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Stochastic approach for modeling dislocation patterning
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The collective behavior of a system of straight parallel edge dislocations under cyclic plastic deformation is
investigated. For describing the dislocation pattern formation two different stochastic approaches are consid-
ered and compared. In one of them the discrete dislocation system is described by coupled Langevin equations;
in the other one a continuum approach is applied. Typical deformation paftenasrix structures”) are found
by stochastic integrationS0163-182@09)08825-6

I. INTRODUCTION component. This is rigorously true only for systems with no
correlations among the dislocations. However, if the correla-
Many different dislocation structures are known to existtions are weak, as is the case when the system is not far from
in deformed metals. It is well known, e.g., that a very het-homogeneous, the decomposition of the stress field men-
erogeneous dislocation distribution called persistent sligioned above still applies. All the results presented in this
bands in a surrounding “matrix” may form upon cyclic de- Paper are valid only under this assumption. _
formation of single crystals. To understand how the collec- For describing the dislocation-pattern formation, two dif-
tive motion of dislocations leads to such collective effects isférent stochastic approaches are applied. In one of them the
presently one of the most fundamental challenges in dislocddiScrete dislocation system is described by Langevin equa-
tion theory. Several models have been proposed to descritions. The evolution of the system is studied by the stochastic

“kan 0
these organized structures observed by transmission electrc%(N) methpd pro_posed by Bg d Qromé. In the pther :

microscopy, but we are still far from the complete under-ON€& the dislocation system is described by_ the dlsloca_tlon
standing of,this typically self-ordering phenomena and the Burgers vector density that are continuous functions

Due to the long-range nature of the dislocation-Ofthe space coordinates and obey a Langevin-type equation.

dislocation interaction and the high degree of freedom, thél’hen the two different stochastic approaches are compared.

theoretical investigation of this problem is very difficult.

Each analytical model developed so f&ulhmann-Wilsdorf Il. MODEL EQUATIONS FOR DISCRETE 2D SYSTEMS
and van der Mervé Holt,? Rickman and Vinal$, Walgreaf . ' _ '
and Aifantis? Aifantis® Schiller and Walgreaf,Kratochvil Let us consider a system dfinteracting parallel straight

and co-worker;® Franeket al,’ and Hanet®) is able to  €dge dislocations with Burgers vectors of equal magnitudes
predict the formation of inhomogeneous dislocation distribu-2nd opposite directions. Because of the dissipative nature of
tion; their common shortcoming is, however, that they aredislocation motion, for setting up the equations of motion of
based orad hocassumptions. dislocations, besides the force acting on a dislocation due to

Besides the theoretical models mentioned above, over th&e elastic field, a friction force has to be taken into account.
past few years several computer-simulation techniques wer® frequently applied approximation is that the friction force
developed for studying the dislocation-patterning phenomiS proportional to a certain power of the dislocation
enon. Both the two-dimensiorfat?*(2D) and the 3D(Refs. velocity=* Since in the case of a low deformation rate the
25-27 simulations were limited to relatively small numbers inertia term can be neglected besides the friction force, the
of dislocations N~ 103-10* or les$, owing to the compu- €duation of motion of a dislocation is only a first-order dif-
tational complexity of the internal stress calculation. In orderferential equation. For the sake of simplicity the Burgers
to study much larger systems, seve®(N) methods, such Vector of each dislocation is taken parallel to thaxis, and
as the “particle-particle—particle-mesh” meth&tmultipole the dislocation lines are parallel to teaxis. The positions
expansiorf® or stochastic method§, have been applied to of dislocations in thexy plane are denoted bE/,z(xi i),
treat the long-range dislocation-dislocation interactioni=1, ... N. With the assumptions outlined above the veloc-
forcgs. . ity of the ith dislocationy; can be given &

Since the real systems consist of an enormous number o
dislocations, the high degree of freedom makes the theoreti- R .
cal investigation very difficult. As it has been found by vi=Bb[7"(r)+7*(r)]¥™, 1)
studying short-time evolution of discrete dislocation systems
the internal stress created by the dislocations can be decomhereB is the dislocation mobilitym is the velocity-stress
posed into the sum of two independent componéhts, exponent,7™ and r°¢ represents the internal and external
namely, a mean-field force originated from the “smoothedstresses, respectively. This is the system of equations that is
out” dislocation distribution and a stochastic, fluctuating solved numerically in most of the 2D computer
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According to the above finding, the internal stress can be
considered as a stochastic variable, which can be described
° through the assignment of a stress-distribution function
2 P(7). P(79)drg gives the probability of occurrence afat
= an arbitrary time in the range
=T}
&
2 dTO >, dTo
TO—TST(I')$TO+7, (4)
i where 7y is a preassigned value fetr. Denoting theN par-
Time . . . - . > > >
0.868 ticle dislocation density function bwy(r(,r,, ... ry) the
0.866 characteristic functiodP(q) has the forn®
P 0.864
2 0862 P(q)zf WN(r1,Fo, oo fN)
=
o:sss xj];[l expliq rhy(ri—r;)}kdr,dry- - -dry
055430 335 340 345 380 355 360 :
n T, M s ~exd Q(r,q)], ®
0.85858 where
£ osses Q.= [ p(F)BI—r10)df,
& i
S 08586} +§f g(ry,r2)B(r—ry,q)
0.85855 . . . . . XB(r—ry,q)drydry+ - -+, (6)
3.404 3405 3.406 3.407
Time - . -
B(r,q)=1—expi 7ing(r)q}. (7)

FIG. 1. A typical internal stress versus time cur@ie three . _
different magnificationsobtained by numerical integration of Eq. Here p(r;) and g(rq,r,) represent the dislocation density

(2). and dislocation-dislocation correlation functions, respec-
tively.
simulations:*~*"*~?*The internal shear stress created by the Because of the strongly inhomogeneous distributions of
dislocation system can be given®*as the dislocations the analytical form &™) cannot be de-
N termined. However, for small values the characteristic
o i function P(q) can be given by an explicit expressigsee
Tmt(r):;l Tha(Xj—=X,Yj—Y), 2 Ref. 33,
where P(q.,r)~exdiqr(r)+Cp(r)a’IN(qren) +- -1, (8)
which leads to the asymptotic form
o (X,y)= ~b) X(¢-y%) (3) e
ind( X, 27(1—v) (X2+y2)2 o )| Cp(F) .
T rm™ % 5
is the individual shear stress created by an edge dislocation 7(r)

with Burgers vector of magnitudg , in which u is the shear
modulus andv represents the Poisson ratio.

Numerical integrations of Eq1) for short(shorter than
the relaxation timg periods of time show that the internal 27
stress7™(r) created by the dislocations can be viewed as a C=b2f0 K2()de.
sum of a slowly varying mean stress originating from the
internal stress of the smoothed out dislocation distributiorK(¢) describes the angular dependence of the individual
7(r,t) and a rapidly varying, highly irregular function with a Stress field determined by the actual type of the dislocation
zero mean value that satisfies the requirement of no correldinder consideration. The effective stresg appearing in
tion at different times or places and that represents the influgXpPression(8) is determined by the dislocation-dislocation
ence of the near neighbofsee Fig. 1 An important conse- correlation, namely, by the length parameter,
quence of this numerical observation is that the b 1
computationally very expensive precise calculation of the in- Reﬁ:'“— S
ternal stress created by the dislocation is not necessary. 2m(1—v) Tef

whereC is a constant determined by the angular anisotropy
of the dislocation-dislocation interactidn,

(10

(11)
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IIl. 2D CONTINUUM DESCRIPTION
FOR DISLOCATION SYSTEMS

In order to establish a link between the existing models
and the stochastic approximation of the dynamical evolution
of the interacting dislocation systems outlined in this paper
instead of describing the system by the time variation of the
coordinates of thé interacting dislocations, one has to use
the N-particle distribution function fy, which is a
2N-dimensional function of the space coordinates. For the
sake of simplicity let us consider only dislocations with the

—
o
(=}
(=}

500

Data Counts

0| T same Burgers vectdy (this restriction will be lifted later.
-2.00E+5  -1.00E+5  0.00E00 1.00E+5 2.00E+5 According to the common definition, the quantity
< f(t,r 1,5, ... Fn)drydr,- - -dry gives the probability of
finding theN dislocations in the volumedrdr,- - -dry vi-

FIG. 2. Stress distribution functioflines) given by Eq.(14) . S -
versus distribution of internal stresses acting on 8000 dislocationg"n"ty of the pomtsrl’r2j oy at _the m(_)ment' Due to
in the center of a disk containing41C® randomly positioned, uni- th€ assumed conservation of the dislocation numhehas
formly distributed dislocation dipoles with 0.14 dipole-width to tO fulfill the relation
dipole-distance ratigboxes.

fN(tlfl!FZ! ,FN)dFlszdFN:fN(t+dt,Fl
which is a characteristic length scale of the dislocation con- R .. . ..
figuration (like, e.g., the dipole width +vadt, ... rytondt)d(rg+ogdt) - - - d(ry+ondt),
An important characteristic value of the distribution func- (16)
tion P(7) is its first moment,
from which
)= — @D | K 0707 N
(r)y=————75-——" = r1,0) Ting(ro—r)dry, 9 L R L o
P(or) dd q=0 —fn(trq,ra, ... ,rN)+2 Vilfn(tre,ro, .. ry)vi]1=0.
(12 dt =1

17
which is the self-consistent field created by the dislocation )
system at the point and k(r,t)=p,(r,t)—p_(r,t) is the Substituting the expression of from Eq.(15) into Eq.(17)
sign dislocation density, withp, and p_ representing the We obtain
density of dislocations with positive and negative Burgers

vectors, resi)ectively. As it is shown in Ref. 34 for edge ¢ . R No Lo R
dislocationsr(r) fulfill the field equation FrA ISP T JN)+521 (Ve En(tre,ra, o)
_ . ub & . X[7(07 0+ Tued 17 ,1) + 729¥M =0, (18)
A%7(r)=— k(r). (13
1=v oxgy?

By allowing dislocations of both positive and negative
. - o __Burgers vectorstb and by introducing the dislocation den-
Since the explicit form of the stress-distribution function g y g

cannot be determined, one has to approximate it with aﬁity functionSp_i(r,t)zNfl(t,r) of dislocati_ons with pOSi'
analytical function, which for small Fourier parameters fulfill tive and negative Burgers vectors, respectively, and integrat-

condition (8). The form ing Eq.(17) over ther,,r3, ... Iy subspace, one gets

P N > 1372 ap (1t . I .
P(Tfluct)_Cp(r)[Tfluct(r)+2CP(r)] ) (14 %):—(bV){Bp+(r,t)[T(r,t)+Tﬂuct(r,t)-i-TEXt]l/m},
where 7q,(F) = 7(F) — 7ii(F) describes well the distribu- (19
tion of the fluctuations of the internal stress around its mean

field valuerint(F) for weakly correlated dislocation configu- dp—(r,t) . N -

rations(for numerical verification, see Fig) 2nd it is suit- ot =(bV){Bp_(r,t)[ 7(r,t) + 7ue ¥, 1) + 724}

able for analytical and numerical computations. (20)

Using Eg.(1) and taking into account the stochastic char-

acter of the internal stress, a system of coupled LangeviBy adding and subtracting Eq&l9) and(20), one concludes

equations can be constructed for the dislocations. Conse-

qguently theith dislocation obeys the Langevin equation ap(rt) - .. .
o +(BV){BK(r, t)[ 7(r,t) + e T, 1) + 727 ¥M =0,

i =BB[7(r; 1) + Tuelr; ) + 7M. (15 (21)
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The dislocation density map The internal stress map

FIG. 3. Dislocation density map and the corresponding self- R
consistent mean fieltlL2) in the case of a discrete dislocation sys-

tem without sources after 70 fatigue cycles. FIG. 4. Dislocation density maps showing the formation and the

time evolution of domains in the discrete model in the presence of
sources in the course of fatigue by an external stress fiblel

- - — - extm elapsed time is shown in each picture in units of the period of the
+(bV){Bp(r,t)[ 7(r,t) + 7aue(r 1) + 7™M =0, external stress fieJd

(22

IK(r,t)
at

tuations of the Burgers vector density fidd#, the stochastic
wherep(r,t)=p_.(r,t)+p_(r,t) is the total dislocation den- integration of the system of coupled stochastic differential
sity. equations(15) corresponding to the? dislocations over a
The balance equatiof21) represents the conservation of time interval of a few tens of periods of the external stress
dislocation number, while Eq22) expresses the conserva- field leads to a dislocation configuration shown in Fig. 3. The
tion of the net Burgers vectdok. figure shows the dislocation density field and the correspond-
For allowing dislocation creation and annihilation, the ing self-consistent mean stress field created by the disloca-
balance equatiof21) has to be modified by adding a source tion system for one realization of the noise. The smoothed

term to the right-hand side that may depend @nr, the  out dislocation density(r) is determined by counting the

external stress®, etc., dislocations in 128 128 cells. The development of an or-
dered structure of the dislocation density and corresponding
ap(rt)y . R, . y internal stress field can be observed. These results suggest
pm +(bV){BK(r, t)[ 7(r,t) + e 1, t) + 7Y™} that the 1/-type angularly anisotropic stress field acting be-
tween two dislocations is alone sufficient to lead to an ar-
=f(p, 1,1 . .). (23  rangement of dislocations in which a highly organized global

stress field is generated during the cyclic deformation. This

field can act as a periodic background for the dislocation

IV. DISLOCATION STRUCTURES IN CYCLIC sources. By allowing a source term proportional to the local
DEFORMATION dislocation density and to the square of the local stress field

Let us consider an initially homogeneous system &F 2 [which is based on the assumption that in two dimensions a

parallel straight edge dislocations with Burgers vectors of:ertaLn fragtion of the local plastic energy that is proportional
equal magnitudes and opposite directions fatigued by a perfo p(r) 7(r) is spent for dislocation creatigriormation of
odic external stress field. The number of dislocations is concompletely different dislocation structures can be obtained
strained only by the requirement that the system has overalising the same initial configuration as before. The disloca-
neutrality, i.e., the Burgers vectors satisfy the neutrality confion annihilation process is introduced in the model via a
dition =,b,=0. For simplicity, for simulations we assume a critical annihilation distance. Figure 4 shows snapshots of
™~ . ’ . . . . . .

constant value for the mobilit] and a linear velocity-stress the grO\_/vth of dpma_ms with high dislocation d_ensny. The
relationship(the same stress exponent=1 was experimen- dislocation density pictures show that the experimentally ob-

tally observed for the phonon-related friction in a copper-
single crystal); for other materials, however, the model
equations can be used as well by replacing the linear
velocity-stress dependence with the corresponding material
specific power or exponential stress dependence of velocities
in Eq. (D).

We start the simulations from an initially homogeneous
dislocation dipole distribution, considering dipoles with a
0.14 mean dipole-width to dipole-distance ratio. A similar
value was experimentally observed by Tippetial * on cy- FIG. 5. The dislocation density map and the corresponding den-
clically deformed Ni single crystals oriented for single slip. sity correlation function in an advanced stage of the evolution of
From the homogeneous dislocation system with small flucsystem shown in Fig. 4.

e
i
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by the dislocations has a stochastic nature. On the basis of
this numerical finding, a fully stochastic theory was formu-
lated for describing the interaction of a system of weakly
correlated straight parallel edge dislocations under cyclic
plastic deformation. The collective behavior of the disloca-
tion system was investigated numerically by t¢eodiscrete

and a continuumvariants of the stochastic theory.

The Langevin equations of individual dislocation motion
were used to construct field equations for the dislocation and
Burgers vector density fields. By a stochastic integration of

FIG. 6. Dislocgtioq density map and the corresponding net Buripe coupled Langevin equatiorié5) in the presence of a
gers vector density field for the case of the continuum model fa .y jic external stress field, the “matrix” structure observed
tigued by an external stress field. . . - ' o

in fatigued single crystals can be qualitatively reproduced.
served “matrix” structuré’ is reproduced qualitatively by The “matrix” structure could be reproduced also by stochas-
the model equation&l5) if dislocation production and anni- tic integration of the continuum equatio(®2) and (23).
hilation is allowed. The high dislocation density domains are In comparison with the models proposed earlier, the fol-
aligned more or less along parallel lines at directions oflowing needs to be stressed: The stochastic dislocation dy-
about 35°-45° to the glide plane. Less correlated domaineamics outlined in this paper differ strongly from the one

can be observed by a visual appreciation of the dislocatioproposed by Haner!%!where the dislocation system is de-

correlation(p(F)p(F— Ff)> shown in Fig. 5 at directions of Scribed by a single variabléwithout direct spatial depen-
about 65° and 27° to the glide plane. The same orderin§lence, the dislocation density, time evolution of which is
tendencies were observed experimentally by Buchinger an@lSO governed by a Langevin-type equation. _ _
Stanzt” in copper single crystals fatigued at low amplitudes. !N the model outlined above, due to the stochastic motion
The stochastic integration of the coupled equatiti®,  ©f the dislocations on time scales large enough the motion of
(22), and(23) with the same initial conditions as in the case the dislocations can be described as an effective diffusion
of the discrete system, i.e., a quasineutral dislocation systeRfocess(the form of the appropriate diffusion term is not
with homogeneous dislocation distribution, small fluctua-completely developed so far~or describing dislocation pat-

tions of the Burgers vector density field, and a source terniern formation Walgreaf and Aifantfs, Aifantis,” and
f~p72 leads to the “matrix” structure shown in Fig. 6. The Schiller and Walgreaf adopt reaction-diffusion equations

figure shows an average of 30 histories. originally developed for oscillating chemical reactions. As a
Numerical experiments show that the model equation§onsequence of this, the expressions they propose for differ-
(22) and (23) allow the existence of local growing perturba- €nt dislocation processes are difficult to deduce from the
tions. This means that the solution becomes locally unstabldheory of individual dislocation. Although the model devel-
S0 that the continuum model can be integrated only for shorPed by Kratochvil and co-worké? is based on a well-
intervals. The local instability observed in the continuumdefined dislocation mechanism, it also contains several un-
model does not occur in the discrete model because the di§Nown parameters. In contrast, the model proposed in this
locations form rapidly in the early stage of the evolution of Paper uses the precise form of dislocation-dislocation inter-
the structure, then the dislocation annihilation becomes imaction. Its further important feature is that if the correlations
portant due to the introduced dislocation annihilation dis-2'¢ negligible in the system, one arrives at the mean-field
tance. In this later stage there is a balance between dislocgescription elaborated by Grorffaby a truncation of the
tion creation and annihilation, the dislocation populationBogoliubov-Born-Green-Kirkwood-Yuon hierarchy of the
reaches its steady state, the new dislocations contribute to titislocation distribution functions of different order.
annihilation process. Albeit this simple stochastic model, in which the evolu-
The results of the two different methods show that, as it idion of the system of interacting dislocations can be viewed
well known, the elastic interaction alone is not enough for2S & response to a self-consistently generated mean field and
pattern formation. It however leads to the development of arstochastic fluctuations extraordinarily successful, it cannot
inhomogeneous stress field. The introduction of dislocatiorforrectly handle the effects of strong correlations, the results
sources with positive production rates in the presence of theémaining valid only in the regime not far from homoge-
external periodic stress field changes the dynamics esseA€OUS- o _ o
tially and allows pattern formation. In summary, it is be- [N conclusion, it appears evident that the stochastic view-

lieved that for dislocation patterning the particular form of Point outlined in this paper provides a useful approach for
the elastic interaction and the presence of the dislocatioff’e analysis of the dynamical evolution of the interacting
sources with a positive rate of dislocation production aredislocation systems, although clearly unanswered questions
needed for pattern formation. In the stochastic models pre€main, and they need further investigations.

sented here only these two factors are used to reproduce the

“matrix” structure as an example of fatigue patterning.

ACKNOWLEDGMENTS

V. SUMMARY We are grateful to Professor T.and Professor J. Lend-

It was observed by numerical simulations performed orvai for discussions. The financial support of OTKA under
discreet dislocation assemblies, that the stress field creatégbntracts Nos. T 030791 and T 017609 is acknowledged.



PRB 60 STOCHASTIC APPROACH FOR MODELIS . .. 127

*Electronic address: Botond.Bako@elte.hu 20 F. Fang and W. Dahl, Mater. Sci. Eng., 64, 300(1993.
Electronic address: groma@metal.elte.hu 2Y|. Groma and G. S. Pawley, Philos. Mag.6%, 1459 (1993.
1D. Kuhlmann-Wilsdorf and J. H. van der Merve, Mater. Sci. Eng. ?’l. Groma and G. S. Pawley, Mater. Sci. Eng.184, 306(1993.
55, 79 (1982. 23|, Groma and G. S. Pawley, Solid State Phend®85/36 369
2D. L. Holt, J. Appl. Phys41, 3179(1970. (1994).
3J. M. Rickman and J. Vinals, Philos. Mag. %, 1251(1997). 24R. Fournet and J. M. Salazar, Phys. Rev6® 6283(1996.
4D. Walgreaf and E. C. Aifantis, J. Appl. Phys5, 688 (1985. 25, P. Kubin and G. R. Canova, Scr. Metall. Mate?7, 957
SE. C. Aifantis, Mater. Sci. Eng81, 563 (1986. (1992.
6¢C. Schiller and D. Walgreaf, Acta Metals6, 563 (1989. 26y, Bréchet, G. R. Canova, and L. P. Kubin, Scr. Metall. Mater.
7. Kratochvil and S. Libovicky, Scr. MetalR0, 1625(1986. 29, 1165(1993.
83. Kratochvil, Mater. Sci. Eng., A64, 15(1993. 27B. Devincre and M. Condat, Acta Metall. Matei0, 2629(1992.
A. Franek, R. Kalus, and J. Kratochvil, Philos. Mag.64, 497  28D. B. Barts and A. E. Carlsson, Phys. Rev5E 3195(1995.
(1991). 2%H. |. Wang and R. Lesar, Philos. Mag. AL, 149 (1995.
0p, Haner, Acta Mater44, 2345(1996. 30B. Bakoand I. Groma, Modell. Simul. Mater. Sci. Eng, 181
11p, Haner, Appl. Phys. A: Mater. Sci. Proce$, 473(1996. (1999.
2p, Gullouglu, D. Srolovitz, R. LeSar, and P. Lomdahl, Scr. Met- 31R. W. Balluffi and A. V. Granato, ifDislocations in Solidsed-
all. 23, 1347(1989. ited by F. R. N. NabarrdNorth-Holland, Amsterdam, 1979
B3A. N. Gullouglu and C. S. Hartley, Modell. Simul. Mater. Sci.  Vol. 4.
Eng.1, 1(1992. 32|, Kovacs and L. ZsoldosDislocations and Plastic Deformation
1A, N. Gullouglu and C. S. Hartley, Modell. Simul. Mater. Sci. (Pergamon Press, London, 1973
Eng. 1, 383(1992. 33|, Groma and B. BakoPhys. Rev. B58, 2969(1998.
15N. M. Ghoniem and R. J. Amodeo, Solid State Phen&®/4, 34E. Kroner, inPhysics of Defectedited by R. Balian, M. Klman,
377 (1988. and J. P. PoiriefNorth-Holland, Amsterdam, 1981p. 215.
16R. J. Amodeo and N. M. Ghoniem, Phys. RevdB 6958(1990.  3°K. D. Fuseing and E. Nembach, Acta Metall. Matdd, 3181
"R. J. Amodeo and N. M. Ghoniem, Phys. RevdB 6968(1990). (1993.
18y A. Lubarda, J. A. Blume, and A. Needleman, Acta Metall. 3°B. Tippelt, J. Bretschneider, and P rfeer, Phys. Status Solidi A
Mater. 41, 625(1993. 163 11(1997.

9H. H. M. Cleveringa, E. Van der Giessen, and A. Needleman2’L. Buchinger and S. Stanzl, Philos. Mag.58, 275 (1984).
Acta Mater.45, 3163(1997). 38]. Groma, Phys. Rev. B6, 5807(1997.



