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Theory of thermopower in disordered mixed crystals: Application to Si-Ge systems
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A Green’s-function theory of thermoelectric power in disordered mixed crystals is presented. This theory
incorporates features of~a! disorder,~b! band structure,~c! relevant dielectric function, and~d! electron-
phonon interaction. By formulating the theory in coordinate space, besides subsuming previous work on metals
and alloys as special cases, the inclusion of disorder effects based on coherent potential approximation has
been incorporated into this scheme. This formulation gives the concentration and band occupancy dependence
of thermopower. Thus it provides a possibility for investigating other disordered mixed systems which may be
tailored to yield larger values of thermoelectric figure of merit. As an illustration of this formalism, numerical
estimations of the contributions due to disorder and electron-phonon effects to the thermopower in a two-band
model of Si-Ge mixed crystal system are given at room temperature.@S0163-1829~99!00441-5#
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I. INTRODUCTION

In recent years there has been renewed interest in se
ing for novel materials that may be used for efficient, en
ronmentally sound cooling and power generation purpo
This has naturally led to research on new materials exh
ing high thermoelectric efficiencies. The performance o
thermoelectric material is characterized by the three imp
tant transport coefficients—electrical, thermal, and therm
electric. A high ratio of electrical to thermal conductivity a
well as large thermoelectric power are needed in selec
materials for both thermoelectric generation and refrige
tion. Two of the central areas in this search have been
effects of confinement in low dimensional materials in g
ing improved electric contribution to the thermoelect
transport properties, and the role of disorder in decreas
the lattice thermal conductivity and affecting thermoelect
transport coefficients. Only recently the effect of disord
scattering on thermoelectric materials was reported.1

The theory of electrical and thermal transport was giv
by Kubo and co-workers2,3 in terms of various correlation
functions. This was extended to superconducting system
Kadanoff and Martin.4 Luttinger5 gave a unified ‘‘mechani-
cal’’ description of the ‘‘Kubo’’ formula for all the transpor
coefficients. Only recently Jonson and Mahan6 ~JM! worked
out in detail these transport coefficients for a free-elect
model of simple metals, including electron-phonon inter
tions. However, the materials of interest in the search
improved thermoelectrics typically are semiconductors a
heterostructure systems which have complex crystal st
tures possessing multiple bands, which cannot be descr
by these theoretical frameworks. Thus a formulation ap
cable to realistic systems is needed in the study of semic
ducting thermoelectric materials. The purpose of this pape
to provide such a formalism which incorporates~a! disorder,
~b! band structure,~c! appropriate dielectric function, and~d!
electron-phonon interaction. This is accomplished in Sec
In Sec. II A, a general operator formalism for thermal tran
port in the spirit of Kadanoff and Martin4 and Luttinger5 is
given. This formalism is in coordinate space and is
representation-free framework. It can be applied to a sys
PRB 600163-1829/99/60~17!/12033~12!/$15.00
ch-
-
s.
t-
a
r-
-

g
-
e

g

r

n

by

n
-
r
d
c-
ed
i-
n-
is

I.
-

a
m

possessing localized or extended states. For example,
this formalism the previous result of JM follows by a choi
of free-electron representation. Also it is found that t
choice of Bloch or Wannier representation in this opera
formalism will produce an appropriate description of sem
conductors including disorder effects. In Sec. II B, the theo
of thermopower of solids is expressed in terms of Kubo
sponse functions.

In Sec. III, the incorporation of disorder effects is given
detail. Disorder occurs not only in bulk alloys but also at t
interfaces of heterostructure materials.7 It is believed this
will play an important role for the application of new nan
structure materials because the effect of disorder scatterin
of importance in comparison with that of lattice scattering
the consideration of electrical and thermal conductivities.8–10

However, the thermoelectric power in disordered mix
crystals does not seem to have been examined with the s
rigor as for simple metals.6 This may be due to the fact tha
the correlation function expression for thermoelectric pow
tensor involves both charge current and energy current c
ponents, which are more complicated. Effects of disorder
the transport phenomena has been considered previous
metallic alloys. Single band, single-site coherent-poten
approximations~CPA! are used commonly in studying thes
systems.8 For semiconducting disordered systems these
proximations can no longer be applied because of the e
tence of energy gap and the presence of at least two b
atoms per unit cell which introduce multiple bands and c
ate charge transfers between these bands when the imp
effects are included. Here, in order to obtain the self-ene
in the disordered semiconducting materials, a generali
CPA formalism11 applicable to multiband system is used.
Green’s-function technique to treat electrons interacting w
phonons is also incorporated.

In Sec. IV, a useful special case of the formalism dev
oped here is given to study the thermopower of disorde
crystals of the type (A12cBc) as function of the impurity
concentrationc and as function of the occupation of th
bands. Unlike the work on simple metals,6 several unique
features of semiconducting materials such as the nonpar
licity of the energy bands with band gap, the semiconduc
12 033 ©1999 The American Physical Society
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12 034 PRB 60P. J. LIN-CHUNG AND A. K. RAJAGOPAL
dielectric function,12–14 different from that of the free-
electron gas, and the multiband electronic structure includ
mixed-crystal features of the disordered system are inco
rated. These are given in separate Secs. IV A, B, and C.

In Sec. V, an important example of this type of (A12cBc)
alloy, Si12cGec , is considered in some detail. The choice
this type of material for the present study is because of
suggestions of possible high-temperature thermoelectric
terial. More recently there are theoretical expectations15,16

that such a material may exhibit enhanced thermoelectric
ure of merit in its superlattice structure. Moreover, the el
tron and phonon excitation properties of such material h
also been investigated for some time,17–19 which indicates a
model for computation in a realistic manner. The concen
tion dependence of the self-energy is given in Sec. V A, d
order contribution in Sec. V B, dependence of various pa
of the product~sa! on concentration and bandfilling in Se
V C, and a discussion of the numerical results in relation
some experimental results at room temperature in Sec.
A summary of the results obtained is given in Sec. VI.

II. THEORETICAL DEVELOPMENT

A. Operator formalism for a combined
electron-phonon system

Following Refs. 4 and 5, the energy–current-density
erator for a system of electrons and phonons with first-or
electron-phonon interaction term included is first co
structed. The correlation function of charge–current-den
operator and energy–current-density operator is then ex
ined by separating the contributions from electron, phon
and electron-phonon interaction terms. Thus the correla
function expressions for the thermal transport coefficie
obtained here are more general than those derived based
transport equation.20 The linear response of a system to
external electric field leads unambiguously to the Kubo f
mula for the electrical conductivity tensor.2 This derivation
based on a ‘‘well defined Hamiltonian’’ is thu
‘‘mechanical.’’5 For a long time, there existed no mechan
cal formulation for thermal transport problems since th
was no Hamiltonian describing a thermal gradient. Gre
Kubo-Mori formulas for the thermal transport coefficien
are derived based on the assumptions that local variable
controlled either by a Markoff process or by a ‘‘local equ
librium distribution.’’ These derivations, while not rigorou
are found to be quite practical. They have been used wid
in studying thermal transport. Luttinger5 gave an essentially
mechanical derivation by introducing an inhomogeneo
gravitational field which produces the energy flow and te
perature fluctuations. A term which appears in the Ham
tonian as a product of this field and the local energy den
operatorh(r ,t) of the system was introduced and a Kub
type theory was developed by him.

The energy-current operatorj E(r ,t) which appears in the
correlation functions is determined through the equation
continuity

ḣ~r ,t !1¹• j E~r ,t !50. ~1!

The overdot represents the time derivative.
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Kadanoff and Martin4 derived j E(r ,t) for superconduct-
ing electrons and expressed the correlation functions in te
of a two-particle Green’s function familiar in many-bod
theory. Hardy21 derived j E(r ,t) for a lattice system. Lut-
tinger gave an expression for a free-electron system.5 Using
the Bloch representation for electrons, Lyo22 and Vilenkin
and Taylor23 obtained an expression for the energy curre
These authors also included electron-phonon interaction c
tributions. In the present work,j E(r ,t) for a combined elec-
tron and phonon system in a representation free form
given. By choosing appropriate representation for the fi
operators, the expressions found in the literature are obta
as special cases.

The Hamiltonian of the system considered here is

H5He1Hph1Hep , ~2!

where

He5E d3r ĉ1~r ,t !F p̂2

2m
1V~r !G ĉ~r ,t !, ~3!

Hep52(
a,l

E d3r ĉ1~r ,t !Qa~ l ,t !¹aV~r2Rl !uRl5R
l
0ĉ~r ,t !,

~4!

Hph5(
a,l

Pa
2~ l ,t !

2M ~ l !
1

1

2 (
a,a8,l ,l 8

Faa8~ l ,l 8!Qa~ l ,t !Qa8~ l 8,t !,

~5!

V~r !5(
l

Vl~r2Rl
0!. ~6!

V(r ) is the static periodic crystal potential giving rise to th
band structure for the electrons.ĉ1(r ,t), ĉ(r ,t) are, respec-
tively, the creation and annihilation field operators for t
electrons.p̂, Pa( l ,t) are the momentum operators for ele
trons and ions, respectively.Qa( l ,t) is the displacement op
erator for the ion.m, M ( l ) are the masses for electrons a
ions, respectively.Rl are the position vectors of vibratin
ions with their equilibrium positions atRl

0. Faa8( l ,l 8) is the
dynamical matrix of the vibrating lattice. All these operato
are in the Heisenberg representation, and obey equal-
canonical commutation rules. For the sake of simplicity h
monic approximation for the vibrating lattice and th
leading-order electron-ion interaction are considered her

A general expression forj E(r ,t) will be derived by using
the definition ofh(r ,t) in the form

h~r ,t !5F2
p̂1• p̂2

2m
1V~r !G ĉ1

1ĉ2

2(
a,l

ĉ1~r ,t !Qa~ l ,t !¹aV~r2Rl !uRl5R
l
0ĉ~r ,t !.

~7!

In the above equation and subsequent equations, the ind
1 or 2, denote the corresponding variables asr1 , r2 , respec-
tively, and in Eq.~7!, we let r15r25r at the end of the
indicated operations.

Equation~1! can also be written as



r t

d
t
t

nl
ic
o

g

nt

th
el
r
e
ti
ed
n

ed
is
olv
xi

e

ed
for
ns
his
ue

ls,
ar-

als
re-

er-
is

ng

-
q.
n

ct

the
the
to

an
tri-
-

PRB 60 12 035THEORY OF THERMOPOWER IN DISORDERED MIXED . . .
2 i\¹• j E~r ,t !5@h~r ,t !,H# ~8!

by using the standard quantum-mechanical expression fo
time derivative of an operator. HereH is the total Hamil-
tonian operator given by Eq.~2!.

From Eqs.~3!–~8! the energy-current operator is derive
and may be expressed as a sum of two terms arising from
electron and the electron-phonon interaction. Because
part of energy-current operator arising from phonons o
contributes to the correlation function related to the latt
thermal conductivity, and does not contribute to the therm
electric power, it will not be considered in the followin
sequel.

It is found that

j E~r ,t !5 j e
E~r ,t !1 j ep

E ~r ,t !, ~9!

where

j e
E~r ,t !5S 2

p̂1• p̂2

2m
1V~r ! D p̂12 p̂2

2m
ĉ2

1ĉ1 , ~10!

j ep
E ~r ,t !52(

a,l
@„¹aV~r2Rl

0!…Qa~ l ,t !# j „r ,t)

2
i¹ r

4p (
a,l

E d3r 8

3„¹aV~r 82Rl
0!…

Q̇a~ l ,t !r~r 8,t !

ur2r 8u
, ~11!

also

j ~r ,t !5
1

2mi
@ĉ2

1¹1ĉ12~¹2ĉ2
1!ĉ1#

5
p̂12 p̂2

2m
ĉ2

1ĉ1 , ~12!

r~r ,t !5ĉ1ĉ, ~13!

wherej (r ,t) andr(r ,t) are, respectively, the electric curre
density and charge density. The second term in Eq.~11!
arises from the commutator ofHph with h(r ,t) and the rela-
tion M ( l )Q̇a( l ,t)5Pa( l ,t).

From these equations, the expressions given in
literature6,22,23 are deduced by expressing the electron fi
operatorsĉ(r ,t),ĉ1(r ,t) in terms of free-electron states o
the appropriate Bloch states associated with the pertin
electron system of metals and alloys. Wannier representa
$um(r )% is found to be convenient for treating site disorder
mixed-crystal systems.1 In semiconductors, alternatively, a
effective-mass representation may be used.

B. Theory of thermoelectric power of solids

Several techniques and approximations have been us
the past to develop theories of thermoelectric power. Ex
ing works on thermoelectric power are mostly based on s
ing the Boltzmann equation in the relaxation-time appro
mation by a variational method.24,25However, the Boltzmann
transport equation20 is for weak scattering and is valid in th
he
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dilute-alloy limit. In order to treat more general disorder
alloy systems for a wide range of scattering strengths and
all impurity concentrations, correlation function expressio
for the transport coefficients are more appropriate. In t
context, the Green’s-function method is often the techniq
of choice. More recently, Jonson and Mahan6 examined the
electron-phonon contribution to the thermopower of meta
using a Green’s-function technique as in Ref. 4, with h
monic approximation for the phonons.

Here a general formalism applicable not only to met
but also to semiconductors is given. Using the linear
sponse theory of Kubo, Yokota, and Nakajima,3 the electric
and heat currents in terms of the external electric field~E!
and temperature gradient (“T) are expressed in the form

S 2 j

e

2 jQ

kT

D 5S s

e2

sa

ek

sa

ek

k1Tsa2

k2T

D S eE
“~kT! D . ~14!

Heres is the electrical conductivity tensor,k is the thermal
conductivity tensor at zero electric current, andsa is the
tensor product of the electrical conductivity and the th
mopower a. Based on the Green-Kubo-Mori formula th
product is given in terms of the correlation function by

~sa!mn~v!5 lim
h→01

1

V E
0

`

dt e2 ivt2ht

3E
0

b

dl^ j m~0! j n
Q~ t1 i\l!&. ~15!

j m(0) is the total electric current and is given by integrati
Eq. ~12! over all space.j n

Q(t) is the total heat current which
is related to the energy current byj Q(t)5 j E(t)2m j (t).
Here m is the chemical potential.b is the inverse tempera
ture, (kT)21. The contributions to the thermopower in E
~15! then contain the following three types of correlatio
functions:

^ j m~0!; j n~ t !&'^c1
1~0!c2~0!; c3

1~ t !c4~ t !&, ~16!

^ j m~0!; j n~ t !Qa~ l ,t !&'^c1
1~0!c2~0!; c3

1~ t !c4~ t !Qa~ l ,t !&,
~17!

^ j m~0!; rn~ t !Q̇a~ l ,t !&'^c1
1~0!c2~0!; c3

1~ t !c4~ t !Q̇a~ l ,t !&,
~18!

the first of which is similar to that appearing in the exa
expression for electrical conductivity tensorsmn(v):2

smn~v!5 lim
h→01

1

V E
0

`

e2 ivt2htdtE
0

b

dl^ j m~0! j n~ t1 i\l!&.

~19!

The second and third expressions in Eqs.~17! and ~18! ap-
pear only for thermopower, because of the inclusion of
electron-phonon interaction. Procedures for decoupling
configuration averaged two-particle Green’s functions in
products of two one-particle Green’s functions as
approximation26 can be generalized to determine the con
butions in Eqs.~17! and~18! through the conversion of pho
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non displacement operators into electron operators using
following equation of motion for the combined electro
phonon system:

Qa~ l ,t !5M 21 (
a8,l 8,m,m8

E D0~a l t ; a8l 8t8!¹a8V~r2Rl
0!

3um* ~r !um8~r !cm
1~ t8!cm8~ t8!dt8d3r , ~20!

whereD0 is the bare phonon Green’s function. In the case
metals, these expressions were examined by JM when
electron field operators were expressed in terms of the f
electron operators. Because the evaluation of the trans
coefficients relies upon the determination of the one-part
Green’s functions, the configuration-averaged Green’s fu
tion in a homogeneous random disordered system is cru
in the study of disordered mixed crystals. In the adiaba
approximation, the time derivative of the phonon displa
ment operator in Eq.~18! is ignored. In the next section,
theory for disordered systems for multiband semiconduc
is developed.

III. MULTIBAND COHERENT-POTENTIAL
APPROXIMATION FOR DISORDERED MIXED

CRYSTALS

In the study of disordered mixed crystals only idealiz
models have been considered. Such results for simple
tems are valuable, both in guiding physically motivated a
proximations and in finding unusual features unique to
disordered systems. CPA~Refs. 27–29! is one of the most
powerful techniques used in the calculations of electri
conductivity8 and lattice thermal conductivity10 of disordered
binary alloys. This technique is capable of dealing w
single particle properties of elementary excitations in s
disordered crystals of the typeAcB12c for arbitrary c, and
for moderately different characteristics ofA andB within the
framework of multiple-scattering theory. It may be regard
as an interpolation scheme between properly described li
corresponding to the entire range of impurity concentrat
and strong and weak scattering.

Velicky8 used a single band model Hamiltonian to d
scribe the electronic structure of a disordered binary all
The single-site approximation in a multiple-scattering d
scription then was used by him for the evaluation of t
electrical conductivity. In the single band CPA, it is essen
to restrict the disorder to be site-diagonal in order to simp
the treatment. In this case an effective medium schem
obtained which contains effective atoms each having s
energyS. The averaged Green’s functionG is related to the
self-energyS by

G~z!5@z2E~k!2S#21, ~21!

whereE(k) is the periodic part of the Hamiltonian.S(z) is
the electron self-energy in the presence of disorder scatte
and is determined self-consistently by the following equat
specifying no scattering on the average from any siten in the
effective medium.26 The Wannier representation is used
describing this approximation, and then using the relati
ship to the Bloch representation via the lattice Fourier tra
formation, we obtain
he
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uk&5N21/2(
n

eik•Rnun&, ~22!

S~z!5Eav1c~12c!D2
F~z!

11@S~z!1Eav#F~z!
. ~23!

Here F~z!5^nuG~z!un&5N21(
k

G~k,z! ~24!

is the site-diagonal matrix element of the averaged Gree
function, Eq. ~21!, in the Wannier representation which
also expressed in the Bloch representation as indica
above.

Eav is defined as

Eav[cEA1~12c!EB. ~25!

EA, EB are the diagonal matrix elements of the Hamiltoni
with respect to the Wannier representation for pure crystaA
andB, respectively. The energy zero is defined such that

EA52EB5 1
2 Dw,

D5~EA2EB!/w, ~26!

whereD is the separation between atomic levelsEA andEB,
w is the valence band half width. It is convenient to usew as
an energy unit throughout the calculation. Henceforthw51
is assumed. ThusD represents the relative strength of th
disorder in comparison to the periodic part of the Ham
tonian.

Unlike the case for metals, to evaluate the self-energy,
~23!, several additional features have to be addressed f
mixed semiconducting crystal with two basis atoms asso
ated with each lattice point. First, the self-energy is now
232 matrix because the two atoms in the unit cell introdu
a bonding and an antibonding band. Second, if the ne
neighbor interactions change with the atomic pairs then
concentration dependence of theEav matrix is more in-
volved. The formalism is now described in detail in the A
pendix for the widely applicable zinc-blende structure whi
is appropriate for II-VI and III-V compound semiconductor

For a two-band model of a semiconductor the Green
function matrix is

G~k,z!5Fz2s~k!2Saa~z!

Sab~z!

Sab~z!

z1s~k!2Sbb~z!G21

,

~27!

wheres(k) is the dispersion for the antibonding state~see the
Appendix!. In the caseSab(z)50, the CPA approach re
duces to solving the following two decoupled equations s
consistently:

Saa~z!5Eaa

1
c~12c!Daa

2 f ~0!~z2Saa21!

11$Saa2Eaa2~122c!Daa% f ~0!~z2Saa21!
,

~28!
Sbb~z!5Ebb

1
c~12c!Dbb

2 f ~0!~z2Sbb11!

11$Sbb2Ebb2~122c!Dbb% f ~0!~z2Sbb11!
,
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f ~0!~z![
1

p E
2`

` dh r~0!~h!

z2h
, ~29!

where

r~0!~h!5(
k

d@h2s~k!#.

The averaged energiesEii , and the energy separations b
tween the host and impurity atoms for the bonding and a
bonding bandsD i i , are defined as

Eaa52~122c!
D

2
1

~12c!Eg
B1cEg

A

2
,

~30!

Ebb52~122c!
D

2
2

~12c!Eg
B1cEg

A

2
,

Daa5D1
Eg

A2Eg
B

2
,

~31!

Dbb5D2
Eg

A2Eg
B

2
.

Note that unlike Eq.~26! for the single band case, the zero
energy is no longer set at the midpoint of either the antibo
ing states or the bonding states of the two pure crystalsA and
B.

The effects of alloying on electrons are contained in
self-energy functionsS(z). The real part ofS(z) in Eq. ~28!
represents the band shift and band distortion due to the
order scattering. It is influenced by the entire region of
bands, whereas the imaginary part ofS(z) is determined by
the lifetime of an electron at the energyz due to the disorder
scattering.29 In a non-self-consistent averagedt-matrix ap-
proximation~ATA !, Equation~28! is solved when theS(z)
on the right-hand side of the equation is replaced byEii .

In the next section several contributions to the therm
electric power in mixed crystals are obtained in detail.

IV. THERMOELECTRIC POWER IN MIXED CRYSTALS

In order to investigate the thermopower in mixed cryst
the electrical conductivitys in these systems is first exam
ined because the off-diagonal transport coefficientsa in Eq.
~14! involves s as a factor. The disorder induced electric
conductivity tensor in the CPA has been derived
Velicky.8 In the mixed-crystal case, it has the form

s5
2e2

pV E dv2S 2
dnf

dv2
D

3E dv(
n,k

@vn~k!Im Gnn~k,v2!#2d@v2En~k!#.

~32!

For simplicity, only the diagonal part of the transport tens
is considered and the tensor subscripts are ignored in
following subsections. In Eq.~32! the summation overn in-
cludes the two bands under consideration, and the veloci
related to the energy dispersionEn(k) by vn(k)
i-

-

e

is-
e

-

s

l

r
all

is

5]En(k)/]k. The dispersion relations for the two bands
crystalB areE1(k)5s(k) andE2(k)52s(k), respectively.
When the tight-binding formalism, Eq.~A6!, is used for the
s(k) of the diamond structure, the calculateds curve dis-
plays structural details reflecting characteristics of the disp
sion relation and does not affect the interpretation of
overall behavior of the thermopower. The configuratio
averaged Green’s functions in Eq.~32! for the two bands are
obtained once the self-energies in Eq.~28! are determined by
the self-consistent CPA approach. The summation overk in
Eq. ~32! may be performed using Monte Carlo sampling
1
48 of the Brillouzin zone.

It is known that electron-phonon mass enhancement
fects the thermoelectric power. At low temperature, the sc
terings of electrons by phonons and by impurities interf
with each other. Therefore the mass enhancement factors
pend on the strength of the impurity scattering and the c
centration of the impurities.

To obtain the thermoelectric power of a mixed cryst
Eqs.~10!–~13! are considered in the Bloch representation

The thermoelectric power in a mixed crystal then can
expressed as the sum from three contributions:

sa5~sa!~1!1~sa!~2!1~sa!~3!5(
s

~sa!~s!. ~33!

The first term (sa)(1) is the contribution from the par
j e
E(r ,t)2m j (r ,t). The second and third terms come from t

two electron-phonon interaction terms ofj ep
E (r ,t) in Eq.

~11!. They are related to the correlation functions in Eq
~17! and ~18!, respectively.

The sum of the first two terms in Eq.~33! has special
meaning. It is the so-called Mott term, (sa)(M ), appearing in
the Mott formula for metals.6 It is related to the correlation
function in Eq. ~16! and, after performing the Matsubar
sum, has the following form:

~sa!~M !5~sa!~1!1~sa!~2!

5S 2\

pVTD E
2`

`

dv2S 2
dnf

dv2
Dv2

3E dv(
n,k

@vn~k!Im Gnn~k,v2!#2

3d@v2En~k!#. ~34!

The temperature dependence of (sa)(M ) is implicitly con-
tained in the Fermi distribution functionnf . The evaluation
of Eq. ~34! has the same degree of complexity as that ofs in
Eq. ~32!. Thus by evaluating the (sa)(M ), (sa)(2), and
(sa)(3) separately, the relative importance of each contrib
tion to the thermopower can be compared.

For s52, 3 in Eq.~33!, it is found

~sa!~s!5
1

T d\ V
lim

v→0
Im S R~s!~v1 id!

v D , ~35!

where
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R~2!~ iv!5(
ql

Wl~q!E
0

\b

dt eivt^TtQl~q,t! j ~q,t! j ~0!&,

~36!

R~3!~ iv!5(
ql

¹qWl~q!

3E
0

\b

dt eivt^TtQ̇l~q,t!r~q,t! j ~0!&.

Consider the lattice Fourier transform of Eq.~20!. Define the
following configuration averages of the phonon Gree
function and the electron density-density correlation funct

D~q,t![2^Tt@aql~t!1a2ql
1 ~t!#@a2ql~0!1aql

1 ~0!#&,
~37!

S~q,t![2^Tt r~q,t!r~2q,0!&. ~38!

Carrying out the Matsubara sums in Eq.~36!, the following
expressions are obtained:

~sa!~2!5
1

T dV \ (
ql

uMl~q!u2

m E
2`

` dv2

2p
v2 Im S~q,v2!

3F]2nB

]v2
2 Im D~q,v2!12S ]nB

]v2
D S ] Im D~q,v2!

]v2
D G ,

~39!

~sa!~3!5
1

T dV \ (
ql

q•¹q~vquMl~q!u2!

mvq

3E
2`

` dv2

2p
v2 Im Dl~q,v2!

3F]2nB

]v2
2 Im S~q,v2!12S ]nB

]v2
D S ] Im S~q,v2!

]v2
D G .
~40!

Here nB represents the Boson distribution function and
conventional notation for electron-phonon matrix eleme
instead ofWl(q), is used:

Ml~q![Wl~q!S \

2Mvql
D 1/2

. ~41!

Equations~39! and~40! are general expressions for the co
tribution of electron-phonon interaction to the thermopow
in terms of the phonon Green’s function and the elect
density-density correlation function for any system. For p
metals they reduce to the expressions given in JM.

The calculation of (sa)(2) and (sa)(3) in Eqs.~39! and
~40! for disordered mixed crystals now involves three pa
~i! the determination of the configuration averages of
electron density-density correlation functionS(q,v), ~ii ! the
determination of the dielectric functions in mixed semico
ductors, and~iii ! the determination of phonon Green’s fun
tion D(q,v) for a disordered crystal.
s
n

e
t,

r
n
e

:
e

-

A. Averaged density-density correlation function

The density-density correlation functionS(q,iv) in Eq.
~38! is related to the electron propagation propaga
P(q,iv) in the following way:

S~q,iv!5
2P~q,iv!

«~q!

5
21

«~q! (j
(
is

E d3k1

~2p!3

3Gj~k11q; is1 iv!Gj~k1 ; is!. ~42!

Here Gj (k1 ; is! represents the electron Green’s functi
associated with thej th band, and«(q) the wave-number-
dependent dielectric function.

Therefore ImS~q,iv!5
Im P~q,iv!

«~q!2 ~43!

and after Matsubara summation in Eq.~42!, we have

Im P~q,v1 id!5v(
j
E d3k1

~2p!3 E
2`

` S dv2

2p D
3Gk11q

j ~v1v2!Gk1

j ~v2!
]nF

]v2
; ~44!

here the configuration averaged Green’s function is defi
in Eq. ~27! in terms of the self-energy in the mixed crysta

B. Dielectric function for the mixed crystal

The static dielectric constants of semiconductors
known to be much larger than 1. The wave-numb
dependent dielectric function«(q) for a semiconductor is
different from that of the free-electron gas because of
importance of contributions from Bragg reflections and U
klapp processes. Penn12 used an isotropic energy-band mod
allowing for the possibility of Umklapp processes to deri
the wave-number-dependent dielectric function for semic
ductors. Reasonable«(q) for small values ofq were ob-
tained. Nara13 later used realistic band structures and os
lator strengths to calculate the«(q) and confirmed that
anisotropic effects and the off-diagonal matrix elements
the dielectric tensors«(q1K, q1K8) with reciprocal lattice
vectorsK not equal toK8 are indeed small. The average
dielectric function for the mixed crystal are then deriv
based on the assumptions

«~q!5c«A~q!1~12c!«B~q!, ~45!

~kF!35c~kF
A!31~12c!~kF

B!3. ~46!

kF is the Fermi momentum of the mixed crystal.
With the dielectric function and the self-energy of th

mixed crystal determined, the correlation function ImS(q) in
Eq. ~43! for the mixed semiconductor is readily evaluated
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C. Averaged phonon Green’s functions

The configuration-averaged phonon Green’s function
Eqs.~39! and~40! used in this work are derived from Flicke
and Leath’s work.10 One obtains

^Dl~q,v,id!&av5
2~12c!vql

~v22vql
2 !12idv

1
2cgbql

~v22bql
2 !12idv

.

~47!

vql is the phonon frequency corresponding to thelth branch
and momentumq, and

bql[AMB

MA
vql[gvql . ~48!

MB and MA are the mass of atomsB and A, respectively.
Thus

^Im Dl~q,v1 id!&av5~12c!pvqld~v22vql
2 !

1cpgbqld~v22bql
2 !. ~49!

From the above expression for the configuration-avera
phonon Green’s function, the off-diagonal transport coe
cient in Eqs.~39! and ~40! for the mixed crystal becomes

~sa!~2!5(
ql

Aql
~2!~12c!F H Im S~q,vql!

1vql

] Im S~q,vql!

]vql
J ]nB

]vql

1
vql Im S~q,vql!

2 S ]2nB

]vql
2 D G

1(
ql

Aql
~2!cgF H Im S~q,bql!

1bql

] Im S~q,bql!

]bql
J ]nB

]bql

1
bql Im S~q,bql!

2 S ]2nB

]bql
2 D G , ~50!

where

Aql
~2!5S 2

T\ dV D S uMl~q!u2

m D
~sa!~3!5(

ql
Aql

~3!~12c!F H vql

] Im S~q,vql!

]vql
J ]nB

]vql

1
vql Im S~q,vql!

2 S ]2nB

]vql
2 D G

1(
ql

Aql
~3!cgF H bql

] Im S~q,bql!

]bql
J ]nB

]bql

1
bql Im S~q,bql!

2 S ]2nB

]bql
2 D G , ~51!

where
n

d
-

Aql
~3!5S 2

T\ dV D S q•¹q~vqluMl~q!u2!

vql
D .

In the next section, numerical results for only the parts of
thermopower of Si-Ge system given by Eqs.~34!, ~50!, and
~51! are presented. In addition, the validity of ATA and CP
approximations for several values ofc is assessed for this
system.

V. NUMERICAL RESULTS
FOR Si12c-Gec MIXED CRYSTALS

As an illustration of the formalism developed here for t
thermoelectric transport parameters for disordered mi
semiconductors, the Si12c-Gec system is now considered
The band parameters used areD50.816, Eg

B51.2 eV, Eg
A

50.7 eV. The calculation of the transport coefficients in t
thermoelectric matrix was performed only at the room te
perature and for a few values ofc. The choice of the room
temperature in our calculation allows us to make ze
temperature approximations in view of the energetics of
bands concerned. The experimental results are reported
function of temperature but for limited values of filling of th
bands for severalc’s. We perform theoretical calculations a
room temperature but for few values ofc to keep the com-
putation within reasonable limits. The change of dielect
functions in the mixed semiconductors, and the existence
two bands are taken into account in this calculation.

A. Concentration dependence of the self-energy

To assess the validity of the ATA and CPA, the se
energies in both schemes are calculated for the two ba
using Eq. ~28!. The results are displayed in Fig. 1 forc
50.4. Unlike the case of metallic Ag-Au alloys,11 the devia-
tion between the two approximations is quite significant
this concentration. Not only the shapes of the real and ima
nary parts of the self-energies are different, but also the
tents of those energies are different. This is in contrast to
Ag-Au system considered before11 because the constituentd
subbands lie within the broads bands of this metallic alloy,
whereas the two subbands in Si-Ge under consideration
not overlap. This result is of particular importance since
ATA may be regarded as a good approximation for meta
alloys, but the CPA self-consistent approach appears to
crucial in getting a reliable result for the semiconductor ca

To obtain thec dependence of the self-energies, the co
putations forc50.1 ~Fig. 2! andc50.4 are compared. It is
observed that the varying part of the realS(z) is more ex-
tended in energy asc increases. For energiesz,23 andz
.13, the real parts ofS(z) approach some constants fo
both the bonding and antibonding bands. These const
increase with the impurity concentrationc representing the
changes of band edges withc. Alloy disorder is found to
have relatively weaker effects near the forbidden ene
gaps. Away from the gap, the self-energy is more seve
affected by alloying as can be seen by comparing Figs. 1
2.

The imaginary part ofS(z) for c50.1 ~Fig. 2! is smaller
for the lower part of the bands and greater near the top of
bands indicating that states near the top of the bands
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preferentially damped by the presence of the impuriti
However, asc increases, this preferential damping moves
lower part of the bands and the corresponding damping
increases~see Fig. 1!. Alternatively, the ImS5G in Fig. 2
can be understood as follows. Each of the bonding and

FIG. 1. The real part and imaginary part of the self-energies
the bonding and antibonding bands for Si12c-Gec with c50.4 cal-
culated using~a! ATA and ~b! self-consistent CPA.

FIG. 2. The real part and imaginary part of the self-energies
the bonding and antibonding bands for Si12c-Gec with c50.1 cal-
culated using self-consistent CPA.
.
o
so

e

antibonding bands now contains two overlaping subban
the host subband and the impurity subband. The peak ofG is
in the impurity subband region and the low-energy tail p
of G is in the host subband region. Both the bandwidth a
the height of the impurity subband increase with concen
tion. Therefore forc50.4, as shown in Fig. 1,G approaches
a symmetric shape characteristic of the merging of the
subbands.

B. Disorder contribution to s

The integration overkl in Eq. ~44! is done using Monte
Carlo sampling of 2000 random points in148 th of the Bril-
louin zone of the diamond structure given bykz,ky,kx
,1, kx1ky1kz,

3
2 . It is found that for the room-

temperature case]nF /]v2 is very close to a delta function a
the chemical potentialm. The calculated disorder scatterin
contribution to the static electrical conductivity in Eq.~32! is
given in Fig. 3 as a function of the filling of the two band
for two concentrationsc50.1 andc50.4. This is equivalent
to investigating dependence on doping density. The max
of the conductivity occur near the bottom of both the bon
ing and antibonding bands. These maxima reduce in inten
asc increases towardc50.5 and increase in intensity aga
for higherc, as a result of stronger multiple impurity scatte
ings occuring at the intermediate concentration range
causing a reduction of the electrical conductivity. The sha
of the s curve may be understood as follows. At small o
cupation numbers of the band, the Fermi level is located
the host band and the carriers move mostly between the
atoms, having a high mobility. When the occupation num
increases, the Fermi level approaches the impurity band
more carriers are energetically found in the impurity ba
region and their mobility is thus reduced. Thus we see
asymmetry of thes curve in the bonding and antibondin
band regions. Also to be noted is that for higher concen
tion c, the impurity subband plays a relatively more impo
tant role. As shown in Fig. 3, the distinguishing contributio
from impurity subbands forc50.4 produces shoulder struc
tures in the energy ranges 1,E,2.5 and21,E,0, where
the impurity subbands are located, whereas these shou
are absent forc50.1.

r

r

FIG. 3. The electrical conductivitys as a function of the chemi-
cal potential~filling of the bands! for disordered Si12c-Gec with c
50.4 ~dashed curve! andc50.1 ~solid curve!.
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We also calculate the effects of energy gapEg
B and rela-

tive strength of disorderD on the conductivitys. The in-
crease of the gap andD does not alter the shape of the co
ductivity curve. The change in the shape of the curve
insignificant. The increase of the strength of disorderD has
two effects. It moves the gap to lower energies and it low
the conductivity. For negative values ofD, that is, for the
host atoms having higher atomic level than the impurity
oms, we haves(E,2D)5s(2E,D).

C. Dependences of(sa)„M …, (sa)„2…, and (sa)„3…

on c and band filling

The dielectric functions for pure Si and Ge given
Srinivasan14 employing Penn’s model for an extended ran
of q are used. Equation~45! is then used to obtain the ave
aged dielectric function for the evaluation of the densi
density correlation functions in Eq.~43!. In Fig. 4, for ease
of presentation, the calculated results of the absolute valu
(sa)(M ) due to disorder scattering forc50.1 and 0.4 are
displayed as a function of the filling of the two bands as
Fig. 3. Note that this representation does not display exp
itly the change in a sign of (sa)(M ) in some regions of
energy in Fig. 4. It is interesting to note that their depe
dence on the occupancy of bands is quite different from
of the static electrical conductivity in Fig. 3. Theu(sa)(M )u
for holes is greater than for electrons. Again, likes, it de-
creases with concentrationc.

The calculated absolute magnitudeu(sa)(2)u in Eq. ~50!
for the disordered Si12c-Gec is similarly shown in Fig. 5 for
c50.1 and c50.4. Since this quantity is related to th
electron-phonon coupling, its dependence of the filling of
bands is quite symmetric in contrast to the correspondins
or u(sa)(M )u curve. It follows more or less the shape of th
host crystal electron density of states for low impurity co
centrations. Forc50.4, the impurity subbands produc
prominent structures in the regions 1,E,2.5 and21,E
,0 similar to that fors. But instead of shoulders, new pea
appear. The increase of the strength of disorder forc50.1
moves the curve to lower energy in a similar manner as
the case ofs.

FIG. 4. The absolute value of thermopoweru(sa)(M )u as a func-
tion of the chemical potential~filling of the bands! for disordered
Si12c-Gec with c50.4 ~dashed curve! andc50.1 ~solid curve!.
s
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-

-
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-
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e
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Vilenkin and Taylor23 were the first to derive the term
(sa)(3) coming from the contribution of phonon momentu
and they neglected it as small in comparison to (sa)(2).
Furthermore, Jonson and Mahan6 found that it is negligible
at both high and low temperatures for a metal. Here we fi
the calculated absolute value of (sa)(3) in Eq. ~51!, which is
related to the term with phonon momentum, is about an or
of magnitude smaller than that ofu(sa)(2)u for semiconduc-
tors but is not entirely negligible at room temperature.
shown in Fig. 6, the impurity subbands again produce str
tures forc50.4 similar to the case ofu(sa)(2)u.

D. Discussion of the numerical results

In general, because of the charge transfer between the
bands for a mixed crystal, the transport coefficients near
band gaps are different from those from the single band
proach. This becomes most important for higher alloy co
centrations.

In semiconducting alloy systems there are four promin
electron-scattering mechanisms with different relat

FIG. 5. The absolute value of thermopoweru(sa)(2)u as a func-
tion of the chemical potential~filling of the bands! for disordered
Si12c-Gec with c50.4 ~dashed curve! andc50.1 ~solid curve!.

FIG. 6. The absolute value of thermopoweru(sa)(3)u as a func-
tion of the chemical potential~filling of the bands! for disordered
Si12c-Gec with c50.4 ~dashed curve! andc50.1 ~solid curve!.
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weights at different situations: the scattering by acoust
phonons, alloy disorder, ionized impurities, and the interv
ley scattering. Amith30 made measurements of the Seebe
coefficients in the ‘‘competitive’’ region and analyzed th
data based on the relative importance of these mechani
The conclusion is that a qualitative interpretation is obtain
only when all the mechanisms are invoked.

Experimental measurements of the thermoelectric tra
port coefficients in the Si-Ge systems as a function of te
perature and for a limited number of doping densities a
compositionc have been reported previously.30–35 The ther-
mal resistivity as a function of compositionc was found to
have a broad maximum near the middle of the al
composition.31,32 However, for power generation applica
tions at high temperatures, a high melting point and a la
band gap are also important, favoring the Si-rich alloys. D
mukeset al.31 measured the thermoelectric transport coe
cients for several Si-richn-type andp-type alloys as func-
tions of carrier concentration and temperature. They fou
that at 300 K and for constant carrier concentration the S
beck coefficienta and the electrical resistivityr increases
only slightly with increasing Si content in the rangec,0.4,
while for c50.8 thea is about 23% smaller than that forc
50.3 in the Si12c-Gec system presumably due to the chan
of number of valleys in the band structures for higher
content.30,31 The dependences ofa andr on carrier concen-
tration and temperature are very pronounced. For a gi
temperature,a andr decrease when the carrier concentrat
increases. On the other hand, for given carrier concentra
the a and r increase with temperature. Additional featur
are observed forn-type alloys at high temperature. Thea and
r for n-type alloys reach maxima and then decrease w
temperature possibly due to the onset of intrinsic conduct

For heavily dopedn-type andp-type Si and Ge crystals
Fistul’ 36 measured thea and r as functions of carrier con
centration and temperature. He found that within the lim
of the experimental error the value ofa at room temperature
does not depend upon the chemical nature of the dopants
the phonon drag is negligible. Similar measurements w
also done for samples of different carrier concentrations
other authors.37,38 In the next paragraph, a discussion of t
electron-phonon contribution will be shown to be an order
magnitude smaller.

These two sets of measurement lead naturally to our e
mation of the difference of the results between the pure
the mixed crystals with the same carrier concentration. T
gives the disorder contribution to thea which may be com-
pared with the calculations of this work. Forc50.3 andn
52.231018/c.c. case,31,37 the difference is 220mV/K; for
n5631019/c.c. case31,38 it is 130 mV/K. The disorder
contributions to the Mott term are calculated to
a (M )5120mV/K and 130mV/K, respectively, for these two
concentrations. The agreement is fairly good in view of
uncertainty in assuming that the same relationship betw
chemical potential and carrier concentration holds for b
pure Si and the mixed-crystal system. In the next paragra
a discussion of the electron-phonon contribution will
shown to be an order of magnitude smaller.

For Si-Ge mixed crystals the phonon mean free paths
short, and therefore, unlike pure Si or Ge, the phonon d
contributions are negligible in comparison with the ele
l
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tronic part. In this work we calculated only the electro
phonon contribution to the electronic part of the the
mopower of a mixed semiconductor. The intervall
scattering, ionized-impurity scattering for heavily dop
alloys were not included. For comparison with th
measured transport coefficients of Si-Ge mixed crystal w
c50.3 in Ref. 31, the calculations presented here g
u(sa)(2)u52116 (V cm deg)21 mV, and u(sa)(3)u5132.7
(V cm deg)21 mV. The measured~sa!, on the other hand, a
n52.231019/c.c. is 26670 ~V cm deg!21 mV. Thus the
present calculated disorder contribution to (sa)(2) is an or-
der of magnitude smaller and (sa)(3) is two orders of mag-
nitude smaller than the measured~sa!. It is safe to conclude
that the electron-phonon interaction in this disordered sys
with c50.3 contributes only 10% of the total~sa!.

To measure the quality of materials for thermoelectric d
vice applications one defines a figure of meritZT in terms of
several transport coefficients appearing in Eq.~14!:

ZT5
sa2T

k
. ~52!

Sofo and Mahan39 analyzed the optimum band gap of a the
moelectric material with best performance. The optimu
band gap at operating temperatureT was found by them to be
10kBT. The Si-Ge systems have band gaps that obey
rule for better thermoelectric materials at operating tempe
ture around 1000 K. Measurements as well as model ca
lations for lattice thermal conductivity in the Si-Ge allo
systems have been very extensive. Theoretical model ca
lations using the relaxation time approximation all indica
that the lattice thermal conductivity of the Si-Ge mixed cry
tals is an order of magnitude lower than the parent p
crystals and decreases with increasing temperature.40–42 Be-
cause the carrier mobility is only slightly smaller in th
mixed crystal than in the pure crystals, the estimated ther
electric figure of merit of the mixed crystals can reachZT
50.8 for c50.3 at 1000 K using the experimental measur
values of transport coefficients31 in Eq. ~52!, while the esti-
matedZT is '0.1 at 300 K. The maximum figure of mer
above 1000 K, on the other hand, has been estimated t
ZT'1.13.41 The present calculation at room temperatu
shows that the thermopower from disorder effect in the n
mal carrier concentration range is 30–45% less than tha
the pure Si, which confirms that the increase ofZT from Eq.
~52! in this disordered system may arise mainly from t
disorder effect on the thermal conductivity.

VI. SUMMARY

In this contribution, an expression for the energy–curre
density is given in a general setting which unifies the res
found in the literature in an elegant way. The gene
density-density correlation function which describes se
conductors is considered here which is different from
case of metals often treated in the literature. This formulat
also incorporates coherent potential approximations usefu
dealing with disordered mixed crystals as well as electr
phonon interactions. In metals, Jonson and Mahan6 found
that the nonadiabatic part of electron-ion contributions
negligible so that Mott’s formula for thermoelectric pow
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continues to hold. In the case of strongly coupled electr
ion systems which may occur in semiconductors, this c
clusion needs to be examined. Here it is found that the
quently omitted term is one order of magnitude smaller th
the Mott term, but not entirely negligible.

The electronic, adiabatic electron-phonon, and nona
batic electron-phonon contributions to the thermoelec
power in disordered mixed crystals using multiband CPA
derived in this work. Only the disorder contributions to t
thermopower and electrical conductivity in mixed Si-G
crystals are investigated as an illustration of the formali
given here. Here the Wannier/Bloch representation is use
describe the system under consideration. The nonparabo
of the bands with band gap and the semiconductor dielec
functions are included to give a realistic description of t
semiconducting system. The results for this system show
the disorder effect does not introduce significant change
the electrical conductivity but indicates a decrease in its th
mopower. Therefore it is the dramatic reduction in the th
mal conductivity of disordered systems that raises the th
moelectric figure of merit. Since the calculated concentrat
and band occupancy dependences of the diagonal and
diagonal transport coefficients are different, one may a
use these dependences to tailor the maximum value of t
moelectric figure of merit in a mixed crystal. The formalis
presented here for the thermopower in disordered crysta
quite general and may be used in the study of other semi
ducting systems.
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APPENDIX

In this Appendix, we give the salient features of the ele
tronic structure of a model semiconductor with the two ba
atomsi 51, 2 associated with each lattice pointn of a zinc-
blend lattice. ~These two basis atoms are identical f
group-IV materials.! This model is used in the calculation
presented in this paper. The Hamiltonian of this system
the Wannier representation is

H5(
n,i

un,i &«n
i ~x!^n,i u

1 (
n,n8,i , j
niÞn8 j

un,i &Vi j ~rni2rn8 j !^n8, j u. ~A1!

un,i& represents the Wannier state associated with thenth lat-
tice point of thei th sublattice. The diagonal term«n

i (x) de-
pends upon whether the siten,i is occupied by the host atom
or the impurity atom (x5atomB or A!.

In general, in CPA theV12 is considered to be indepen
dent of the impurity concentrationc as it only appears in the
dispersive part of the Hamiltonian for the metals. In t
present case for semiconductors,V12 appears both in the dis
persive and nondispersive parts. The latter determines
splitting of the bonding and antibonding states and
-
-
-

n

a-
c
e

to
ity
ic

at
in
r-
-
r-
n
ff-
o
r-

is
n-

l
al

-
s

n

he
e

former determines the dispersion of the bonding band
antibonding bands. Thec dependence ofV12 is included in
the latter and ignored in the former part. It may be estima
through a mean field seen by an atom when the impurity
present

^V12&5~12c!VB2B1cVA2A. ~A2!

A simplified approach can be developed when on
nearest-neighbor interactions are considered. Then the
lowing substitutions representing the antibonding and bo
ing states are made:

un,a&5
1

&
@ un,1&1un,2&],

~A3!

un,b&5
1

&
@ un,1&2un,2&],

so that Eq.~A1! can be rewritten in the following simple
form:

H5(
n

un,a&„«n
~a!(x)…^n,au1(

n
un,b&„«n

~b!(x)…^n,bu

~A4!
1

1

2 (
nÞn8

[ un,a&V12̂ n8,au2un,b&V12̂ n8,bu#,

where

«n
~a![ 1

2 ~«n
~1!1«n

~2!1V12!,
~A5!

«n
~b![ 1

2 ~«n
~1!1«n

~2!2V12!.

«n
(a) and«n

(b) represent the energies for the antibonding a
bonding states at the center of the Brillouin zone, resp
tively. The last summation in Eq.~A4! is the dispersion for
the bonding and antibonding states. For example, for
diamond lattice the dispersion relation for the antibond
state can be expressed, in units of half bandwidthw as

s~k!5Fcos2
pkx

2
cos2

pky

2
cos2

pkz

2

1sin2
pkx

2
sin2

pky

2
sin2

pkz

2 G1/2

. ~A6!

For the bonding band the dispersion relation is2s(k).
Using the Hamiltonian in Eq.~A4! we obtain the two-

band Green’s-function matrix given in Eq.~27!. At this stage
it is convenient to use a model density of statesr (0)(h) to
obtain an analytical solution of the integral in Eq.~29!. Let

r~0!~E!55
S 1

p D F12S E212
Eg

2 D 2G1/2

; UE212
Eg

2 U<1

S 1

p D F12S E111
Eg

2 D 2G1/2

; UE111
Eg

2 U<1

0 elsewhere.
~A7!
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Here and elsewhere, the energy units are in terms of the
bandwidth. This density of states has no critical point exc
at the band edges.

This model density of states produces an analytical fo
of the electron Green’s function for the pure semiconducto
The analytical solution of the integral in Eq.~29! using com-
plex variables is found to be

f ~0!~z!52H xS 12B cos
A

2
u.D1yB sin

A

2
u.

1uzuB sin
A

2
u,J 12i H yS 12B cos

A

2
u.D

2xB sin
A

2
u.2uzuB cos

A

2
u,J ~A8!
ys
-

ys

h

l

ull
alf
t

s.

for z5x1 iy , and

A[tan21
2xy

x22y221
; B[

@~x22y221!214x2y2#1/4

~x21y2!1/2 ,

~A9!

u,51 when Rez2,1, and u,50 otherwise,

u.51 when Rez2.1, and u.50 otherwise.
~A10!

These analytical results are used in the computations
cussed in the paper.
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