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Based on an effective parameter method in the mean-field approximation, the temperature dependence of the
single-ion anisotropy constants in the uniaxial one-sublattice system has been exhaustively studied within the
three-constant approximation to the anisotropy free energy. Another important basis of our investigation is the
connection between the experimentally measured anisotropy constants and the theoretically more fundamental
anisotropy coefficients. A significant concept of anisotropy flow is introduced to detect all the possible types of
spin-reorientation transitions driven by temperature evolution in the system. Seven types of temperature de-
pendence of the first anisotropy constant and 14 types of spin-reorientation transitions are discovered in this
one-sublattice system. Phase diagrams for these temperature behaviors and the spin-reorientation transitions are
given by means of analytical and numerical calculati¢6€163-182@09)05141-3

[. INTRODUCTION approximatior? The salient feature of this parametric

method is that the exact thermal averages of the Setevens
The single-ion model has gained great success in inteleperators could be given out for arbitrafyand any value of

preting the origin of the magnetocrystalline anisotropy inJ, without any confinement or assumption only needs to
local electron systems, such as rare-eéRHE) ionsl?2Rare- Sweep the generalized effective field between zero and
earth—transitional-metal compounds are an important cladgfinity.*'~*As a result, the temperature dependence of the
of magnetic materials. Magnetic anisotropy of the com-Single-ion anisotropy cogld 126 precisely calculated W|thout

pounds is known to originate mainly from the crystal field "€COUrSe to rough iteratior;'“ then the spontaneous spin-

(CF) acting on the unfilled # shell of the rare earths. Pro- reorientation transitioSRT) driven by temperature could

vided the exchange interaction is dominated, the temperatury® ngﬂifd F;nfdleéail by USiT%.the c_oncefp:hoft anisotrft)py
dependence of the rare-earth contribution to the anisotrop OW. N Rel. 15, a general discussion ot the temperature

energy could be described analytically on the basis of a lin- ependence of 'the magnenc single-ion anlsotrqpy and
N . . . anisotropy-flow diagrams in the plan&{—K,) were given
ear approximation which takes into account corrections t%r both the uniaxial and the cubic cases in the two-constant

t_he ‘;'E?t'order therm‘)dy”f?“.“'c pertgrbanon in the CryStaIphenomenological expression for the free energy. As is well
field.> Howeyer, the partition function can be calc_ul_ated known, neglecting the in-plane anisotropy, a complete de-
exactly only in rare cases or under special unrealistic aSgcyintion of the uniaxial one-sublattice system should be
sumptions. Confined to the low-temperature limit, Zener'spased on the three-constant approximation to the anisotropy
n(n+1)/2 power law could be establishediheren=2,4,6  free energy* However, so far an exhaustive study on the
is the order of the CF interaction. Within this framework, the temperature variation of the uniaxial anisotropy constants
temperature dependence of the expectation values of thgithin the three-constant approximation is absent. Therefore,
Stevens’ operators is written as power laws of the reduceehis paper aims to carry out a thorough investigation of the
magnetization. Another important particular case is dhe temperature behavior of the anisotropy constants by adjust-
=o classical limit where expressions for the temperatureing the intrinsic anisotropy parameter continuously, and de-
dependence of the anisotropy coefficients at arbitrary temtect all the possible SRT’s via tracing the evolution of the
perature were obtained by Keffeand further discussed by anisotropy flow in the anisotropy space of a uniaxial one-
Callen and Callef.In this case, the hyperbolic Bessel func- sublattice system.
tion and its inversion are implemented to calculate the tem- The remainder of this paper is arranged as follows. The
perature dependence of the single-ion anisotropy. Compare#eoretical framework of the calculating method we used
with each other, these two methods have individual advanwill be described briefly in Sec. Il. The temperature depen-
tages and disadvantages. The former can be applied for amjence of the anisotropy constants and all the possible SRT’s
value ofJ, but effective only in the case Gf<T,. The latter in the single-ion one-sublattice system will be presented in
can be applied for arbitranyf, but only in the case of Secs. lll and IV, respectively. Section V is the summary.
=00

Recen_tly, Millev et al”* successfully applied a simple II. THEORETICAL FRAMEWORK
parametric method to the Callen and Shtrikman theory of
magnetic single-ion anisotrop,as has already been cor-  There exist two established ways to characterize the free
roborated to be feasible within the frameworks of the meanenergy of the magnetocrystalline anisotropy which depends
field (MF) approximation and the random-phase on the orientation of macroscopic magnetization with respect
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to the crystallographic axes. One way is to expand the an- _ 1

isotropy energy in symmetry-dictated combinations of pow- K6 =5 (3) {231Mg+[735-318(J+1)]M4
ers of direction cosines of magnetization, whereby the de- 6

scription is in terms of the set of the experimentally +[294-525)(J+ 1)+ 1053%(J+1)?IM,

measured anisotropy constafiks;}. Alternatively, one may
expand in spherical harmonics and this gives rise to the de-
scription n terms of the_ s_et oLth?St_q?oretlcally_m(_)re funda'Whereflz is thez component of the angular momentum op-
mental anisotropy coefficien{s,}. In the uniaxial sys-

i ith th i h ligible in-ol isot erator of a given ion. Fortunately, all the momeMg and,
em, wi € assumption of neg |g‘|‘ € In-p arle aniso rOpy'consequently, alk,’s can be expressed via the first moment
the anisotropy free enerdy, in the “constants”K; repre-

O M, or, equivalently, the reduced magnetizatiorn= M /J.
sentation is given by Moreover, the functional dependenkk,=M (M) itself is
model independent in all renormalized quasi-independent

F = E K, sir?(6), i=1,2,3, (1) collective excitation theories including the spin-wave theory,
i the random-phase approximation, some improved decou-
pling schemes in the Green’s-function appro&t#f,and the
where ¢ is the angle between the direction of magnetizationmean-field theory. One can easily derive all the momdhis
and the crystallographic axig axis) of uniaxial symmetry.  from the moment’s generating functié®(«,x) by means of
In the “coefficients” representatioR , which is equivalent n-order partial differentials with respect g
to F, so far as the angular dependence is concerned, is de-

—60J(J+1)+4002(J+1)>-533J+1)%, (5

n

scribed as d
Mn(X)—WQ(C{,X) .
Fa=2 BID()YR(Oky(T), n=246, (2 " sintf 23+ 1)/2(a+ ) Vsint (a+x)/2]
re sinH (2J+1)/2x]/sinh(x/2)
whereB? are the Elliott-Stevens CF paramet&rg, Y?(6) ®)

are the spherical harmonics, and the anisotropy coefficients )
are defined as the thermal averages of the Setevens’ operbPe first momenM; can be found witm=1,

tors (C)ﬁ)(T) normalized against their zero-temperature M (x) = JB,(Jx), @)
values®>17
whereB;(y) is the well-known Brillouin function, whilec is
<©°>(T) the generalized effective field relative to the average number
N ) (3) ¢(T) of magnetic quasiparticle excitatiotsDirecting our
(Oﬁ)(O) attention to the MF approximation in the zero external field,
we can attain a simple expression #Qr

Ko(T)=

The zero-temperature valugs,(J)=(0%(0) are certain

J-dependent products: - 3 _m
RN ®
P (J)=2J(J—E) J>£ wheret=T/T: and T is the MF Curie temperature. Be-
2 2)’ 2’ cause the temperature part in the generalized effective field is

factorized out from the magnetization, a functigr) can be
1 2 3 easily obtained:
p (J)=8J(J— —)(J—l)(J— —), J>=;
! 2 3 2 _ 3 m(Xx) 9
t=t0)= 337 9
1 3 5 5
Pe(J) =16 J—5|(I-1)|J=5|(I=2)|I=5|, JI>5,  Therefore, ifx sweeps between 0 ard t will be evaluated
(4) from 1 to O, the left limit being attained foF — T, while
the right one corresponds to zero temperature. Finally, the

whereJ is the angular momentum quantum number, while€Xplicit temperature dependence of the anisotropy coeffi-

the anisotropy coefficients turn out to be linear combinatiorcients for anyd in the whole temperature range can be com-
of the momentsvi :<(j )™ puted by using as a parameter the generalized effective field
n— z ’

x.2 The simple parametric method could be summarized as
1 the following formal procedure: Let sweep between 0 and
Ko=——[3M,—J(J+1)], o, computeM (x) [i.e., m(x)] from Eq.(7), computet from
(J) Eq. (9) by usingx andm(x), and finally computéc,, «y,
and kg from Eq. (5) by usingM,(x), M4(x), and Mg(x)
. 1 from Eq. (6). Eventually, collect pairs of computed points
K4=——[35M,+ (25— 300 300%) M, corresponding to the same valuexdab getx,(t), k4(t), and
P4(J) = . .
kg(t) or whatever other dependence parametrizedx by
+3J%(J+1)2-6J(J+1)], which one might be interested.
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1.0 _ 8 8 \_ 8 18 \_ 18 __
Ki=| 1+ 7Xo+ ZYo Ko™ 5 Xo+ 11Y0 K4t 11 Y0Ke:
08l (13
— 18yo|__ 18y
06 Kz—(1+ 1—1X—0)K4—1—1X_0K6, (14)
M‘:
0.4 |- K, Ks=xg. (15)
\ After normalization, more compact and expressive relations
02 K between the constants and coefficients arise, and the tem-
perature variation of the normalized const&nt will only
L - depend on two entirely independent variables= K/K?
000 02 0.4 056 08 1.0 P Y P s~ Ka/Ky

andy,=KYK9, andK, on their ratior=yq/xo=K3/K3.

It is interesting to note that the third reduced constést

FIG. 1. Magnetic anisotropy coefficients,, x,, and kg as  has the same temperature dependence as the highest-order
functions of reduced temperature T/T, for J=3 in the MF ap-  coefficientkg. ConsequentlyK4(t) strictly monotonically
proximation. decreasesor increasesfor K3>0 (or K3<0) with increas-

ing temperature. The curve always possesses the bell-shape

The relevant information about the experimentally accescharacteristic and an inflection point approximately halfway
sible quantitie; is gained by feeding the information from gown fromT,. As far as thef-electron one-ion anisotropy,
the calculation of, into the relations connecting thganisot- there is no gainsay that the temperature dependence of the
ropy constantsK; with the anisotropy coefficients, in  third constant in uniaxial symmetry as well as that of the
uniaxial symmetry’-> second constant in cubic symmetry could be completely de-

scribed through the highest-order coefficitht.
K(2)+ E;Kg)ﬂ(t) Both the fourth- and sixth-order basis functions enter into
11

the expression oK,(t) which has no business with the
8 lowest-order basis function. In this case when only two basis

+ 1—1Kg?6(t), (100  functions ofk, are involved in a linear superposition of the

kind given in Eq.(14), it turns out possible to carry out an

explicit and conclusive analytical classification of the al-

=T/T,

Ki(t)=

8 8 .\ 8
K9+ 7Kg+ 7Kg) Ko(t) = =

18 18 —
Ko(t)=| K3+ = K3 | ka(t) — = KIxg(1), (11)  lowed types of temperature behavigp(t), which is valid
11 11 beyond the MF approximatioli.In doing so, one needs to
Ks(t) = K2kg(t), (12) investigate the signs of the first derivativekof with respect

to t at both ends of variation, i.e., far—0 (T—0) andt
where K?EKi(t=O) are the intrinsiqground-stateanisot- —1 (T—T.). Taking advantage of the assumptions and the
ropy constants and associated with the microscopic parangsymptotic of the coefficients, in these two limits as in
etersB® andp,(J).23 Here we concentrate on the single-ion Ref. 13, one then finds the possible classification of the types
first anisotropy constar; in the one-sublattice system of Of variation by exhausting the allowed combination of the
uniaxial symmetry. It is obvious that the temperature depensigns of the first derivative. Three generic types of variation
dence ofK,(t) can be uniquely determined by a set of initial Of Ka(t) are possigle depending on the ratio of the intrinsic
constants K?,K9,K9), providedJ is fixed. In fact, the varia- ~constantXz andK; only:
tion of J does not affect the classification of the types of the (1) Forr>5/9, Ky(t) has an extremum which is a mini-
temperature dependence of anisotropy constdr@e.we set mum or a maximum depending on the signkd.
J=3 in the whole calculation for the sake of brevity. Mean-  (Il) For —11/18<r <5/9, K,(t) is strictly monotonically
while, the temperature dependence of the basis funcigns decreasing and increasing fish>0 or KI<0, respectively.
is solely determined by a giveh®!® The temperature curves ~ (Ill) Forr<—11/18, K,(t) has a zero point at a certain
of the basis functions fod=3 are shown in Fig. 1. All the temperature between zero and Curie temperature.
three basis functions are strictly monotonically decreasing The classification is consistent with that of the canonic
functions.x, is convex upwards for ali while bothx, and  dependence df,(m) on magnetizatiolf which is valid for
ks have a typical bell shape and an inflection poigg.falls  the whole class of Callen and Shtrikm#hit is essentially

off much faster thanc, andx,. due to the monotonic behavior of magnetization with tem-
perature and the invariance of the signdosfVdT<<0 in the
Ill. TYPES OF TEMPERATURE VARIATION OF K| whole range. Additionally, the consistence demonstrates that

the above classification is also generally effective for the
The most attractive part of the temperature dependence ighole class theories envisag€tFigure 2 gives some repre-
that of the reduced anisotropy constakis=K; /K, which  sentative curves foK,(t) calculated in the MF approxima-
always starts from the positive value of unityTat 0 to zero  tion. The borderlines between the different regimes are
at T=T, regardless of the sign cb(io, drawn with thick lines. All the curves in the monotonic re-
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FIG. 2. The anisotropy constaKkt(t) as normalized against its FIG. 3. The anisotropy constaKt (t) as normalized against its
zero-temperature valuég in the MF approximation for some typi- zero-temperature vaIL}é‘f in the MF approximation for some typi-
fying ratio ofr:Kg/Kg. The value of is given next to each curve. fying initial parameters X,yo). The parameters used during the
Thick lines denote the borderlines between the three detected realculations areél) (1.0, —0.05; (2) (—2.0, 0.6; (3) (—2.0, 1.15;
gimes of variation. (4) (—=2.0, 3.0; (5 (—2.0, 4.3; (6) (2.0,—-3.8); (7) (—5.0, 4.8.

gimes inherit the characteristic of the basis functions, i.e., the;i, <onditions may not have more thpr- 1 zeros or inter-

bell shape and an inflection point. _ nal extrema on a bounded interdAl.
At last, we come to the most complicated caseKgft) Up to now, an interesting problem, how to classify those
which contains three basis functions and two |ndependertypes in the initial parametric SpaCEOCyO), arises. This can

varia_blesxo andyq. In this case, it does not seem possible ©phe solved by applying the first derivative &f;(t) at both
require an analytic exhaustion of the possible types of variagys of the interval of variation and by numerical calculation
tion of K4(t), since the first derivatives &€, with respectto  probing the anisotropy space systematically. The result is

t at both ends are insufficient to detect all existing tyles. summarized in Fig. 4 where six regions are separated for the

Now, the only way is to have recourse to the numerical cal- N
Lo S . ; above seven types of temperature dependenég, ). We
culation in the MF approximation by implementing the spe- yP P b

. ; merge types 4 and 5 into one region since their shapes seem
cific parameter method. Hence a self-suggesting procedure g9e b g P

would be used to study numerically all possible values in the
initial parametric spacexg—Y,) and to see what types of

temperature behavior one gets ®y(t). As shown in Fig. 3,
one can gain seven different types of temperature behavio

for K,(t) after performing the above procedure and exhaust-
ing the initial parameters. We are familiar with the former
three typegsee curves 1-3 in Fig.)3vhich possesses the
features of one extremum, one zero-point, and monotoni¢s
variation, respectively. These features can be easily realize
and distinguished through the combination of two basis func-
tions. An unexpected feature of two internal extrema
emerges on the latter four typésee curves 4-7 in Fig.)3

Especially, the first anisotropy constatt exhibits two zero
points(changes its sign twigdor realistic values of the con-
stitutional parameters in the case of the seventh types. Th
sixth type has two extrema and one zero point, while no zerc
point can be find for the types 4 and 5. Besides, in the case ¢ ' '

the fifth type theK;(t) decreases first, increases after reach-
ing a minimum, then decreases again after arriving at a maxi-
mum whose value is even greater than unitytatd. The FIG. 4. Phase diagram for different types of temperature depen-
only discrepancy between the fourth and fifth types is thatience of the reduced anisotropy constéptt) in the initial param-
the second extremum locates below or above the dashed lirger spacex,—y,). The equations of linea andb arex,— 3 =
denoting unity. No more peculiar variation can be detectedhnd 1+ &x,+ 2y,=0, respectively. Curves andd are numerically
again, which agrees well with a general theorem by virtue otalculated in the MF approximation. The poisiis the common
which the linear superposition @f functions satisfying cer- crosspoint between the lifeand the curves andd.
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like each other. The borderlines between different regions

are drawn with thick lines. Lines and b are determined
from analyzing the sign odK,/dt for t—0 andt—1, re-

spectively. It turns out that the sign oillat fort—0 is the
same as the sign of the expression

3

S=Xo g (16)

while the sign ofaillat fort—1 is given by the sign of the
expression

Si=-— 7

8 8
1+ 7X0+ 7y0 .

The expression in the bracket of HJ.7) is the same as the
coefficient before the basis functiom, in Eq. (13). This
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indicates that the temperature behavior of the single-ion an- FIG. 5. Phase diagram for different kinds of SRT's in the initial
isotropy at high temperatures is dominated by the lowestparameter spacex§—y,) with K3>0. Curveo and linesl andm
order coefficient, because of the much faster decline of thare the borderlines between three thermodynamically stable phases
higher-order ones at high temperatures. Four regions can lie zero temperature. Curvesand lineb are the same as in Fig. 4,

separated by linea (x,— 2=0) andb (1+ x,+ 2y,=0) in

the initial parametric spacex§—Yo):

(1) Xo— 23>0 and 1+ &x,+ Ey,>0, for type 1;

(Il xo— 3>0 and 1+ 3x,+ y,<0, for type 6;

(1) xo— <0 and 1+ 8x,+ 2y,<0, for type 2;

(IV) xo— 2<0 and 1+ &x,+ 2y,>0, for types 3, 7, 4 and
5.

With the aid of numerical calculation, curvesandd can

curvesg andr are numerically determined in the MF approxima-
tion. The configurations of different regions around painare
schematically represented in the inset.

would be expected. Therefore, it would be very meaningful
to probe all the possible SRT's in the initial parameter space
(Xg—VYo)- Itis well known that the magnetic phase diagrams
for easy magnetization direction&MD’s) depend on the

be delineated in region IV to distinguish types 7 and 3 fromsign of the first anisotropy constait .** So we will analyze
4 and 5, respectively. One cannot find an analytical form for’ihgl phase diagrams for the SRT relevant to different signs of
the curvesc andd because there is no way to get the first K.

derivative ofK,(t) at arbitrary temperature. It is worth not-
ing that lineb and curves andd cross over a common point
s (—9/4, 11/8. Putting the coordinates of poistinto Egs.
(13) and (14), one will get a surprising result that boky,
andK, have the same temperature behavioKas i.e., the
temperature behavior of the basis functieg. As for the

Before beginning our work, it is worth introducing an
important concept of anisotropy flow recently developed by
Millev et al!*'*The anisotropy flow means a specific trajec-
tory in the parameter spa¢e(T)—y(T)], along which the
system evolves fromi =0 to T with increasing temperature.
The trajectory starts from the initial poink{,y,) and usu-
ally flows into the origin aff=T,. It is then quite possible

points on the curve, only one ZE€ro point just corresponding ot at some values of temperature which depend on the ini-
to the first extremum appears in the temperature dependengg ¢ongition at zero temperature, this trajectory crosses over
of K. Under this condition, a slight decreasexgforyo Wil to some neighboring regions stabilizing other EMD’s. Ac-
bring about two zero points, while a slight increase will cordingly, at some particular temperatures the EMD has to
make the zero point vanish. switch to a new direction so that a transition related with spin
__So far, all the possible types of temperature variation ofreorientation happens. The initial conditioxy(yo) is of ex-

K, have been thoroughly studied with the three-constant apseptional importance. Given this pair, the temperature flow
proximation to the anisotropy free energy. One conclusiveof the anisotropy is deterministic within the MF approxima-
point could be drawn from the above discussion that variation. Hence the existence and the type of crossover are de-
tion of the intrinsic parameters, andy, versifies the tem- termined solely by the initial condition. So we are in a posi-
perature behavior of the constants of single-ion uniaxial antion to detect all such crossovers and peculiarities in great
isotropy. detail with the aid of the concept of the anisotropy flow.

IV. SPIN-REORIENTATION TRANSITION A. K950

In the one-sublattice model, the temperature-driven SRT Supposing the sign dk{ is positive, we investigate the
is mainly induced by the competition between the anisotropyanisotropy flow in the plangx(T)—y(T)] for all the pos-
coefficients of different orders. However, the variation of thesible initial points &o,yo). Eight types of SRT'S[(CP),
intrinsic anisotropy parameters, and y, can adjust their A(CP), AP, AC, (CA), CA, A(CA), ACA] are detected and
competition and give rise to many different kinds of tem-the phase diagram concerning the conditions of their exist-
perature behavior of the anisotropy constants as described @nces is summarized in Fig. 5, where cunve(xg—4yo
the preceding section. Hence, various procedures of SRT's0) and linesl (2xg+3yp+1=0) andm (Xy+Yyg+1=0)
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A(CP). There are two minima for the anisotropy energy at
low temperatures, one along theaxis and the other along a
conical direction. The former is the lowest at low tempera-
tures, but the latter becomes lower with increasing tempera-
ture and gives rise to a first-order SRT from thexis to a
conical direction. After the discontinuous transition, the easy
direction will gradually change from the conical direction to
the basal plangsee Figs @) and 6 @')]. The first discon-

ol CP) A(CP tinuous SRT happens at the crosspoints where the trajectory
) b andb’ cross the dotted cune(in Fig. 8. The two minima

90l ¢ d in the anisotropy energy become equivalent at the crosspoint.

The following continuous transitions ibh andb’ have the

same features as transitions in the above casesaofla’.

AP. In this case, both the axis and the direction perpen-
dicular to thec axis are minima for the anisotropy energy.
The magnetic moment favors axial orientation at low tem-
peratures and planar at high temperaturesT Atthe EMD
changes from axial to planar direction through a first-order
AP  (———— AC transition as shown in Fig. (6), whose anisotropy flow
00 03 05 0500 03 G X crosses the borderlinm in Fig. 8. The curveg between

=T/T =T/T pointss andt in Fig. 5 is the borderline between(@P) and
N ¢ AP. It can be numerically determined by the parametric

FIG. 6. Temperature variation of the angle of EMD with respectMethod, since the anisotropy flow starting from every point

to thec axis during some typifying processes of SRT’s in the caseOn it has to pass through the common crosspbinetween

of K9>0. The initial parameters used during the calculation(@re borderlines in Fig. 8. If one takes Zener's power law to ap-
(—3.0, 1.75; (&) (4.0, 3.0; (b) (—2.3, 1.35; (b') (2.5, 1.59; proximate the temperature dependence of the basis functions

(c) (—1.7, 0.8; (d) (—2.4, 1.525. x,,, an equation satisfied by curgecan be obtained,

o

0

8 (deg.)

0 (deg.)

are the borderlines between three thermodynamically stable A1y [(7+8xy+8yo) 1+ (11xo+ 18y) ¥=0.  (18)
phases, i.e., easy-axi8), easy-plandP), and easy-con€C)
at zero temperature. Line and curvec are the same as in AC. The region for this kind of SRT is only a segment of
Fig. 4. The phase diagram is divided into two parts by bne line b between pointsi ands. The anisotropy flow starting
1+ 8xy+ 2yo=0. For the part above linb, the system will  from the point(excludings) on lineb has a straight trajectory
have easy-axis anisotropy at high temperature, and for thalong the lineb, and finally evolves to a specific points
part below it, the high-temperature state is easy plane. Nex{—7/8, 0 not the origin in the planesx¢y) for K;>0 or
we deal with the different SRT’s corresponding to the differ-K,<0. This is because the conditior+Ex+3y=0 is al-
ent zones in Fig. 5. ways satisfied by the system at any temperature. Makas
(CP). At low temperature, the magnetic moment prefers ahe initial point, no anisotropy flow can be formed since all
conical orientation as a result of the competition between thehe anisotropy constants have the same temperature behav-
high- and low-order anisotropy coefficients. With increasingior. The transitiond in Fig. 6 shows a first-order transition
temperature, the high-order anisotropy coefficients decreas®C which takes place when its straight trajectory crosses the
faster than the low-order anisotropy coefficient, so that atliotted curveo [Fig. 8 (d)]. The limitation of the conical
high temperatures the EMD is mainly determined by the latangle is 49.1° before the magnetism vanishes.
ter. The EMD will gradually change toward the plane, as (CA), CA The SRT of(CA) [Fig. 7 (¢)] is a continuous
shown in Figs. a) and @"). Here, we denote this kind of process, while CAFig. 7 (f)] is a discontinuous one. The
SRT as(CP), where C and P indicate cone and plane, respeceurve ¢ defined in Fig. 4 separates them from each other.
tively, and brackets indicate a continuous process. The arAccording to the knowledge in Fig. 4, one knows that the
isotropy flows ofa anda’ are shown in Fig. 8, both of them trajectory e in Fig. 8 comprises three piecesl(-e2-€3).
consist of two pieceal anda2,a’l anda’2, respectively. The transition temperaturg, is just corresponding to the
This feature is intimately connected with the number of ze-second zero oK,. However, the trajectory has only one
roes ofK,. As K, tends to zero, the trajectory goes to infin- piece in the plan& ;>0 sinceK, does not change its sign in
ity in the chosen standard presentation and, following thehe whole process. The first-order transition CA takes place
change of the sign df;, reemerges in another section of the at the crosspoint between its trajectéignd the dotted curve
parameter space. Therefore, the trajectory will be cutimto o.
+1 pieces wherK; hasn zeroes. Tacking down the trajec-  A(CA),ACA. Extending the regions diCA) and CA to
toriesa anda’, one can find that the SRT's occur before thepoint s, one can obtain two regions fak(CA) and ACA
variance of the sign ok, for the case of, and after fora’. respectively. As shown in Figs(@ and 7h), a first-order
This demonstrates that the SRT(@P) is not induced by the transitionAC is added befor¢CA) and CA. Curver is nu-
change of the sign df,, but by the crossover of its anisot- merically calculated within the MF approximation. From
ropy flow with the borderlind in the parameter space<( their anisotropy flows in Fig. 8, the first discontinuous tran-
-y). sition is induced by the crossover with the dotted cuyvthe
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FIG. 7. Temperature variation of the angle of EMD with respect
to thec axis during some typifying processes of SRT’s in the case
of K(l’> 0. The initial parameters used during the calculation(ere
(—4.0, 3.5; (f) (4.0, 3.75; (9) (—2.7, 1.85; (h) (—3.0, 2.262.

second transition is induced by the second variation of the
sign of K, for g and by the crossover again with the dotted
curveo for h.

In the remaining region no other SRT could be detected,
the low-temperature state holds at high temperatures. It is
thus clear that the different phases as defined by thermody-
namic minimization are of different relative stability under
variation of temperature. The easy-plane phase is the most
stable in this sense and a system starting=a0d from within
this phase never leaves it. Thexis phase is of intermediate
stability. The titled-axis phase is the most unstable in the FIG. 8. Anisotropy flows in the planexty) for these typifying
sense that systems starting their temperature evolution froprocesses of SRT’s shown in Figs. 6, 7, 10, and 11. Dotted lines
within this phase always run away to other neighboringl(2x+3y+1=0) andm(x+y+1=0) and curve(x*—4y=0)
phases. ando’ (x?>—2xy—4y—3y?=0) are borderlines between the three

thermodynamically stable phases at arbitrary temperature. The up-
per plane corresponds t,>0, the lower one t,<0. The ar-
B. K2<O rows indicate the direction of temperature evolutionTascreases
from zero toT,.

"

Changing the sign oK?, not only the magnetic phase

diagram at zero temperature is varied, but also the competyre exhibited in Figs. 10 and 11, and some relevant anisot-
tion between the anisotropy coefficients of different order.ropy flows could be found in Fig. 8 by looking for the same
Therefore, different kinds of SRT’s and different conditions notation.

of their existences are expected in the initial plang ( (ca) is a continuous transition whose region is largest.
~Yo). The result is shown in Fig. 9, where cureé (x5  The variation of the sign oK, gives rise to this transition
— 2Xo¥o—4Yo—3y5=0) and linel (2xo+3yo+1=0) are bor-  [Fig. &i)]. A first-order transition from the basal plane to a
derlines between easy-cone and easy-plane phases. At zeyertain conical angle is expected to take place befG®)
temperature, the easy-axis phase is unable to be stabilizegthen the initial point locates in the region below the lime
provided K9<0. Line b (1+2x,+8y,=0) also cuts the and above the curve’. The trajectonyj in Fig. 8 realizes the
phase diagram into halves, the high-temperature state tsansition of P(CA) in expectation, it crosses the dotted
easy-plane for the upper part, and easy-axis for the lowerkurveo’ before going toward infinity.

Eight types of SRT'S[(CA),P(CA),PA,CPA,(CP),CP, Two types of SRT's are found on the lirfe one isPA,
PAP,CPAP] are discovered after a systematic investigationthe otherCPA The temperature variation &f; has one zero
on the anisotropy flow for any initial parametexq(yo)- point when the initial point is on the left side of poistlt is

Some typical transitions representative of every kind of SRTthis zero point that leads to the first-order transitiBA.
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FIG. 9. Phase diagram for different kinds of SRT’s in the initial
parameter spacex§—Y,) with K{<0. Curveo’ and linel are the O 1 \ PAP | s . C}’AP o
borderlines between easy-plane and easy-cone stable phases in ze ¢o0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
temperature. Lind is the same as in Fig. 4, curve$ andg’ are =T/T =T/T,
<

numerically determined in the MF approximation. The configura-
tions of different regions around the poiot are schematically
represented in the inset.

FIG. 11. Temperature variation of the angle of EMD with re-
spect to the axis during some typifying processes of SRT’s in the
case ofK<0. The initial parameters used during the calculation
However, the low-temperature stable state is easy cone are (p) (—1.5, 0.66; (q) (—2.2, 1.33; (q') (—2.3, 1.4253; (1)
the line segment ofi's, so another first-order transiticddP ~ (—5.0, 4.16; (s) (—2.4, 1.5253.
will inevitably occur in front of PA. Hence the poinu’
separates these two regions correspondingAcand CPA
respectively.

the dotted linel, while the discontinuous on€P with the
dotted curven’. In the regionCP, the initial point very close
The discrepancy betwedi©€P) and CP is that the transi- to the curvec’ develops its anisotropy flow through three
tion is continuous or not. The continuous transiti@P) ieces, for examplg’1-q’2-q’3 in Fig. 8. This results from
takes place on the crossover between its anisotropy flow witthe variation of the sign o, twice, but both of them do not
induce the SRT. The curvg’ connecting points andt’ is
the boundary between regioit€P) and CP. It can be nu-

o (CA) J P(CA) merically calculated by collecting all the initial points whose
anisotropy evolution flows through the crosspoint between

- the dotted linel and curveo’ in Fig. 8. Within the frame-

go work of Zener's power law, the equation satisfied by the

% curveg’ can be deduced as

3M57y (74 8xo+8yo) 11— (11xy+ 18y)*¥=0. (19

li)

The curvec’ starting from points is also numerically
determined. Combining line with curveo’ constructs two
regions for transition®®AP and CPAP, respectively. Two
discontinuous transitions iRAP take place in the plank;
>0, i.e., two crossovers with the dotted borderlimésee the
trajectoryr in Fig. 8). Moreover, the transitio€PAPunder-

O

0 k n

0 (deg.)

CPA

0.0

03

06
=T/T,

0900

03

0.,6
=T/T,

0.9

goes a much more unusual procedure, that is, three succes-
sive first-order reorientation transitions of the easy axis of
magnetization. The region f@@PAPis a very small wedge
circled with the lineb and curve®’ andc’, as shown in the
inset in Fig. 9. The condition to reproduce the transition

CPAPis very harsh, any tiny deviatiofgreater than 0.001
FIG. 10. Temperature variation of the angle of EMD with re- IN the initial point shall destroy this reorientation transition.
spect to thes axis during some typifying processes of SRT’s in the Therefore, it seems rather improbable to observe this kind of
case ofk9<0. The initial parameters used during the calculation SRT in real materials, but it does theoretically exist. No tran-

are(i) (—4.0,—3.0); (j) (4.0, 3.08; (k) (—3.0, 2.125; (n) (—2.35,  sition inPAPandCPAPcorresponds to the zero pointlsf,
1.475. althoughK, has two zero points in these two regions. This
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clearly demonstrates that one cannot judge the reorientatiathence of anisotropy free energy. A powerful parameter
transition only from the variation of the sign &f;. method has been used to calculate the temperature behavior
Within the framework of the MF approximation, a one- of the system in the MF approximation. The analysis of the
sublattice system with uniaxial single-ion anisotropy pos-anisotropy flow has enabled us to determine regions relevant
sesses 14 different types of SRT’s. Supp#&k=0, only to the possible types of SRT's in the intrinsic parameter
three kinds can be found. This indicates that the highestspaces Xq—Yg) for K2>0 anng<O. Seven types of tem-
order anisotropy coefficient plays a very important role inperature variation of the first anisotropy constntand 14
determining the temperature behavior of the system, espaypes of SRT’'s have been uncovered in the system on the
cially when it is comparable with the low-order anisotropy basis of the first-order statistical-mechanical treatment of the
coefficients. Therefore, it is very significant to systematicallysingle-ion anisotropy. Prototype materials to which our
study the temperature behavior of the system within thenalysis is immediately applicable are those in which the
three-constant approximation to the anisotropy free energysingle-ion contribution comes from RE ions such as RE met-
als or RE—transition-metal compounds, where the magnetism
V. SUMMARY arising from the transition metal can be neglected, for ex-

. . _ . ample,R;Co, R3Ni, R,Ca;, RNis, RMn,, and so orf®
We have systematically investigated the possible types of
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