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High-frequency response and reversal dynamics of two-dimensional magnetic dot arrays
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Results from simulations of dynamic response for finite arrays of single domain magnetic dots are presented.
Linear and nonlinear high-frequency properties are discussed, and a relevance of these properties to magneti-
zation reversal in switching processes is shown. Particular attention is given to effects of array geometry and
applied field orientation. The direction of an applied field relative to the array sides is found to be important for
determining degeneracies in the linear magnetostatic mode spectrum. Nonlinear microwave response is also
examined by simulating effects of strong rf fields, and routes to chaos are found that depend on the field
orientation. A connection between magnetostatic mode excitation and reversal times under a switching field is
suggested. A consequence is a dramatic slowing of reversal rates for a range of dot packing densities.
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I. INTRODUCTION

The technology to fabricate high quality magnetic w
and dot structures with physical extensions on the sub
crometer and nanometer length scale has been perfected
remarkable degree in the past few years.1,2 The extreme pre-
cision with which elements and arrays can be construc
opens many fascinating possibilities for studying how p
ticle and array geometries affect magnetization process3

As a consequence, old questions out of fine particle mag
tism are being re-examined for regular arrays of interact
particles. Of these questions, important considerations
applications include aspects of switching and reversal tim4

For these types of technological application, the relevant p
cesses usually involve some type of nonlinear dynamic
sponse to a driving field.5

In terms of nonlinear dynamics, insulating ferrimagne
such as yttrium iron garnet~YIG! have served as model sy
tems in studies using high power driven resonance exp
ments. This is an aspect usually ignored for ferromagn
metals because of large eddy current losses.6 Eddy current
losses can be significantly reduced for ferromagnetic me
in small dot form, making patterned systems interesting c
didates for new studies of nonlinear dynamics. Geome
cally patterned arrays offer an interesting variant on previ
resonance studies by allowing modification of the underly
interactions through details of the array geometry constr
tion. The simplest modification of the interaction is to va
the spacing between magnetic elements, which affects
strength of the dipolar interaction. Other variations invol
the orientation of the applied field, the symmetry of the
ray, and the size of the array.7

The size and spacing of the magnetic elements are sh
to affect the magnetostatic modes observable in magn
resonance experiments through interparticle dipolar c
pling. If the dot sizes are large enough, and the spacing
tween them small enough, the strength of the dipo
interactions can be comparable to magnetocrystalline an
PRB 600163-1829/99/60~17!/12264~6!/$15.00
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ropy fields.7 In the same way that demagnetization effe
are very important for understanding spin-wave excitatio
and spin resonance in ferromagnets, the dipolar field in
array of magnetic elements can affect the magnetost
modes associated with the array. In this way the shape of
array plays a role analogous to that of shape anisotropie
films. In the first part of this paper, this sensitivity to deta
of array geometry and applied field orientation is explor
for linear magnetostatic modes in finite arrays of circu
dots.

The second part of this paper deals with the respons
magnetic dot arrays to high power rf driving fields. The co
sideration here is that nonlinear processes involving inte
tions between linear magnetostatic modes are strongly
pendent on mode symmetry and wavelength.9,10 A study of
how these processes occur in magnetic dot arrays is there
interesting because the character of the allowed linear m
netostatic modes are controlled by the array geometry. T
aspect of nonlinear response of magnetic arrays is exam
through numerical simulations of the response of a dot ar
to a large amplitude oscillating driving field. Magnetosta
interactions between dots are shown to strongly affect
nonlinear response of an array.

The final part of the paper proposes an interesting conn
tion between magnetic reversal under applied switch
fields and magnetostatic excitations between particles in
dot array. Reversal of magnetization of a small particle
volves highly nonlinear dynamics of the magnetic momen8

If the particles are coupled, then excitations in the coup
array will be involved and can affect the rate at which rev
sal takes place. A curious and technologically relevant re
is that the switching time for an interacting array of magne
dots is very sensitive to the array spacing and particle size
maximum switching time is found for certain lattice spa
ings. The maximum appears to be the consequence of a r
nant effect with the band of magnetostatic excitations.

The paper is organised as follows. In Sec. II, the line
dynamic response of a magnetic dot array is examined u
12 264 ©1999 The American Physical Society
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PRB 60 12 265HIGH-FREQUENCY RESPONSE AND REVERSAL . . .
a numerical integration scheme. In this section, effects
array geometry studied. In Sec. III, response to strong d
ing fields is examined and the dependence of nonlinear
namic behavior on the array spacing is studied, particula
in regards to the onset of chaotic behavior. Consequence
high-speed switching behavior are also investigated. A s
mary is given in Sec. IV.

II. LINEAR MAGNETOSTATIC EXCITATIONS

The calculation method is to numerically integrate t
time dependent Landau-Lifshitz equations of motion fo
large array of interacting magnetic dots.7 This has an advan
tage over analytic approaches in that relaxation and resp
can be examined as easily in the linear response regime
the nonlinear regime. The disadvantage is that the size o
system that can realistically be studied is limited. Regardl
for the present purposes of illustrating some of the possib
ties present for experiments with patterned magnetic arr
the numerical simulation method is ideal.

A. Simulation method

Single domain, cylindrically shaped particles are a
sumed. These magnetic ‘‘dots’’ are assumed to be sm
uniformly magnetized, and behave as point dipoles. The
of the particles is therefore small compared to the excha
length. This is a reasonable restriction for the purposes
this paper because the low-frequency dynamic respons
such small particles is governed by the net magnetic mom
of each particle. In all cases considered, the temperatu
supposed to be low enough to ignore superparamagnetic
havior. The small size of the particles also implies that hig
energy exchange modes do not contribute to the rf freque
response. Contributions from these modes are therefore
glected.

The magnetic dots are arranged on a rectangular arra
positions i associated with position vectorsr i5xna1yma
wherea is the array lattice spacing andn andm are integers.
The geometry is shown in Fig. 1. An external applied fie
H0 is positioned in the plane of the array at an angleuH
measured from they edge of the array. A driving fieldhv is
aligned normal to the array plane. The dot magnetic m
ments are aligned in the film plane at equilibrium.

The classical equation of motion of a dot magnetic m
mentm at positionr in the array is

FIG. 1. Array geometry. The dots are positioned on a squ
array with spacinga. A static magnetic field is applied at an ang
uH from the x axis and a time varying driving field is applie
normal to the array plane in thez direction.
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]mi /]t5gmi3Hi2ami3mi3Hi . ~1!

Here g is the gyromagnetic ratio anda controls the rate of
dissipation. This form of dissipation is chosen to conse
the magnitude of the dot moment asumu/V5M whereV is
the dot volume. The fieldHi is an average effective field
acting at positioni:

Hi5xH0cosuH1yH0sin1z@~2K/M2!mzi1hv cosvt#2di.
~2!

Contributions toHi are the static applied field, anisotropyK,
and dipolar interactions with the other magnetic dots, rep
sented by the fieldd.

The shape and magnetocrystalline contributions to
anisotropies in the dots are described by a single unia
anisotropyK with easy axis directed normal to the dot arr
plane. The dipole fielddi due to all the other dots in the arra
is also time dependent and has the form

di5(
i

Fmi

r i
3 23

r i•mi

r i
5 r i G . ~3!

Equation~1! can be written in spherical coordinates i
volving only two degrees of freedom for each dot. The pro
lem is them treated by solving the set of 2N2 coupled equa-
tions for a square dot array of dimensionN numerically
using a second-order Runge-Kutta method. In this techniq
the time evolution of each dot in the array is calculated o
a small time intervalDt. Parameters for the calculations a
in units reduced by the magnetization of the dot materialM.
The unit of time in the reduced units isgMt. In these units,
convergent solutions can be found withDt on the order of
0.005 within 10 000 time steps for small arrays~N around 4!.

The dipole strength is determined by the physical str
ture of the array and is characterized by the ratio of
volume to array cell volume, denoted byhd . In the reduced
units used in this paper,hd}V/r 3. This means the strength o
the interaction is determined byhd5phR2/a3, whereh and
R are the height and radius of a dot cylinder, anda is the
center to center distance between nearest-neighbor dots
less otherwise specified, a value ofhd51.0 is used.

It is also useful to note that the equilibrium ‘‘ground
state’’ configuration is automatically generated when dis
pation is included because the system naturally tends tow
the static configuration over time as the system dissipate
kinetic energy and settles into an equilibrium configuratio
This feature has been used to study quasistatic properties
number of different systems.11

B. Linear excitations

In direct analogy to magnetostatic modes confined in
piece of ferromagnetic material, magnetostatic excitatio
can exist confined to an array of magnetic dots. The mo
exist as standing modes in analogy to magnetostatic
waves confined to finite films. The frequencies depend
hd , K, and the magnitude and orientation ofH0 . Excitation
frequencies are calculated using the numerical simula
two different methods. One method, which gives a dir
measure of the absorption measured using ferromagn
resonance, is to examine amplitudes of the spin preces

e
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when driven by thehv field in Eq.~2!. A second method is to
analyze the frequency dependence of a system after a s
disturbance to the equilibrium orientation has been made

The first method can be used to define a frequency de
dent responsemz

2 which shows structure at frequencies th
represent resonances of the system:

mz
2~v!5

1

N2 S (
i

mziD 2

. ~4!

A numerical scan ofmz
2 for small amplitude driving fields

and different driving frequenciesv has peaks at frequencie
corresponding to excitations of magnetostatic modes in
array.

An example calculation for an array of nine dots is sho
in Fig. 2. The anisotropyK is set to24p representing an
in-plane orientation of the magnetization at equilibrium. T
plot shows the responsemz

2 with a damping a/gM2

50.001. Results for a static field of magnitudeH0 /M52
applied parallel to the array edge, foruH50, and along a
diagonal, for uH545°, are shown. The amplitude of th
driving field is small, withhv50.01, so that only linear re
sponse is probed.

The width of the peaks is due partly to damping, but t
main contribution to linewidth comes from excitation of se
eral nearly degenerate modes. The directionsuH50 and 45°
are high symmetry and many excitations can exist w
nearly the same frequency. The degeneracy can be lifte
increasing the strength of the coupling and by choosing fi
orientations in low-symmetry directions.

It is useful to note that the frequency of the resonan
mode for the dot array is approximated very well as
ferromagnetic resonance frequency:

v/g5$~H1Dx2Dy!@H1Dx2Dz1~2K/M !#%1/2. ~5!

FIG. 2. Linear response as a function of frequency. A sm
driving field (hv50.01) is applied parallel to the edge of an arr
and also along a diagonal. The array contains nine dots an
in-plane magnetized. The width of the peaks is due to damping
the existence of several nearly degenerate modes. The arrows
respond to the resonance frequencies given by the approximatio
Eq. ~5!.
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The demagnetization factorsDy arenot demagnetization fac-
tors for the individual dots, but instead depend on the ar
geometry. These factors depend on the orientation of the
magnetic moments, and also on the dot size and array
and geometry. In general they will also depend on posit
within the array. For comparison of Eq.~5! to the simulation
results, the factors were approximated by summing the d
lar fields produced by a static arrangement of dots actin
the center of the array. The corresponding frequencies w
calculated according to Eq.~5!. Results for the case consid
ered in Fig. 2 are shown by the arrows.

The good agreement between the approximation of
~5! and the numerical calculation is due to the close anal
between shape anisotropies in ferromagnets and the ‘‘sh
anisotropies’’ produced by the geometry of the magnetic
array. Both are demagnetizing effects that reflect the bou
aries of the magnetizable material. The effects are very
nificant for small arrays and still exist even for large arra

This is illustrated in Fig. 3 where the mode frequenc
corresponding to the low-frequency peak in Fig. 2 are sho
as a function of array size. The static field is applied along
array edge for the solid line and along a diagonal for
dotted line. The frequencies were determined by analyz
the fourier spectrum obtained using the second method m
tioned above. In this method, the equilibrium configurati
for the magnetic moments is found by letting the simulati
run until all the kinetic energy of the precessing moments
dissipated. The transient behavior of a dot in the array is t
studied in response to a small perturbation of a dot mom
away from equilibrium. This approach does not require
driving field and sohv is set to zero.

The response frequencies obtained from the analysis
the fine structure of the peak responses shown in Fig. 2,
only the frequency of the lowest frequency excitation cor
sponding to the small peak in Fig. 2 is shown in Fig. 3. T
difference in frequencies between the two field orientatio
indicates the importance of array shape on the linear

ll
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d
or-
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FIG. 3. Magnetostatic mode frequency as a function of ar
size. The static field is applied along an array edge for the frequ
cies along the solid line, and along a diagonal for frequencies al
the dotted line. The difference between the two frequencies
creases with array sizeN but approaches a limiting nonzero valu
for largeN.



e
g

p
o

a
fr
n
o
in
n

re
t
g

in
o
in

l
a

n

n
a

e

h
n

tant
the
lin-
eso-

ics,
ns.

ht
ots
t fa-

th

dot
This
ld
the

ere
y
e

nt.
de-

ely

ld
i
n

th
y

of-
dot

is
s a
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sponse of the array. The difference decreases as the siz
the dot array does, but approaches a limiting value for lar
N.

This behavior is in direct analogy to the effects of sha
demagnetizing fields on conventional ferromagnetic res
nance. Array shape demagnetizing effects also appear
field orientation dependence of the magnetostatic mode
quencies onuH . This is illustrated by the calculations show
in Fig. 4 where mode frequency is given as a function
field orientation. In this figure, the frequencies of peaks
the mz

2 response are plotted for a nine-dot array with a co
stant field aligned along directions specified byuH . Note
that additional magnetostatic excitations exist at higher f
quencies, but do not generate a significant response in
average of Eq.~4! and can therefore not be observed usin
resonance techniques.

The fourfold symmetry of the underlying array appears
the frequencies for all lattice sizes. This may account f
similar orientation dependence observed recently in sp
wave scattering experiments from square arrays.12 Note that
the points plotted in Fig. 4 represent peaks which actua
represent contributions from several nearly degener
modes. This gives seeming discontinuities and structure
the frequencies when plotted againstuH as the degeneracies
are lifted through mode-mode interactions. The interactio
occur when the field is near a high-symmetry direction. A
the orientation angle of the field approaches these directio
the frequencies of some modes approach one another
hybridization occurs because of the dipole interaction.

III. NONLINEAR RESPONSE AND SWITCHING TIME

The additional degree of freedom available in the dot g
ometry for varying dynamic demagnetizing fields was show
in Sec. II to strongly affect linear magnetostatic modes. T
ability to control the strength of the interparticle interactio

FIG. 4. Magnetostatic mode frequency as a function of fie
orientation. The frequencies of the lowest frequency modes in F
2 for a nine-dot array are shown for a constant field aligned alo
directions specified byuH . The fourfold symmetry of the underly-
ing array appear in the frequencies for all lattice sizes. Note
lifting of degeneracies for field directions along low-symmetr
axes.
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by adjusting dot spacing and size can be especially impor
for nonlinear magnetostatic excitations. In this section,
effects are shown to be quite spectacular in terms of non
ear magnetostatic response, where various nonlinear r
nance phenomena, including approaches to chaos dynam
are found to be strongly dependent on interdot interactio

A. Driven response

The following system is considered in order to highlig
the role of interdot coupling. A square array of magnetic d
is chosen where each dot has a uniaxial anisotropy tha
vors orientation of the dot magnetic momentout of the array
plane. A time dependent circular polarized driving field wi
strengthhv and frequencyv is applied in the plane of the
array. The driving field is large enough to cause the
magnetic moments to precess about an in-plane axis.
situation corresponds to a time dependent ‘‘switching’’ fie
which causes the moments to reverse direction relative to
particle easy axis. The key observation here is that if th
are no dipolar interactions~corresponding to large arra
spacing or low moment dots!, then the system is integrabl
and there is no chaotic behavior.9

An analysis can be done in terms of anglesu andf speci-
fying the instantaneous position of a dot’s magnetic mome
In the absence of interdot coupling, fixed points can be
termined analytically in terms of the anglesu and f. The
location and classification of these points depend sensitiv

g.
g

e

FIG. 5. Orbits around a fixed point for a nine-dot square out-
plane magnetized dot array. The position of the array center
moment is shown in terms of angleu andf. u is measured from the
normal to the array plane andf is the in-plane angle. The system
not chaotic in the absence of dipolar interactions, but develop
chaotic transient response as the dipole coupling is increased (hd).
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12 268 PRB 60R. L. STAMPS AND R. E. CAMLEY
on the ratios ofv/K andv/hv and exist at 2p intervals inf.
Complete discussions in the case of zero interdot coup
are given in Refs. 9 and 13.

The effects of interdot interactions is significant in th
system and illustrated in Fig. 5. In this figure trajectories
the magnetic dot moment are shown in terms of posit
anglesf andu. For convenience, a reference frame is cho
that rotates with the circularly polarized driving field.13

The trajectory around one of the stable fixed points
shown in the top left panel of Fig. 5 for the case of no dipo
interdot coupling (hd50) in a nine-dot square array. The
is no static applied field and the orbit is shown for the d
moment in the center of the array. A small dissipation
included with the valuea/g50.001, v/K50.6, andv/hv

50.3. The frequency spectrum of an in-plane componen
the average array magnetizationmx is shown in the top pane
of Fig. 6 for the same system and parameters.

The effect of increasing the dipolar coupling~by decreas-
ing the dot spacing, for example!, is shown in the lower two
panels of Figs. 5 and 6. The middle panel of Fig. 5 shows
behavior of the center array moment forhd50.1. Additional
periods appear, corresponding with the appearance of a
tional frequencies in the spectrum formx shown in the
middle panel of Fig. 6.

The bottom panel of Fig. 5 shows a portion of a chao
orbit for hd50.2. The trajectory switches between differe
basins, although eventually appears to settle into a li
cycle after long times~not shown here!. A numerical calcu-
lation of the Lyaponov exponent over long time perio
shows that the exponent hovers around a maximum pos

FIG. 6. Frequency spectrum of an in-plane component of
array average moment for the system in Fig. 5. Additional frequ
cies appear inmx as the dipole coupling is increased.
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value initially, but eventually tends toward zero at lon
times. This is analogous to transient chaotic behaviors
cussed for nonlinear resonance behavior in YIG material10

The orbits shown in Figs. 5 and 6 were for the center
moment. The amplitudes and orbits of moments for the
maining dots were interesting from the point of view
finite-size effects and localization. The response to large
plitude driving fields near the peak frequencies of the t
linear resonance peaks of Fig. 2, for example, differed
terms of which dot moments exhibited the largest amplitu
motion. Driving near the low-frequency peak produced lar
amplitude response and reversal of the center mom
whereas driving near the high-frequency peak produced la
amplitude response of the edge spins. It is interesting to n
that the reversal of moments in this manner happens
tremely fast because it is dynamically driven rather than d
sipatively driven. The reversal time is thus determined byg,
not a, and can be on the order of a precession time.

B. Switching time of coupled arrays

Another kind of nonlinear dynamic process in magne
systems is reversal. The reversal of magnetization in
particles is important for various applications and has b
studied extensively for fine single-domain particles.4,5 The
effects of coupling in terms of high-frequency behavior h
not been discussed and turns out to have surprising co
quences.

The essential feature is that the nonlinear magnetos
modes supported by the array system are responsible fo
chaotic response described above and also impact switc
processes. This can be illustrated with the model system
perpendicular moments used above. In this problem, the
ray is initially oriented with each moment along the positi
z direction~along the easy axis of the anisotropy!. At t50, a
reverse field is applied along the2z direction and the time
measured for the spins to rotate into the field direction.

The ‘‘switching’’ time ts is defined as twice the time
between the application of the reversal field and the time
which the average moment of the array in thez direction
vanishes. The effect of coupling on this switching time

e
-

FIG. 7. Switching time as a function of interparticle coupling f
a nine-dot square. HereK/M51.1, b/h50.08, andg/a50.07 for
each particle. The switching rate increases dramatically for a sm
range of coupling strengthshd . For hd /M near 0.04, coupled os
cillations are excited in the array that slow the reversal process
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shown in Fig. 7 for a nine-dot square array as a function
coupling strengthhd . The parameters areK/M51, Ho /M
51.1, andg/a50.07 for each particle. In all cases the a
plied field has a small component (Hox /Hoz50.08) along
the x direction. This is necessary for the classical dynam
approach of this theory because otherwise the mom
would never reverse when starting exactly from equilibriu

The surprising feature is the distinct maximum in t
switching time nearhd /M50.04. The switching time for this
value is increased by nearly a factor of 3 from times
values ofhd above or below this value. We believe the c
rious maximum occurs due to excitation of nonlinear ma
netostatic oscillations in the dot array.

IV. SUMMARY AND CONCLUSIONS

The high-frequency linear and nonlinear response of
array of magnetic dots was examined using a numerical
tegration scheme. The theory allowed for precession and
sipation effects. Linear magnetostatic excitations were fo
for the array and shown to depend on dot array geometry
spacing. The shape of the array introduced shape anisot
effects analogous to those known for magnetic resonanc
ferromagnets. Peaks in the response were compose
nearly degenerate magnetostatic excitations with frequen
strongly dependent on the orientation of the applied fi
relative to the array directions. The excitations form a ba
whose width is determined by the strength of the dipo
interaction and is thus sensitive to the size of the magn
particles and the array spacing. The magnetostatic ex
in
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tions can be measured using low-frequency, long-wavelen
techniques such as light scattering or ferromagnetic re
nance.

Nonlinear effects were studied for a particle array of p
pendicularly oriented moments. The moments were driv
by a field oriented such that the moments rotated into and
of the array plane. A threshold was found for the interd
coupling above which the system displays chaotic dynam
with a positive Lyaponov exponent. Localization of mod
was also found in finite array geometries for certain freq
cies. This mode localization resulted in particular dots exh
iting large amplitude switching at rates much faster th
would be possible through usual damping controlled ro
tion. In this sense, the nonlinear processes can facili
switching in finite arrays.

Finally, switching processes in coupled arrays were st
ied by examing the effect of applying a reversal field. T
dynamic response was characterized in terms of a switch
time that showed a dramatic increase for a small range
coupling strengths. The increase is thought to be due to
excitation of low-frequency oscillations in the dot array. Th
corresponds to a large slowing of the reversal process
could be realized for a restricted range of particle sizes
spacings in an array of magnetic particles.
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