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Static universality class for gadolinium
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High-precision magnetization,M (T,H), data have been taken along thec axis ~easy direction of magneti-
zation! of a high-purity Gd single crystal in the critical region near the ferromagnetic-paramagnetic phase
transition. Elaborate data analyses demonstrate that the single power laws, by themselves, do not adequately
describe the observed field dependence ofM at the Curie pointTC , M (TC ,H), and the temperature variations
of spontaneous magnetization,M (T,0), and initial susceptibility,x(T), in the asymptotic critical regionueu
5u(T2TC)/TCu<231023, but do so only when the multiplicative logarithmic corrections~LC!, predicted by
the renormalization group~RG! calculations for dipolar Ising~spin dimensionalityn51) spin systems at the
upper marginal space dimensiond* 53, are taken into account. Such data analyses also permit the first
accurate determination of LC exponents (x8,x), the asymptotic critical exponentsb, g, and d, and critical

amplitudesB̂, Ĝ, andD̂ for M (T,0), x(T), andM (TC ,H). The exponentsx8, x, b, g, andd, as well as the

universal amplitude ratioRx5D̂B̂d21Ĝ possess thesame~within the uncertainty limits! values as those yielded
by the RG calculations for ad53 uniaxial dipolar ferromagnet. Moreover, the presently determined values of
b, g, andd, together with the reported value of the specific heat critical exponenta, obey the scaling relations
b1g5bd anda12b1g52 accurately. By establishing that gadolinium belongs to thed53, n51 dipolar
static universality class, the present results resolve the long-standing controversy surrounding the nature of the
asymptotic critical behavior of Gd.@S0163-1829~99!11941-6#
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I. INTRODUCTION

The practice of assigning a universality class, specified
the lattice dimensionality ‘‘d’’ and order parameterdimen-
sionality ‘‘n,’’ to a given system based on the values
critical exponents that characterize its asymptotic critical
havior, has facilitated the understanding of critical pheno
ena in several materials in the past. However, an unamb
ous identification of a real system with any one of the kno
universality classes has not been always possible. One
exception to the general rule~which is the main concern o
this paper! is gadolinium metal. The relevant details of th
case are furnished below. Considering that gadolinium m
is made up ofspherically symmetric8S7/2 Gd31 ions and
isotropic Ruderman-Kittel-Kasuya-Yosida~RKKY ! interac-
tions betweenlocalized 4 f magnetic moments give rise t
ferromagnetism in this metal, gadolinium is expected to
hibit extremelyweakmagnetocrystalline anisotropy and b
have as anisotropic three-dimensionalHeisenbergferromag-
net in the critical region. Hence, gadolinium should figu
among the systems that form thed53, n53 universality
class. Contrary to this expectation, overwhelming exp
mental evidence1–9 in favor of a smalluniaxial anisotropy,
which ensures that thec axis of the hexagonal-close-packe
~hcp! lattice is the preferred orientation of magnetization
gadolinium at temperatures*240 K that embrace the criti
cal region, asserts that the critical behavior of gadolinium
that of a three-dimensionalIsing ferromagnet. Thus, gado
linium should fall within thed53, n51 universality class.

Existence of uniaxial1–9 magnetic ordering at tempera
tures in the vicinity of Curie point,TC , is inconceivable
within the framework of the conventional theories of magn
tocrystalline anisotropy, but the theory due to Fuji
PRB 600163-1829/99/60~17!/12166~11!/$15.00
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De’Bell, and Geldart10 offers the following explanation for
this observation. According to this theory, the long-ran
dipole-dipole interactions between magnetic moments lo
ized at the sites of the hcp latticefavor thec axis as theeasy
direction of magnetization when the unit-cell parameter ra
c/a falls below its ideal value ofc /a .1.63. In the case of
gadolinium, thec/a ratio assumes the value 1.59 for tem
peratures in the close proximity toTC . This viewpoint is
further strengthened by the fact that thecharacteristictem-
perature scale foruniaxial anisotropy, estimated from mag
netic susceptibility data11 taken along thec axis and in the
basal plane on a single crystal of Gd in the critical region
completely accounted for11,12 by the dipole-dipole interac-
tions. Early renormalization group~RG! calculations re-
vealed that dipolar interactions change onlyslightly13–15 the
critical exponents of thed5n53 system butdrastically
modify16–19 the critical behavior of thed53, n51 system
so much so that the system exhibitsmean-fieldbehavior with
logarithmiccorrections16–19in the asymptotic critical region
this behavior is characteristic of uniaxial dipolar
ferromagnets.20–23 In view of this RG result, dipolar interac
tions, which are responsible for uniaxial magnetic order
in Gd at temperatures close to, and around,TC are expected
to have a decisive influence on its asymptotic critical beh
ior. RG treatment18,19 of spin systems, such as Gd, in whic
uniaxial dipolar ~UD! and isotropic dipolar ~ID! interactions
of normalized coupling strengthsgUD and gID ~such that
gUD!gID) occur in association with isotropic Heisenbe
interactions predicts the sequence of crossovers: Gaus
regime→ isotropic short-range Heisenberg→ isotropic di-
polar → uniaxial dipolar fixed point when temperature
lowered from high temperatures toTC .

During the past three decades, numerous experimenta
12 166 ©1999 The American Physical Society



G

r

m

i-

rl

re

e
c

-

ai
at

,

r

e
e

r
e

il-
-

-

e

f

ur
-

l-
-
n
e

t

M
e

ti-

ion

em-
on,

te

g
en

e-

lity
of

e
r

di-
-
t
ed

he
ag-

l

y
de
f
o

of
d

by

ted

-
r-

ne-
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tempts have been made to study static critical behavior of
near the ferromagnetic~FM! -to - paramagnetic~PM! phase
transition. Critical exponentsa6 ~plus and minus signs refe
to temperatures above and belowTC), b,g, andd for spe-
cific heat,C(T,H50), spontaneous magnetization,M (T,H
50), magnetic susceptibility,x(T), andM vs H critical iso-
therm ~at T5TC), respectively, have been determined fro
the measurements of specific heat,24–27 thermal
expansion,26,28 electrical resistivity,29 r(T,H50),
magnetization,30–37perturbed angular correlation38 and mag-
netic susceptibility.39–42The most reliable values of the crit
cal exponentsa6, b, g, and d published prior to 1990
have been compiled in Refs. 36–39 and 43. Ea
determinations26,28 of a6 yielded anomalously largevalues
whose sign happens to agree with that predicted by the th
dimensional Heisenberg model.44 Subsequent
investigations27,29not only corrected such unphysically larg
exponent values but also demonstrated that in the redu
temperature range 1.531024&ueu5uT2TCu/TC&
1.031023, ther(T,H50) andC(T,H50) data are consis
tent with the mean-field behavior~i.e.,a650) with logarith-
mic corrections. As far as the reported values of the rem
ing critical exponents are concerned, the numerical estim
for b and g, obtained in the reduced temperature rangeueu
.1023, cluster around30–41,43 0.39 and 1.24, respectively
whereas those ofd range between30–373.6 and 4.4. While the
valueb.0.39 suggests that Gd belongs to thed5n53 uni-
versality class,44 g.1.24 indicates that the critical behavio
of Gd is that of ad53 Ising ferromagnet.44 In direct conflict
with these contradictory inferences is the result that the
ponentd possesses a value that is in complete disagreem
with those predicted by either thed53 Heisenberg model o
the d53 Ising model, or even the mean-field model. Mor
over, the reported values of critical exponents lead to aseri-
ous violationof the scaling relationsa12b1g52 andb
1g5bd.

Recently, the high-resolution ‘‘zero-field’’ ac susceptib
ity data taken along thec axis ~easy direction of magnetiza
tion! of a high-purity Gd single crystal in the reduced tem
perature range 5.131025<e<1.231021 have
demonstrated42 the following. ~i! The asymptotic critical be-
havior of Gd is that of auniaxial dipolar ~UD! ferromagnet
in that the susceptibility data are best described by the
pressionx(e);ueu2gu lnueuu1/3 with g51 in the temperature
range 5.131025<e<2.131023, which gives the extent o
the asymptotic critical region.~ii ! As the temperature is
raised aboveTC , a crossover from UD to theisotropic dipo-
lar ~ID! fixed point occurs at a sharply defined temperat
eCO

UD→ID.2.05(10)31023 and this crossover, at high tem
peratures, is followed by a very sluggish ID→ Gaussian
crossover.~iii ! Thed53 Ising-like values of the susceptibi
ity critical exponentg reported previously, far from reflect
ing the trued53 Ising critical behavior, are a manifestatio
of an extremely slow crossover from ID to Gaussian regim
Encouraged by this development and recognizing thatnon-
asymptoticdata are at the root42 of conflicting reports abou
the nature of leading singularity atTC in Gd, we undertook a
detailed bulk magnetization investigation of the FM-P
phase transition in Gd with a view to resolve th
controversy42 surrounding the nature of its asymptotic cri
d
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cal behavior. To this end, high-resolution magnetizat
measurements have been performed on thesamesample of
high-purity Gd single crystal as that used previously42 for ac
susceptibility measurements in a temperature range that
braces the critical region. The results of this investigati
combined with those of earlier resistivity,29 specific heat,27

and ac susceptibility42 studies, unambiguously demonstra
that Gd belongs to thed53, n51 dipolar universality class.

II. EXPERIMENTAL DETAILS

A detailed description of the growth, purity, and handlin
of the gadolinium single crystals used in this work is giv
elsewhere.42 Extensive high-resolution~relative accuracy
better than 50 ppm! magnetization measurements, whose d
tails are furnished below, were performed on thesame
sample as that used previously for ac susceptibi
measurements,42 i.e., on 99.92 at.% pure Gd single crystal
cylindrical shape@1.50~2! mm in diameter and 1.70~2! mm in
length#, with external magnetic field,Hext , directed along
thec axis ~which is not only the cylindrical axis but also th
easy direction of magnetization!. The demagnetizing facto
N was computed from the slope of the magnetization,M,
versusHext straight line @i.e., 4pN5(slope)21] isotherms
taken at temperatures well belowTC in the field range
220 Oe<Hext<20 Oe. The value ofN50.31(1), so ob-
tained, agrees well with that@N50.31(1)# calculated from
the well-known Osborn formula using the actual sample
mensions. Curie temperature,TC , of the Gd sample in ques
tion was estimated by identifyingTC with the temperature a
which akink occurs in the thermomagnetic curves record
at Hext510 and 20 Oe and the value, so obtained, isTC
5292.8 K, as shown in the bottom panel of Fig. 1. T
bottom panel of Fig. 1 also serves to demonstrate that m
netizationscaleswith Hext for Hext<20 Oe. The top pane
of Fig. 1 compares thexext5M /Hext data taken atHext

510 Oe with the ac susceptibility data taken previousl42

on the same sample at ac driving field of rms amplitu
Hac510 mOe and frequencyn5187 Hz in the presence o
a dc field ofHdc510 Oe. The agreement between the tw
sets of susceptibility data is striking and the value
TC5292.8 K obtained by the kink-point metho
~bottom panel of Fig. 1! conforms very well with that
@TC5292.77(1) K# determined earlier42 from the ac sus-
ceptibility data.

Magnetization,M, versusHext isotherms in fields up to 15
kOe were measured atfixedtemperatures.25 mK apart in
the temperature intervalTC24.25 K<T<TC12.2 K with
TC5292.8 K and.0.1 K apart over.8 K on either side
of this temperature region. Each isotherm was obtained
measuringM at 60 predetermined but fixed field values~each
stable to within60.1 Oe) in the range 0<Hext<15 kOe.
The sample temperature was monitored by a precalibra
platinum sensor, which is in body contact~and hence in very
good thermal contact! with the sample, and was held con
stant to within65 mK at any setting by means of a propo
tional, integral, and derivative temperature controller.

III. DATA ANALYSIS AND RESULTS

The ‘‘zero-field’’ quantities, such as spontaneous mag
tization, M (T,0), and initial susceptibility,x(T), have been
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12 168 PRB 60S. SRINATH AND S. N. KAUL
obtained from the magnetization data taken in finite exter
magnetic fields at different temperatures by the followi
extrapolation method. The customary approach45–48of using
the modified Arrot plot~MAP! to determineTC and the criti-
cal exponentsb and g, when followed, yields the resul
shown in Fig. 2. It is immediately noticed that the MA
isotherms present substantial deviations from the expe
linear behavior particularly at low fields and that the dep
ture from linearity persists to higher fields and becomes m
and more pronounced as the temperature takes on value
increasingly deviate fromTC ~on either side ofTC). The

FIG. 1. Temperature dependence of low-field magnetization
hibiting a ‘‘kink’’ at TC5292.8 K and scaling of magnetizatio
with external magnetic field (Hext) in the range 10 Oe<Hext

<20 Oe~bottom panel!. A comparison is made between temper
ture variations of dc and ac susceptibilities atHext510 Oe ~top
panel!. Upward arrow marks the temperature at which the minim
in xac(T) occurs.

FIG. 2. Modified Arrott plot for temperatures close toTC .
al
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-
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critical isotherm, when plotted on a sensitive scale~top panel
of Fig. 3!, reveals that even the optimum choice ofb andg
~i.e., b50.4 andg51.24) does not get rid of itsS-shaped
curvature. Moreover, this approach yields a value (TC
5292.54 K) forTC which is distinctly different from those
obtained from the low-field thermomagnetic curves~Fig. 1!
and ac susceptibility data.42 All of these observations rende
this extrapolation procedureunreliable in the present case.

Next, an attempt has been made to use theparabolic
extrapolation,46,47which is based on the mean-field magne
equation of state46

H/M ~T,H !5a~T!1b~T!@M ~T,H !#21c~T!@M ~T,H !#4.
~1!

That thesame MversusH isotherms as those used in Fig.
when plotted in the form ofH/M versusM2 isotherms, are
accurately described by Eq.~1! is evident from the results
presented in the bottom panel of Fig. 3, and Fig. 4 wher
the best least-squares fits~depicted by continuous curves!,
based on Eq.~1!, to a few selectedH/M versusM2 iso-
therms are displayed. These figures clearly demonstrate
~i! this procedure yields exactly the same value~i.e., TC
5292.77 K) for TC as that obtained previously42 by an
elaborate analysis of the ac susceptibility data,~ii ! Eq. ~1!
reproduces infacsimilethe observed field dependence ofM
down to the lowest field value ofH.90 Oe for tempera-
tures in the rangeTC21 K<T<TC12 K, and~iii ! outside
this temperature range, the data start departing from the
timum fits, based on Eq.~1!, at low fields, more so forT
,TC than forT.TC , and the field at which such departure
first occur increases as the temperature progressively d
ates fromTC . For instance, the data depart from the fits
H.220 Oe and 700 Oe forT5294.99 K and 288.55 K,

x-

FIG. 3. Critical isotherms and the corresponding best theoret
fits yielded by the scaling equation of state~SES! analysis based on
Arrott-Noakes SES~top panel! and mean-field SES@Eq. ~1!# ~bot-
tom panel!.
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PRB 60 12 169STATIC UNIVERSALITY CLASS FOR GADOLINIUM
respectively, as contrasted with the case of the correspon
MAP isotherms for which the low-field deviations start
H.1 kOe and 3 kOe, respectively. However, in the str
sense, the parabolic extrapolation method too does not
to sufficiently accurate results for temperatures outside
range TC22 K&T&TC12 K (TC5292.77 K) espe-
cially for temperatures well belowTC . For this reason, the
data analysis has been restricted to the temperature r
288.55 K<T<294.99 K only.

A. Spontaneous magnetization

When H50 andT<TC , Eq. ~1! reduces to a quadrati
equation in spontaneous magnetization squared,@M (T,0)#2

[@M (T,H50)#2, i.e.,

c~T!m2~T!1b~T!m~T!1a~T!50, ~2!

wherem(T)[@M (T,0)#2. The values of the coefficientsa, b,
and c at different temperatures are obtained from the b
least-squares fits to theH/M (T,H) versus@M (T,H)#2 iso-
therms based on Eq.~1!. Knowing the values ofa, b, andc at
a given temperature, spontaneous magnetization at that
perature is computed from the solution of Eq.~2!. The tem-
perature dependence of spontaneous magnetization, so
tained, is depicted in Fig. 5. To begin with,M (T,0) data are
analyzed in terms of the single power law31–38,43,46–50~SPL!

M ~T,0!5Be f f ~2e!be f f, e,0. ~3!

The ‘‘range-of-fit’’ analysis46–50 @in which changes in the
values of the free fitting parameters, e.g.,Be f f , TC

2 , andbe f f

in Eq. ~3!, and the sum of deviation squares are monitored
the fit range ueminu<e<uemaxu is varied by keeping
ueminu(uemaxu) fixed at a certain value and varyin
uemaxu(ueminu)] of the M (T,0) data based on Eq.~3! yields
the value forTC

2 asTC
25292.79(1) K. Optimum SPL fit to

the M (T,0) data over the entire temperature ran
288.55 K<T&TC

2 based on Eq.~3! is represented in Fig. 5
by the continuous curve. The temperature dependence o
effective critical exponent be f f , defined as be f f(ueu)
5d@ ln M(ueu)#/d(lnueu), shown in Fig. 6, is then compute
from the M (ueu) data by keepingTC fixed at the valueTC

2

5292.78 K ~this choice ofTC
2 is justified later!. The most

FIG. 4. Data shown in Fig. 2 replotted in the form of (H/M )
versusM2 ~Arrott-Belov-Kouvel plot!.
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striking feature of thebe f f(ueu) data presented in Fig. 6 i
that be f f possesses values that are very close to the m
field ~MF! value ofb50.5 for ueu&631024. Suspecting the
result be f f→0.5 asueu→0 to be an indication of uniaxia
dipolar behavior in the asymptotic critical region~ACR!, the
relation

M ~T,0!5B̂~2e!bu lnueuux8, e,0, ~4!

FIG. 5. Temperature variations of spontaneous magnetizat
M (T,0), and inverse initial susceptibility,x21(T), in the tempera-
ture range that embraces the critical region. The continuous cu
through theM (T,0) andx21(T) data are the best least-squares fi
based on Eqs.~3! and ~5! of the text. The inset shows
@M (T,0)#1/be f f plotted againstT with be f f50.4. The straight line
through the data represents the best least-squares fit based o
~3! andupwardarrows indicate the fit range.

FIG. 6. Temperature variations of theeffectivecritical exponents
be f f ~bottom panel! andge f f ~top panel!. Upward arrows in the top
and bottom panels indicate the uniaxial dipolar~UD!–to–isotropic
dipolar ~ID! crossover temperature and the onset temperature o
peak, respectively.
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12 170 PRB 60S. SRINATH AND S. N. KAUL
with b50.5, x853/(n18), andn51, predicted13,16,17,51,52

by the renormalization-group~RG! theories toleadingorder
in e for d53 uniaxial dipolar ferromagnets, is used to an
lyze theM (T,0) data. While fitting the data to Eq.~4!, the
exponent x8 is kept constant at the theoretical
predicted16,17,51,52value of x851/3, andB̂, TC

2 , and b are
treated as free fitting parameters in the first phase of
range-of-fit~ROF! analysis. Having determined the value
TC

2 in this manner, TC
2 is fixed at this value (TC

2

5292.78 K), whileB̂, b, andx8 are varied in the secon
phase of the ROF analysis to optimize agreement betw
theory and experiment. This approach leads to the optim
fit, based on Eq.~4!, to theM (T,0) data in the temperatur
range 7.531025<ueu<2.131023 ~open circles! represented
by the continuous curve in Fig. 7. Figure 8 compares
results of the ROF analysis~second phase, withTC

2 fixed! of
the spontaneous magnetization data taken in the ab
mentioned temperature range based on the single power
~SPL!, Eq.~3!, and the theoretical expression, Eq.~4!, which,
besides the single power law, includes the leading multi
cative logarithmic correction~LC!. Note that the data poin
taken at a temperature (T5292.77 K) closest toTC has
been left out of the analyses based on Eqs.~3! and ~4! be-
cause its inclusion leads to considerable deterioration in
quality of both SPL and LC fits. From the variations in th
values of the parametersTC

2 , B̂, b, andx8 observed~Fig. 8!,
while analyzingM (T,0) data in terms of Eq.~4! using the
ROF analysis, we arrive at the final resultTC

2

5292.78(1) K, B̂51526(11) G, b50.5002(6), and x8
50.330(2) in the reduced temperature range

FIG. 7. Spontaneous magnetization,M (T,0), and percentage de
viation of M (T,0) data from the best least-squares SPL and LC
based on Eqs.~3! and ~4! of the text, respectively, as functions o
temperature. The continuous curve through theM (T,0) data, de-
noted by open circles, represents the best least-squares fit bas
Eq. ~4! of the text.
-

e

en
m

e

e-
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22.08~5!31023<e<27.531025,

which gives the extent of the asymptotic critical regio
~ACR! for e,0.

Other important observations based on the ROF d
analysis are as follows.~i! If in the ROF analysis,uemaxu is
increased beyond 2.131023, while ueminu is kept fixed at
7.531025, the quality of LC fits deteriorates very fast, s
much so that beyond a certain value ofuemaxu, Eq. ~3! pro-
vides better overall~SPL! fit to the data than Eq.~4! ~LC fit!
does.~B! If only the data outside the ACR are considered
the ROF analysis, SPL fits describe theM (T,0) data better
than LC fits and in the temperature range 289.30(5)<T
<291.90(5) K, yield TC8 5292.52(3) K and be f f

50.40(2) ~inset of Fig. 5!. These values ofTC8 andbe f f are
consistent with those yielded by the modified Arrott pl
~Fig. 2!. be f f50.40(2) is also in consonance with the valu
be f f50.399(16) yielded earlier38 by the perturbed angula
correlation investigations on Gd in a temperature range s
lar to the present one.

B. Initial susceptibility

Parabolic extrapolation of theH/M versusM2 isotherms
~Fig. 4! taken atT>TC to M250 yields intercepts on the
ordinate (H/M ) axis that directly give the values of invers
initial magnetic susceptibility at different temperatures, i.
x21(T). It immediately follows from Eq.~1! that x21(T)
5a(T). Values of the coefficienta or x21 at different tem-

,

onFIG. 8. Variations of the free fitting parameters withuemaxu ~see
text! in the ‘‘range-of-fit’’ analysis ofM (T,0) data, using Eqs.~3!
and ~4! of the text. Note the extreme sensitivity of the ordina

scales for the parametersB̂, b, andx8. Left and right arrows indi-
cate the ordinate scales for the data denoted by open and c
circles, respectively.
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PRB 60 12 171STATIC UNIVERSALITY CLASS FOR GADOLINIUM
peraturesT>TC obtained from the best least-squares fits
theH/M versusM2 isotherms based on Eq.~1!, are shown in
Fig. 5. Like M (T,0) data,x21(T) data are, at first, analyze
in terms of the single power law31–42,46–50~SPL!,

x21~T!5Ge f f
21ege f f, e.0. ~5!

The ‘‘range-of-fit’’ analysis42,46–50 gives TC
15292.77 K

for the optimum SPL fit to thex21(T) data in the tempera
ture rangeTC

1<T<295 K. Such a fit is denoted by the con
tinuous curve in Fig. 5. Temperature dependence of theef-
fective critical exponent ge f f , defined as ge f f(e)
5d@ ln x21(e)#/d(ln e), displayed in Fig. 6, is then compute
from the x21(e) data by holding theTC

1 constant at the
above-mentioned value. From the results shown in Fig. 6
is evident thatge f f attains mean-field-like values~i.e., ge f f
.gMF51) for temperatures below a well-definedcrossover
temperature,eCO52.02(6)31023, above whichge f f in-
creases steeply. In Fig. 6, we have compared thege f f(e)
data, deduced from the SPL analysis of the presentx21(e)
data~obtained usingparabolic extrapolation!, with that de-
rived from the previous42 xac

21(e) data~directly measured ac
susceptibility in zero dc superposed field!, using the SPL
analysis. An excellent agreement between the two data
particularly for e<eCO ~i.e., in the asymptotic critical re
gion!, is clearly noticed. Now that the observationge f f→1
as e→0 is suggestive of uniaxial dipolar behavior in th
asymptotic critical region, the expression

x21~T!5Ĝ21egu ln eu2x, e.0, ~6!

FIG. 9. Inverse initial susceptibility,x21(T), and percentage
deviation of thex21(T) data from the best least-squares SPL a
LC fits, based on Eqs.~5! and~6! of the text, respectively, as func
tions of reduced temperature. Continuous curve through thex21(T)
data, denoted by open circles, represents the best least-squa
based on Eq.~6! of the text.
it

ts,

with g51, x5(n12)/(n18), andn51, yielded by the RG
calculations13,16–19,51,52to leading order in e for the initial
susceptibility ofd53 uniaxial dipolar ferromagnets, is use
to analyzex21(T) data fore<eCO . As already stated in the
preceding subsection, the range-of-fit analysis is perform
in two phases. In the first phase, the exponentx is kept con-
stant at the theoretically predicted16–19,51,52value ofx51/3,

and Ĝ21, TC
1 , andg are varied to arrive at the optimum fi

In the second phase,TC
1 is fixed at the value (TC

1

5292.77 K) obtained in the first phase, whileĜ21, g, andx
are varied so as to arrive at the best fit to thex21(e) data
based on Eq.~6!. This fit is depicted by the continuous curv
in Fig. 9. A detailed comparison between the results of
analysis~second phase, withTC

1 fixed! of the x21(e) data
taken in the reduced temperature range 6.831025<e
<2.0231023, based on Eqs.~5! and~6!, is made in Fig. 10.
Considering the variations in the free fitting parameters
served~Fig. 10! in the ROF analysis based on Eq.~6!, we
quote the final values for these parameters asTC

1

5292.77(1) K, Ĝ215380(2), g51.0008(5), and x
50.329(1) in the reduced temperature range 6.831025<e
<2.02(6)31023, which gives the width of the asymptoti
critical regime ~ACR! for e.0. In a similar temperature
range (5.131025<e<2.131023), ROF analysis of the ac
susceptibility (xac) data taken on thesamesample as the
present one has previously yielded42 exactlythesamevalues
as quoted above for the parametersTC

1 , g, andx, but not for

Ĝ21 for which the present value@380~2!# is roughly 2.96
times larger than the value@128.4~30!# estimated from

d

s fit

FIG. 10. Variations of the free fitting parameters withemax ~see
text! in the ‘‘range-of-fit’’ analysis ofx21(T) data using Eqs.~5!
and ~6! of the text. Note the extreme sensitivity of the ordina

scales for the parametersĜ21, g, and x. Left and right arrows
indicate the ordinate scales for the data denoted by open and c
circles, respectively.
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x21(T). This discrepancy stems from the fact that t
x21(T) is consistentlylarger in magnitude than thexac

21(T)
by a factor of 2.96, but otherwise their temperature dep
dences are exactly the same.

For e.eCO , the above-mentioned analysis reveals th
irrespective of the temperature range chosen, SPL fits@Eq.
~5!# describe thex21(T) data better than LC fits@Eq. ~6!#
and that such a fit in the range 293.6(2) K<T<295 K

yields T̃C5293.0(2) K andge f f51.39(3). These values of

T̃C andge f f agree quite well with those (TC
ID andge f f

ID ) ob-
tained previously42 from xac(T) data in a similar tempera
ture range.

C. Critical isotherm

The critical exponentd, which characterizes theM (T,H)
versusH isotherm taken atT5TC ~the critical isotherm!, is
conventionally determined by analyzing theM2H isotherm
in the immediate vicinity ofTC in terms of the relation

M ~TC ,H !5A0H1/d ~7a!

or

H5DM d, e50. ~7b!

According to Eq.~7a!, the plot of lnM against lnH at T
5TC should be a straight line with sloped21 and intercept
on the ordinate equal to lnA0. Such lnM2ln H plots, con-
structed out of theM2H isotherms in close proximity to
TC , displayed in Fig. 11, demonstrate that the lnM2ln H
isotherm atT5TC5292.77 K alone can be approximate
by a straight line over a wide range ofH values, whereas the
isotherms on either side ofTC exhibit a concave-upward an
concave-downward curvature forT,TC andT.TC , respec-
tively. The curvature becomes more pronounced as the t
perature increasingly deviates fromTC . A close scrutiny of
the critical isotherm reveals that even the insensitive na
of the log-log scale is unable to conceal theS-shaped curva-
ture of the isotherm in question. As a consequence, the v
of d depends on the field range chosen for the fit. For
stance, the exponentd possesses the values 3.60 and 3.75

FIG. 11. lnM2ln H isotherms at a few selected temperatu
around TC . Note that the isotherm atT5292.54 K and T
5292.77 K are the critical isotherms according to the Arro
Noakes and mean-field equations of state, respectively.
-

t,

m-

re

ue
-
n

the ranges 140 Oe<H<12 600 Oe and 920<H
<12 600 Oe, respectively. Though these numerical e
mates fall within the range of reported values ofd, their
reliability is in doubt in view of the nonlinear lnM2ln H
critical isotherm.

The observation7,8 that the uniaxial magnetocrystalline
anisotropy constantKu1

as a function of temperature goe

through a broad peak atT.TC and is extremelysensitiveto
the external magnetic field,Hext , while the higher order an-
isotropy constants are zero in this temperature range, as
that the field experienced by the spins atT.TC in Gd is not
just H5Hext24pNM(T,Hext) but He f f(Hext)5H(Hext)
1HK(Hext), where the uniaxial anisotropy field,HK(Hext)
52Ku1

(Hext)/MS is a function ofHext and MS is the satu-
ration magnetization. This consideration prompted us to
analyze theM2H isotherms in the temperature rangeTC
20.1 K<T<TC10.1 K ~with TC5292.77 K) using the
revised version of Eq.~7!, in which H is replaced byHe f f ,
and the expression

M ~TC ,He f f!5ÂHe f f
1/d @~1/bd!ln He f f#

x8 ~8a!

or

He f f5D̂M du lnuM uu23x8, e50, ~8b!

with d53, x853/(n18), and n51, that the RG
calculations13,16–19,51,52yield for the critical isotherm ind
53 uniaxial dipolar ferromagnets. Such a data analysis p
ceeds as follows. At first, the previously published8 Ku1

8 ver-

susHext data taken atT5293 K are least-squares fitted to
polynomial in order to arrive at the values ofKu1

8 corre-

sponding to theHext values at which magnetization wa
measured in the present case.Ku1

8 values, so obtained, ar

converted to the anisotropy field HK8 (Hext)
52Ku1

8 (Hext)/MS by using the value of magnetization me

sured at the highest field, i.e., at 15 kOe, for the satura
magnetizationMS . With a view to allow for the deviations
if any, from the functional form ofHK8 (Hext) at the tempera-
tures of present interest,HK in the expression forHe f f is set
equal toC8HK8 , whereC8 ~depends onHext) is a constant if
the functional forms ofHK8 (Hext) and HK(Hext) ~do not!
match.M2He f f isotherms in the temperature range 292.
<T<292.87 K are then least-squares fitted to the revi
version of Eq. 7~a!, i.e.,

M ~TC ,He f f!5A08He f f
1/d ~7a8!

and Eq. 8~a! by treatingA08 , C8, andd in the former~SPL!

fit, and Â, C8, andd in the latter~LC! one, as free fitting
parameters. Note that for the fit based on Eq.~8a!, the expo-
nentsb and x8 are kept constant at the valuesb50.5 and
x850.33 determined from the spontaneous magnetiza
data~Sec. III A!. Two types of fitting procedures have bee
adopted. In the first type, the lower limitHext

min of the external
field rangeHext

min<Hext<Hext
max is kept fixed whileHext

max is
varied and the alterations in the fitting parameters as fu
tions of Hext

max are monitored. This type of‘‘range-of-fit’’
analysis reveals that~i! with the same number of parameter

s
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Eq. ~8a! reproduces theM (T,He f f) data far more accuratel
than Eq.~7a8! does,~ii ! d.2.7 and 3 for the fits based o
Eqs.~7a8! and~8a!, respectively, and~iii ! a strong correlation
exists betweend andC8 in both the fits. In the second fitting
procedure~the so-called ‘‘sliding-fit-range’’ analysis!, the
range ofHext values used in present measurements is s
into several narrow ranges, each containing three succes
values ofHext . Starting with the lowest value ofHext , if the
M2He f f isotherm data points with increasingHe f f5Hext

24pNM1C8(Hext)HK8 (Hext) are labeled by the natura
numbersi 51,2,3, . . . ,n, the first fit range covers the dat
points 1,2,3, the second one 2,3,4, and so on. For LC~SPL!

fits in these rangesd is set equal to 3~2.7!, while Â and
C8 (A08 andC8) are varied to optimize agreement betwe
theory and experiment. This method brings out clearly
actual functional form ofC8(Hext) sinceHK8 (Hext) is known
~see the foregoing text!. To elucidate this point further, now
that theHext values are equally spaced, the value ofC8 ob-
tained in a given range, which spans the valuesHext

n22 ,
Hext

n21 , andHext
n , corresponds to the middle valueHext

n21 of
the range. The main outcome of this exercise is thatC8 de-
pends onHext . This observation implies that the function
form of HK(Hext) differs from that ofHK8 (Hext) by as much
asC8(Hext). In order to get rid of the field dependence ofC8
and hence ensure thatHK(Hext)5const3HK8 (Hext), the
functional form of HK8 (Hext) is slightly modified and the
above fitting procedures repeated to first arrive at theopti-
mumvalue ofd and then calculateC8(Hext) corresponding
to this value ofd. Such aniterative method determines th

exponentd, the amplitudeÂ or A08 andHK(Hext) @and hence
He f f(Hext)] self-consistently. Figure 12 displays theM
2Hext isotherm atT5TC5292.77 K, obtained in this way
in the form of (He f f /M ) versusM2 plot while the inset
shows the variation ofKu1

with Hext at T5292.77 K that
the iterative process finally yields and compares it with
observed8 field dependence ofKu1

at T5293 K. For a tem-
perature which is lower than 293 K, the presently determin
variation ofKu1

with Hext is consistent with the field varia

tions of Ku1
at different temperatures displayed in Fig. 2

Ref. 8. The continuous curve through the (He f f /M )2M2

data points in Fig. 12 represents the best theoretical~LC! fit
based on Eq.~8a!. This fit is far superior in quality to tha
~SPL! based on Eq.~7a8!, as is evident from the fact tha
according to Eq.~7a8!, (He f f /M ) versusM2 plot at T5TC
should be a straight line passing through the origin. Wit
conservative estimate of errors, the present data analys
the isotherms in the immediate vicinity ofTC yields the final
values for the quantities of interest asTC5292.77(1) K,

Â517.5(15), andd53.005(5).

IV. DISCUSSION

From the results of the ‘‘range-of-fit’’ analysis of th
spontaneous magnetization,M (T,0), and inverse initial sus
ceptibility, x21(T), in the asymptotic critical region, in
terms of Eqs.~3!–~6! presented in Figs. 8 and 10, th
following observations can be made.~i! While the effective
amplitude Be f f @Ge f f

21# and effective critical exponent
lit
ive

e

e

d

a
of

be f f @ge f f# appearing in Eq.~3! @Eq. ~5!# constantlyde-

creases @increases# with uemaxu, asymptotic amplitude B̂

@Ĝ21#, asymptoticcritical exponentb @g# and the exponen
x8 @x# of the logarithmic correction, defined by Eq.~4! @Eq.
~6!#, do not depend~within the uncertainty limits! on uemaxu.
~ii ! Barring thenonuniversalcritical amplitudeB̂ @Ĝ21#, the
exponentsb @g# and x8 @x# possess thesame~within the
error bars! values as thoseb50.5 @g51.0# and x853/(n
18) @x5(n12)/(n18)# predicted13,16–19,51,52by the renor-
malization group~RG! theories ford53, n51 ~uniaxial!
dipolar ferromagnet. The above observations~i! and ~ii ! not
only clearly bring out the importance of the multiplicativ
logarithmic correction but also assert that the asympto
critical behavior of gadolinium is that of ad53 uniaxial
dipolar ~UD! ferromagnet or, alternatively, that Gd belon
to thed53, n51 dipolar static universality class. This claim
is further substantiated by the finding~bottom panel of Figs.
7, 9, and 12! that in the entire asymptotic critical regio
22.131023<e<2.031023, including e50, the percent-
age deviationof the M (T,0), x21(T), and M (TC ,He f f)
data from the best least-squares LC fits, based on Eqs.~4!,

FIG. 12. (He f f /M )2M2 isotherm atT5TC5292.77 K. The
continuous curve through the (He f f /M )2M2 data points, denoted
by closed circles, represent the best least-squares fit based o
~8a! of the text. Percentage deviations of theM (TC ,He f f) data from
the best least-squares SPL and LC fits, based on Eqs.~7a8! and~8a!
of the text, respectively, as a function of effective fieldHe f f . The
inset compares the variations with the external magnetic fieldHext

of the uniaxial anisotropy constantKu1
at T5293 K ~open circles!,

reported in Ref. 8, andT5292.77 K ~crosses!, arrived at by the
self-consistent iteration method~see text!.
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~6!, and ~8a!, respectively, does not exceed60.5 and is
evenlydistributed around the theoretically calculated valu
whereas the optimum SPL fits, based on Eqs.~3!, ~5!, and
~7a8!, respectively, presentsystematicdeviations from the
data in question that are as large as62%. The Curie tem-
perature valuesTC

2 , TC
1 , andTC that the data analyses bas

on Eqs.~4!, ~6! and ~8a! yield are thesame~within error
limits! and equal the Curie temperature for the uniaxial
polar fixed point, i.e.,TC

25TC
15TC[TC

UD . Moreover, the
presently determined values of theasymptoticcritical expo-
nentsb, g and d, along with the previously reported27,29

valuea650 of the specific heat critical exponent, obey t
scaling relationsb1g5bd and a12b1g52 to an ex-
tremely high degree of accuracy. Now that the LC fits are
superior in quality to SPL fits and yield more accurate va
for TC , TC

2 is kept fixed atTC
25292.78 K for computing

be f f(e) ~Fig. 6!.
Considering the well-known46,47,47–53fact that the critical

exponents by themselves do not fully characterize
asymptotic critical behavior but do so only in associati
with the corresponding critical amplitudes and that t
asymptotic critical amplituderatios, like asymptotic critical
exponents, areuniversal, conclusive evidence for thed53
uniaxial dipolar asymptotic critical behavior of Gd can
provided only when the universal amplitude ratioRx

5D̂B̂d21Ĝ5(Â/bx8)2d B̂d21/Ĝ21, where the critical am-

plitudes B̂, Ĝ21, Â, or D̂ are defined by the Eqs.~4!, ~6!,
~8a!, or ~8b!, like the critical exponentsa, b, g, and d,
possesses the value that is theoretically predicted51–53 for a
system belonging to thed53, n51 dipolar universality

class. From the values of the quantitiesÂ, b, x8, d, B̂, and

Ĝ21 determined in this work~Sec. III!, we obtain the value
Rx50.58(12). This value should be compared with the n
merical estimates46,51–53 1.33~1!, 1.6~1!, 1.0, and 0.5 given
for this ratio by the RG calculations in the case ofd53
Heisenberg,d53 Ising, d53 Mean-field, andd53, n51
dipolar spin systems. The finding that the valueRx

50.58(12), determined in this work, conforms well wi
Rx50.5, expected for ad53, n51 dipolar ferromagnet,
but not with the mean-field valueRx51.0 provides not only
a direct experimental proof for the existence of logarithm
corrections at an upper marginal space dimension ofd* 53
for dipolar Ising spin system but also aclinching evidence
for thed53 uniaxial dipolarasymptotic critical behavior o
Gd. This conclusion is consistent with the inference recen
drawn54 from the existing data on critical spin dynamics
Gd.

A close agreement betweenx21(T) andxac
21(T) for tem-

peratures within and outside ACR, when viewed in the lig
of arguments presented by us previously,42 asserts that a
crossover fromuniaxial dipolar ~UD! to Isotropic dipolar
~ID! critical behavior occurs at a well-defined temperatu
eCO

UD→ID52.02(6)31023 as the temperature is raised abo
TC

UD . Moreover, eCO
UD→ID matcheseCO

ID→UD @the crossover

temperature referred toTC
ID[T̃C5293.0(2) K]5@293.6(2)

2TC
ID #/TC

ID52.05(15)31023. By contrast, the lowering o
temperature belowTC

UD results in a crossover from UD t
isotropic short-range Heisenberg~IH! fixed point at a
,

-

r
e

e

-

ly

t

e

temperatureeCO
UD→IH522.08(5)31023, which should be

compared witheCO
IH→UD @the crossover temperature referre

to TC
IH[TC8 5292.52(3) K] 5@291.90(5)2TC

IH #/TC
IH5

22.1(1)31023 . It is immediately noticed thateCO
UD→IH

5eCO
IH→UD ~within the uncertainity limits!. Though the value

be f f50.40(2) spans the predictions of bothd53 isotropic
short-range~ISR! Heisenberg model and the model ford
5n53 ferromagnets with ID interactions, we contend th
the presently determined value ofbe f f characterizes thed
53 ISR Heisenberg fixed point on the grounds thatTC

IH does
not equalTC

ID but is shifted to lower temperatures with re
spect to it.

Another important feature of the present results is that
temperatures belowTC , ac susceptibility,xac(T), as a func-
tion of temperature goes through a broad minimum at a te
peratureTmin ~Fig. 1! where theeffectivecritical exponent
for spontaneous magnetizationbe f f(T) starts increasing afte
going through a minimum (T* in Fig. 6!, i.e., Tmin5T*
5291.3(3) K. The single power law fit to theM (T,0) data
based on Eq.~3! and shown in the inset of Fig. 5 also star
deviating from the data at a temperatureT5291.9 K, which
is very close. A similar dip inxac(T) at Tmin5291.5 K has
also been observed previously by Alievet al.36 but with no
corresponding structure in eitherbe f f(T) or M (T,0). These
authors were first to recognize that this dip inxac(T) at a
temperature just belowTC is a manifestation of a transition
from the Bloch domain wall to linear domain wall. Such
transition is expected55 to occur in magnetic materials suc
as Gd~in which uniaxial magnetocrystalline anisotropy do
not vanish even for temperatures in the immediate vicinity
TC) at a temperature belowTC where the condition55

M2(T,0)/8xp5Ku1
(xp is the paraprocess susceptibility! is

satisfied. Assuming that bothM (T,0) andxp follow a power
law behavior at such temperatures~Fig. 5!, i.e., M (T,0)
5Be f f(2e)be f f and xp5(Ge f f/2)(2e)2ge f f ~in arriving at
the latter expression, the validity of relationsGe f f /Ge f f8 52
and ge f f8 5ge f f has been assumed!, a crude estimate of the
temperatureT** at which a transition from Bloch to linea
domain wall occurs, according to the above condition,55 can
be obtained from the expression

T** 5TC@12~4Ge f fKu1
/Be f f

2 !1/(2be f f1ge f f)#. ~9!

Inserting the valuesBe f f52318(20) G, be f f50.469(4),
Ge f f53.78(12)31023, ge f f51.040(4), TC5292.78(1)
K, and Ku1

54.63104 erg/c.c ~Ref. 8! in Eq. ~9!, yields

T** 5290(1) K, a value which is in reasonable agreem
with the observed value ofTmin and T* . The theory55 that
yields the above condition also predicts that the change
M (T,0) across the Bloch-to-linear domain wall transitio
does not exceed 1%. That such a small change in mag
zation could be detected with ease in the present experim
supports our claim that a very high relative accuracy h
been achieved in the magnetization measurements. Note
such a domain wall transition is not abrupt but occurs gra
ally. The close proximity of the Bloch~Heisenberg! domain
wall-to-linear ~uniaxial dipolar/Ising! domain wall transition
temperature Tmin5T* 5291.3(3) K to the temperature
TCO

IH→UD5291.90(5) K, at which a crossover fromd53
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ISR Heisenberg tod53 uniaxial dipolar critical behavior
occurs, supports our earlier contention about the nature
crossover ateCO

IH→UD .

V. SUMMARY

This paper reports the results of detailed bulk magneti
tion measurements performed in the critical region near
ferromagnetic-to-paramagnetic phase transition on hi
purity gadolinium single crystal sample along thec axis
~which is the easy direction of magnetization in the pres
case! and compares them with those of the ‘‘c axis’’ ac
susceptibility measurements42 taken on thesamesample by
us previously. Closer approach toTC by two decadesin re-
duced temperaturee5(T2TC)/TC than in previous investi-
gations, facilitated mainly by lower impurity levels in th
gadolinium single crystal used in the present magnetiza
and previous42 ac susceptibility experiments, considerab
higher~better than 50 ppm! precision achieved in such mea
surements and elaborate data analyses have not only pe
ted an unambiguous detection of the slowly varying logari
mic corrections but also an accurate determination of th
of

a-
he
h-

nt

on
y
-
mit-
h-
eir

exponentsx8, x and the critical exponentsb, g, andd that
characterize the asymptotic critical behavior of Gd. The fin
ing that the values of the critical exponentsb,g,d, the expo-
nents of the logarithmic corrections and the universal am

tude ratioRx5D̂B̂d21Ĝ are in perfect agreement with thos
predicted by the renormalization group calculations ford
53 dipolar Ising spin system, permits us to conclude that
critical behavior of Gd is that of a three-dimensionaluniaxial
dipolar ferromagnet. Hence the present investigation
solves the long-standing puzzle about the universality cl
to which Gd belongs by providing conclusive experimen
evidence for thed53, n51 dipolar universality class for
Gd. Moreover, the presently determined values of the criti
exponentsb, g, andd, along with the previously reported
valuea650 of the specific heat critical exponent, obey th
scaling relationsb1g5bd and a12b1g52 ~that were
seriously violated by the previously published values
a, b, g, andd) to an extremely high degree of accurac
Additional observations include a crossover from uniax
dipolar to isotropic short-range Heisenberg critical behav
which occurs ateCO

UD→IH522.08(5)31023 and is accom-
pained by a transition from linear~uniaxial dipolar/Ising!
domain wall to Bloch~Heisenberg! domain wall as the tem-
perature is lowered belowTC
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