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Stochastic approach for modeling dislocation patterning

B. Bakó* and I. Groma†

Department of General Physics, Eo¨tvös University Budapest, P.O. Box 32, 1518 Budapest, Hungary
~Received 19 June 1998; revised manuscript received 26 January 1999!

The collective behavior of a system of straight parallel edge dislocations under cyclic plastic deformation is
investigated. For describing the dislocation pattern formation two different stochastic approaches are consid-
ered and compared. In one of them the discrete dislocation system is described by coupled Langevin equations;
in the other one a continuum approach is applied. Typical deformation patterns~‘‘matrix structures’’! are found
by stochastic integration.@S0163-1829~99!08825-6#
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I. INTRODUCTION

Many different dislocation structures are known to ex
in deformed metals. It is well known, e.g., that a very h
erogeneous dislocation distribution called persistent
bands in a surrounding ‘‘matrix’’ may form upon cyclic de
formation of single crystals. To understand how the coll
tive motion of dislocations leads to such collective effects
presently one of the most fundamental challenges in dislo
tion theory. Several models have been proposed to desc
these organized structures observed by transmission ele
microscopy, but we are still far from the complete und
standing of this typically self-ordering phenomena.

Due to the long-range nature of the dislocatio
dislocation interaction and the high degree of freedom,
theoretical investigation of this problem is very difficu
Each analytical model developed so far~Kulhmann-Wilsdorf
and van der Merve,1 Holt,2 Rickman and Vinals,3 Walgreaf
and Aifantis,4 Aifantis,5 Schiller and Walgreaf,6 Kratochvil
and co-worker,7,8 Franeket al.,9 and Hähner10,11! is able to
predict the formation of inhomogeneous dislocation distrib
tion; their common shortcoming is, however, that they
based onad hocassumptions.

Besides the theoretical models mentioned above, over
past few years several computer-simulation techniques w
developed for studying the dislocation-patterning pheno
enon. Both the two-dimensional12–24 ~2D! and the 3D~Refs.
25–27! simulations were limited to relatively small numbe
of dislocations (N;103–104 or less!, owing to the compu-
tational complexity of the internal stress calculation. In ord
to study much larger systems, severalO(N) methods, such
as the ‘‘particle-particle–particle-mesh’’ method,28 multipole
expansion,29 or stochastic methods,30 have been applied to
treat the long-range dislocation-dislocation interact
forces.

Since the real systems consist of an enormous numbe
dislocations, the high degree of freedom makes the theo
cal investigation very difficult. As it has been found b
studying short-time evolution of discrete dislocation syste
the internal stress created by the dislocations can be dec
posed into the sum of two independent component30

namely, a mean-field force originated from the ‘‘smooth
out’’ dislocation distribution and a stochastic, fluctuatin
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component. This is rigorously true only for systems with
correlations among the dislocations. However, if the corre
tions are weak, as is the case when the system is not far f
homogeneous, the decomposition of the stress field m
tioned above still applies. All the results presented in t
paper are valid only under this assumption.

For describing the dislocation-pattern formation, two d
ferent stochastic approaches are applied. In one of them
discrete dislocation system is described by Langevin eq
tions. The evolution of the system is studied by the stocha
O(N) method proposed by Bako´ and Groma.30 In the other
one, the dislocation system is described by the disloca
and the Burgers vector density that are continuous functi
of the space coordinates and obey a Langevin-type equa
Then the two different stochastic approaches are compa

II. MODEL EQUATIONS FOR DISCRETE 2D SYSTEMS

Let us consider a system ofN interacting parallel straigh
edge dislocations with Burgers vectors of equal magnitu
and opposite directions. Because of the dissipative natur
dislocation motion, for setting up the equations of motion
dislocations, besides the force acting on a dislocation du
the elastic field, a friction force has to be taken into accou
A frequently applied approximation is that the friction forc
is proportional to a certain power of the dislocatio
velocity.21 Since in the case of a low deformation rate t
inertia term can be neglected besides the friction force,
equation of motion of a dislocation is only a first-order d
ferential equation. For the sake of simplicity the Burge
vector of each dislocation is taken parallel to thex axis, and
the dislocation lines are parallel to thez axis. The positions
of dislocations in thexy plane are denoted byrW i5(xi ,yi),
i 51, . . . ,N. With the assumptions outlined above the velo
ity of the ith dislocation,vW i can be given as31

vW i5BbW i@t int~rW !1text~rW !#1/m, ~1!

whereB is the dislocation mobility,m is the velocity-stress
exponent,t int and text represents the internal and extern
stresses, respectively. This is the system of equations th
solved numerically in most of the 2D compute
122 ©1999 The American Physical Society
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simulations.12–17,21–24The internal shear stress created by
dislocation system can be given as32

t int~rW !5(
j 51

N

t ind
j ~xj2x,yj2y!, ~2!

where

t ind
j ~x,y!5

mbj

2p~12n!

x~x22y2!

~x21y2!2
~3!

is the individual shear stress created by an edge disloca
with Burgers vector of magnitudebj , in whichm is the shear
modulus andn represents the Poisson ratio.

Numerical integrations of Eq.~1! for short ~shorter than
the relaxation time! periods of time show that the interna
stresst int(rW) created by the dislocations can be viewed a
sum of a slowly varying mean stress originating from t
internal stress of the smoothed out dislocation distribut
t̄(rW,t) and a rapidly varying, highly irregular function with
zero mean value that satisfies the requirement of no corr
tion at different times or places and that represents the in
ence of the near neighbors~see Fig. 1!. An important conse-
quence of this numerical observation is that t
computationally very expensive precise calculation of the
ternal stress created by the dislocation is not necessary.

FIG. 1. A typical internal stress versus time curve~in three
different magnifications! obtained by numerical integration of Eq
~1!.
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According to the above finding, the internal stress can
considered as a stochastic variable, which can be descr
through the assignment of a stress-distribution funct
P(t). P(t0)dt0 gives the probability of occurrence oft at
an arbitrary time in the range

t02
dt0

2
<t~rW !<t01

dt0

2
, ~4!

wheret0 is a preassigned value fort. Denoting theN par-
ticle dislocation density function bywN(rW1 ,rW2 , . . . ,rWN) the
characteristic functionP(q) has the form33

P~q!5E wN~rW1 ,rW2 , . . . ,rWN!

3)
j 51

N

exp$ iqt ind
j ~rW i2rW j !%drW1drW2•••drWN

'exp@Q~rW,q!#, ~5!

where

Q~rW,q!52E r~rW1!B~rW2rW1 ,q!drW1

1
1

2E g~rW1 ,rW2!B~rW2rW1 ,q!

3B~rW2rW2 ,q!drW1drW21•••, ~6!

B~rW,q!512exp$ i t ind~rW !q%. ~7!

Here r(rW1) and g(rW1 ,rW2) represent the dislocation densi
and dislocation-dislocation correlation functions, resp
tively.

Because of the strongly inhomogeneous distributions
the dislocations the analytical form ofP(t int) cannot be de-
termined. However, for smallq values the characteristi
function P(q) can be given by an explicit expression~see
Ref. 33!,

P~q,rW !'exp@ iq t̄~rW !1Cr~rW !q2ln~qteff!1•••#, ~8!

which leads to the asymptotic form

P~t!ut→`'
Cr~rW !

t3~rW !
, ~9!

whereC is a constant determined by the angular anisotro
of the dislocation-dislocation interaction,33

C5b2E
0

2p

K2~w!dw. ~10!

K(w) describes the angular dependence of the individ
stress field determined by the actual type of the disloca
under consideration. The effective stressteff appearing in
expression~8! is determined by the dislocation-dislocatio
correlation, namely, by the length parameter,

Reff5
mb

2p~12n!

1

teff
, ~11!
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124 PRB 60B. BAKÓ AND I. GROMA
which is a characteristic length scale of the dislocation c
figuration ~like, e.g., the dipole width!.

An important characteristic value of the distribution fun
tion P(t) is its first moment,

t̄~rW !5
i

P~0,rW !

dP~q,rW !

dq
U

q50

5E k~rW1 ,t !t ind~rW12rW !drW1,

~12!

which is the self-consistent field created by the dislocat
system at the pointrW and k(rW,t)5r1(rW,t)2r2(rW,t) is the
sign dislocation density, withr1 and r2 representing the
density of dislocations with positive and negative Burg
vectors, respectively. As it is shown in Ref. 34 for ed
dislocationst̄(rW) fulfill the field equation

D2t̄~rW !52
mb

12n

]3

]x]y2
k~rW !. ~13!

Since the explicit form of the stress-distribution functio
cannot be determined, one has to approximate it with
analytical function, which for small Fourier parameters fulfi
condition ~8!. The form

P~tfluct!5Cr~rW !@tfluct
2 ~rW !12Cr~rW !#23/2, ~14!

where tfluct(rW)5t int(rW)2 t̄ int(rW) describes well the distribu
tion of the fluctuations of the internal stress around its m
field valuet̄ int(rW) for weakly correlated dislocation configu
rations~for numerical verification, see Fig. 2! and it is suit-
able for analytical and numerical computations.

Using Eq.~1! and taking into account the stochastic ch
acter of the internal stress, a system of coupled Lange
equations can be constructed for the dislocations. Co
quently theith dislocation obeys the Langevin equation

vW i5BbW i@ t̄~rW i ,t !1tfluct~rW i ,t !1text#1/m. ~15!

FIG. 2. Stress distribution function~lines! given by Eq.~14!
versus distribution of internal stresses acting on 8000 dislocat
in the center of a disk containing 43108 randomly positioned, uni-
formly distributed dislocation dipoles with 0.14 dipole-width
dipole-distance ratio~boxes!.
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III. 2D CONTINUUM DESCRIPTION
FOR DISLOCATION SYSTEMS

In order to establish a link between the existing mod
and the stochastic approximation of the dynamical evolut
of the interacting dislocation systems outlined in this pa
instead of describing the system by the time variation of
coordinates of theN interacting dislocations, one has to u
the N-particle distribution function f N , which is a
2N-dimensional function of the space coordinates. For
sake of simplicity let us consider only dislocations with t
same Burgers vectorbW ~this restriction will be lifted later!.

According to the common definition, the quanti
f N(t,rW1 ,rW2 , . . . ,rWN)drW1drW2•••drWN gives the probability of
finding theN dislocations in the volumedrW1drW2•••drWN vi-
cinity of the pointsrW1 ,rW2 , . . . ,rWN at the momentt. Due to
the assumed conservation of the dislocation number,f N has
to fulfill the relation

f N~ t,rW1 ,rW2 , . . . ,rWN!drW1drW2•••drWN5 f N~ t1dt,rW1

1vW 1dt, . . . ,rWN1vW Ndt!d~rW11vW 1dt!•••d~rWN1vW Ndt!,

~16!

from which

]

]t
f N~ t,rW1 ,rW2 , . . . ,rWN!1(

i 51

N

¹ rW i
@ f N~ t,rW1 ,rW2 , . . . ,rWN!vW i #50.

~17!

Substituting the expression ofvW i from Eq. ~15! into Eq. ~17!
we obtain

]

]t
f N~ t,rW1 ,rW2 , . . . ,rWN!1B(

i 51

N

~bW ¹ rW i
!$ f N~ t,rW1 ,rW2 , . . . ,rWN!

3@ t̄~rW i ,t !1tfluct~rW i ,t !1text#1/m%50. ~18!

By allowing dislocations of both positive and negativ
Burgers vectors6bW and by introducing the dislocation den
sity functionsr6(rW,t)5N f1(t,rW) of dislocations with posi-
tive and negative Burgers vectors, respectively, and integ
ing Eq. ~17! over therW2 ,rW3 , . . . ,rWN subspace, one gets

]r1~rW,t !

]t
52~bW ¹!$Br1~rW,t !@ t̄~rW,t !1tfluct~rW,t !1text#1/m%,

~19!

]r2~rW,t !

]t
5~bW ¹!$Br2~rW,t !@ t̄~rW,t !1tfluct~rW,t !1text#1/m%.

~20!

By adding and subtracting Eqs.~19! and~20!, one concludes

]r~rW,t !

]t
1~bW ¹!$Bk~rW,t !@ t̄~rW,t !1tfluct~rW,t !1text#1/m%50,

~21!

ns



-

of
a-

e
ce

2
o
e
on
r

on
a

s

er
el
ea
er
iti

us
a

lar

p.
uc

tial

ss
he
nd-
ca-
ed

r-
ing
gest
e-
ar-
bal
his
ion
cal
eld
s a
al

ed
ca-

a
of
e

ob-

el
s-

the
of

the

en-
of
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]k~rW,t !

]t
1~bW ¹!$Br~rW,t !@ t̄~rW,t !1tfluct~rW,t !1text#1/m%50,

~22!

wherer(rW,t)5r1(rW,t)1r2(rW,t) is the total dislocation den
sity.

The balance equation~21! represents the conservation
dislocation number, while Eq.~22! expresses the conserv
tion of the net Burgers vectorbk.

For allowing dislocation creation and annihilation, th
balance equation~21! has to be modified by adding a sour
term to the right-hand side that may depend onr, t̄, the
external stresstext, etc.,

]r~rW,t !

]t
1~bW ¹!$Bk~rW,t !@ t̄~rW,t !1tfluct~rW,t !1text#1/m%

5 f ~r,t̄,text, . . . !. ~23!

IV. DISLOCATION STRUCTURES IN CYCLIC
DEFORMATION

Let us consider an initially homogeneous system of20

parallel straight edge dislocations with Burgers vectors
equal magnitudes and opposite directions fatigued by a p
odic external stress field. The number of dislocations is c
strained only by the requirement that the system has ove
neutrality, i.e., the Burgers vectors satisfy the neutrality c
dition ( ibW i50. For simplicity, for simulations we assume
constant value for the mobilityB and a linear velocity-stres
relationship~the same stress exponentm51 was experimen-
tally observed for the phonon-related friction in a copp
single crystal35!; for other materials, however, the mod
equations can be used as well by replacing the lin
velocity-stress dependence with the corresponding mat
specific power or exponential stress dependence of veloc
in Eq. ~1!.

We start the simulations from an initially homogeneo
dislocation dipole distribution, considering dipoles with
0.14 mean dipole-width to dipole-distance ratio. A simi
value was experimentally observed by Tippeltet al.36 on cy-
clically deformed Ni single crystals oriented for single sli
From the homogeneous dislocation system with small fl

FIG. 3. Dislocation density map and the corresponding s
consistent mean field~12! in the case of a discrete dislocation sy
tem without sources after 70 fatigue cycles.
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tuations of the Burgers vector density fieldbk, the stochastic
integration of the system of coupled stochastic differen
equations~15! corresponding to the 220 dislocations over a
time interval of a few tens of periods of the external stre
field leads to a dislocation configuration shown in Fig. 3. T
figure shows the dislocation density field and the correspo
ing self-consistent mean stress field created by the dislo
tion system for one realization of the noise. The smooth
out dislocation densityr(rW) is determined by counting the
dislocations in 1283128 cells. The development of an o
dered structure of the dislocation density and correspond
internal stress field can be observed. These results sug
that the 1/r -type angularly anisotropic stress field acting b
tween two dislocations is alone sufficient to lead to an
rangement of dislocations in which a highly organized glo
stress field is generated during the cyclic deformation. T
field can act as a periodic background for the dislocat
sources. By allowing a source term proportional to the lo
dislocation density and to the square of the local stress fi
@which is based on the assumption that in two dimension
certain fraction of the local plastic energy that is proportion
to r(rW)t2(rW) is spent for dislocation creation# formation of
completely different dislocation structures can be obtain
using the same initial configuration as before. The dislo
tion annihilation process is introduced in the model via
critical annihilation distance. Figure 4 shows snapshots
the growth of domains with high dislocation density. Th
dislocation density pictures show that the experimentally

f-

FIG. 4. Dislocation density maps showing the formation and
time evolution of domains in the discrete model in the presence
sources in the course of fatigue by an external stress field~the
elapsed time is shown in each picture in units of the period of
external stress field!.

FIG. 5. The dislocation density map and the corresponding d
sity correlation function in an advanced stage of the evolution
system shown in Fig. 4.
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126 PRB 60B. BAKÓ AND I. GROMA
served ‘‘matrix’’ structure37 is reproduced qualitatively by
the model equations~15! if dislocation production and anni
hilation is allowed. The high dislocation density domains a
aligned more or less along parallel lines at directions
about 35° –45° to the glide plane. Less correlated doma
can be observed by a visual appreciation of the disloca
correlation^r(rW)r(rW2rW8)& shown in Fig. 5 at directions o
about 65° and 27° to the glide plane. The same orde
tendencies were observed experimentally by Buchinger
Stanzl37 in copper single crystals fatigued at low amplitude

The stochastic integration of the coupled equations~12!,
~22!, and~23! with the same initial conditions as in the ca
of the discrete system, i.e., a quasineutral dislocation sys
with homogeneous dislocation distribution, small fluctu
tions of the Burgers vector density field, and a source te
f ;rt2 leads to the ‘‘matrix’’ structure shown in Fig. 6. Th
figure shows an average of 30 histories.

Numerical experiments show that the model equati
~22! and~23! allow the existence of local growing perturb
tions. This means that the solution becomes locally unsta
so that the continuum model can be integrated only for sh
intervals. The local instability observed in the continuu
model does not occur in the discrete model because the
locations form rapidly in the early stage of the evolution
the structure, then the dislocation annihilation becomes
portant due to the introduced dislocation annihilation d
tance. In this later stage there is a balance between disl
tion creation and annihilation, the dislocation populati
reaches its steady state, the new dislocations contribute t
annihilation process.

The results of the two different methods show that, as
well known, the elastic interaction alone is not enough
pattern formation. It however leads to the development of
inhomogeneous stress field. The introduction of dislocat
sources with positive production rates in the presence of
external periodic stress field changes the dynamics es
tially and allows pattern formation. In summary, it is b
lieved that for dislocation patterning the particular form
the elastic interaction and the presence of the disloca
sources with a positive rate of dislocation production
needed for pattern formation. In the stochastic models p
sented here only these two factors are used to reproduc
‘‘matrix’’ structure as an example of fatigue patterning.

V. SUMMARY

It was observed by numerical simulations performed
discreet dislocation assemblies, that the stress field cre

FIG. 6. Dislocation density map and the corresponding net B
gers vector density field for the case of the continuum model
tigued by an external stress field.
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by the dislocations has a stochastic nature. On the bas
this numerical finding, a fully stochastic theory was form
lated for describing the interaction of a system of wea
correlated straight parallel edge dislocations under cy
plastic deformation. The collective behavior of the disloc
tion system was investigated numerically by two~a discrete
and a continuum! variants of the stochastic theory.

The Langevin equations of individual dislocation motio
were used to construct field equations for the dislocation
Burgers vector density fields. By a stochastic integration
the coupled Langevin equations~15! in the presence of a
cyclic external stress field, the ‘‘matrix’’ structure observe
in fatigued single crystals can be qualitatively reproduc
The ‘‘matrix’’ structure could be reproduced also by stocha
tic integration of the continuum equations~22! and ~23!.

In comparison with the models proposed earlier, the f
lowing needs to be stressed: The stochastic dislocation
namics outlined in this paper differ strongly from the o
proposed by Ha¨hner,10,11 where the dislocation system is de
scribed by a single variable~without direct spatial depen
dence!, the dislocation density, time evolution of which
also governed by a Langevin-type equation.

In the model outlined above, due to the stochastic mot
of the dislocations on time scales large enough the motio
the dislocations can be described as an effective diffus
process~the form of the appropriate diffusion term is no
completely developed so far!. For describing dislocation pat
tern formation Walgreaf and Aifantis,4 Aifantis,5 and
Schiller and Walgreaf6 adopt reaction-diffusion equation
originally developed for oscillating chemical reactions. As
consequence of this, the expressions they propose for di
ent dislocation processes are difficult to deduce from
theory of individual dislocation. Although the model deve
oped by Kratochvil and co-worker7,8 is based on a well-
defined dislocation mechanism, it also contains several
known parameters. In contrast, the model proposed in
paper uses the precise form of dislocation-dislocation in
action. Its further important feature is that if the correlatio
are negligible in the system, one arrives at the mean-fi
description elaborated by Groma38 by a truncation of the
Bogoliubov-Born-Green-Kirkwood-Yuon hierarchy of th
dislocation distribution functions of different order.

Albeit this simple stochastic model, in which the evol
tion of the system of interacting dislocations can be view
as a response to a self-consistently generated mean field
stochastic fluctuations extraordinarily successful, it can
correctly handle the effects of strong correlations, the res
remaining valid only in the regime not far from homog
neous.

In conclusion, it appears evident that the stochastic vie
point outlined in this paper provides a useful approach
the analysis of the dynamical evolution of the interacti
dislocation systems, although clearly unanswered quest
remain, and they need further investigations.
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