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Nonlinear spin dynamics in ferromagnets with electron-nuclear coupling
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Nonlinear spin motion in ferromagnets is considered with nonlinearity due to three factors:~i! the sample is
prepared in a strongly nonequilibrium state, so that evolution equations cannot be linearized as would be
admissible for spin motion not too far from equilibrium,~ii ! the system considered consists of interacting
electron and nuclear spins coupled with each other via hyperfine forces, and~iii ! the sample is inserted into a
coil of a resonant electric circuit producing a resonator feedback field. Due to these nonlinearities, coherent
motion of spins can develop, resulting in their ultrafast relaxation. A complete analysis of mechanisms trig-
gering such a coherent motion is presented. This type of ultrafast coherent relaxation can be used for studying
intrinsic properties of magnetic materials.@S0163-1829~99!02726-5#
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I. INTRODUCTION

There are several different types of spin dynamics in c
densed matter, which can be distinguished according
whether the sample studied is in equilibrium, weak noneq
librium, or strong nonequilibrium. Microscopic spin oscilla
tions in equilibrium magnetic materials are related to m
nons and are studied by scattering techniques, such
neutron1 or light2 scattering. Small deviations from equilib
rium, caused by an alternating external field, are characte
tic of resonance experiments, like electron-spin resonan3

or nuclear magnetic resonance.4 However, when the initial
state of a spin system is made strongly nonequilibrium, s
eral types of spin relaxation can occur. If there are no tra
verse external fields acting on the spins, they relax to
equilibrium state by an exponential law with a longitudin
relaxation timeT1. When the motion of spins is triggered,
the initial time, by a transverse magnetic field, the relaxat
is again exponential, but with a transverse relaxation timeT2
which is usually much shorter thanT1.

A rather different relaxation regime from a strongly no
equilibrium initial state arises if the spin system is coupled
a resonator. This can be done by inserting the sample in
coil connected with a resonance electric circuit. Because
the action of the resonator feedback field, the motion of sp
can become highly coherent resulting in their ultrafast rel
ation during a characteristic time much shorter thanT2.5 This
latter type of coherent-spin relaxation from a strongly no
equilibrium state in the presence of coupling with a resona
is the most difficult to realize experimentally and to descr
theoretically. Experimental difficulties have been overco
in a series of observations of this phenomenon for a sys
of nuclear spins in a paramagnetic matrix.6–10 A theory of
the coherent-spin relaxation could be based on the phen
enological Bloch equations, but solely for the case when
process is triggered by a sufficiently strong coherent pu
PRB 600163-1829/99/60~2!/1227~11!/$15.00
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thrust on spins at the initial time, so that spin interactions
of no importance and only the resonator field plays a ro
However, the most interesting case is when the coheren
laxation develops in a self-organized way from an initia
incoherent state, with no external coherent pulses trigge
the process. For such aself-organized coherent relaxatio
spin interactions are of crucial importance. Then the Blo
equations become inapplicable and one has to resort to
croscopic models.

A microscopic approach for describing coherent proces
in spin systems has been recently developed11,12 and applied
to a system of nuclear spins interacting through dip
forces. It was shown that the main role in initiating se
organized coherent relaxation is played by the anisotro
~so-called nonsecular! part of the dipole interactions.

In the present paper we extend the microscopic theory
coherent-spin relaxation11,12 to a much wider class of mate
rials. We consider a rather general Hamiltonian includi
both nuclear as well as electron subsystems interacting
each other through hyperfine forces. The electrons can
sess a long-range magnetic order as in ferromagnets or
rimagnets, and magnetocrystalline anisotropy is taken
account. A general investigation of strongly nonequilibriu
nonlinear processes in realistic magnetic materials is of
terest by itself and can also be useful for many applicatio
For instance, the self-organized coherent relaxation, be
quite different from other types of relaxations, may give a
ditional information on intrinsic properties of magnetic m
terials. The ultrafast relaxation can be employed for repo
izing solid-state targets used in scattering experiments.10,13

Coherent effects in spin systems, being similar to their
herent counterparts in optics,14,15 could be used for analo
gous purposes but in another frequency region. For exam
spin masers16–18can be realized. The sensitivity of the cha
acteristic times of coherent relaxation to initial conditio
could be used for creating ultrasensitive particle detector19
1227 ©1999 The American Physical Society
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II. ELECTRON-NUCLEAR SPIN HAMILTONIAN

To make our consideration applicable to a wide class
magnetic materials, we take a rather general Hamiltonia

Ĥ5Ĥe1Ĥn1Ĥ int , ~1!

describing a realistic situation where the sample conta
electrons with a HamiltonianĤe and nuclei with a Hamil-
tonian Ĥn , their interaction being given byĤ int . The elec-
tron Hamiltonian is

Ĥe52
1

2 (
iÞ j

Ji j SW i•SW j2me(
i

BW •SW i , ~2!

where Ji j is an exchange interaction; the indicesi , j
51,2, . . . ,Ne here enumerate electrons;SW i is a spin operator;
me5gemB , with ge being the electronic gyromagnetic rat
andmB being the Bohr magneton;BW is a magnetic field. The
nuclear Hamiltonian has the form20 commonly accepted in
the theory of nuclear magnetic resonance,

Ĥn5
1

2 (
iÞ j

(
ab

Ci j
abI i

aI j
b2mn(

i
BW • IW i , ~3!

in which i , j 51,2, . . . ,Nn enumerate nuclei with dipole in
teractions

Ci j
ab5

mn
2

r i j
3 ~dab23ni j

a ni j
b ! ~4!

between each other, wheremn5gnmN , gn being the
nuclear gyromagnetic ratio,mN , is the nuclear magneton
and r i j [urW i j u, nW i j [rW i j /r i j ,rW i j [rW i2rW j ; the indicesa and
b label the components of Cartesian vectors (a,b
5x,y,z); IW i is a nuclear-spin operator. The general fo
of the hyperfine interactions20,21 between electrons and nu
clei is

Ĥ int5A(
i

SW i• IW i1
1

2 (
iÞ j

(
ab

Ai j
abSi

aI j
b , ~5!

containing an isotropic contact part with an interaction inte
sity A and a dipole part with the interactions

Ai j
ab5

memn

r i j
3 ~dab23ni j

a ni j
b !. ~6!

The total magnetic field is the sum

BW 5H0eW z1H1eW x , H15Ha1H, ~7!

of an external magnetic field in thez direction and of a trans
verse field including an effective field of a transverse m
netocrystalline anisotropy22 and a feedback fieldH of a reso-
nator. The longitudinal part of the magnetocrystalli
anisotropy can be included into the external magnetic fi
H0.

In the preceding formulas we have used, for simplici
the same indices,i and j, to enumerate electrons and nucl
keeping in mind that for each particular case these ind
run over different sets, so that for electronsi 51,2, . . . ,Ne
f

s

-

-

d

,

s

and for nucleii 51,2, . . . ,Nn . The corresponding electro
and nuclear densities,re[Ne /V andrn[Nn /V, whereV is
the volume of a sample, are, in general, different.

The resonator coil is directed along thex axis, so that the
current induced in it is caused by the motion of the tra
verse magnetization

Mx5
1

V (
i

~me^Si
x&1mn^I i

x&!, ~8!

where the angle brackets mean statistical averaging.
resonant electric circuit is characterized by a natural f
quencyv, ringing timeg3, and quality factorQ, given by

v[
1

ALC
, g3[

v

2Q
, Q[

vL

R
, ~9!

whereL, C, andR are inductance, capacity, and resistan
respectively. The resonator feedback field is given12 by the
Kirchhoff equation

dH

dt
12g3H1v2E

0

t

H~t!dt524ph
dMx

dt
, ~10!

in which h is a filling factor.

III. COUPLED SYSTEM OF EQUATIONS

Spin dynamics is defined by the Heisenberg equations
the electron spin operatorsSi

6 and Si
z , and for the nuclear-

spin operatorsI i
6 and I i

z , where Si
65Si

x6 iSi
y , I i

65I i
x

6 i I i
y . These equations are coupled to each other by hy

fine interactions between electron and nuclear spins. Bes
that, both types of spin motion are coupled with the resona
through the resonator feedback field, defined by Eq.~10!,
and the average transverse magnetization~8! expressed by
means of the average spins. To describe the dynamic
spins coupled with each other as well as with a resonator
need to derive the time evolution equations for the aver
electron and nuclear spins

x[
1

Ne
(

i
^Si

2&, z[
1

Ne
(

i
^Si

z&, ~11!

u[
1

Nn
(

i
^I i

2&, s[
1

Nn
(

i
^I i

z&. ~12!

The main steps of deriving these equations are the same
Refs. 11,12 except that now the Hamiltonian~1! is more
complicated.

We introduce the Zeeman frequencies

ve[meH0 , vn[mnH0 , ~13!

and the anisotropy parameters

ae[meHa , an[mnHa , ~14!

where the Planck constant is set\[1. We use the notation

j0[
1

2 (
j (Þ i )

~ āi j ^I j
z&1 c̄i j ^I j

1&1 c̄i j* ^I j
2&!, ~15!
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j[
1

2 (
j (Þ i )

~ ēi j ^I j
2&12b̄i j ^I j

1&12c̄i j ^I j
z&!, ~16!

in which

āi j [Ai j
zz, ēi j [

1

2
~Ai j

xx1Ai j
yy!,

b̄i j [
1

4
~Ai j

xx2Ai j
yy22iAi j

xy!, c̄i j [
1

2
~Ai j

xz2 iAi j
yz!,

Ai j
ab being given in Eq.~6!. Also we write

w0[ (
j (Þ i )

@~ai j 2ei j !^I j
z&1ci j ^I j

1&1ci j* ^I j
2&

1 1
2 ~ āi j ^Sj

z&1 c̄i j ^Sj
1&1 c̄i j* ^Sj

2&!#, ~17!

w[ (
j (Þ i )

F2~bi j ^I j
1&1ci j ^I j

z&!

1
1

2
~ ēi j ^Sj

2&12b̄i j ^Sj
1&12c̄i j ^Sj

z&!G , ~18!

where

ai j [Ci j
zz, ei j [

1

2
~Ci j

xx1Ci j
yy!,

bi j [
1

4
~Ci j

xx2Ci j
yy22iCi j

xy!, ci j [
1

2
~Ci j

xz2 iCi j
yz!,

Ci j
ab being defined in Eq.~4!. Equations~15!–~18! describe

local random fields caused by spin fluctuations. In the u
form approximation, all these quantities would be zero,
cause of the properties of dipole interactions. However, th
local fields cannot be neglected, since they play a crucial
at the initial stage of spin relaxation. Therefore, they must
retained and treated as local random variables. For o
terms in the evolution equations, having a long-range na
in real space, one may employ the semiclassical approxi
tion. This approach of using for long-range terms the se
classical approximation complemented by the stocha
quantization of short-range terms has been develope
Refs. 11,12.

Following these steps and taking into account the lon
tudinalg1 ,G1 and transverseg2 ,G2 attenuations for the elec
tron and nuclei, respectively, we obtain the evolution eq
tions for the electron-spin variables~11! and nuclear-spin
variables~12!. For the transverse and longitudinal electr
spins we have, respectively,

dx

dt
5 i ~ve1 ig22j02As!x2 i ~ae1meH2j2Au!z,

~19!

dz

dt
5

i

2
~ae1meH2j2Au!x*

2
i

2
~ae1meH2j* 2Au* !x2g1~z2s!, ~20!
i-
-

se
le
e
er
re
a-
i-
ic
in

i-

-

where g1 and g2 are attenuation parameters ands is the
stationary value ofz. The variablex is complex, whilez is
real, so we should add either an equation forx* or for uxu. It
is convenient to consider

duxu2

dt
522g2uxu21 i ~ae1meH2j* 2Au* !zx

2 i ~ae1meH2j2Au!zx* . ~21!

In the case of nuclear spins, we obtain

du

dt
5 i ~vn1 iG22w02Az!u2 i ~an1mnH2w2Ax!s,

~22!

ds

dt
5

i

2
~an1mnH2w2Ax!u*

2
i

2
~an1mnH2w* 2Ax* !u2G1~s2§!, ~23!

whereG1 andG2 are the longitudinal and transverse atten
ations, respectively, and§ is the stationary value ofs. In
addition, we shall need

duuu2

dt
522G2uuu21 i ~an1mnH2w* 2Ax* !su

2 i ~an1mnH2w2Ax!su* . ~24!

All equations ~19!–~24! contain the resonator feedbac
field H described by Eq.~10!. The latter can be transformed12

to the integral feedback equation

H524phE
0

t

G~ t2t!dMx~t!, ~25!

expressed through a Stieltjes integral with the Green func

G~ t !5S cosv3t2
g3

v3
sinv3t Dexp~2g3t !

and the differential measuredMx with Mx defined in Eq.~8!.
Here the effective frequency isv3[Av22g3

2.
The system of seven nonlinear equations~19!–~25! deter-

mines the dynamics of electron and nuclear spins coup
with each other as well as with a resonator.

IV. SCALE SEPARATION APPROACH

Our aim here is to study the strongly nonequilibrium r
gimes of spin motion. This problem is different from consi
ering the equilibrium properties of coupled electron a
nuclear spins.23–26 An additional complication, in our case
arises from the coupling of spins with a resonator by me
of the feedback equation~25!. To solve Eqs.~19!–~25!, we
employ the scale separation approach11,12 which is a gener-
alization of the averaging techniques of dynamical theory27,28

to statistical systems.
To understand what different time scales exist for the s

tem considered, we need to specify what small parame
we have. Since we have a sample coupled with a reson
some small parameters should appear by concretizing
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corresponding resonance conditions, assuming the rin
width is much smaller than the natural frequency,

g3

v
!1. ~26!

The resonator natural frequency can be tuned either to
frequency of electron spin resonanceve , so that

UDe

ve
U!1, De[v2ve , ~27!

or to the frequency of nuclear magnetic resonance

vN[vn2Azeff , ~28!

in which zeff is the longitudinal electron spinz averaged over
the period 2p/v, so that

UDN

vN
U!1, DN[v2vN . ~29!

We assume that the external magnetic fieldH0 is suffi-
ciently strong that

Uae

ve
U!1, UmeHeff

ve
U!1, U A

ve
U!1, ~30!

whereHeff is the resonator feedback field averaged ove
period 2p/v. We also assume

Ug1

ve
U!1, Ug2

ve
U!1. ~31!

Then from Eqs.~19! to ~21! it follows that the variablesz and
uxu2 are to be treated as slow compared to the fast variabx.
Similarly, for nuclei we assume

Uan

vN
U!1, UmnHeff

vN
U!1, UAxeff

vN
U!1, ~32!

where the subscript eff means again that the correspon
quantity is averaged over 2p/v, and we keep in mind the
usual inequalities

UG1

vN
U!1, UG2

vN
U!1. ~33!

Then Eqs.~22!, ~23!, and~24! show that the variabless and
uuu2 are slow compared to the fast variableu. As the nuclear
magnetic momentmn is much smaller than that of an ele
tron me , we have the inequalities

Umn

me
U!1,

G1

g1
!1,

G2

g2
!1. ~34!

Then, comparing Eqs.~19! and~22!, we see that the variabl
u is slow compared to the fast variablex. And the compari-
son of Eqs.~21! and~24! tells us thatuuu2 is slow compared
to the fasteruxu2.

One more condition assumed is related to the local r
dom fields~15!–~18!. These local fields define the param
eters of inhomogeneous broadening due to the elect
nuclear, Gen, and nuclear-nuclearGnn interactions. These
widths are assumed to satisfy
ng

he

a

ng

-

n-

UGen

vN
U!1, UGnn

vN
U!1. ~35!

Using conditions~30! and~32!, we may simplify the feed-
back equation~25! to

H522 ReS be

dx

dt
1bn

du

dt D , ~36!

in which the parameters

be[p2h
mere

v
, bn[p2h

mnrn

v
~37!

characterize the effective coupling of the sample with
resonator. The details are given in the Appendix. Substi
ing into Eq.~36! the derivatives from Eqs.~19! and~22!, we
find

H522 Reibe@~ve2As2j01 ig2!x1~Au1j!z#

22 Reibn@~vn2Az2w01 iG2!u1~Ax1w!s#.

~38!

The feedback field~38! is to be substituted into Eqs.~19!–
~24!.

Then we solve Eq.~19! treating there all slow variables a
quasi-integrals of motion. The solution reads

x5~x02 x̄!exp$~ i V̄e2ḡ2!t%1 x̄, ~39!

wherex05x(0) and

V̄e[ve2As2j02mebeg2z,

ḡ2[g21mebe~ve2As2j0!z,

x̄[
1

V̄e

$~ae2Au2j!z1 imebe@A~u* 2u!1j* 2j#z2%.

After this, we solve Eq.~22!, keeping the slow variables
fixed and averaging the fast variablesx(t) andz(t) to obtain
xeff andzeff . Sincex(t) is already known, we have

xeff5H Aez/Ve , v've

0, v'vN ,

whereVe[ve2As2j0 and Ae[ae2Au2j. The solution
of Eq. ~22! is

u5~u02ū!exp$~ i V̄n2Ḡ2!t%1ū, ~40!

whereu0[u(0) and

V̄n[vn2A~11mnbes!zeff2w02mnbnG2s,

Ḡ2[G21mnbn~vn2Azeff2w0!s,

ū[
1

V̄n

@~an2w!s1 imnbe~j* 2j!szeff#.

The solutions~39! and ~40! are to be substituted into th
equations for the slow variables, with the right-hand sides
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the latter equations being averaged over time and over
dom local fields according to the rule

^^ f ~ t,c!&&5E F v

2pE0

2p/v

f ~ t,c!dtGdm~c!,

with the stochastic measurem(c) such that

^^j0&&5^^j&&5^^j0j&&50,

^^w0&&5^^w&&5^^w0w&&50,

^^j0w0&&5^^j0w&&5^^jw0&&5^^jw&&50,

^^j0
2&&5^^uju2&&5g

*
2 5Gen

2 ,

^^w0
2&&5^^uwu2&&5G

*
2 5Gnn

2 1Gen
2 .

The constantsg* and G* are the parameters of inhomog
neous broadening caused by hyperfine electron-nuclea
pole interactions and by nuclear dipole interactions.

We introduce the effective coupling parameters

ge[p2h
reme

2vE

g2v S 11
rnmnAs

remevE
D , ~41!

gn[p2h
rnmn

2vN

G2v S 11
remeAzeff

rnmnvN
D , ~42!

characterizing the strength of coupling between electron
nuclear spins, respectively, and the resonator. The effec
frequencies are

vE[ve2As, vN[vn2Azeff , ~43!

which are the frequencies of the electron-spin resonance
nuclear magnetic resonance.

Also, we define slow variables for electrons,

v5uxu22
ae

21A2uuu21g
*
2

vE
2

z2, ~44!

and for nuclei

w5uuu22
an

21G
*
2 1d2

vN
2

s2, ~45!

where

d[A2p2hg*
rememn

vN
zeff . ~46!

Accomplishing all these steps, we obtain from Eqs.~20!–
~24!

dz

dt
5g2gev2g1~z2s!, ~47!

dv
dt

522g2~11gez!v, ~48!

ds

dt
5G2gnw2G1~s2z!, ~49!
n-

di-

r
ve

nd

dw

dt
522G2~11gns!w. ~50!

Equations~47!–~50! define the averaged motion of slo
variables. We require their solutions, since all observa
quantities can be expressed through them.

V. NUCLEAR-SPIN DYNAMICS

Equations~47! to ~50! show that the electron-spin dynam
ics is qualitatively similar to that of nuclear spins, but the
are three main points distinguishing electron from nucl
relaxation. First, electron-spin processes are usually m
faster than nuclear processes,3 which is related to the fac
that g2@G2. Second, as the electronic magnetic momen
three orders of magnitude larger than the nuclear magne
electron-spin motion is much less influenced by the prese
of nuclei than the motion of nuclear spins by the existence
electrons. Third, the stronger influence of electrons on
motion of nuclear spins is caused by a long-range magn
order that more readily occurs in electronic systems than
nuclear ones. Therefore, nuclear-spin dynamics is a l
more complicated but at the same time richer than the
namics of electron spins.

Suppose that the electron spins either were not pertur
at the initial time or, if perturbed, that fast electron proces
have already been relaxed to their stationary state. Le
study the dynamics of nuclear spins that were initially p
pared in a strongly nonequilibrium state. We denote the
tial conditions for the nuclear-spin variables as

s~0!5s0 , w~0!5w0 , u~0!5u0 . ~51!

If relaxation of nuclear spins lasts for times of orderT1

[G1
21, this would mean that coherent processes do not

velop. Such a case would be of no interest for us, since
aim here is to investigate the fast coherent relaxation. He
we shall consider times such thatt!G1

21. In this case, we
may omit in Eq.~49! the term containingG1. Then we can
solve Eqs.~49! and~50! analytically obtaining for the longi-
tudinal nuclear spin

s5
g0

gG2
tanhS t2t0

t0
D2

1

g
, ~52!

where, for the sake of simplicity, we writeg[gn , and

w5S g0

gG2
D 2

sech2S t2t0

t0
D . ~53!

Hereg0[t0
21 is the relaxation width given by the equatio

g05G2@~11gs0!21g2w0#1/2 ~54!

with t0 being the relaxation time, andt0 being the delay
time,

t05
t0

2
lnUg02G2~11gs0!

g01G2~11gs0!
U. ~55!

According to Eq.~45!, the modulus squared of the transver
nuclear spin is
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uuu25S g0

gG2
D 2

sech2S t2t0

t0
D1

an
21G

*
2 1d2

vN
2

s2. ~56!

If the coupling parameterg, is small,g!1, then Eqs.~49!
and~50! show that the relaxation of nuclear spins follows t
standard exponential law with the relaxation timesT1

[G1
21 andT2[G2

21. This trivial regime is not interesting fo
us, so we concentrate attention on the case of strong
pling, when g@1. Then the relaxation width~54! can be
written as

g05G2S gAs0
21w01

s0

As0
21w0

D . ~57!

For the delay time~55!, we find

t05
t0

2
lnUg~s0

21w0!1s02~11gs0!As0
21w0

g~s0
21w0!1s01~11gs0!As0

21w0
U . ~58!

For the relaxation time, after using again the inequalityg
@1, we have

t05
T2

gAs0
21w0

. ~59!

A large value of the coupling constantg means, according to
its definition in Eq.~42!, that nuclear spins are strongly co
related with each other by means of an effective interac
through the resonator feedback field. As a result of this c
relation they move coherently, which leads to the nonz
value of w'uuu2. Recall that, by definition~12!, u50 for
incoherent spins. Coherent motion of the spins results
their ultrafast relaxation, which follows from Eq.~59! yield-
ing t0!T2 when g@1. This is why the characteristic tim
~59! can be called thecoherent relaxation time. Notice also
that the coupling parameter~42! is proportional to the num-
ber of nucleiNn , and sot0;1/g;1/Nn . Such a dependenc
of the relaxation time,t0;1/Nn , on the number of radiator
is typical for coherent processes that in optics are ca
superradiance.14,15

The relaxation characteristics, as is seen, essentially
pend on the initial conditions~51!. If u0Þ0 at the initial
time, this implies that an initial coherence is imposed on
spins, which can be done by means of a short external p
of a transverse field. Whenu0;1, then we havew0'uu0u2,
since the second term in Eq.~45! is small. In this case we ge
the regime of triggered relaxation.12

A much more interesting question concerns how the
laxation of nuclear spins starts when no initial coherence
thrust upon the spins. This problem is also more import
than consideration of the case when relaxation is triggered
external fields. For, when the relaxation is initiated not
external forces but by internal interactions, the relaxat
characteristics, such as the delay time and the relaxa
time, significantly depend on the parameters of these inte
interactions. Therefore, the self-organized relaxation refle
~and provides information about! the intrinsic properties of
matter.
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Let us consider theself-organized relaxationin the sys-
tem of nuclear spins strongly coupled with a resonator. T
is, we analyze the case corresponding to the conditions:

u050, s0Þ0, gus0u@1. ~60!

If u050, then, according to relation~45!, we have uw0u
!s0

2. This permits us to simplify the relaxation width~57!
getting

g05
G2

2s0
2 @gus0u~2s0

21w0!1«~2s0
22w0!#, ~61!

where«[ sgns0. The delay time~58! becomes

t05
t0

2
lnU2~12«!s0

21w0

2~11«!s0
21w0

U , ~62!

and for the relaxation time~59!, we get

t05
2s0

22w0

2gus0u3G2

.
T2

gus0u
. ~63!

The delay time~62! strongly depends on the sign of th
initial polarization of nuclear spins,«[ sgn s0. When this
initial polarization is directed along the external magne
field H0, i.e., along thez axis, then

t05
t0

2
lnU w0

4s0
2U ~«51!, ~64!

and if the initial polarization is directed opposite to the e
ternal field, then

t05
t0

2
lnU4s0

2

w0
U ~«521!. ~65!

In the case when the initial polarization is along thez axis,
Eq. ~64! shows thatt0,0, sinceuw0u!s0

2. Then the function
~53! quickly decreases starting fromt50. This function
w(t), being proportional touuu2, describes the degree of co
herence in the motion of nuclear spins. In turn, the funct
uuu2 is proportional to the power flow in the resonator circu
and, thus, is a directly measurable quantity.11,12Hence, when
w(t) quickly decreases starting from the initial timet50 and
uw0u!s0

2, this means that no noticeable coherence devel
in the system.

In contrast, if the initial polarization of nuclear spins
directed opposite to the external magnetic field, so that
system is prepared in a strongly nonequilibrium state, th
from Eq. ~65!, there is a positive solution for the delay tim
t0.0. In such a case, the function~53! increases from its
initial value w0, reaching a maximum att5t0, when

w~ t0!5s0
2 , s~ t0!52

1

g
. ~66!

This means that a self-organized coherent pulse deve
with a maximum att5t0, which explains whyt0 is called the
delay time.

Combining both the cases, Eqs.~64! and ~65!, into one
and substituting the expressions fort0 andw0, we obtain
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t05
T2

2gs0
lnUan

21Gen
2 1Gnn

2 1d2

4vN
2 U . ~67!

This is the central formula for analyzing which internal m
croscopic mechanisms are responsible for the self-organ
development of coherent relaxation. Each of these inte
mechanisms is related to the corresponding parameter e
ing formula~67!. Among such internal causes that may tri
ger self-organized coherence, we have the transverse ma
tocrystalline anisotropy,an ; the dipole part of the hyperfine
interactions, characterized by the parameterGen; the dipole
interactions between nuclear spinsGnn; and the parameterd
defined in Eq.~46!, which is due to the simultaneous exi
tence of the hyperfine interactions, of coupling with a re
nator, and of the magnetization of electron spins.

The relaxation time~54!, for the case of self-organize
relaxation, whenu050, reads

t05T2F ~11gs0!21g2s0
2
an

21Gen
2 1Gnn

2 1d2

vN
2 G21/2

.

~68!

This demonstrates that the value of the relaxation time~68!
depends mainly on the strengthg of coupling with a resona-
tor. In this way, the delay time~67! and the relaxation time
~68! are related to different characteristics of the system c
sidered.

In order to decide what kind of interactions, direct dipo
interactions between nuclei or hyperfine interactions, in
ences more the values of the characteristic times, we sh
compare the corresponding widthsGnn;rnmn

2 and Gen

;rmemn , where r'min$re,rn%. There are two limiting
cases. The first is whenrn<re , and then

Gnn

Gen
;

mn

me
;1023 ~rn<re!. ~69!

Hence, when the density of nuclei is lower or compara
with that of electrons, nuclear dipole interactions are ne
gibly small compared to the hyperfine interactions betwe
nuclei and electrons. Another case is when the density
nuclei is much higher than that of electrons; then

Gnn

Gen
;

rnmn

reme
;

rn

re
1023 ~rn@re!. ~70!

Thus, the nuclear dipole interactions become stronger t
the hyperfine interactions only when the density of nuc
surpasses by three orders of magnitude the density of e
trons.

In equilibrium theory, the influence of hyperfine intera
tions is often modeled by the effective Suhl-Nakamu
forces directly acting between nuclear spins.21 These forces
are responsible for the appearance of nuclear-spin waves
responding to well-defined excitations, even at those te
peratures where the nuclear spins are completely disorde
The underlying cause of the formation of the nuclear-s
waves is the existence of magnetic long-range order in
electronic subsystem, which defines both the long-range
teraction radius of the Suhl-Nakamura force and its existe
ed
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as such. The effective Suhl-Nakamura force describes an
direct interaction of nuclear spins through magnetically
dered electrons.21

For strongly nonequilibrium processes, such as those c
sidered in this paper, the role of the magnetic order of
electrons is essentially different. This order does stron
influence several important characteristics. For instance
addition to the usual shift of the nuclear magnetic resona
frequencyvN5vn2Azeff , it leads to the appearance of p
rameter~46! playing for nuclei the role of an additional in
homogeneous width. Nevertheless, even if this order is
sent, so thatzeff→0, coherent nuclear-spin relaxation ca
exist. Whenzeff→0, the Suhl-Nakamura force is not we
defined, but the hyperfine interactions do not stop existi
These interactions define the widthGen, which is not zero
even if the electronic magnetic order is absent. Thus,
presence of hyperfine interactions is already important, e
when there is no long-range magnetic order, when the S
Nakamura force and nuclear-spin waves are not well defin

However, it is worth emphasizing that the appearance
electronic magnetic order can strongly change the value
the characteristic parameters. Thus, one of the most im
tant parameters is the effective coupling~42! describing the
coupling of nuclear spins with a resonator. The value of t
parameter essentially depends on whetherzeff is zero or not.
The appearance of magnetic order in the electronic sys
can change the value of the parameter~42! by several orders
of magnitude which, in turn, drastically changes the valu
of the delay timet0 and the relaxation timet0.

VI. CHARACTERISTIC NUMERICAL VALUES

To understand better the role of different factors in t
coherent relaxation of nuclear spins and the magnitude
the related characteristic parameters, let us now make
merical estimates. We take the values of parameters tha
typical of many ferromagnetic materials in which one us
ally studies nuclear magnetic resonance and nuclear
echo.21,29,30These can be pure materials, such as Co, or v
ous ferromagnetic alloys and compounds.29,30 Since ferri-
magnets are often treated by effective ferromagnetic mod
ferrimagnetic materials, such as MnFe2O3, are also included
here.31

For the characteristic magnetic fields and the correspo
ing frequencies we have the following values. The cont
hyperfine field HA[A/mn;105 G, the related frequency
vA[A/\;109 s21. The hyperfine field is smaller than th
electron exchange fieldHJ[J/me;106 G, the correspond-
ing frequency beingvJ[meHJ /\;1013 s21. However,
both these fields are important for nonequilibrium proces
in the nuclear-spin system, although the role of these field
different. The hyperfine field acts directly on the nucle
spins, and the exchange field influences nuclear-spin re
ation indirectly, through the formation of magnetic order
the electronic subsystem. If we take an external magn
field H0;104 G, then the Zeeman frequencies~13! are ve
[meH0 /\;1011 s21 and vn[mnH0 /\;108 s21. The
magnetocrystalline anisotropy fieldHa<103 G, depending
on the particular structure of matter. The anisotropy para
eters ~14! are ae[meHa /\<1010 s21 and an[mnHa /\
<107 s21, respectively. The longitudinal widthsg1 andG1
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can vary within rather wide intervals, but usuallyg1!g2 and
G1!G2. For the transverse widths we may take the estima
g2;reme

2/\ and G2;rnmn
2/\. This, with me

;10220 erg/G, mn;10223 erg/G, and re;rn
;1023 cm23, gives g2;1010 s21 and G2;104 s21. The
value for g2 is to be treated as the upper limit, since t
density of electrons is usually less than 1023 cm23, being,
for instance, 1022 cm23 for typical ordinary metals.32 In the
case when the considered electrons are related to imp
ions inside an insulator, as in Refs. 6–10 then their den
can bere;1020 cm23, resulting ing2;107 s21. The esti-
mated value ofG2 is in agreement with experimenta
measurements.30 For the resonator ringing width, we ma
take a typical experimental value ofg3;106 s21. Then
g3 /ve;1025 and g3 /vn;1022, so that inequality~26! is
satisfied.

Sinceg1!g2 andg2 /ve<1021, condition ~31! is valid.
The nuclear magnetic resonance frequency~28! is vN;vn
;108 s21 if zeff50, that is if the magnetic order is absen
and if zeffÞ0, thenvN;109 s21. Hence,G2 /vN;G2 /vn
;1024, when zeff50, and G2 /vN;1025 for a ferromag-
netic material with zeffÞ0. This, together withG1!G2,
shows that condition~33! holds true.

For electrons,ae /ve<1021 andvA /ve;1022, while for
nuclei, an /vN<1022 and xeff50. The resonator feedbac
field ~38! is Heff;bevA . For electrons, with a resonato
natural frequency close to the electron spin resonance
quency,v;ve , we havemeHeff /ve;1023, and for nuclei,
whenv;vN , we findmnHeff /vN;1022. Thus, all inequali-
ties in Eqs.~30! and ~32! are valid. Sinceumn /meu;1023

and G1 /g1 and G2 /g2 are of the order ofrnmn
2/reme

2

;(rn /re)1026, the inequalities in Eq.~34! hold true if rn
andre are not drastically different. Conditions~35! are also
satisfied, sinceGen/vN;mng2 /mevN;1022 and Gnn/vN
;G2 /vN;1025.

Among the parameters defining the characteristic time
the coherent nuclear spin relaxation, we have the anisotr
parameteran<107 s21, the inhomogeneous broadening d
to hyperfine dipole interactions,Gen;rmemn with r
5min$re,rn%, the inhomogeneous broadening due to nucl
dipole interactions,Gnn;rnmn

2;104 s21, and the paramete
d is given by Eq.~46!, from which d2;1022Gen

2 zeff
2 . The

width Gen, according to Eqs.~69! and~70!, is always larger
than Gnn, provided that the density of electronsre is not
three orders smaller than the density of nucleirn , which
follows from the relationGen;103(re /rn)Gnn. For example,
if re;rn , then Gen;103Gnn. If we take re;2
31020 cm23 andrn;(53102221023) cm23, as in the ex-
periments~Refs. 6–10!, thenGen;(1210)Gnn. In this way,
the hyperfine widthGen is usually larger thanGnn and always
larger thand, althoughGen may be comparable withan , if
re!rn . Whenre;rn , the largest parameters among tho
considered above arean andGen;107 s21. In such a case
other parameters entering additively with these can be o
ted. For instance, the delay time~67! may be written as

t05
T2

2gs0
lnUan

21Gen
2

4vN
2 U .

An important parameter entering the expressions for
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characteristic times and influencing the behavior of solutio
is the coupling parameterg, which is drastically different for
the case when there is magnetic order in the electron sys
compared to the case when the magnetization is absent
the latter case, whenzeff50, we haveg;10. When a ferro-
magnetic material is considered, so thatzeff;1, then the sec-
ond term in Eq.~42! can become much larger than the fir
one. Thus, forre;rn , we have

remeAzeff

rnmnvN
;

me

mn
;103.

Therefore, the coupling parameterg can be increased by
three orders by the presence of electron magnetizat
reaching the valueg;104. The system of magnetized elec
trons acts as an additional resonator strongly strengthe
the coupling between the resonance electric circuit a
nuclear spins.

To evaluate the characteristic values of the delay ti
~67! and relaxation time~68!, we made calculations for sev
eral ferromagnetic materials with typical parameters tak
from Ref. 30. In our formulas we take the filling factorh
51, consider the purely resonance case, whenv5uvNu, also
take zeff5

1
2 , re5rn and assume that the transverse anis

ropy parameter is small compared toGen. We analyze the
case of purely self-organized coherent relaxation when at
initial time nuclear spins are polarized against the exter
magnetic field, so thats052I , whereI is an absolute value
of a nuclear spin, and there is no initial coherence impo
upon the system, so thatu050. The high initial polarization
of nuclear spins can be achieved by the dynamic nuc
polarization technique. The transverse relaxation timeT2

5G2
21 can be measured by several methods, e.g., the t

pulse echo technique or the single-pulse echo technique,30 of
which the former is likely to be more reliable. Our results a
presented in Table I.

VII. DISCUSSION

Nonlinear spin dynamics is considered for ferromagn
consisting of electron and nuclear subsystems coup
through hyperfine forces. The sample is prepared in
strongly nonequilibrium initial state. In addition, the ferro
magnetic sample is considered inserted into a coil of a re
nant electric circuit. All this makes the spin dynamics high
nonlinear. The evolution of the system is described by se
nonlinear equations, six of which are differential equatio
for electron and nuclear spins and one equation is an i
grodifferential equation for the feedback field of the reson
tor. These are solved by using the scale separa
approach.11,12 It is shown that due to the resonator feedba
field an ultrafast coherent relaxation of spins can occur. T
system of magnetized electrons serves as an additional r
nator for the nuclear spins, significantly enhancing the eff
tive coupling of the nuclear spins with the resonator circu
Such an enhancement can reach three orders of magni
as compared to the coupling in a paramagnetic material.

The ultrafast coherent relaxation of nuclear spins may
either triggered by an initial pulse or can be self-organiz
The latter case is the more interesting, since then all re
ation characteristics, such as the delay time and relaxa
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TABLE I. The characteristic parameters related to the self-organized coherent nuclear-spin relaxa
several ferromagnetic materials.

vN T2 t0 t0

Sample Nucleus I (109 Hz) (1024 s) (1028 s) (1028 s)

Li 0.5Fe2.5O4
57Fe 1/2 0.47 40 88.2 400

Mn0.51Sb0.49O4
123Sb 7/2 1.31 1.70 0.54 2.98
55Mn 5/2 1.61 0.60 0.26 1.53

Ni-Mn-Sb 55Mn 5/2 1.88 0.95 0.42 2.49
Ni-Mn-Si 55Mn 5/2 2.01 0.60 0.26 1.59
Co2MnSi 59Co 7/2 0.91 0.38 0.12 0.62

55Mn 5/2 1.59 0.80 0.35 2.03
Co ~fcc! 59Co 7/2 1.37 0.30 0.09 0.53
Co ~hcp! 59Co 7/2 1.38 0.65 0.21 1.15
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time, depend strongly on the values of the internal para
eters. The most important such parameters, starting the
cess of self-organized coherent relaxation and, therefore
fining the main relaxation characteristics, are the transve
magnetocrystalline anisotropy and the dipole hyperfine in
actions. If the density of electrons is more than three ord
of magnitude lower than the density of nuclei, then the dir
nuclear dipole interactions also become important. An in
esting extension of the present approach could be the in
sion of external alternating magnetic fields, as has been d
for nuclear magnets.33–35

By studying the peculiarities of the coherent spin rela
ation, it is possible to extract information on the intrins
properties of magnetic materials. This especially conce
the regime of self-organized coherent relaxation, whose c
acteristics are very sensitive to the values of the parame
of the material studied. By observing a coherent pulse in
power flow, one can measure, with a very high precision,
delay timet0. The latter can be accurately measured beca
it exactly corresponds to the maximum of the functionw(t),
which is proportional to the power flow in the resona
circuit.12 If the delay timet0 is measured experimentally
then, inverting Eq.~67!, one may find the sum ofan

2 and
G

*
2 [Gen

2 1Gnn
2 as

an
21G

*
2 54vN

2 expS 2gs0

t0

T2
D ,

where the inequalityd!Gen is taken into account. This rela
tion, whenan is known from other experiments, makes
possible to define the inhomogeneous broadeningG* . As is
mentioned in Sec. VI, one usually hasan<G* . The
transverse-anisotropy parameteran depends on the orienta
tion of the sample with respect to the external magnetic fie
It is possible to choose an orientation such thatan!G* .
Then we obtain a simple formula giving the inhomogeneo
broadening

G* 52vN expS gs0

t0

T2
D

in terms of the known values of the nuclear magnetic re
nance frequencyvN , the coupling parameterg5gn in Eq.
~42!, the initial nuclear polarizations0, the transverse relax
ation time T2, and the measured delay timet0. It follows
-
ro-
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from the analysis of Sec. V thatt0.0 requiress0,0. Thus
the values0t0 in the formula forG* is negative, making
G* !vN . The exponential dependence ofG* on the delay
time t0 makes the value ofG* very sensitive tot0.

Another possibility for exploiting the effect of coheren
spin relaxation is its sensitivity to initial conditions, in pa
ticular, to the initial amplitude of the transverse spin,uu0u.
The latter, in order to influence the delay time~58! and re-
laxation time~59!, should be such that

uu0u2.
an

21G
*
2

vN
2

s0
2<1024.

This is always small, and can be made arbitrarily smaller
reducings0. Hence, we conclude that even quite weak ext
nal pulses, resulting in nonzerouu0u, can trigger the proces
of coherent relaxation. For example, from Eqs.~59! and~45!
we get

uu0u25S T2

gt0
D 2

1S an
21G

*
2

vN
2

21D s0
2 .

This allows us, by measuring the coherent relaxation timet0,
to find the initial amplitudeuu0u. The sensitivity of coherent-
spin relaxation to initial conditions could be employed f
creating ultrasensitive detectors of weak external pulses
turn, this can be used to construct sensitive parti
detectors.19

In conclusion, the main results obtained in this paper c
be summarized in the following:

~i! A theory of nonlinear spin dynamics is developed f
the systems of electron and nuclear spins coupled with e
other through hyperfine forces and also coupled to a reso
tor electric circuit. This essentially generalizes the previo
consideration of nonequilibrium nuclear magnets11–13 to a
much wider class of materials, having long-range magn
order.

~ii ! The very complicated set of nonlinear differenti
equations is solved by invoking the scale separat
approach.11,12It is important that, because of the existence
small parameters resulting in different time scales, the m
tion of electron and nuclear spins can be effectively se
rated, as is seen in Eqs.~47!–~50!.
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~iii ! The effect of a strongcoupling-parameter enhance
ment, due to the presence of magnetic order in the electro
subsystem, is described. The effective nuclear coupling
rameter can be enhanced by three orders of magnit
which makes relaxation really ultrafast, with the relaxati
time ~63! becoming smaller thanT2 by four orders of mag-
nitude.

~iv! The nature of all main intrinsic mechanisms trigge
ing the self-organized coherent relaxation, that occurs in
absence of external pulses, is elucidated. These mechan
defining the delay time~67!, are the electron-nuclear intera
tions through hyperfine dipole forces, nuclear dipole inter
tions, and magnetocrystalline anisotropy fields.

~v! Two types of applications are discussed. One ty
concerns the investigation of the internal properties of
materials by measuring the delay time~58! and coherent re-
laxation time ~59!. Another type utilizes the sensitivity o
these characteristic times to the initial conditions, giving
possibility of employing coherent-spin relaxation for the u
trasensitive detection of weak external pulses.
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APPENDIX: FEEDBACK FIELD

According to the scale separation approach,11,12 we first
consider Eq.~19! for the fastest variablex, treating there the
slow variabless andz as quasi-integrals of motion. Becau
of the second inequality in Eq.~32!, we can, in a first ap-
proximation, omit the term containingH, where upon the
solution of Eq.~19! is

x.S x02
Aez

Ve1 ig2
Dexp$ i ~Ve1 ig2!t%1

Aez

Ve1 ig2

with Ve[ve2As2j0 andAe[ae2Au2j. In Eq. ~22! we
keep, as a quasi-integral of motion, the slow variables. Be-
cause of the second inequality in Eq.~32!, we again, to the
n
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-

first approximation, may omit the term withH. Averaging, in
the right-hand side of Eq.~22!, the electron variables ove
the period 2p/v, we get an approximate equation

du

dt
. i ~Vn1 iG2!u2 iAns,

whereVn[vn2Azeff2w0 andAn[an2Axeff2w. We find

u.S u02
Ans

Vn1 iG2
Dexp$ i ~Vn1 iG2!t%1

Ans

Vn1 iG2
.

Substituting the approximate expressions into Eq.~25!, we
come to the form

H522 ReFbe~ t !
dx

dt
1bn~ t !

du

dt G ,
in which

be~ t !5ph
mere

de
@exp~det !21#,

bn~ t !5ph
mnrn

dn
@exp~dnt !21#,

de5 i ~v2ve1As1j0!1g22g3 ,

dn5 i ~v2vn1Az1w0!1G22g3 .

The functionsbe(t) andbn(t) do not vary much during the
period 2p/v, so we may replace them by their averages o
this time,

be[
v

2pE0

2p/v

be~ t !dt5p2h
mere

v S 11
2pde

3v D ,

bn[
v

2pE0

2p/v

bn~ t !dt5p2h
mnrn

v S 11
2pdn

3v D .

Omitting here the small termsde /v and dn /v, we obtain
Eq. ~36!.
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