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Electronic transport properties in random one-dimensional chains
containing mesoscopic-ring defects
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We study the electronic transport properties in one-dimensional systems with two kinds of mesoscopic ring
defects: squarelike mesoscopic ring~SMR! defects and siamese-twins-like mescoscopic ring~STMR! defects.
By using the transfer-matrix method, the resonant energies~where the transmission coefficientT51) are
derived successfully for both system. For the one SMR defect system, two resonant energies are found as a
function of the magnetic fluxF threading the ring defect, while for the latter case, two magnetic-flux-
dependent and one magnetic-flux-independent resonant energies are predicted in the system, furthermore, ifF
takes some specific values, one of theF-dependent resonant energies may be the same as theF-independent
resonant energy. The word ‘‘resonant’’ is used to describe this situation. When a finite concentration of SMR
or STMR defects are randomly embedded in a perfect chain, the numerical results confirm all the analytical
predictions. Finally, for the ‘‘resonant’’ case, we show numerically a rather wide perfect transmission region
which is almost ten times as wide as that of the ‘‘unresonant’’ case.@S0163-1829~99!03438-4#
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I. INTRODUCTION

The progress of fabrication technology in semiconduct
and related areas allows people to fabricate devices
rather small size, the so-called mesoscopic system, and
quantum transport in mesoscopic systems is of consider
current interest.1–30 In such mesoscopic systems, the pha
coherence length of electrons becomes large compared t
system dimension, thus the system can be modeled
phase-coherent elastic scattering. For the mesoscopic
tems, the persistent current of isolated rings has been
focus of attention.3,4 As for open-ring systems, many theo
retical works have been devoted to the investigation of
electronic properties of the systems within the framework
the waveguide theory.9,13,14,17In addition, the transmission o
electrons through open mesoscopic ring systems has
studied within the tight-binding model.8,15,25,26It should be
noted that most of the mentioned works have been limite
the ideal mesoscopic systems, in which the interactions s
as electron-electron (e-e), electron-phonon (e-p) interaction
are ignored. Later, the effects ofe-e interaction have been
considered by many groups.16,18,19 Disorder in the mesos
copic systems is also studied by many authors.20–22Recently,
the interaction ofe-p in the mesoscopic system has be
studied by introducing the nonlinear impurities.24 Otherwise,
in these studies, some mesoscopic ring with special l
structures have been considered, for example, the multi
system in parallel,25 multiply connected normal conducto
loop,17 and open necklace of loop geometry.20 Recently,
some works concerning the coherent transport in a multi
minal mesoscopic Aharonov-Bohm ring with a quantum d
embedded in an arm have been experimentally and theo
cally studied and some interesting results have b
reported.27–30

On the other hand, it is well known that all the electron
PRB 600163-1829/99/60~17!/12099~8!/$15.00
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states are localized even for infinitesimal disorder in a o
dimensional lattice.31 However, during the last decade an
lytical and numerical studies revealed that delocalized st
can exist in one-dimensional lattices with short-ran
correlations.32–37 In 1990, the simplest and successful on
dimensional random dimer model~RDM! was introduced
and studied.32 In this model, the on-site energy takes tw
possible valueseA , eB , and the same value of site energy
assigned at random to two succeeding lattice sites. It
been argued thatAN eigenstates have a localization leng
longer than the length of the finite sample, provided th
ueA2eBu<2V, whereV is the nearest-neighbor matrix ele
ment. The reason for the occurrence of the delocaliza
phenomenon in RDM has been attributed to the existenc
the symmetric internal structure of RDM.34 In the later
works, some defects with different structure have been in
duced and studied. Examples of these models are the~1!
randomn-mer model,~2! repulsive binary alloy,~3! random
bipolaron lattice, and~4! random dimer-trimer model.34–37

The common ingredient these models share is that the
dom defects possess internal structure that is symme
about some plane.

To the best of our knowledge, there is no work devoted
studying the influence of magnetic flux on the electron
transport properties in random systems. In this paper,
concentrate on investigating the electronic transport prop
ties of one-dimensional chains made by the insertion of m
soscopic ring defects, which are threaded by magnetic fl
Consider a one-dimensional tight-binding model of a rand
binary alloy in which the site energies«a and«b are arranged
as•••«a«b«a«a«b«b«a«b«a«b«a«a«b•••. To explore the ef-
fect of magnetic flux on this system, we assume that all«b
are replaced by mesoscopic loop defects with a symme
internal structure. The questions are~i! When each loop is
threaded by a magnetic fluxF, does the magnetic field de
stroy the internal symmetric structure of mesoscopic lo
defects?~ii ! Do any new phenomena happen because of
12 099 ©1999 The American Physical Society
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12 100 PRB 60X. HUANG
introduction of the magnetic field?
In this paper, we aim to answer the two questions rai

above. The paper is organized as follows. In Sec. II, first,
introduce the two theoretical modes we are studying, sec
we present the formalism for analyzing and calculating
transmission coefficient of the studied models. In Sec.
when a mesoscopic loop defect is embedded in a per
lattice, we derive exactly the resonant energies for the mo
through a transfer-matrix technique. Then, in Sec. IV,
perform numerical simulations of a transmission coeffici
for the case when a finite concentration of defects are
domly added. Finally, Sec. V, is devoted to a discussion
our results and gives a summary.

II. MODEL

We start with a tight-binding monatomic chain, for whic
the site energy is«a and atoms are connected by a sa
hopping interactionV. In this paper, we consider two type
of defects which are randomly inserted in the host chain. T
specific models~shown in Fig. 1! are the models with~a!
squarelike mesoscopic ring~SMR! defects@see Fig. 1~a!#, ~b!
Siamese-twins-like mesoscopic ring~STMR! defects @see
Fig. 1~b!#. It is evident from Fig. 1 that these defects poss
symmetric internal structure. In both cases, we assume
only the rings are threaded by a magnetic fluxF.

In the tight-binding and nearest-neighbor interaction
proximation, it is easy to write the equations for the wa
amplitudes for the sites around the ring defect. For thenth
SMR defect of Fig. 1~a!, one has

~E2«a!cn5Vcn211Veig/4bn1Ve2 ig/4an ,

~E2«b!an5Veig/4cn1Ve2 ig/4cn11 ,
~1!

~E2«b!bn5Ve2 ig/4cn1Veig/4cn11 ,

~E2«a!cn115Ve2 ig/4bn1Veig/4an1Vcn12 ,

while for the case of the STMR defect of Fig. 1~b!, the equa-
tion is a little different:

~E2«a!cn5Vcn211Veig/4bn1Ve2 ig/4an ,

~E2«b!an5Veig/4cn1Ve2 ig/4cn11 ,

~E2«b!bn5Ve2 ig/4cn1Veig/4cn11 ,

FIG. 1. The scheme of random lattices with different defects:~a!
squarelike mescoscopic ring~SMR! defects,~b! siamese-twins-like
mescoscopic ring~STMR! defects.
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~E2«a!cn115Ve2 ig/4bn1Veig/4an1Veig/4bn11

1Ve2 ig/4an11 , ~2!

~E2«b!bn115Ve2 ig/4cn111Veig/4cn12 ,

~E2«b!an115Veig/4cn111Ve2 ig/4cn12 ,

~E2«a!cn125Ve2 ig/4bn111Veig/4an111Vcn13 .

Herean andbn are the site amplitude of the lower arm, th
upper arm for ringn, «b is the site energy of the lower an
upper arm, andg52pF/F0 ,F05h/e. Equations~1! and
~2! can be rewritten in the matrix form

Fcn11

cn
G5P(n)F cn

cn21
G , ~3!

wherePI (n) is the promotion matrix which connects the a
jacent site amplitudescn andcn61.

In general for a defect which occupiesm sites, then the
total promotion matrix across the defect isPm
5P(n1m)P(n1m21)

•••P(n). To study the problem of the
transmission properties through the defect, we can write
the wave-function amplitudes to both sides of the defect a
single Bloch wave specified by a wave vectork.

cj5H eik j1re2 ik j for j <n,

teik j for j >n1m.
~4!

For a givenPm andk, Wu et al.34 have found the reflec-
tion amplituder

r 52Z2n
aTGPma

aTGPma*
, ~5!

where

Z5eik,G5F 0 1

21 0G ,a5FZ

1G ,
andaT, is the transpose ofa.

The condition for resonant energyE of the defect can be
stated by saying the reflection amplituder of Eq. ~5! will
vanish for the corresponding energy. BecauseE is the energy
of the ordered band, it is limited by the following equatio

E2«a52V cosk. ~6!

Then, it is evident that the whole energy band of the orde
lattice ranges from@EL ,ER#5@22V1«a,2V1«a#.

When a large number of such defects are randomly pla
in the host chain, the transmission properties can be inve
gated by direct numerical computation of the reflection
transmission coefficients through the transfer-matrix meth
Generally, we can first consider electronic transmiss
through a one-dimensional chain of lengthN. We embed this
chain in an infinite perfectly ordered atom chain. Then, in
conducting region to the left and the right of the chain, t
normalized wave functions can be written as

cn5H eikn1 f re
2 ikn for 2`,n<1,

f te
ikn for N11<n,`.

~7!
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We define the transfer matrixT(N) by

F f t

i f t
G5T~N!F 11 f r

i ~12 f r !
G , ~8!

where

T~N!5S21M ~N!S, ~9!

S5Fcosk sink

1 0 G . ~10!

Note that detT(N)51, thus, one can calculate the tran
mission coefficient in the relationship38

T5
4

21T~N!11
2 1T~N!12

2 1T~N!21
2 1T~N!22

2
. ~11!

We should point out that all our numerical results d
scribed below are obtained directly from Eq.~11!.

III. ANALYTICAL CONCLUSIONS

A. A squarelike mesoscopic ring defect

Consider now the the model shown in Fig. 1~a!. First we
suppose only one SMR defect is embedded at siten in an
otherwise perfect lattice. From Eq.~1!, the relation of the site
amplitudes which connects both ends of the defect is

Fcn12

cn11
G5PsF cn

cn21
G5Mn11MnF cn

cn21
G , ~12!

wherePs is the total promotion matrix.
From Eqs.~1! and ~3! one obtains

Mn5F ~E2«a!~E2«b!22V2

2V2 cos~g/2!
2

~E2«b!

2V cos~g/2!

1 0
G

~13!

and

Mn115F ~E2«a!~E2«b!22V2

V~E2«b!
2

2V cos~g/2!

~E2«b!

1 0
G .

~14!

Using Eqs.~13! and~14!, we can rewrite the correspond
ing total promotion matrixP s of Eq. ~12! as

Ps5AsF ~E2«a!

V
21

1 0
G1FBs~E! 0

0 Cs~E!
G , ~15!

where

As~E!5
~E2«a!~E2«b!22V2

2V2 cos~g/2!
, ~16!
-

Bs~E!5
2V cos~g/2!

E2«b
@As

2~E!21#2
~E2«a!As~E!

V
,

~17!

Cs~E!52
~E2«b!

2V cos~g/2!
. ~18!

From Eqs.~16!–~18!, when energyE satisfies

E5E12
s 5«a6A~«a2«b!214V2 sin2~g/2!, ~19!

Eq. ~15! can be rewritten as

Ps5A6
s F ~E2«a!

V
21

1 0
G1B6

s F1 0

0 1G , ~20!

where

A6
s 5

2W262WAW21sin2~g/2!2cosg

cosg
,

B6
s 52

W6AW21sin2~g/2!

cosg
,

W5
«a2«b

2V
.

Wu et al.34 have pointed out that the reflection amplitud
of Eq. ~5! will vanish only when the total promotion matrix
is proportional to~1! the unit matrix or~2! the promotion
matrix for the ordered system~or some linear combination o
both!. Evidently, for the case of E12

s 5«a

6A(«a2«b)214V2 sin2(g/2), the total promotion matrix of
Eq. ~15! in this model reduces to the linear combination
the unit matrix and the ordered system promotion matrix@see
Eq. ~20!#. Because of the restriction of Eq.~6!, it is straight-
forward to verify that the perfectly transmitted electron
statesE12

s can be found in the studied system provided th

2cosS g

2D<W<cosS g

2D . ~21!

B. A siamese-twins-like mesoscopic ring defect

Thus far, we have shown theoretically the resonant en
gies of one SMR defect system. In what follow, we will tur
to study the transmission properties of Fig 1~b!. Similarly, as
the first step, we consider the case in which only one STM
defect is inserted into the ideal one-dimensional lattice. Fr
Eqs. ~2! and ~3!, it follows that the total transfer-matrix
across the defect can be written as

Fcn13

cn12
G5PstF cn

cn21
G5Mn12Mn11MnF cn

cn21
G , ~22!

where Pst is the total promotion matrix, and
Mn ,Mn11 ,Mn12 are given by
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Mn5F ~E2«a!~E2«b!22V2

2V2 cos~g/2!
2

~E2«b!

2V cos~g/2!

1 0
G ,

~23!

Mn115F ~E2«a!~E2«b!24V2

2V2cos~g/2!
21

1 0
G , ~24!

Mn125F ~E2«a!~E2«b!22V2

V~E2«b!
2

2V cos~g/2!

~E2«b!

1 0
G .

~25!

Using Eqs.~23!–~25!, Eq. ~22! can be represented as

Pst5AstF ~E2«a!

V
21

1 0
G1FBst~E! 0

0 Cst~E!
G , ~26!

where

Ast~E!512
@~E2«a!~E2«b!24V2#As~E!

2V2 cos~g/2!
, ~27!

Bst~E!52
@~E2«a!~E2«b!22V2#

V~E2«b!
@Ast~E!11#,

~28!

Cst~E!52
~E2«b!@~E2«a!~E2«b!24V2#

4V3 cos2~g/2!
. ~29!

From Eqs.~27!–~29!, it is quite easy to derive that, whe

E12
st5«a6A~«a2«b!214V2 sin2~g/2!, ~30!

Eq. ~26! can be represented by the linear combination of
promotion matrix for the ordered system and the unit ma
as

Pst5A6
stF ~E2«a!

V
21

1 0
G1B6

stF1 0

0 1G , ~31!

where

A6
st511A6

s Fcos21S g

2D2A6
s G ,

B6
st52B6

s Fcos21S g

2D2A6
s G .

Furthermore, when

E34
st5

«a1«b6A~«a2«b!2116V2

2
, ~32!

we have
e
x

Pst5F ~E2«a!

V
21

1 0
G . ~33!

The analytical results of expressions~31! and ~33! indi-
cate that the energiesE12

st andE34
st are the candidates of th

resonant energy in the studied system, and the phenom
of the vanishing of the reflection coefficients can be obser
around these energies. It should be noted that the cond
for the existence of these extended states is entirely de
mined by the system parameters«a ,«b ,V, and F. In fact,
from the form of Eq.~30! it is clear thatE12

st are same asE12
s ,

and then the condition thatE12
st exist in the studied system i

also given by Eq.~21!. In addition,E34
st can be rewritten as

~E34
st2«a!5V~2W6AW214!. ~34!

Consider the limitation of Eq.~21!, we have

H u2W1AW214u<2

u2W2AW214u>2
, if W>0, ~35!

H u2W1AW214u>2

u2W2AW214u<2
, if W<0. ~36!

Equations~35! and~36! show that, for any givenW, only
one of the resonant energiesE34

st is allowed in the studied
system~for simplicity, E3

st is used to present the allowe
resonant energy!. To show more clearly the allowed resona
energies in the system, we plot in Fig. 2 the relations
between the, resonant energies (E12

st and E3
st of the STMR

system! and the threading magnetic fluxF. The figure is
obtained under one set of special parameters«a50.5, «b5
20.5, andV51.0, corresponding to the case ofW.0. As
can be seen from the figure, there are twoF-dependent reso
nant energies and oneF-independent resonant energy, and

FIG. 2. The illustration of resonant energy vsF/F0 for the
STMR defect system. The open circles indicate the ‘‘resona
energy cases there, two resonant energies are the same.
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some of the regions~marked by light gray!, both magnetic-
dependent resonant energiesE12

st are forbidden, conse
quently, only the magnetic-independent resonant energy
pears in the figure. Interestingly, whenF is chosen by some
special values, two of the resonant energies are the same~for
example,E1

st5E3
st marked by an open circle in the figure!,

here we use the word resonant to describe this situat
Generally, supposeW.0, the resonant phenomenon tak
place under the condition

FIG. 3. Transmission coefficients as a function of the energy
the system of Fig. 1~a! with N55000, and the magnetic fluxF
50.0. ~a! and~b! show clearly one complete transmission peak.~c!
As the parameters («a2«b)/2V51.1.1.0, then the resonant pea
E53.3 is not allowed.
p-

n.

cosg5
~«a2«b!21~«a2«b!A~«a2«b!2116V2

4V2
21

5W21WAW21421. ~37!

If uW21WAW21421u<1, from Eq. ~37!, one can ob-
tain

Fm
65F0@m6arccos~W21WAW21421!#,

m50,1,2 . . . . ~38!

Thus, the values of magnetic flux where the resonant ene
happens are uniquely determined by Eq.~38!. Expression
~38! yields the conclusion thatFm

1/F0 or Fm
2/F0 has a pe-

riod unity ~see Fig. 2!. Among each period, there are tw
values, the first two of them are given as

F0
1/F05arccos~W21WAW21421!, ~39!

F1
2/F0512arccos~W21WAW21421!. ~40!

The above two special situations are marked in Fig. 2,
expect that some peculiar phenomenon can be observe
these points.

IV. NUMERICAL RESULTS

The main results are shown in Figs. 3 and 4 for the SM
defect systems, and in Figs. 5, 6, and 7 for the STMR de
systems. It should be noted that in all our numerical cal
lations given here, we fix the lattice siteN55000 and about
half of these sites are randomly replaced by the mesosc
ring defects.

A. Systems with many SMR defects

Figure 3 shows the transmission spectrum for differ
values of «a2«b : ~a! «a2«b5V51.0, ~b! «a2«b52V
52.0, and~c! « 2« 52.2V52.2. In the numerical calcula
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FIG. 4. Transmission coeffi-
cients as a function of the energ
for the SMR defects system o
Fig. 1~a! for different magnetic
flux F. Other parameters are th
same as those in Fig. 3~a!. ~a! F
50.02F0, ~b! F50.2F0, and ~c!
F50.33F0. In these three figures
two resonant energies are clear
shown, and it can be seen that th
resonant energies will move to th
two edges of the energy band a
the magnetic fluxF increases.~d!
F50.35F0, in this case, the reso
nant peak disappears.
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and 3~b!, there is one resonant peak atE51.5 andE53.0,
respectively, while in Fig. 3~c!, no resonant peak is found
One can easily explain these numerical results with the h
of Eq. ~6!. WhenF50, from Eq.~19!, the possible resonan
energies areE1

s52«a2«b andE2
s5«b , by the definition of

the transfer matrix of Eq.~14!, E2
s is unallowed, conse-

quently, onlyE1
s remains. For the case~a!, where the energy

band is @21.5,2.5# and the resonant energyE1
s51.5, it is

evident that this energy lies in the energy band; for case~b!,
the energy band is@21.0,3.0# and the resonant energyE1

s

FIG. 5. Transmission coefficients as a function of the energy
the system of Fig. 1~b! with N55000, and the magnetic fluxF
50.0. ~a! and ~b! show clearly two complete transmission peak
respectively.~c! For a large parameter«a52«b510.0, and~d! for
a small parameterV50.01. In both cases, we can see that there
always one resonant peak.
lp

53.0, which happens to lie at the right edge of energy ba
so the transmission behavior still can be observed; for c
~c!, the energy band is@20.9,3.1#, obviously, the resonan
energy E1

s53.3 will lie outside the permitted range, thu
leading to a nontransmitting behavior of Fig. 3~c!.

In Fig. 4 we aim to show the effect of magnetic flux o
the transmission spectrum of Fig. 3~a!. Four different values
of F/F0 are considered. As shown in Fig. 4~a!, for a rather
small value ofF/F050.02, we have two resonant peaks
E1

s50.51A114 sin2(0.02p)'1.5079 and E2
s50.5

2A114 sin2(0.02p)'20.5079, which is different from the
one energy peak of Fig. 3~a!. From this result, it seems tha
the magnetic field does not destroy the symmetry of the m
soscopic ring defects, furthermore, some resonant peaks
be excited by the threading magnetic field. Figures 4~b! and
4~c! show the results forF/F050.2, andF/F050.33, re-
spectively. The corresponding peaks can also be determ
by Eq. ~19!. From these figures, it is easy to see that as
value ofF/F0 increases, two resonant peaks will move t
ward the band edges of the studied system (EL522V1«a
andER52V1«a). Finally, in the caseF/F050.35, there is
no resonant peak in the figure@see Fig. 4~d!#, in this case
W50.5 and cos(g/2)'0.454, thenW.cos(g/2), which does
not meet the condition of Eq.~21!, consequently, there is n
resonant peak in the corresponding system. Our nume
results agree very well with the theoretical predictions.

B. Many siamese-twins-like mesoscopic ring defects

By applying Eq.~11! again, we calculate the transmissio
coefficient as a function of energy for the system of F
1~b!. This is analogous to Figs. 3 and 4 for the SMR system
First, in the absence of magnetic flux, Fig. 5~a! displays the
numerical result for system with parametersV51.0, «a
50.5, and«b520.5. ThenW50.5.0, from Eqs.~30! and
~32!, and the corresponding resonant energies areE1

st52«a

2«b51.5, andE3
st5A17/2'2.0616. It should be noted tha

there are two not allowed resonant energies:E2
st5«b5

20.5, and E4
st52A17/2'22.0616,22V1«a521.5.

Figure 5~b! for V51.0,«a51.0, and«b521.0, is similar to
case~a!, the positions of the perfect transmission peaks ar
E1

st52«a2«b53.0, andE3
st5A20/2'2.2361. For the sake
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FIG. 6. Transmission coefficients as a fun
tion of energy for the STMR defect system o
Fig. 1~b! for different magnetic fluxF. Other pa-
rameters are same with these in Fig. 5~a!. ~a! F
50.1F0, ~b! F'0.2047F0, ~c! F50.3F0, and
~d! F50.4F0. Note that there is always on
resonant peakE'2.061 55 in these figures. In~a!
and ~c! there are three resonant peaks, and in~b!
~a special case!, one of the resonant energies
doubly degenerate, therefore, only two resona
peaks appear in this figure, in~d! two resonant
peaks disappear, and only the magnetic-fie
independent resonant peakE'2.061 55 remains.
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of demonstration of the analytical conclusion: for any giv
W, there is always one energy where the transmission c
ficient is unity. We numerically obtain two figures@Figs. 5~c!
and 5~d!# with some special values of system parameters
Fig. 5~c! for V51.0, «a510.0, and«b5210.0, and in Fig.
5~d! for V50.01,«a50.5, and«b5205. These two figures
show clearly that there is one resonant peak atE3

st

50.5A202116'10.198, and E3
st50.5A1116*0.012

'0.500 400 3, respectively.
Second, when the magnetic fluxFÞ0, it is found that the

positions and the number of resonant peaks are depende
the choice of the magnetic fluxF. Except for the magnetic
flux, the parameters of Fig. 6 are same as those of Fig. 5~a!.
As can be seen in Fig. 6~a!, when F50.1F0, there are
three resonant peaks which are analytically determi
by E1

st50.51A114 sin2(0.1p)'1.675 57, E2
st50.5

2A114 sin2(0.1p)'20.675 57, and E3
st50.5A17

'2.061 55. We plot Fig. 6~b! with F5arccos(0.5A4.25
20.75)F0'0.2047F0 which is given by Eq.~39!, we find
that there are only two perfect transmission peaks. In fac
this special case, there is one doubly degenerate reso
energy (E1

st5E3
st). When F.arccos(0.5A4.2520.75)F0,

FIG. 7. Some enlarged figures of Fig. 6 around the energE
'2.061 55.~a! before the resonant energy, the width of the perf
transmission region isuDEau'0.0181,~b! the resonant phenomeno
happens, the width of the perfect transmission region isuDEbu
'7uDEau, ~c! after resonant energy, the width of the perfect tra
mission region isuDEcu'0.1uDEbu.
f-

n

on

d

in
ant

the degenerate resonant peak will separate into two reso
peaks, this phenomenon is shown in Fig. 6~c! for F
50.3F0. Finally, when F50.4F0, two magnetic-flux-
dependent resonant peaks disappear, consequently, onl
magnetic-flux-independent resonant peakE3

st'2.06155 is
kept in Fig. 6~d!.

To examine in detail the ‘‘resonant’’ behavior (E1
st

5E3
st), we replot the transmission coefficient versus ene

picture aroundE5E3
st50.5A17'2.0616 for three cases,~a!

F/F050.1, ~b! F/F050.2047, and~c! F/F050.3. For the
sake of clear visualization, the perfect transmission regi
are marked by light gray in these figures. We can see tha
the special value of fluxF'0.2047F0, the perfect transmis-
sion region is much wider than those of Figs. 7~a! and 7~c!.
Approximately, we give following relations: uDEbu
'7uDEau and uDEbu'10uDEcu.

V. SUMMARY AND DISCUSSIONS

We have investigated the transmission coefficients in o
dimensional random lattices with mesoscopic ring defe
The considered defects are~a! squarelike mesoscopic rin
~SMR! defects, and~b! siamese-twins-like mesoscopic rin
~STMR! defects. Theoretically, for the special case of o
SMR defect, we demonstrated there are two magnetic-fl
F-dependent complete transmission peaks (T51), which
will appear or disappear at the same magnetic flux. For
case of one STMR defect, we predicted some interes
behaviors of transmission coefficients, such as the magn
flux dependent and independent transmission peaks and
‘‘resonant’’ phenomenon in the studied system. We ha
successfully given the condition under which the ‘‘resonan
phenomenon can be observed.

To explicitly test the analytical results, we studied t
same problem numerically for the systems with many SM
or STMR defects. Among these investigations, we plot
some figures of transmission spectra for the cases with m
netic flux F50 and FÞ0, respectively. With these com
parisons, we can conclude that the magnetic field influen
indeed the transmission properties of the studied syste
furthermore, some complete resonant peaks can be ex
by the magnetic field. Therefore, we can conclude that
magnetic field does not destroy the symmetry of the mes
copic ring defects.

We also studied the ‘‘resonant’’ phenomenon that happ
in the STMR systems. We presented the figure which sho
clearly this behavior. The study of the influence of the ma
netic field on the electron transportation is an interest
topic. There are still a lot things to be done, for instan
different structure of mesoscopic rings, different distributi
of magnetic field, etc.
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