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Temperature dependence of uniaxial magnetic anisotropy constants and spin-reorientation
transition in the single-ion one-sublattice system
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Based on an effective parameter method in the mean-field approximation, the temperature dependence of the
single-ion anisotropy constants in the uniaxial one-sublattice system has been exhaustively studied within the
three-constant approximation to the anisotropy free energy. Another important basis of our investigation is the
connection between the experimentally measured anisotropy constants and the theoretically more fundamental
anisotropy coefficients. A significant concept of anisotropy flow is introduced to detect all the possible types of
spin-reorientation transitions driven by temperature evolution in the system. Seven types of temperature de-
pendence of the first anisotropy constant and 14 types of spin-reorientation transitions are discovered in this
one-sublattice system. Phase diagrams for these temperature behaviors and the spin-reorientation transitions are
given by means of analytical and numerical calculations.@S0163-1829~99!05141-3#
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I. INTRODUCTION

The single-ion model has gained great success in in
preting the origin of the magnetocrystalline anisotropy
local electron systems, such as rare-earth~RE! ions.1,2 Rare-
earth–transitional-metal compounds are an important c
of magnetic materials. Magnetic anisotropy of the co
pounds is known to originate mainly from the crystal fie
~CF! acting on the unfilled 4f shell of the rare earths. Pro
vided the exchange interaction is dominated, the tempera
dependence of the rare-earth contribution to the anisotr
energy could be described analytically on the basis of a
ear approximation which takes into account corrections
the first-order thermodynamic perturbation in the crys
field.3,4 However, the partition function can be calculat
exactly only in rare cases or under special unrealistic
sumptions. Confined to the low-temperature limit, Zene
n(n11)/2 power law could be established,5 wheren52, 4, 6
is the order of the CF interaction. Within this framework, t
temperature dependence of the expectation values of
Stevens’ operators is written as power laws of the redu
magnetization. Another important particular case is theJ
5` classical limit where expressions for the temperat
dependence of the anisotropy coefficients at arbitrary t
perature were obtained by Keffer6 and further discussed b
Callen and Callen.7 In this case, the hyperbolic Bessel fun
tion and its inversion are implemented to calculate the te
perature dependence of the single-ion anisotropy. Comp
with each other, these two methods have individual adv
tages and disadvantages. The former can be applied for
value ofJ, but effective only in the case ofT!Tc . The latter
can be applied for arbitraryT, but only in the case ofJ
5`.

Recently, Millev et al.8,9 successfully applied a simpl
parametric method to the Callen and Shtrikman theory
magnetic single-ion anisotropy,10 as has already been co
roborated to be feasible within the frameworks of the me
field ~MF! approximation and the random-pha
PRB 600163-1829/99/60~17!/12107~9!/$15.00
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approximation.9 The salient feature of this parametr
method is that the exact thermal averages of the Setev
operators could be given out for arbitraryT and any value of
J, without any confinement or assumption only needs
sweep the generalized effective field between zero
infinity.11–14 As a result, the temperature dependence of
single-ion anisotropy could be precisely calculated witho
recourse to rough iteration,11,12 then the spontaneous spin
reorientation transition~SRT! driven by temperature could
be studied in detail by using the concept of anisotro
flow.13,14 In Ref. 13, a general discussion of the temperat
dependence of the magnetic single-ion anisotropy
anisotropy-flow diagrams in the plane (K12K2) were given
for both the uniaxial and the cubic cases in the two-cons
phenomenological expression for the free energy. As is w
known, neglecting the in-plane anisotropy, a complete
scription of the uniaxial one-sublattice system should
based on the three-constant approximation to the anisot
free energy.14 However, so far an exhaustive study on t
temperature variation of the uniaxial anisotropy consta
within the three-constant approximation is absent. Theref
this paper aims to carry out a thorough investigation of
temperature behavior of the anisotropy constants by adj
ing the intrinsic anisotropy parameter continuously, and
tect all the possible SRT’s via tracing the evolution of t
anisotropy flow in the anisotropy space of a uniaxial on
sublattice system.

The remainder of this paper is arranged as follows. T
theoretical framework of the calculating method we us
will be described briefly in Sec. II. The temperature depe
dence of the anisotropy constants and all the possible SR
in the single-ion one-sublattice system will be presented
Secs. III and IV, respectively. Section V is the summary.

II. THEORETICAL FRAMEWORK

There exist two established ways to characterize the
energy of the magnetocrystalline anisotropy which depe
on the orientation of macroscopic magnetization with resp
12 107 ©1999 The American Physical Society
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to the crystallographic axes. One way is to expand the
isotropy energy in symmetry-dictated combinations of po
ers of direction cosines of magnetization, whereby the
scription is in terms of the set of the experimenta
measured anisotropy constants$Ki%. Alternatively, one may
expand in spherical harmonics and this gives rise to the
scription in terms of the set of the theoretically more fund
mental anisotropy coefficients$k̄n%.

15–17 In the uniaxial sys-
tem, with the assumption of negligible in-plane anisotro
the anisotropy free energyFA in the ‘‘constants’’Ki repre-
sentation is given by

FA5(
i

Ki sin2i~u!, i 51,2,3, ~1!

whereu is the angle between the direction of magnetizat
and the crystallographic axis~c axis! of uniaxial symmetry.
In the ‘‘coefficients’’ representationFA8 , which is equivalent
to FA so far as the angular dependence is concerned, is
scribed as

FA85(
n

Bn
0pn~J!Yn

0~u!k̄n~T!, n52,4,6, ~2!

where Bn
0 are the Elliott-Stevens CF parameters,4,18 Yn

0(u)
are the spherical harmonics, and the anisotropy coeffici
are defined as the thermal averages of the Setevens’ o
tors ^Ôn

0&(T) normalized against their zero-temperatu
values:8,15,17

k̄n~T![
^Ôn

0&~T!

^Ôn
0&~0!

. ~3!

The zero-temperature valuespn(J)[^Ôn
0&(0) are certain

J-dependent products:

p2~J!52JS J2
1

2D , J.
1

2
;

p4~J!58JS J2
1

2D ~J21!S J2
2

3D , J.
3

2
;

p6~J!516JS J2
1

2D ~J21!S J2
3

2D ~J22!S J2
5

2D , J.
5

2
,

~4!

whereJ is the angular momentum quantum number, wh
the anisotropy coefficients turn out to be linear combinat
of the momentsMn[^( Ĵz)

n&,

k̄25
1

p2~J!
@3M22J~J11!#,

k̄45
1

p4~J!
@35M41~25230J230J2!M2

13J2~J11!226J~J11!#,
n-
-
-

e-
-

,

n

e-

ts
ra-

n

k̄65
1

p6~J!
$231M61@7352315J~J11!#M4

1@2942525J~J11!1105J2~J11!2#M2

260J~J11!140J2~J11!225J3~J11!3%, ~5!

where Ĵz is the z component of the angular momentum o
erator of a given ion. Fortunately, all the momentsMn and,
consequently, allk̄n’s can be expressed via the first mome
M1 or, equivalently, the reduced magnetizationm5M1 /J.
Moreover, the functional dependenceMn5Mn(M1) itself is
model independent in all renormalized quasi-independ
collective excitation theories including the spin-wave theo
the random-phase approximation, some improved dec
pling schemes in the Green’s-function approach,19,20 and the
mean-field theory. One can easily derive all the momentsMn
from the moment’s generating functionV(a,x) by means of
n-order partial differentials with respect toa,

Mn~x!5
]n

]an V~a,x!U
a50

5
]n

]an

sinh@~2J11!/2~a1x!#/sinh@~a1x!/2#

sinh@~2J11!/2x#/sinh~x/2!
.

~6!

The first momentM1 can be found withn51,

M1~x!5JBJ~Jx!, ~7!

whereBJ(y) is the well-known Brillouin function, whilex is
the generalized effective field relative to the average num
f(T) of magnetic quasiparticle excitations.10 Directing our
attention to the MF approximation in the zero external fie
we can attain a simple expression forx,

x5
3

J11

m

t
, ~8!

where t[T/TC and TC is the MF Curie temperature. Be
cause the temperature part in the generalized effective fie
factorized out from the magnetization, a functiont(x) can be
easily obtained:

t5t~x!5
3

J11

m~x!

x
. ~9!

Therefore, ifx sweeps between 0 and̀, t will be evaluated
from 1 to 0, the left limit being attained forT→TC , while
the right one corresponds to zero temperature. Finally,
explicit temperature dependence of the anisotropy coe
cients for anyJ in the whole temperature range can be co
puted by using as a parameter the generalized effective
x.9 The simple parametric method could be summarized
the following formal procedure: Letx sweep between 0 an
`, computeM1(x) @i.e., m(x)# from Eq.~7!, computet from
Eq. ~9! by usingx and m(x), and finally computek̄2 , k̄4 ,
and k̄6 from Eq. ~5! by using M2(x), M4(x), and M6(x)
from Eq. ~6!. Eventually, collect pairs of computed poin
corresponding to the same value ofx to getk̄2(t), k̄4(t), and
k̄6(t) or whatever other dependence parametrized byx in
which one might be interested.
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The relevant information about the experimentally acc
sible quantitiesKi is gained by feeding the information from
the calculation ofk̄n into the relations connecting the aniso
ropy constantsKi with the anisotropy coefficientsk̄n in
uniaxial symmetry,21,22

K1~ t !5S K1
01

8

7
K2

01
8

7
K3

0D k̄2~ t !2
8

7 S K2
01

18

11
K3

0D k̄4~ t !

1
8

11
K3

0k̄6~ t !, ~10!

K2~ t !5S K2
01

18

11
K3

0D k̄4~ t !2
18

11
K3

0k̄6~ t !, ~11!

K3~ t !5K3
0k̄6~ t !, ~12!

whereKi
0[Ki(t50) are the intrinsic~ground-state! anisot-

ropy constants and associated with the microscopic par
etersBn

0 andpn(J).23 Here we concentrate on the single-io
first anisotropy constantK1 in the one-sublattice system o
uniaxial symmetry. It is obvious that the temperature dep
dence ofK1(t) can be uniquely determined by a set of initi
constants (K1

0,K2
0,K3

0), providedJ is fixed. In fact, the varia-
tion of J does not affect the classification of the types of t
temperature dependence of anisotropy constants.12 So we set
J53 in the whole calculation for the sake of brevity. Mea
while, the temperature dependence of the basis functionk̄n
is solely determined by a givenJ.9,13 The temperature curve
of the basis functions forJ53 are shown in Fig. 1. All the
three basis functions are strictly monotonically decreas
functions.k̄2 is convex upwards for allt, while bothk̄4 and
k̄6 have a typical bell shape and an inflection point.k̄6 falls
off much faster thank̄2 and k̄4 .

III. TYPES OF TEMPERATURE VARIATION OF Ki

The most attractive part of the temperature dependenc
that of the reduced anisotropy constantsK̄ i[Ki /Ki

0, which
always starts from the positive value of unity atT50 to zero
at T5Tc regardless of the sign ofKi

0,

FIG. 1. Magnetic anisotropy coefficientsk̄2 , k̄4 , and k̄6 as
functions of reduced temperaturet5T/Tc for J53 in the MF ap-
proximation.
-

-

-

g

is

K̄15S 11
8

7
x01

8

7
y0D k̄22

8

7 S x01
18

11
y0D k̄41

18

11
y0k̄6 ,

~13!

K̄25S 11
18

11

y0

x0
D k̄42

18

11

y0

x0
k̄6 , ~14!

K̄35k̄6 . ~15!

After normalization, more compact and expressive relatio
between the constants and coefficients arise, and the
perature variation of the normalized constantK̄1 will only
depend on two entirely independent variablesx05K2

0/K1
0

andy05K3
0/K1

0, andK̄2 on their ratior[y0 /x05K3
0/K2

0.

It is interesting to note that the third reduced constantK̄3
has the same temperature dependence as the highest-
coefficient k̄6 . Consequently,K3(t) strictly monotonically
decreases~or increases! for K3

0.0 ~or K3
0,0) with increas-

ing temperature. The curve always possesses the bell-s
characteristic and an inflection point approximately halfw
down from Tc . As far as thef-electron one-ion anisotropy
there is no gainsay that the temperature dependence o
third constant in uniaxial symmetry as well as that of t
second constant in cubic symmetry could be completely
scribed through the highest-order coefficient.13

Both the fourth- and sixth-order basis functions enter in
the expression ofK̄2(t) which has no business with th
lowest-order basis function. In this case when only two ba
functions ofk̄n are involved in a linear superposition of th
kind given in Eq.~14!, it turns out possible to carry out a
explicit and conclusive analytical classification of the a
lowed types of temperature behaviorK̄2(t), which is valid
beyond the MF approximation.13 In doing so, one needs to
investigate the signs of the first derivative ofK̄2 with respect
to t at both ends of variation, i.e., fort→0 (T→0) and t
→1 (T→Tc). Taking advantage of the assumptions and
asymptotic of the coefficientsk̄n in these two limits as in
Ref. 13, one then finds the possible classification of the ty
of variation by exhausting the allowed combination of t
signs of the first derivative. Three generic types of variat
of K2(t) are possible depending on the ratio of the intrin
constantsK3

0 andK2
0 only:

~I! For r .5/9, K2(t) has an extremum which is a min
mum or a maximum depending on the sign ofK2

0.
~II ! For 211/18,r ,5/9, K2(t) is strictly monotonically

decreasing and increasing forK2
0.0 or K2

0,0, respectively.
~III ! For r ,211/18, K2(t) has a zero point at a certai

temperature between zero and Curie temperature.
The classification is consistent with that of the cano

dependence ofK2(m) on magnetization12 which is valid for
the whole class of Callen and Shtrikman.10 It is essentially
due to the monotonic behavior of magnetization with te
perature and the invariance of the sign ofdm/dT,0 in the
whole range. Additionally, the consistence demonstrates
the above classification is also generally effective for
whole class theories envisaged.10 Figure 2 gives some repre
sentative curves forK̄2(t) calculated in the MF approxima
tion. The borderlines between the different regimes
drawn with thick lines. All the curves in the monotonic re
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gimes inherit the characteristic of the basis functions, i.e.,
bell shape and an inflection point.

At last, we come to the most complicated case ofK̄1(t)
which contains three basis functions and two independ
variablesx0 andy0 . In this case, it does not seem possible
require an analytic exhaustion of the possible types of va
tion of K̄1(t), since the first derivatives ofK̄1 with respect to
t at both ends are insufficient to detect all existing type14

Now, the only way is to have recourse to the numerical c
culation in the MF approximation by implementing the sp
cific parameter method. Hence a self-suggesting proce
would be used to study numerically all possible values in
initial parametric space (x02y0) and to see what types o
temperature behavior one gets forK̄1(t). As shown in Fig. 3,
one can gain seven different types of temperature beha
for K̄1(t) after performing the above procedure and exhau
ing the initial parameters. We are familiar with the form
three types~see curves 1–3 in Fig. 3! which possesses th
features of one extremum, one zero-point, and monoto
variation, respectively. These features can be easily real
and distinguished through the combination of two basis fu
tions. An unexpected feature of two internal extrem
emerges on the latter four types~see curves 4–7 in Fig. 3!.
Especially, the first anisotropy constantK̄1 exhibits two zero
points~changes its sign twice! for realistic values of the con
stitutional parameters in the case of the seventh types.
sixth type has two extrema and one zero point, while no z
point can be find for the types 4 and 5. Besides, in the cas
the fifth type theK̄1(t) decreases first, increases after rea
ing a minimum, then decreases again after arriving at a m
mum whose value is even greater than unity att50. The
only discrepancy between the fourth and fifth types is t
the second extremum locates below or above the dashed
denoting unity. No more peculiar variation can be detec
again, which agrees well with a general theorem by virtue
which the linear superposition ofp functions satisfying cer-

FIG. 2. The anisotropy constantK2(t) as normalized against it
zero-temperature valueK2

0 in the MF approximation for some typi
fying ratio of r 5K3

0/K2
0. The value ofr is given next to each curve

Thick lines denote the borderlines between the three detecte
gimes of variation.
e
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tain conditions may not have more thanp21 zeros or inter-
nal extrema on a bounded interval.14

Up to now, an interesting problem, how to classify tho
types in the initial parametric space (x0 ,y0), arises. This can
be solved by applying the first derivative ofK̄1(t) at both
ends of the interval of variation and by numerical calculati
probing the anisotropy space systematically. The resul
summarized in Fig. 4 where six regions are separated for
above seven types of temperature dependence ofK̄1(t). We
merge types 4 and 5 into one region since their shapes s

re-

FIG. 3. The anisotropy constantK1(t) as normalized against its
zero-temperature valueK1

0 in the MF approximation for some typi
fying initial parameters (x0 ,y0). The parameters used during th
calculations are~1! ~1.0, 20.05!; ~2! ~22.0, 0.6!; ~3! ~22.0, 1.15!;
~4! ~22.0, 3.0!; ~5! ~22.0, 4.3!; ~6! ~2.0, 23.8!; ~7! ~25.0, 4.8!.

FIG. 4. Phase diagram for different types of temperature dep

dence of the reduced anisotropy constantK̄1(t) in the initial param-
eter space (x02y0). The equations of linesa andb arex02

3
8 50

and 11 8
7 x01

8
7 y050, respectively. Curvesc andd are numerically

calculated in the MF approximation. The points is the common
crosspoint between the lineb and the curvesc andd.



on

a
s
th
n

m
fo

rs
t-
t

g
en

il

o
a
iv
ria

an

R
p

he

-
d
T

ful
ace

s

s of

n
by
c-

.

ini-
ver
c-
to

pin

ow
a-
de-

si-
eat

ist-

ial

ases
,
a-

PRB 60 12 111TEMPERATURE DEPENDENCE OF UNIAXIAL MAGNETIC . . .
like each other. The borderlines between different regi
are drawn with thick lines. Linesa and b are determined
from analyzing the sign of]K̄1 /]t for t→0 and t→1, re-
spectively. It turns out that the sign of]K̄1 /]t for t→0 is the
same as the sign of the expression

S05x02
3

8
, ~16!

while the sign of]K̄1 /]t for t→1 is given by the sign of the
expression

S152S 11
8

7
x01

8

7
y0D . ~17!

The expression in the bracket of Eq.~17! is the same as the
coefficient before the basis functionk̄2 in Eq. ~13!. This
indicates that the temperature behavior of the single-ion
isotropy at high temperatures is dominated by the lowe
order coefficient, because of the much faster decline of
higher-order ones at high temperatures. Four regions ca
separated by linesa (x02 3

8 50) andb (11 8
7 x01 8

7 y050) in
the initial parametric space (x02y0):

~I! x02 3
8 .0 and 11 8

7 x01 8
7 y0.0, for type 1;

~II ! x02 3
8 .0 and 11 8

7 x01 8
7 y0,0, for type 6;

~III ! x02 3
8 ,0 and 11 8

7 x01 8
7 y0,0, for type 2;

~IV ! x02 3
8 ,0 and 11 8

7 x01 8
7 y0.0, for types 3, 7, 4 and

5.
With the aid of numerical calculation, curvesc andd can

be delineated in region IV to distinguish types 7 and 3 fro
4 and 5, respectively. One cannot find an analytical form
the curvesc and d because there is no way to get the fi
derivative ofK̄1(t) at arbitrary temperature. It is worth no
ing that lineb and curvesc andd cross over a common poin
s ~29/4, 11/8!. Putting the coordinates of points into Eqs.
~13! and ~14!, one will get a surprising result that bothK̄1

and K̄2 have the same temperature behavior asK̄3 , i.e., the
temperature behavior of the basis functionk̄6 . As for the
points on the curvec, only one zero point just correspondin
to the first extremum appears in the temperature depend
of K̄1 . Under this condition, a slight decrease ofx0 or y0 will
bring about two zero points, while a slight increase w
make the zero point vanish.

So far, all the possible types of temperature variation
K̄1 have been thoroughly studied with the three-constant
proximation to the anisotropy free energy. One conclus
point could be drawn from the above discussion that va
tion of the intrinsic parametersx0 and y0 versifies the tem-
perature behavior of the constants of single-ion uniaxial
isotropy.

IV. SPIN-REORIENTATION TRANSITION

In the one-sublattice model, the temperature-driven S
is mainly induced by the competition between the anisotro
coefficients of different orders. However, the variation of t
intrinsic anisotropy parametersx0 and y0 can adjust their
competition and give rise to many different kinds of tem
perature behavior of the anisotropy constants as describe
the preceding section. Hence, various procedures of SR
s

n-
t-
e
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r
t
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l

f
p-
e
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-

T
y

in
’s

would be expected. Therefore, it would be very meaning
to probe all the possible SRT’s in the initial parameter sp
(x02y0). It is well known that the magnetic phase diagram
for easy magnetization directions~EMD’s! depend on the
sign of the first anisotropy constantK1 .24 So we will analyze
the phase diagrams for the SRT relevant to different sign
K1

0.
Before beginning our work, it is worth introducing a

important concept of anisotropy flow recently developed
Millev et al.13,14The anisotropy flow means a specific traje
tory in the parameter space@x(T)2y(T)#, along which the
system evolves fromT50 toTc with increasing temperature
The trajectory starts from the initial point (x0 ,y0) and usu-
ally flows into the origin atT5Tc . It is then quite possible
that at some values of temperature which depend on the
tial condition at zero temperature, this trajectory crosses o
to some neighboring regions stabilizing other EMD’s. A
cordingly, at some particular temperatures the EMD has
switch to a new direction so that a transition related with s
reorientation happens. The initial condition (x0 ,y0) is of ex-
ceptional importance. Given this pair, the temperature fl
of the anisotropy is deterministic within the MF approxim
tion. Hence the existence and the type of crossover are
termined solely by the initial condition. So we are in a po
tion to detect all such crossovers and peculiarities in gr
detail with the aid of the concept of the anisotropy flow.

A. K1
0>0

Supposing the sign ofK1
0 is positive, we investigate the

anisotropy flow in the plane@x(T)2y(T)# for all the pos-
sible initial points (x0 ,y0). Eight types of SRT’s@~CP!,
A~CP!, AP, AC, ~CA!, CA, A~CA!, ACA# are detected and
the phase diagram concerning the conditions of their ex
ences is summarized in Fig. 5, where curveo (x0

224y0

50) and linesl (2x013y01150) andm (x01y01150)

FIG. 5. Phase diagram for different kinds of SRT’s in the init
parameter space (x02y0) with K1

0.0. Curveo and linesl and m
are the borderlines between three thermodynamically stable ph
in zero temperature. Curvesc and lineb are the same as in Fig. 4
curvesg and r are numerically determined in the MF approxim
tion. The configurations of different regions around pointu are
schematically represented in the inset.
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are the borderlines between three thermodynamically st
phases, i.e., easy-axis~A!, easy-plane~P!, and easy-cone~C!
at zero temperature. Lineb and curvec are the same as in
Fig. 4. The phase diagram is divided into two parts by lineb:
11 8

7 x01 8
7 y050. For the part above lineb, the system will

have easy-axis anisotropy at high temperature, and for
part below it, the high-temperature state is easy plane. N
we deal with the different SRT’s corresponding to the diffe
ent zones in Fig. 5.

(CP). At low temperature, the magnetic moment prefer
conical orientation as a result of the competition between
high- and low-order anisotropy coefficients. With increasi
temperature, the high-order anisotropy coefficients decre
faster than the low-order anisotropy coefficient, so that
high temperatures the EMD is mainly determined by the
ter. The EMD will gradually change toward the plane,
shown in Figs. 6~a! and (a8). Here, we denote this kind o
SRT as~CP!, where C and P indicate cone and plane, resp
tively, and brackets indicate a continuous process. The
isotropy flows ofa anda8 are shown in Fig. 8, both of them
consist of two piecesa1 anda2, a81 anda82, respectively.
This feature is intimately connected with the number of
roes ofK1 . As K1 tends to zero, the trajectory goes to infi
ity in the chosen standard presentation and, following
change of the sign ofK1 , reemerges in another section of th
parameter space. Therefore, the trajectory will be cut intn
11 pieces whenK1 hasn zeroes. Tacking down the trajec
toriesa anda8, one can find that the SRT’s occur before t
variance of the sign ofK1 for the case ofa, and after fora8.
This demonstrates that the SRT of~CP! is not induced by the
change of the sign ofK1 , but by the crossover of its aniso
ropy flow with the borderlinel in the parameter space (x
2y).

FIG. 6. Temperature variation of the angle of EMD with resp
to thec axis during some typifying processes of SRT’s in the ca
of K1

0.0. The initial parameters used during the calculation are~a!
~23.0, 1.75!; (a8) ~24.0, 3.0!; ~b! ~22.3, 1.35!; (b8) ~22.5, 1.59!;
~c! ~21.7, 0.8!; ~d! ~22.4, 1.525!.
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A(CP). There are two minima for the anisotropy energy
low temperatures, one along thec axis and the other along
conical direction. The former is the lowest at low tempe
tures, but the latter becomes lower with increasing tempe
ture and gives rise to a first-order SRT from thec axis to a
conical direction. After the discontinuous transition, the ea
direction will gradually change from the conical direction
the basal plane@see Figs 6~b! and 6 (b8)#. The first discon-
tinuous SRT happens at the crosspoints where the trajec
b andb8 cross the dotted curveo ~in Fig. 8!. The two minima
in the anisotropy energy become equivalent at the crossp
The following continuous transitions inb and b8 have the
same features as transitions in the above cases ofa anda8.

AP. In this case, both thec axis and the direction perpen
dicular to thec axis are minima for the anisotropy energ
The magnetic moment favors axial orientation at low te
peratures and planar at high temperatures. AtTs , the EMD
changes from axial to planar direction through a first-ord
transition as shown in Fig. 6~c!, whose anisotropy flow
crosses the borderlinem in Fig. 8. The curveg between
pointss and t in Fig. 5 is the borderline between A~CP! and
AP. It can be numerically determined by the paramet
method, since the anisotropy flow starting from every po
on it has to pass through the common crosspointt between
borderlines in Fig. 8. If one takes Zener’s power law to a
proximate the temperature dependence of the basis func
k̄n , an equation satisfied by curveg can be obtained,

418y0
7~718x018y0!111~11x0118y0!1850. ~18!

AC. The region for this kind of SRT is only a segment
line b between pointsu and s. The anisotropy flow starting
from the point~excludings! on lineb has a straight trajectory
along the lineb, and finally evolves to a specific point
~27/8, 0! not the origin in the planes (x2y) for K1.0 or
K1,0. This is because the condition 11 8

7 x1 8
7 y50 is al-

ways satisfied by the system at any temperature. Makings as
the initial point, no anisotropy flow can be formed since
the anisotropy constants have the same temperature be
ior. The transitiond in Fig. 6 shows a first-order transitio
AC which takes place when its straight trajectory crosses
dotted curveo @Fig. 8 ~d!#. The limitation of the conical
angle is 49.1° before the magnetism vanishes.

(CA), CA. The SRT of~CA! @Fig. 7 ~e!# is a continuous
process, while CA@Fig. 7 ~f !# is a discontinuous one. Th
curve c defined in Fig. 4 separates them from each oth
According to the knowledge in Fig. 4, one knows that t
trajectory e in Fig. 8 comprises three pieces (e1-e2-e3).
The transition temperatureTs is just corresponding to the
second zero ofK1 . However, the trajectoryf has only one
piece in the planeK1.0 sinceK1 does not change its sign i
the whole process. The first-order transition CA takes pl
at the crosspoint between its trajectoryf and the dotted curve
o.

A(CA),ACA. Extending the regions of~CA! and CA to
point s, one can obtain two regions forA(CA) and ACA,
respectively. As shown in Figs. 7~g! and 7~h!, a first-order
transitionAC is added before~CA! and CA. Curve r is nu-
merically calculated within the MF approximation. Fro
their anisotropy flows in Fig. 8, the first discontinuous tra
sition is induced by the crossover with the dotted curveo, the

t
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second transition is induced by the second variation of
sign of K1 for g and by the crossover again with the dott
curveo for h.

In the remaining region no other SRT could be detect
the low-temperature state holds at high temperatures.
thus clear that the different phases as defined by therm
namic minimization are of different relative stability und
variation of temperature. The easy-plane phase is the m
stable in this sense and a system starting atT50 from within
this phase never leaves it. Thec-axis phase is of intermediat
stability. The titled-axis phase is the most unstable in
sense that systems starting their temperature evolution f
within this phase always run away to other neighbor
phases.

B. K1
0<0

Changing the sign ofK1
0, not only the magnetic phas

diagram at zero temperature is varied, but also the comp
tion between the anisotropy coefficients of different ord
Therefore, different kinds of SRT’s and different conditio
of their existences are expected in the initial planex0

2y0). The result is shown in Fig. 9, where curveo8 (x0
2

22x0y024y023y0
250) and linel (2x013y01150) are bor-

derlines between easy-cone and easy-plane phases. At
temperature, the easy-axis phase is unable to be stabil
provided K1

0,0. Line b (11 8
7 x01 8

7 y050) also cuts the
phase diagram into halves, the high-temperature stat
easy-plane for the upper part, and easy-axis for the low
Eight types of SRT’s@(CA),P(CA),PA,CPA,(CP),CP,
PAP,CPAP# are discovered after a systematic investigat
on the anisotropy flow for any initial parameter (x0 ,y0).
Some typical transitions representative of every kind of S

FIG. 7. Temperature variation of the angle of EMD with resp
to thec axis during some typifying processes of SRT’s in the ca
of K1

0.0. The initial parameters used during the calculation are~e!
~24.0, 3.5!; ~f! ~24.0, 3.75!; ~g! ~22.7, 1.85!; ~h! ~23.0, 2.262!.
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are exhibited in Figs. 10 and 11, and some relevant ani
ropy flows could be found in Fig. 8 by looking for the sam
notation.

~CA! is a continuous transition whose region is large
The variation of the sign ofK1 gives rise to this transition
@Fig. 8~i!#. A first-order transition from the basal plane to
certain conical angle is expected to take place before~CA!
when the initial point locates in the region below the lineb
and above the curveo8. The trajectoryj in Fig. 8 realizes the
transition of P(CA) in expectation, it crosses the dotte
curveo8 before going toward infinity.

Two types of SRT’s are found on the lineb, one isPA,
the otherCPA. The temperature variation ofK1 has one zero
point when the initial point is on the left side of points. It is
this zero point that leads to the first-order transitionPA.

t
e

FIG. 8. Anisotropy flows in the plane (x2y) for these typifying
processes of SRT’s shown in Figs. 6, 7, 10, and 11. Dotted li
l (2x13y1150) andm(x1y1150) and curveso(x224y50)
and o8(x222xy24y23y250) are borderlines between the thre
thermodynamically stable phases at arbitrary temperature. The
per plane corresponds toK1.0, the lower one toK1,0. The ar-
rows indicate the direction of temperature evolution asT increases
from zero toTc .
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However, the low-temperature stable state is easy cone
the line segment ofu’s, so another first-order transitionCP
will inevitably occur in front of PA. Hence the pointu8
separates these two regions corresponding toPA and CPA,
respectively.

The discrepancy between~CP! andCP is that the transi-
tion is continuous or not. The continuous transition~CP!
takes place on the crossover between its anisotropy flow

FIG. 9. Phase diagram for different kinds of SRT’s in the init
parameter space (x02y0) with K1

0,0. Curveo8 and linel are the
borderlines between easy-plane and easy-cone stable phases i
temperature. Lineb is the same as in Fig. 4, curvesc8 andg8 are
numerically determined in the MF approximation. The configu
tions of different regions around the pointu8 are schematically
represented in the inset.

FIG. 10. Temperature variation of the angle of EMD with r
spect to thec axis during some typifying processes of SRT’s in t
case ofK1

0,0. The initial parameters used during the calculati
are~i! ~24.0,23.0!; ~j! ~24.0, 3.08!; ~k! ~23.0, 2.125!; ~n! ~22.35,
1.475!.
on

th

the dotted linel, while the discontinuous oneCP with the
dotted curveo8. In the regionCP, the initial point very close
to the curvec8 develops its anisotropy flow through thre
pieces, for exampleq81-q82-q83 in Fig. 8. This results from
the variation of the sign ofK1 twice, but both of them do no
induce the SRT. The curveg8 connecting pointss and t8 is
the boundary between regions~CP! and CP. It can be nu-
merically calculated by collecting all the initial points whos
anisotropy evolution flows through the crosspoint betwe
the dotted linel and curveo8 in Fig. 8. Within the frame-
work of Zener’s power law, the equation satisfied by t
curveg8 can be deduced as

311157y0
7~718x018y0!112~11x0118y0!1850. ~19!

The curvec8 starting from points is also numerically
determined. Combining lineb with curveo8 constructs two
regions for transitionsPAP and CPAP, respectively. Two
discontinuous transitions inPAP take place in the planeK1
.0, i.e., two crossovers with the dotted borderlinem ~see the
trajectoryr in Fig. 8!. Moreover, the transitionCPAPunder-
goes a much more unusual procedure, that is, three suc
sive first-order reorientation transitions of the easy axis
magnetization. The region forCPAP is a very small wedge
circled with the lineb and curveso8 andc8, as shown in the
inset in Fig. 9. The condition to reproduce the transiti
CPAP is very harsh, any tiny deviation~greater than 0.001!
in the initial point shall destroy this reorientation transitio
Therefore, it seems rather improbable to observe this kind
SRT in real materials, but it does theoretically exist. No tra
sition in PAPandCPAPcorresponds to the zero point ofK1 ,
althoughK1 has two zero points in these two regions. Th

zero

-

FIG. 11. Temperature variation of the angle of EMD with r
spect to thec axis during some typifying processes of SRT’s in t
case ofK1

0,0. The initial parameters used during the calculati
are ~p! ~21.5, 0.66!; ~q! ~22.2, 1.33!; (q8) ~22.3, 1.4253!; ~r!
~25.0, 4.16!; ~s! ~22.4, 1.5253!.
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clearly demonstrates that one cannot judge the reorienta
transition only from the variation of the sign ofK1 .

Within the framework of the MF approximation, a on
sublattice system with uniaxial single-ion anisotropy po
sesses 14 different types of SRT’s. SupposeK3

050, only
three kinds can be found. This indicates that the high
order anisotropy coefficient plays a very important role
determining the temperature behavior of the system, e
cially when it is comparable with the low-order anisotro
coefficients. Therefore, it is very significant to systematica
study the temperature behavior of the system within
three-constant approximation to the anisotropy free ener

V. SUMMARY

We have systematically investigated the possible type
temperature dependence of the single-ion anisotropy c
stants in the uniaxial one-sublattice system within the thr
constant approximation to the anisotropy free energy. T
analysis has been based on the general relation betwee
anisotropy constantsKi and coefficientsk̄n , when the latter
serves as base functions spanning the temperature de
of
g
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rch
on
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of
n-
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e
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en-

dence of anisotropy free energy. A powerful parame
method has been used to calculate the temperature beh
of the system in the MF approximation. The analysis of t
anisotropy flow has enabled us to determine regions rele
to the possible types of SRT’s in the intrinsic parame
spaces (x02y0) for K1

0.0 andK1
0,0. Seven types of tem

perature variation of the first anisotropy constantK1 and 14
types of SRT’s have been uncovered in the system on
basis of the first-order statistical-mechanical treatment of
single-ion anisotropy. Prototype materials to which o
analysis is immediately applicable are those in which
single-ion contribution comes from RE ions such as RE m
als or RE–transition-metal compounds, where the magne
arising from the transition metal can be neglected, for
ample,R3Co, R3Ni, R4Co3, RNi5, RMn2, and so on.25
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