalizes the previous
broadening consideration of nonequilibrium nuclear magnét$® to a
much wider class of materials, having long-range magnetic
to order.
Iy =20y exp(gsoT—z) (i) The very complicated set of nonlinear differential

equations is solved by invoking the scale separation
in terms of the known values of the nuclear magnetic resoapproach*?It is important that, because of the existence of
nance frequencyy, the coupling parametag=g, in Eq.  small parameters resulting in different time scales, the mo-
(42), the initial nuclear polarizatios,, the transverse relax- tion of electron and nuclear spins can be effectively sepa-
ation timeT,, and the measured delay tintg It follows rated, as is seen in Eq&l7)—(50).
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(iii) The effect of a strongoupling-parameter enhance- first approximation, may omit the term witt. Averaging, in
ment due to the presence of magnetic order in the electronithe right-hand side of Eq22), the electron variables over
subsystem, is described. The effective nuclear coupling pahe period 27/w, we get an approximate equation
rameter can be enhanced by three orders of magnitude,
which makes relaxation really ultrafast, with the relaxation

time (63) becoming smaller tham, by four orders of mag-
nitude.

(iv) The nature of all main intrinsic mechanisms trigger-
ing the self-organized coherent relaxation, that occurs in the
absence of external pulses, is elucidated. These mechanisms, y=
defining the delay tim¢67), are the electron-nuclear interac-

whereQ ,=w,—

=i(Q,+iT,)u—iA,s,

AZgi— o andAp= a,— AXe— ¢. We find

A.S
(uo—Q T, expi(Q,+il )t}+Q +|F2

tions through hyperfine dipole forces, nuclear dipole interacgypstituting the approximate expressions into E%), we

tions, and magnetocrystalline anisotropy fields.

come to the form

(v) Two types of applications are discussed. One type

concerns the investigation of the internal properties of the

materials by measuring the delay tirt&8) and coherent re-
laxation time(59). Another type utilizes the sensitivity of

these characteristic times to the initial conditions, giving thein which

possibility of employing coherent-spin relaxation for the ul-

trasensitive detection of weak external pulses.
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APPENDIX: FEEDBACK FIELD

According to the scale separation appro&tt,we first
consider Eq(19) for the fastest variablg, treating there the

dx du
H=-2 R%Be(t)a"'ﬂn(t)a ’
Be(t)IﬂnMep Lexp(8ut) — 11,
Bn

Oe=l(w—wetASt &)+ 72— v3,

Sp=i(w—w,+AzZ+ o)+ 15— v

The functionsB¢(t) and B,(t) do not vary much during the
period 27/ w, SO we may replace them by their averages over

slow variabless andz as quasi-integrals of motion. Because thjs time,

of the second inequality in Eq32), we can, in a first ap-
proximation, omit the term containingl, where upon the
solution of Eq.(19) is

exp[l(Q +iyy)t}+

Az
X:(XO Qutiv, Q+|y2

with Q.=we—AS— go andAeE a.—Au—¢. In Eq. (22) we
keep, as a quasi-integral of motion, the slow variablBe-
cause of the second inequality in E§2), we again, to the

2mle HePe 276,
=_ 2
w (27l HnPn 276,
=_ — 2
Bn= 27, Bn(H)dt= ° 1+ 30 |-

Omitting here the small termé,/w and §,/w, we obtain
Eg. (36).
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