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Electronic transport properties in random one-dimensional chains
containing mesoscopic-ring defects
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We study the electronic transport properties in one-dimensional systems with two kinds of mesoscopic ring
defects: squarelike mesoscopic ritf8MR) defects and siamese-twins-like mescoscopic (BIGMR) defects.
By using the transfer-matrix method, the resonant energig®re the transmission coefficiefit=1) are
derived successfully for both system. For the one SMR defect system, two resonant energies are found as a
function of the magnetic fluxp threading the ring defect, while for the latter case, two magnetic-flux-
dependent and one magnetic-flux-independent resonant energies are predicted in the system, furthérmore, if
takes some specific values, one of thedependent resonant energies may be the same ak-thdependent
resonant energy. The word “resonant” is used to describe this situation. When a finite concentration of SMR
or STMR defects are randomly embedded in a perfect chain, the numerical results confirm all the analytical
predictions. Finally, for the “resonant” case, we show numerically a rather wide perfect transmission region
which is almost ten times as wide as that of the “unresonant” d&@163-182009)03438-4

[. INTRODUCTION states are localized even for infinitesimal disorder in a one-
dimensional lattic€! However, during the last decade ana-

The progress of fabrication technology in semiconductordytical and numerical studies revealed that delocalized states
and related areas allows people to fabricate devices at @N €XIst §|£1_37one-d|men3|onal lattices with  short-range
rather small size, the so-called mesoscopic system, and tigo"relations.="In 1990, the simplest and successful one-

. . . . mensional random dimer modéRDM) was introduced
guantum transport in mesoscopic systems is of con3|deraband studied? In this model, the on-site energy takes two

. _30 .

current interest=3° In such mesoscopic systems, the phase&ossible valueg,, e, and the same value of site energy is
coherence length of electrons becomes large compared t0 thggjgned at random to two succeeding lattice sites. It has
system dimension, thus the system can be modeled asyaen argued thayN eigenstates have a localization length
phase-coherent elastic scattering. For the mesoscopic SYignger than the length of the finite sample, provided that
tems, the persistent current of isolated rings has been th%A_ €s|=<2V, whereV is the nearest-neighbor matrix ele-
focus of attentior?:* As for open-ring systems, many theo- ment. The reason for the occurrence of the delocalization
retical works have been devoted to the investigation of thgghenomenon in RDM has been attributed to the existence of
electronic properties of the systems within the framework ofthe symmetric internal structure of RDR.In the later
the waveguide theory!*1*1/|n addition, the transmission of Wworks, some def_ects with different structure have been intro-
electrons through open mesoscopic ring systems has beéiced and studied. Examples of these models are(Ihe

studied within the tight-binding mod&5252%|t should be randomn-mer model,(2) repulsive binary alloy(3) random
ipolaron lattice, and4) random dimer-trimer modéf.—3’

noted that most of the mentioned works have been limited i ; . .
the ideal mesoscopic systems, in which the interactions suc he common |ngred|en§ these models share S that the ran-
’ om defects possess internal structure that is symmetric

as electron-electrorete), electron-phonong-p) interaction  55ut some plane.
are ignored. Later, the effects efe interaction have been To the best of our knowledge, there is no work devoted to
considered by many groups!®*° Disorder in the mesos- studying the influence of magnetic flux on the electronic
copic systems is also studied by many autf8ré’Recently,  transport properties in random systems. In this paper, we
the interaction ofe-p in the mesoscopic system has beenconcentrate on investigating the electronic transport proper-
studied by introducing the nonlinear impuriti&sOtherwise, ties of one-dimensional chains made by the insertion of me-
in these studies, some mesoscopic ring with special looposcopic ring defects, which are threaded by magnetic flux.
structures have been considered, for example, the multirinGonsider a one-dimensional tight-binding model of a random
system in parallef® multiply connected normal conductor binary alloy in which the site energieg ande, are arranged
loopl” and open necklace of loop geometfyRecently, as---&.epEaEaEpE0EaEbEaELEEAED - - - TO €Xplore the ef-
some works concerning the coherent transport in a multiterfect of magnetic flux on this system, we assume thatgll
minal mesoscopic Aharonov-Bohm ring with a quantum dotare replaced by mesoscopic loop defects with a symmetric
embedded in an arm have been experimentally and theoreiinternal structure. The questions di¢ When each loop is
cally studied and some interesting results have beethreaded by a magnetic fluk, does the magnetic field de-
reported?’ 30 stroy the internal symmetric structure of mesoscopic loop
On the other hand, it is well known that all the electronic defects?ii) Do any new phenomena happen because of the
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FIG. 1. The scheme of random lattices with different defeels: Herea,, andb, are the site amplitude of the lower arm, the
squarelike mescoscopic rin@MR) defects,(b) siamese-twins-like upper arm for ringn, g, is the site energy of the lower and
mescoscopic rngSTMR) defects. upper arm, andy=27®/®,,d,=h/e. Equations(1) and

(2) can be rewritten in the matrix form
introduction of the magnetic field?

In this paper, we aim to answer the two questions raised
above. The paper is organized as follows. In Sec. I, first, we
introduce the two theoretical modes we are studying, second, ) ) ) )
we present the formalism for analyzing and caiculating thevhere P is the promotion matrix which connects the ad-
transmission coefficient of the studied models. In Sec. Il jacent site amplitudes, andc,. ;. o
when a mesoscopic loop defect is embedded in a perfect In general for a defect which occupies sites, then the
lattice, we derive exactly the resonant energies for the moddptal promotion matrix across the defect ¥,
through a transfer-matrix technique. Then, in Sec. IV, we=P" ™P"* M Y...pMW. To study the problem of the
perform numerical simulations of a transmission coefficienttransmission properties through the defect, we can write the
for the case when a finite concentration of defects are rarthe wave-function amplitudes to both sides of the defect as a
domly added. Finally, Sec. V, is devoted to a discussion ofingle Bloch wave specified by a wave veckor
our results and gives a summary.

Ch+1 Cn

Cn

=p

()

Ch-1

eki+re ™k for j=n,
(4)

Cci= -
] ikj ;
Il. MODEL te for j=n+m.

134 have found the reflec-

We start with a tight-binding monatomic chain, for which ~ For a givenP, andk, Wu et a
the site energy i, and atoms are connected by a sametion amplituder
hopping interactiorV. In this paper, we consider two types T
of defects which are randomly inserted in the host chain. The oy @ 'Pra
specific modelgshown in Fig. 1 are the models witla) r=-2 o« TPoa* ®)
squarelike mesoscopic rin@MR) defectd see Fig. 18], (b) =
Siamese-twins-like mesoscopic rnM@TMR) defects[see where
Fig. 1(b)]. It is evident from Fig. 1 that these defects possess
symmetric internal structure. In both cases, we assume that Z}

10

In the tight-binding and nearest-neighbor interaction ap- T .
proximation, it is easy to write the equations for the wave@Nde  is the transpose af.
amplitudes for the sites around the ring defect. Forritie The condition for resonant energyof the defect can be

only the rings are threaded by a magnetic fibix

1
-1 0

la:

Z=e”‘,l“=[

SMR defect of Fig. (2), one has stated by saying the reflection amplitudeof Eq. (5) will
T vanish for the corresponding energy. Becaldsg the energy
(E—s,)c,=Ve, L+Veb +Ve M of the ordered band, it is limited by the following equation:

) _ E—¢&,=2V cosk. (6)
(E_8b)anzvewl4cn+veﬂ7/4Cn+1: i .
1) Thgn, it is evident that the whole energy band of the ordered
lattice ranges froME, ,ER]=[—2V+¢&,,2V+e,].
When a large number of such defects are randomly placed
o ia I in the host chain, the transmission properties can be investi-
(E—e)ch1=Ve ""b,+Ve"a,+Vc, 2, gated by direct numerical computation of the reflection or
: . transmission coefficients through the transfer-matrix method.
)c/ivc?r:leisf(z)ar ;{i:]tleectili?figntpe STMR defect of Figh], the equa- Generally, we can first consider electronic transmission
: through a one-dimensional chain of lengthWe embed this
chain in an infinite perfectly ordered atom chain. Then, in the
conducting region to the left and the right of the chain, the
normalized wave functions can be written as

(E—ep)b,=Ve "4 +Vec,,,

(E—ea)Ch=Vec,_ 1+ Ve b, +Ve M,

(E—ep)a,=Vec,+Ve ", 4, ” "
e "+ f,e ™ for —co<ns<l,

(E—ep)b,=Ve "4 +Verc, 4, " ek for N+1sn<o,

)
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We define the transfer matrik(N) by

[ft B 1+f,
if T(N) i(1—-f)| ®)
where
T(N)=S M(N)S, 9)
cosk sink
|1 0 (10

Note that deT(N)=1, thus, one can calculate the trans-
mission coefficient in the relationstifp

4
T= 2 2 2 2"
2+ T(N)T T T(N) T+ T(N)5;+T(N)3,

11

We should point out that all our numerical results de-
scribed below are obtained directly from EGJ1).

I1l. ANALYTICAL CONCLUSIONS
A. A squarelike mesoscopic ring defect

Consider now the the model shown in Figa)l First we
suppose only one SMR defect is embedded at rsite an
otherwise perfect lattice. From E(.), the relation of the site
amplitudes which connects both ends of the defect is

Cn+2_P{ Cn -M M[ Cn (12)
Ch+1 = Ch-1 e Ch-1 ,
wherePg is the total promotion matrix.
From Egs.(1) and(3) one obtains
(E—8,)(E—&p)—2V? (E—&p)
M,= 2V? coq y/2) 2V cog y/2)
1 0
(13
and
(E—¢e,)(E—gp)—2V? 2V cog y/2)
Mo 1= V(E—ep) (E—ep)
1 0
(14

Using Egs.(13) and(14), we can rewrite the correspond-
ing total promotion matrixP s of Eq. (12) as

(E—e,)

v -1 BJ(E) O
Es:As + 0 CS(E) ) (15
1 0
where
_ V92
AS(E):(E ea)(E—¢p)—2V , 16)

2V2 coq y/2)

ELECTRONIC TRANSPORT PROPERTIES IN RANDOM ...

12101

_2Vcogy2) (E—g,)AL(E)
By(E) = —g—, — [AAE)~1]-————
(17)
_ (E—ep)
CB)= " Vot yi2) (18
From Egs.(16)—(18), when energ\E satisfies
E=E},=eat V(ea—sp)°+4V?sinF(y/2), (19
Eq. (15) can be rewritten as
E_
PAS(VSa)_l 310 ,
75_ * +Bi 0 1 ’ ( O)
1 0

where

S
+

_ 2WZ£2W\W?+sirf(y/2) — cosy
B cosy ’
W=+ W2+ siré(y/2)

BS =
= cosy '

€a" €p

W=

Wu et al3* have pointed out that the reflection amplitude
of Eqg. (5) will vanish only when the total promotion matrix
is proportional to(1) the unit matrix or(2) the promotion
matrix for the ordered systefor some linear combination of
both.  Evidently, for the case of Ej,=e¢,
+J(e,— &)+ 4V?sin’(y/2), the total promotion matrix of
Eqg. (15 in this model reduces to the linear combination of
the unit matrix and the ordered system promotion madsee
Eq. (20)]. Because of the restriction of E€), it is straight-
forward to verify that the perfectly transmitted electronic
statesEj, can be found in the studied system provided that

- COS( %) sW= cos{ %/) .

B. A siamese-twins-like mesoscopic ring defect

(21)

Thus far, we have shown theoretically the resonant ener-
gies of one SMR defect system. In what follow, we will turn
to study the transmission properties of Figp)l Similarly, as
the first step, we consider the case in which only one STMR
defect is inserted into the ideal one-dimensional lattice. From
Egs. (2) and (3), it follows that the total transfer-matrix
across the defect can be written as

3l M MM 22)
Crao st Cho1 — WVin+2Win+1Vin Chot '
where P, is the total promotion matrix, and

Mn 1MH+TIMH+2 are given by
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(E-ea)(E-ep) -2V (E—ep) < e
M= 2V2 cog v/2) 2V cog y/2) : 1
(29) ;.
E M17/2~2.06155
(E—ea)(E—gp)—4VZ 2 1- -
My 1= 2V2cog y/2) . (29 -
1 0 % 34 e, =05 ¢, =-05 V=10
5
(E—g,)(E—g,)—2V2 2V coq y/2) é
1 0
(25)
'2 I I I I
Using EQgs.(23)—(25), Eq. (22) can be represented as 0 1 2 3 4 5

(E—¢,)

v -1 B&(E) O
Est:ést + 0 C(E)|’ (26)
1 0
where
[(E—&a)(E—&p) —4VZ]A(E)
A(E)=1- , 2
st(E) 2V cos 712) (27)
[(E—&a)(E—&p)—2V?]
Bu(E) =~ E oy LA(E)+1],
(28)
_ _ _ _A\/2
Cst(E)=—(E ep)[(E—eq)(E—ep) —4V7] (29

4V3 cog(yl2)

From Egs.(27)—(29), it is quite easy to derive that, when

E3b=eat V(ea—ep)2+4V2sirt(y/2), (30)

Eq. (26) can be represented by the linear combination of the

/D,

FIG. 2. The illustration of resonant energy 4 ®, for the
STMR defect system. The open circles indicate the “resonant
energy cases there, two resonant energies are the same.

(E—ea)

(33
1 0

The analytical results of expressiofl) and (33) indi-
cate that the energies;, and E3, are the candidates of the
resonant energy in the studied system, and the phenomenon
of the vanishing of the reflection coefficients can be observed
around these energies. It should be noted that the condition
for the existence of these extended states is entirely deter-
mined by the system parametets,c,,V, and®. In fact,
from the form of Eq(30) it is clear thatEs, are same ag3,,
and then the condition th&;, exist in the studied system is
also given by Eq(21). In addition,E3, can be rewritten as

promotion matrix for the ordered system and the unit matrix

as
E_
st ( Sa) 1 st 1 0
EstzAi v +BX o 1’ (3D
1 0
where
AS'=1+A3|cos? %)—Ai},
BS'=—-BS|cos?! Z)—Ai}
= = 2 -
Furthermore, when
gatept V(e —sb)7+16\/7
ES=— : (32)

2 1

we have

(ESh—ea)=V(—W= W2 +4). (34)
Consider the limitation of Eq21), we have
| =W+ W+ 4|<2 f 0 G
., if W=0, 5
| —W— yW+4|=2 )
| =W+ W+ 4|=2 f 0 36
, if W=<0.
| —W— yW+4|<2 )

Equations(35) and(36) show that, for any giveiwv, only
one of the resonant energi&sy is allowed in the studied
system (for simplicity, E3' is used to present the allowed
resonant energy To show more clearly the allowed resonant
energies in the system, we plot in Fig. 2 the relationship
between the, resonant energids;{ and E3' of the STMR
system and the threading magnetic fluk. The figure is
obtained under one set of special parametgrs 0.5, e,,=
—0.5, andV=1.0, corresponding to the case \&f>0. As
can be seen from the figure, there are dvalependent reso-
nant energies and on-independent resonant energy, and in
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(Saf‘gb)z*’(sa*sb) \/(Safsb)2+16v2 .

4V?

cosy=

=W2+ W\ W2+ 4—1. (37)

If |W?+WW?+4-1|<1, from Eq.(37), one can ob-
tain
&, =d[m*+arccosW?+WW>+4-1)],
m=0,1,2.... (38)
Thus, the values of magnetic flux where the resonant energy
happens are uniquely determined by E§8). Expression
(38) yields the conclusion thab | /®, or @, /®, has a pe-

riod unity (see Fig. 2 Among each period, there are two
values, the first two of them are given as

®,/dy=arccosW?+WW>+4—1), (39
®/Dy=1—arccosW?+W{W?+4—1). (40)

The above two special situations are marked in Fig. 2, we
expect that some peculiar phenomenon can be observed at

FIG. 3. Transmission coefficients as a function of the energy forIhese points.
the system of Fig. (B) with N=5000, and the magnetic flusp
=0.0.(a) and(b) show clearly one complete transmission pgak.

As the parameterse(—€p,)/2V=1.1>1.0, then the resonant peak

E=3.3 is not allowed.

some of the regionémarked by light gray, both magnetic-

dependent resonant energi€s, are forbidden, conse- half of these sites are randomly replaced by the mesoscopic
quently, only the magnetic-independent resonant energy aping defects.

IV. NUMERICAL RESULTS

The main results are shown in Figs. 3 and 4 for the SMR
defect systems, and in Figs. 5, 6, and 7 for the STMR defect
systems. It should be noted that in all our numerical calcu-
lations given here, we fix the lattice sité=5000 and about

pears in the figure. Interestingly, whdnis chosen by some

special values, two of the resonant energies are the §ame
example,E}'=E3' marked by an open circle in the figure
here we use the word resonant to describe this situation
Generally, suppos&/>0, the resonant phenomenon takes_ 5 0, and(c) ¢,

place under the condition

values of e,—

A. Systems with many SMR defects

Figure 3 shows the transmission spectrum for different

C (@ ea—ep=
—sb 2.2/=2.2. In the numerical calcula-

V=1.0, (b) e,—ep=2V

tions, we set the magnetic fluk=0. As seen in Figs. @)

L0 @=0.020, (a) 1.0 ®=020, (b)
= 1.0 '/_
z ’ FIG. 4. Transmission coeffi-
@ 059 o 0.3 cients as a function of the energy
E for the SMR defects system of
% 0%511*"5"_’;506 Fig. 1(a) for different magnetic
O 0.0- 0.0+ flux ®. Other parameters are the
O T T T same as those in Fig(8. (a) ®
E 2 1 0 1 2 3 -2 3 =0.02b,, (b) d=0.2b,, and (0)
2 10 - 104 ) ®=0.33Dg. In these_ three figures
E two resonant energies are clearly
“n shown, and it can be seen that the
®=0.350 resonant energies will move to the
g 0.5+ 0.5 o two edges of the energy band as
‘ the magnetic fluxp increases(d)
] o0l \ ] ®=0.35D, in this case, the reso-
004 i 0.0- \ .;.AM. ‘ nant peak disappears.
2 -Il (I) i é 3 235 2.210 2.115 2.50
ENERGY ENERGY
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=3.0, which happens to lie at the right edge of energy band,
so the transmission behavior still can be observed; for case
(c), the energy band is—0.9,3.1], obviously, the resonant
energy E}=3.3 will lie outside the permitted range, thus
leading to a nontransmitting behavior of FigcB

In Fig. 4 we aim to show the effect of magnetic flux on
the transmission spectrum of Fig.aR Four different values
of ®/® are considered. As shown in Figa for a rather
small value of®/d,=0.02, we have two resonant peaks at

ES=0.5+ J1+4 sirf(0.02r) ~1.5079 and E3=05

— J1+4 sirf(0.027) ~ — 0.5079, which is different from the
one energy peak of Fig.(8. From this result, it seems that
the magnetic field does not destroy the symmetry of the me-
soscopic ring defects, furthermore, some resonant peaks can
be excited by the threading magnetic field. Figurés 4nd

4(c) show the results fob/dy=0.2, and®/P,=0.33, re-
spectively. The corresponding peaks can also be determined
by Eq.(19). From these figures, it is easy to see that as the
value of ®/® increases, two resonant peaks will move to-
ward the band edges of the studied systé&in= —2V+e,
andEg=2V+¢,). Finally, in the caseb/®,=0.35, there is

no resonant peak in the figufsee Fig. 4d)], in this case
W=0.5 and cosf/2)~0.454, thenV>cos(y/2), which does

not meet the condition of Eq21), consequently, there is no
resonant peak in the corresponding system. Our numerical

FIG. 5. Transmission coefficients as a function of the energy foresults agree very well with the theoretical predictions.

the system of Fig. (b) with N=5000, and the magnetic flusb
=0.0. (a) and (b) show clearly two complete transmission peaks,
respectively(c) For a large parameter,= —&,=10.0, and(d) for
a small paramete¥=0.01. In both cases, we can see that there is

always one resonant peak.

and 3b), there is one resonant peakEt 1.5 andE=3.0,

B. Many siamese-twins-like mesoscopic ring defects

By applying Eq.(11) again, we calculate the transmission

coefficient as a function of energy for the system of Fig.
1(b). This is analogous to Figs. 3 and 4 for the SMR systems.
First, in the absence of magnetic flux, Figabdisplays the

respectively, while in Fig. @), no resonant peak is found. numerical result for system with paramete¥s=1.0, ¢,
One can easily explain these numerical results with the helpr 0.5, ande,= —0.5. ThenW=0.5>0, from Eqgs.(30) and

of Eq. (6). When® =0, from Eq.(19), the possible resonant
energies ar&€;=2g,— ¢, andE3=g,,, by the definition of
the transfer matrix of Eq(14), E3 is unallowed, conse-
quently, onlyE$ remains. For the cag@), where the energy
band is[—1.5,2.3 and the resonant enerdy;=1.5, it is
evident that this energy lies in the energy band; for case
the energy band if—1.0,3.0 and the resonant enerds;

(32), and the corresponding resonant energiesEﬁfe 2e,
—&,=1.5, andE5'= \/17/2~2.0616. It should be noted that
there are two not allowed resonant energi€s'=e,=
—0.5, and E§'=—\17/2~—2.0616<—2V+g,=—1.5.
Figure §b) for V=1.0,£,=1.0, ande,,= — 1.0, is similar to
case(a), the positions of the perfect transmission peaks are at
ES'=2¢,—£,=3.0, andES'= \/20/2~2.2361. For the sake

0.5+

004 4

TRANSMISSION COEFFICIENT

104 | (a) 1.0 (b)
D010 0.5 02020470 _ FIG. 6. Transmission coefficients as a func-
o ’ 0 tion of energy for the STMR defect system of
Fig. X(b) for different magnetic fluxp. Other pa-
; 004 a8 rameters are same with these in Figa)5(a) ®
S — g . — =0.1D,, (b) ®~0.2047D,, (c) ®=0.3D,, and
0 1 2 -1 0 2 (d) ®=0.4D,. Note that there is always one
1.0 resonant peak~2.061 55 in these figures. [@)
(d =04, and(c) there are three resonant peaks, an¢ojn
| (a special case one of the resonant energies is
05- doubly degenerate, therefore, only two resonant
peaks appear in this figure, i) two resonant
peaks disappear, and only the magnetic-field-
0.0 independent resonant pekks2.061 55 remains.
203 205 209
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1 v0e 050705 0001 oo (a) the degenerate resonant peak will separate into two resonant
1.0 . i peaks, this phenomenon is shown in Figc)6for ®
=0.3b,. Finally, when ®=0.4d,, two magnetic-flux-
354 240513 [ 2 00 dependent resonant peaks disappear, consequently, only the
magnetic-flux-independent resonant peBk~2.06155 is
kept in Fig. &d).
- Vst e (oo (B) To examine in detail the “resonant” behaviorE{'
1.0 vy =E3), we replot the transmission coefficient versus energy
W picture arounce= Egtz 0.5/17~2.0616 for three case&q)
8 2 = ®/Py=0.1,(b) ®/Dy=0.2047, andc) ®/P,=0.3. For the

sake of clear visualization, the perfect transmission regions
are marked by light gray in these figures. We can see that, at

TRANSMISSION COEFFICIENT

L I the special value of flud~0.2047,,, the perfect transmis-
=1.0, /@ =0. [AE. | = 0.0129 (C) . . . . -

109 c—5,c=0 sion region is much wider than those of Figga)7and 7c).
Approximately, we give following relations: |AEy|

65 ~7|AE,| and|AE,|~10AE,|.

2.0547 20676
V. SUMMARY AND DISCUSSIONS
OO ' .8 E=2;06155 . .
1.95 2.00 2.05 2.10 2.15 We have investigated the transmission coefficients in one-

ENERGY dimensional random lattices with mesoscopic ring defects.

The considered defects afe) squarelike mesoscopic ring

FIG. 7. Some enlarged ﬁgures of F|g 6 around the enﬁgy (SMR) defects7 andb) siamese-twins-like mesoscoplc rlng
~2.06155.(a) before the resonant energy, the width of the perfect(STMR) defects. Theoretically, for the special case of one
transmission region iR\ E,| ~0.0181,(b) the resonant phenomenon SMR defect, we demonstrated there are two magnetic-flux-

happens, the width of the perfect transmission regiofAiE,| ®-dependent complete transmission peaks=(), which

rTniZLAioiJr‘eg)ozf?;rArEesiTng Aelge'rgy, the width of the perfect trans-yijy appear or disappear at the same_magnetic flu_x. For 'Fhe
e bl case of one STMR defect, we predicted some interesting

of demonstration of the analytical conclusion: for any givenbeha\’iors of transmi_ssion coefiicients, SL.‘Ch. as the magnetic-
W, there is always one energy where the transmission coefl—ux dependent and mdepgndent transmission peaks and the
ficient is unity. We numerically obtain two figuréBigs. 5c¢) resonant’ phenomenon in the studied .system‘: we ha\{,e
and 5d)] with some special values of system parameters. Ir§uccessfu|ly given the condition under which the “resonant

Fig. 5(c) for V=1.0, s ,=10.0, ands,= —10.0, and in Fig. Pn€nomenon can be observed. .
5(d) for V=0.01,¢,=0.5, ands, = —05. These two figures To explicitly test the analytical results, we studied the

show clearly that there is one resonant peak E&f same problem numerically for the systems with many SMR

_ 5Pt 16~ St_0.5/17 16002 or STMR defects. Among these investigations, we plotted
8;’03 45013 r;(s)blei?i,vely and  E3=0.5/1+16*0.0% some figures of transmission spectra for the cases with mag-

= ' S . netic flux ®=0 and ®#0, respectively. With these com-
Second, when the magnetic fldx+# 0, it is found that the b y

" dth ber of K q q arisons, we can conclude that the magnetic field influences
positions and the number of resonant peaks are dependent piyeqq the transmission properties of the studied systems,

the choice of the magnetic fluk. Except for the magnetic  ,hermore, some complete resonant peaks can be excited
flux, the parameters of Fig. 6 are same as those of k&. 5 by the magnetic field. Therefore, we can conclude that the

As can be seen in Fig.(&, when ®=0.10,, there are  ,anetic field does not destroy the symmetry of the mesos-
three resonant peaks which are analytically determlne(éopiC ring defects.

by  E}'=0.5+1+4sif(0.1m)~167557, E5'=05 We also studied the “resonant” phenomenon that happen
—\1+4 sirf(0.1m)~ - 0.675 57, and  E3'=05/17  inthe STMR systems. We presented the figure which shows
~2.06155. We plot Fig. ®) with ®=arccos(0.§4.25 clearly this behavior. The study of the influence of the mag-
—0.75)P(~0.2047, which is given by Eq(39), we find  netic field on the electron transportation is an interesting
that there are only two perfect transmission peaks. In fact, imopic. There are still a lot things to be done, for instance,

this special case, there is one doubly degenerate resonatifferent structure of mesoscopic rings, different distribution

energy E3'=E3). When ®>arccos(0.§4.25-0.75)P,,  of magnetic field, etc.
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