PHYSICAL REVIEW B VOLUME 60, NUMBER 17 1 NOVEMBER 1999-I

Theory of thermopower in disordered mixed crystals: Application to Si-Ge systems
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A Green’s-function theory of thermoelectric power in disordered mixed crystals is presented. This theory
incorporates features df) disorder,(b) band structure(c) relevant dielectric function, an@) electron-
phonon interaction. By formulating the theory in coordinate space, besides subsuming previous work on metals
and alloys as special cases, the inclusion of disorder effects based on coherent potential approximation has
been incorporated into this scheme. This formulation gives the concentration and band occupancy dependence
of thermopower. Thus it provides a possibility for investigating other disordered mixed systems which may be
tailored to yield larger values of thermoelectric figure of merit. As an illustration of this formalism, numerical
estimations of the contributions due to disorder and electron-phonon effects to the thermopower in a two-band
model of Si-Ge mixed crystal system are given at room temperdt8éd.63-182@09)00441-5

[. INTRODUCTION possessing localized or extended states. For example, from
this formalism the previous result of JM follows by a choice
In recent years there has been renewed interest in searchf free-electron representation. Also it is found that the
ing for novel materials that may be used for efficient, envi-choice of Bloch or Wannier representation in this operator
ronmentally sound cooling and power generation purposegormalism will produce an appropriate description of semi-
This has naturally led to research on new materials exhibitconductors including disorder effects. In Sec. 11 B, the theory
ing high thermoelectric efficiencies. The performance of aof thermopower of solids is expressed in terms of Kubo re-
thermoelectric material is characterized by the three imporsponse functions.
tant transport coefficients—electrical, thermal, and thermo- In Sec. Ill, the incorporation of disorder effects is given in
electric. A high ratio of electrical to thermal conductivity as detail. Disorder occurs not only in bulk alloys but also at the
well as large thermoelectric power are needed in selectininterfaces of heterostructure materialtt. is believed this
materials for both thermoelectric generation and refrigerawill play an important role for the application of new nano-
tion. Two of the central areas in this search have been thstructure materials because the effect of disorder scattering is
effects of confinement in low dimensional materials in giv- of importance in comparison with that of lattice scattering in
ing improved electric contribution to the thermoelectric the consideration of electrical and thermal conductivitigs.
transport properties, and the role of disorder in decreasinglowever, the thermoelectric power in disordered mixed
the lattice thermal conductivity and affecting thermoelectriccrystals does not seem to have been examined with the same
transport coefficients. Only recently the effect of disorderrigor as for simple metaThis may be due to the fact that
scattering on thermoelectric materials was repotted. the correlation function expression for thermoelectric power
The theory of electrical and thermal transport was givertensor involves both charge current and energy current com-
by Kubo and co-workefs in terms of various correlation ponents, which are more complicated. Effects of disorder on
functions. This was extended to superconducting systems ke transport phenomena has been considered previously on
Kadanoff and Martirf. Luttinger® gave a unified “mechani- metallic alloys. Single band, single-site coherent-potential
cal” description of the “Kubo” formula for all the transport approximation§CPA) are used commonly in studying these
coefficients. Only recently Jonson and Mah&ivl) worked system$. For semiconducting disordered systems these ap-
out in detail these transport coefficients for a free-electrorproximations can no longer be applied because of the exis-
model of simple metals, including electron-phonon interactence of energy gap and the presence of at least two basis
tions. However, the materials of interest in the search fomatoms per unit cell which introduce multiple bands and cre-
improved thermoelectrics typically are semiconductors ancite charge transfers between these bands when the impurity
heterostructure systems which have complex crystal strueeffects are included. Here, in order to obtain the self-energy
tures possessing multiple bands, which cannot be described the disordered semiconducting materials, a generalized
by these theoretical frameworks. Thus a formulation appli-CPA formalisnt* applicable to multiband system is used. A
cable to realistic systems is needed in the study of semicorfsreen’s-function technique to treat electrons interacting with
ducting thermoelectric materials. The purpose of this paper iphonons is also incorporated.
to provide such a formalism which incorporates disorder, In Sec. IV, a useful special case of the formalism devel-
(b) band structure(c) appropriate dielectric function, ar{d) oped here is given to study the thermopower of disordered
electron-phonon interaction. This is accomplished in Sec. licrystals of the type A;_.B.) as function of the impurity
In Sec. Il A, a general operator formalism for thermal trans-concentrationc and as function of the occupation of the
port in the spirit of Kadanoff and Martfnand Luttinge? is  bands. Unlike the work on simple metdlseveral unique
given. This formalism is in coordinate space and is afeatures of semiconducting materials such as the nonparabo-
representation-free framework. It can be applied to a systericity of the energy bands with band gap, the semiconductor
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dielectric functiont>~'* different from that of the free- Kadanoff and Martif derived jE(r,t) for superconduct-
electron gas, and the multiband electronic structure includingng electrons and expressed the correlation functions in terms
mixed-crystal features of the disordered system are incorpmf a two-particle Green's function familiar in many-body
rated. These are given in separate Secs. IVA, B, and C. theory. Hard{® derived j5(r,t) for a lattice system. Lut-

In Sec. V, an important example of this type &f;(_.B;) tinger gave an expression for a free-electron systéfaing
alloy, Si,_.Ge., is considered in some detail. The choice ofthe Bloch representation for electrons, E§@nd Vilenkin
this type of material for the present study is because of thand Taylof® obtained an expression for the energy current.
suggestions of possible high-temperature thermoelectric ma-hese authors also included electron-phonon interaction con-
terial. More recently there are theoretical expectafivts tributions. In the present workE(r,t) for a combined elec-
that such a material may exhibit enhanced thermoelectric figron and phonon system in a representation free form is
ure of merit in its superlattice structure. Moreover, the elecgiven. By choosing appropriate representation for the field
tron and phonon excitation properties of such material haveperators, the expressions found in the literature are obtained
also been investigated for some tiffel®which indicates a as special cases.
model for computation in a realistic manner. The concentra- The Hamiltonian of the system considered here is
tion dependence of the self-energy is given in Sec. VA, dis-
order contribution in Sec. V B, dependence of various parts H=He+Hpnt Hep, (2
of the product(ca) on concentration and bandfilling in Sec. w

; ; . . ; here
V C, and a discussion of the numerical results in relation to

some experimental results at room temperature in Sec. VD. . p2 R
A summary of the results obtained is given in Sec. VI. He:f d3r ¢ (r,t) om V(D (.Y, (©)
Il. THEORETICAL DEVELOPMENT Hep:_zl J'd?:r l’;\bJr(rvt)Qa(lvt)vav(r_RI)|R|=RP;b(r1t)1

A. Operator formalism for a combined
electron-phonon system

4

Following Refs. 4 and 5, the energy—current-density op- Pi(l B 1 , )
erator for a system of electrons and phonons with first-orderh:EI M t3 2 | Paw (L1MQu(1,)Qu (1",1),
electron-phonon interaction term included is first con- ’ aalll (5)
structed. The correlation function of charge—current-density
operator and energy—current-density operator is then exam-
ined by separating the contributions from electron, phonon, V(r)=> V,(r—R,O). (6)
and electron-phonon interaction terms. Thus the correlation !
fub”C'F'O”d (re]xpressmns for the trer]rmalhtransaport cdogfflm(ejntsv(r) is the static periodic crystal potential giving rise to the
e o oo 105 v a0 O stucue o the elcto! (1), () ae, respec

P quatio. P y tively, the creation and annihilation field operators for the
external electric field leads unambiguously to the Kubo for- N
i - ) o electrons.p, P,(I,t) are the momentum operators for elec-
mula for the electrical conductivity tensbfThis derivation . . : ;
trons and ions, respectivel@ (l,t) is the displacement op-

based on ‘a “well defined Hamiltonian” fis thus erator for the ionm, M(l) are the masses for electrons and
“mechanical.”® For a long time, there existed no mechani- ions, respectivel R are the position vectors of vibratin
cal formulation for thermal transport problems since there " ™ P YT P 9

was no Hamiltonian describing a thermal gradient. Green!o"s with their equilibrium positions &/'. @, (1,1") is the

Kubo-Mori formulas for the thermal transport coefficients dynamical matrix of the vibrating lattice. All these operators

are derived based on the assumptions that local variables af&® in the Heisenberg representation, and obey equal-time

controlled either by a Markoff process or by a “local equi- canqnical commuta}tion rules. For'the gake of ;implicity har-
librium distribution.” These derivations, while not rigorous, monic approximation _for_ the V|_brat|ng Iatt'(.:e and the
are found to be quite practical. They have been used Widelyaadmg-order electron-ion interaction are considered here.

in studying thermal transport. Luttingegave an essentially A 9eneral expression f4=(r,t) will be derived by using

mechanical derivation by introducing an inhomogeneoudh® definition ofh(r,t) in the form

gravitational field which produces the energy flow and tem- A a

perature fluctuations. A term which appears in the Hamil- h(r,t)=[— P1-P2

tonian as a product of this field and the local energy density 2m

operatorh(r,t) of the system was introduced and a Kubo-

type theory was developed by him. —Z W(r,t)Qa(l DV VI—R)|R :Rofp(r,t).
The energy-current operatf(r,t) which appears in the al b

correlation functions is determined through the equation of 7

continuity

I b

+V(r)

In the above equation and subsequent equations, the indices,
. 1 or 2, denote the corresponding variables gsr,, respec-
h(r,t)+V-j&r,t)=0. (1) tively, and in Eq.(7), we letr;=r,=r at the end of the
indicated operations.
The overdot represents the time derivative. Equation(1) can also be written as
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—iV-jE(r,t)=[h(r,t),H] (8) dilute-alloy limit. In order to treat more general disordered

) ] . alloy systems for a wide range of scattering strengths and for
by using the standard quantum-mechanical expression for thg| impurity concentrations, correlation function expressions
time derivative of an operator. Heid is the total Hamil-  for the transport coefficients are more appropriate. In this
tonian operator given by Eq2). context, the Green’s-function method is often the technique

From Egs.(3)—(8) the energy-current operator is derived of chojce. More recently, Jonson and Maf@xamined the

and may be expressed as a sum of two terms arising from thectron-phonon contribution to the thermopower of metals,
electron and the electron-phonon interaction. Because “%ing a Green’'s-function technique as in Ref. 4, with har-
part of energy-current operator arising from phonons onlyygnic approximation for the phonons.
contributes to the correlation function related to the lattice Here a general formalism applicable not only to metals

thermal conductivity, and does not contribute to the thermoyyt aiso to semiconductors is given. Using the linear re-
electric power, it will not be considered in the following sponse theory of Kubo, Yokota, and Nakajifitae electric

sequ_el. and heat currents in terms of the external electric fi&y
It is found that and temperature gradienV{T) are expressed in the form
jE(",t):js(r,t)"‘jgp(r,t), ) —j T oa
where e _ e’ ek ek (14
o o —jQ oca k+Toa? | \V(KT)/
E _[ _P1P2 P1— P2~ ~ KT ok KT
Je(r,t)—( om TV |5 Y ¢, (10

Here o is the electrical conductivity tensok, is the thermal
E o _ conductivity tensor at zero electric current, and is the
J5(r == [(V V(r—RM)Q.(LDj(r,1) tensor product of the electrical conductivity and the ther-
ol mopower «. Based on the Green-Kubo-Mori formula this
iv, ., product is given in terms of the correlation function by
4m ; o 1 (=
] (oa),,(w)= lim ﬁf dte 'et=nt
Qa1 H)p(r',t) 0

n—0*

XV =R ==, (D ,
X [ dN(j L(0)]At+iRN)). 1
1 . R o ] .(0) is the total electric current and is given by integrating
j(r,t)y= ﬁ[lﬂ;Vﬂ/fl—(Vzﬁ)lﬁﬂ Eq. (12) over all spacej%(t) is the total heat current which
is related to the energy current by(t)=]jE(t)— uj(t).
P1—P2~ ;- Here u is the chemical potentialg is the inverse tempera-
~Tom Y2 Z 12 ture, &T) 1. The contributions to the thermopower in Eq.
(15) then contain the following three types of correlation
o1 =0 I, (13) functions:
wherej(r,t) andp(r,t) are, respectively, the electric current (1u(0); ju(1))=(c1 (0)cy(0); c5 (t)ea(t)),  (16)

density and charge density. The second term in @#4) _ ) . .
arises from the commutator f,, with h(r,t) and the rela-  {i,(0); J,(1)Qa(l,1))=(c1 (0)c5(0); c5 (1) ea(t)Qu(l 1)),
tion M(1)Q,(1,t) =P, (1.1). 17)
From these equations, the expressions given in the. ) . N L .
literaturé?223 are deduced by expressing the electron field{x(0); P.(H)Qa(l 1)) =(c; (0)c2(0); C3(t)c4(t)Qa(|’t()l>8’)
operatorsy(r,t), ¢t (r,t) in terms of free-electron states or . S o
the appropriate Bloch states associated with the pertineribe first of which is similar to that appearing in the exact
electron system of metals and alloys. Wannier representatiogxpression for electrical conductivity tensey, (w):?
{um(r)} is found to be convenient for treating site disordered
mixed_-crystal systemsin se_:miconductors, alternatively, an o, (@)= lim i we—iwt—mdtJ’ngj (0)j ,(t+i%N)).
effective-mass representation may be used. # wo+Q 0 m
(19
The second and third expressions in EGs) and (18) ap-
Several techniques and approximations have been used pear only for thermopower, because of the inclusion of the
the past to develop theories of thermoelectric power. Existelectron-phonon interaction. Procedures for decoupling the
ing works on thermoelectric power are mostly based on solveonfiguration averaged two-particle Green’s functions into
ing the Boltzmann equation in the relaxation-time approxi-products of two one-particle Green’s functions as an
mation by a variational methdd:*> However, the Boltzmann approximatioR® can be generalized to determine the contri-
transport equatidii is for weak scattering and is valid in the butions in Eqs(17) and(18) through the conversion of pho-

B. Theory of thermoelectric power of solids
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non displacement operators into electron operators using the 1 R
following equation of motion for the combined electron- [k)=N ; e Fnln), (22)
phonon system:

F(2)
Q.(,0=M"1 3 [ Dyalt; a'l't')V,V(r-RY) 2@ =Bat el ON s o E F @
a'\I",mm’
XUR(1) Uy (1) G (1) G (1) ', (20 Here F(z)=<n|c;(z)|n>=|\|—12k G(k,2) (24)

whereDg is the bare phonon Green'’s function. In the case of ) ) ) ,
metals, these expressions were examined by JM when tH@ the site-diagonal matrix element of the averaged Green’s

electron field operators were expressed in terms of the fredUnction, Eq.(21), in the Wannier representation which is
electron operators. Because the evaluation of the transpodSO expressed in the Bloch representation as indicated

coefficients relies upon the determination of the one-particlé@Pove. _
Green’s functions, the configuration-averaged Green’s func- EaviS defined as
tion in a homogeneous random disordered system is crucial A B
in the study of disordered mixed crystals. In the adiabatic Ea=CE M+ (1-C)E™ (25
approximation, the time derivative of the phonon displaceE”, EP are the diagonal matrix elements of the Hamiltonian
ment operator in Eq(18) is ignored. In the next section, a with respect to the Wannier representation for pure crystals
theory for disordered systems for multiband semiconductorand B, respectively. The energy zero is defined such that
is developed.
Ef=—-E°=3Aw,
IIl. MULTIBAND COHERENT-POTENTIAL A B
APPROXIMATION FOR DISORDERED MIXED A=(E"-Ew, (26)
CRYSTALS whereA is the separation between atomic levefsandE®,
In the study of disordered mixed crystals only idealized”” ' the valen_ce band half width. It is convenient to usas
gn energy unit throughout the calculation. Hencefavth 1

models have been considered. Such results for simple sy .
tems are valuable, both in guiding physically motivated ap_IS assumed. Thud represents the relative strength of the

proximations and in finding unusual features unique to th disorder in comparison to the periodic part of the Hamil-

i ; %onian.
disordered systems. CP@&efs. 27—-29is one of the most ;
powerful techniques used in the calculations of electrical Unlike the case for metals, to evaluate the self-energy, Eq.

conductivity’ and lattice thermal conductivit) of disordered (23), several additional features have to be addressed for a
binary alloys. This technique is capable of dealing Withmlxed semiconducting crystal with two basis atoms associ-

single particle properties of elementary excitations in site—gtsg m;?riiaggcgggihzogb I;LE)S:n;Tr? t‘:’lilfl:lme(:rgl)llilrirg(oj\gcz
disordered crystals of the typ&.B,_. for arbitrary ¢, and . , . .

: Pt S a bonding and an antibonding band. Second, if the near-
for moderately different characteristics AfandB within the neighbor interactions chanae with the atomic pairs then the
framework of multiple-scattering theory. It may be regarded g : 9 mic p :

goncentration dependence of tlg, matrix is more in-

as an interpolation scheme between properly described “m'tvolved. The formalism is now described in detail in the Ap-

corresponding to the entire range of impurity concentration endix for the widely applicable zinc-blende structure which

and strong and weak scattering. P . ;
Velickygg used a single bang model Hamiltonian to de-'S appropriate for 1I-VI and 11l-V compound semiconductors.

scribe the electronic structure of a disordered binary alloyfunizgr?%\l;?r_iga}gd model of a semiconductor the Green’s-

The single-site approximation in a multiple-scattering de-

scription then was used by him for the evaluation of the z—s(k)—3 44(2) S .0(2) -1

electrical conductivity. In the single band CPA, itis essential  G(k,z)= S .(2) 24 5(K)— 3 (2)

to restrict the disorder to be site-diagonal in order to simplify ab bb 27

the treatment. In this case an effective medium scheme is

obtained which contains effective atoms each having selfwheres(k) is the dispersion for the antibonding stésee the

energy>. The averaged Green’s functi@his related to the AppendiX. In the caseX,,(z)=0, the CPA approach re-

self-energyZ, by duces to solving the following two decoupled equations self-
consistently:

G(2)=[z—E(k)—3]171, 21
(2)=[ (k)—x] (21) S (2)=E.s
whereE(K) is the periodic part of the Hamiltoniai.(z) is 2 0
the electron self-energy in the presence of disorder scattering N C(1-0)A% (=25 1)
and is determined self-consistently by the following equation 1+{3 4= Eaa— (1—-20) A fO(z—3,,— 1)
specifying no scattering on the average from anysitethe (29

effective mediunt® The Wannier representation is used in 2 ,,(z)=Epp

describing this approximation, and then using the relation- 2 (0

ship to the Bloch representation via the lattice Fourier trans- n c(1-c)App FP(z=2ppt 1)
formation, we obtain 1+{2pp—Epp— (1—20) A f O(z— S+ 1)
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1 (= dyp©(n) =0E,(K)/dk. The dispersion relations for the two bands of
fO(z)= —J I — (29 crystalB areE; (k) =s(k) andE,(k)=—s(k), respectively.
o g When the tight-binding formalism, E¢A6), is used for the
where s(k) of the diamond structure, the calculatedcurve dis-
plays structural details reflecting characteristics of the disper-
O =3 o p—s(k sion relation and does not affect the interpretation of the
p(m) - [7=s(k)]. overall behavior of the thermopower. The configuration-
) averaged Green'’s functions in E82) for the two bands are
The averaged energids;, and the energy separations be- gptained once the self-energies in E2p) are determined by
tween the host and impurity atoms for the bonding and antithe self-consistent CPA approach. The summation &viar
bonding bands\;;, are defined as Eq. (32) may be performed using Monte Carlo sampling of
« of the Brillouzin zone.
It is known that electron-phonon mass enhancement af-
2 ' fects the thermoelectric power. At low temperature, the scat-
(30)  terings of electrons by phonons and by impurities interfere
A (1-c)ES+CcE] with each other. Therefore the mass enhancement factors de-
Epp=—(1—2c) 5 2 pend on the strength of the impurity scattering and the con-
centration of the impurities.
EA_EB To obtain the thermoelectric power of a mixed crystal,
%, Egs.(10)—(13) are considered in the Bloch representation.
The thermoelectric power in a mixed crystal then can be
31 expressed as the sum from three contributions:

A (1-c)EB+cE}
sz—«l—m35+-———JL——ﬂ

A=A+

A_ B
Eg_Eg
2

Note that unlike Eq(26) for the single band case, the zero of
energy is no longer set at the midpoint of either the antibond-

ing states or the bonding states of the two pure cry®@sd  The first term o)D) is the contribution from the part

B. 'S(r,t) —uj(r,t). The second and third terms come from the
wo electron-phonon interaction terms pip(r,t) in Eq.
11). They are related to the correlation functions in Egs.
17) and(18), respectively.

The sum of the first two terms in Eq33) has special
meaning. It is the so-called Mott termy&)M), appearing in
the Mott formula for metal§.lt is related to the correlation
function in Eq.(16) and, after performing the Matsubara
sum, has the following form:

Abb: A -

cga=(ca)V+(ca)?+(ca)®= E (ca)®. (33

The effects of alloying on electrons are contained in th
self-energy function& (z). The real part ok (z) in Eq. (28
represents the band shift and band distortion due to the di%
order scattering. It is influenced by the entire region of the
bands, whereas the imaginary partXfz) is determined by
the lifetime of an electron at the energyue to the disorder
scattering® In a non-self-consistent averagédnatrix ap-
proximation(ATA), Equation(28) is solved when th& (z)
on the right-hand side of the equation is replaced=hy

In the next section several contributions to the thermo-

electric power in mixed crystals are obtained in detail. (ca)M=(ga)V+(ga)?
2h © dnf
IV. THERMOELECTRIC POWER IN MIXED CRYSTALS =|—= dwy| — —|w,
7TQT — dwz

In order to investigate the thermopower in mixed crystals
the electrical conductivityr in these systems is first exam-
ined because the off-diagonal transport coefficiemtin Eq.
(14) involves o as a factor. The disorder induced electrical
conductivity tensor in the CPA has been derived by X flw—Eq(k)]. (34)
Velicky.® In the mixed-crystal case, it has the form

x f 00, [y (KM Goy(k,0)

The temperature dependence ofa)™) is implicitly con-

_2¢? q dng tained in the Fermi distribution functiom; . The evaluation
7770 ) U9 T do, of Eq. (34) has the same degree of complexity as that af
Eq. (32). Thus by evaluating theo{a)™, (oa)®, and
3) ive i i
% 2 _ _ (oa)'’ separately, the relative importance of each contribu-
f dwnE,k [Va(K)IM Gk, w2) el @ = Eq(K)] tion to the thermopower can be compared.
(32) Fors=2, 3 in Eq.(33), it is found
For simplicity, only the diagonal part of the transport tensor RO(w+i6)
is considered and the tensor subscripts are ignored in all (a'a)(S)ITdﬁQ lim Im( , (35
following subsections. In Eq32) the summation oven in- —0

cludes the two bands under consideration, and the velocity is
related to the energy dispersiorE,(k) by v,(k) where
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A. Averaged density-density correlation function

hB .
(2) (3 — ioT H i
R%(w) % W)\(q)fo d7e®(T.Qu(a,7)i(a,7)(0)), The density-density correlation functid®(q,iw) in Eq.
(36) (38) is related to the electron propagation propagator
P(g,iw) in the following way:

<3><iw>=§ VWi (Q)

—P(q,iw)
><f dre'“(T.Q\(a,7)p(q,7)j(0)).
0 d3k

EDPO
Consider the lattice Fourier transform of Eg0). Define the S(Q) 277)3
following configuration averages of the phonon Green’'s i e L -
function and the electron density-density correlation function XGlky+0; is+iw)Gl(kyjis). (42

D(q,T)E_<TT[aq)\(T)+atq)\(T)][a qx(0)+a$(0)]>1 Here Gl(ky; is) represents the electron Green’s function

associated with thg¢th band, ands(q) the wave-number-
dependent dielectric function.

S(d,7)=—(T.p(d,7)p(—q,0)). (39) .
Therefore IM8(qiw)— - 01®) 43
Carrying out the Matsubara sums in Eg6), the following erefore INS(q,iw)= e(q) (43

expressions are obtained:
and after Matsubara summation in £42), we have

1 M,(q)|? (= d
E|>\(Q| 2

w
(2) =
() =Ta0ra m ) 2x @2MSAe) d3k1 = (daw,
IMP(q,0+i8)= wZ >
#°ng g [3ImD(q, ;) o
X ®Im D(q,wy)+2| — || ——— |,
2 2
Jw (02 &wz j i anp .
39 Xle+q(w+w2)le(w2)a_w21 (44)
ere the configuration averaged Green’s function is define
1 - M 2 h h fi [ dG 's f ion is defined
(ca)®= 2 9- V(g My(a)*) in Eq. (27) in terms of the self-energy in the mixed crystal.
TdQ R R Mo,
er dw, mD B. Dielectric function for the mixed crystal
% 27 2 M D,(q, ) The static dielectric constants of semiconductors are
5 known to be much larger than 1. The wave-number-
J°n B 1M S(qwy) + 2| g | [ dImS(q, w,) dependent dielectric function(q) for a semiconductor is
Jw % 9.2 dwy dwy ' different from that of the free-electron gas because of the
(40 importance of contributions from Bragg reflections and Um-

klapp processes. Pelfrused an isotropic energy-band model

allowing for the possibility of Umklapp processes to derive

€the wave-number- -dependent dielectric function for semicon-

‘ductors. Reasonable(q) for small values ofq were ob-

tained. Nar& later used realistic band structures and oscil-

1 Iatpr stre_ngths to calculate the(q) and con_firmed that

) (41) anisotropic effects and the off-diagonal matrix elements of
the dielectric tensors(q+K, q+K") with reciprocal lattice
vectorsK not equal toK’ are indeed small. The averaged

Equations(39) and(40) are general expressions for the con- dielectric function for the mixed crystal are then derived

tribution of electron-phonon interaction to the thermopowerbased on the assumptions

in terms of the phonon Green’s function and the electron

density-density correlation functlon_ for any system. For pure e(q)=ceA(q)+(1—c)eB(q), (45)

metals they reduce to the expressions given in JM.

The calculation of ) and (ca)® in Egs.(39) and

(40) for disordered mixed crystals now involves three parts: (kp)3=c(kp)3+(1—c)(kp)3. (46)

(i) the determination of the configuration averages of the

electron density-density correlation functi(q, ), (ii) the kg is the Fermi momentum of the mixed crystal.

determination of the dielectric functions in mixed semicon- With the dielectric function and the self-energy of the

ductors, andiii) the determination of phonon Green’s func- mixed crystal determined, the correlation functionSfg) in

tion D(q,w) for a disordered crystal. Eq. (43) for the mixed semiconductor is readily evaluated.

Here ng represents the Boson distribution function and the
conventional notation for electron-phonon matrix element
instead ofW, (q), is used:

h
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C. Averaged phonon Green'’s functions A(3):( 2 )(q Vq(wq)\| M, (q)|2)
The configuration-averaged phonon Green’s function in A TR dO g\ '
Egs.(39) and(40) used in this work are derived from Flicker
and Leath’s work® One obtains In the next section, numerical results for only the parts of the
thermopower of Si-Ge system given by E¢34), (50), and
, 2(1-c)og 2cybgy (51) are presented. In addition, the validity of ATA and CPA
(Da(g,@,i 5)>a":(w2—w2x)+2i Sw  (0?—b2)+2idw " approximations for several values ofis assessed for this
a a (47 system.

g, is the phonon frequency corresponding to Xitie branch

and momentung, and V. NUMERICAL RESULTS

FOR Si,_.-Ge, MIXED CRYSTALS

b — Mg ® © (49) As an illustration of the formalism developed here for the
ax M, ©an= YO thermoelectric transport parameters for disordered mixed
Mg and M, are the mass of atonB and A, respectively. iir:g;?%u;gr;nter:;fj ljsggc asx):toerglés ;é)lvl? g;s/ldg\ed.
Thus =0.7eV. The calculation of the transport ?:oefficients in the
thermoelectric matrix was performed only at the room tem-
perature and for a few values of The choice of the room
+c773,qu5(w2_b§)\)_ (49)  temperature in our cal_culati_on _allows us to ma_ke zero-
temperature approximations in view of the energetics of the
From the above expression for the configuration-averagegands concerned. The experimental results are reported as a
phonon Green’s function, the off-diagonal transport coeffi-function of temperature but for limited values of filling of the
cient in Egs.(39) and (40) for the mixed crystal becomes  bands for severat's. We perform theoretical calculations at
room temperature but for few values oo keep the com-
putation within reasonable limits. The change of dielectric
functions in the mixed semiconductors, and the existence of
two bands are taken into account in this calculation.

(Im D)\(q,w-l-i5)>av=(l—c)77wq>\5(w2— a)é)\)

(ca)? 2 A2(1-c)

(Im S(d, wqy)

&lmS(Qawq)\) anB
-I—wq)\

dwgy dway

A. Concentration dependence of the self-energy

To assess the validity of the ATA and CPA, the self-
energies in both schemes are calculated for the two bands
using EQ.(28). The results are displayed in Fig. 1 for

n g ImM S(qawqx) f?an
2 c?wé)\

) =0.4. Unlike the case of metallic Ag-Au alloy$the devia-
+§ AEX}\)CV [Im S(9.bg) tion between the two approximations is quite significant for
this concentration. Not only the shapes of the real and imagi-
d1m S(q,bgy) | dng nary parts of the self-energies are different, but also the ex-
ar PN PN tents of those energies are different. This is in contrast to the

Ag-Au system considered befdfebecause the constituedt

bgy IM S(d,bgy) [ #°ng 5o  Subbands lie within the broasibands of this metallic alloy,
2 ‘9b§x ! (50 whereas the two subbands in Si-Ge under consideration do
not overlap. This result is of particular importance since the
where ATA may be regarded as a good approximation for metallic
5 alloys, but the CPA self-consistent approach appears to be
A(2)=( 2 )(“V'x(q” ) crucial in getting a reliable result for the semiconductor case.
A\ ThdQ m To obtain thec dependence of the self-energies, the com-
putations forc=0.1 (Fig. 2) andc=0.4 are compared. It is
@ _ 3 dImS(q,wqy) | dng observed that the varying part of the réalz) is more ex-
(oa) qZ Agr(1=0)]) @g EPN EVN tended in energy as increases. For energiegs<—3 andz
a a >+ 3, the real parts ob(z) approach some constants for
o IMS(q, wgy) 9’ng both the bonding and antibonding bands. These constants
+ 2 w2 increase with the impurity concentratianrepresenting the
P changes of band edges with Alloy disorder is found to
Z A<3> dImS(q,bgy) | dng have relatively weaker effects near the f_orbidden energy
bax FT FTN gaps. Away from the gap, the self-energy is more severely

affected by alloying as can be seen by comparing Figs. 1 and

2.
' (51) The imaginary part ok (z) for c=0.1(Fig. 2) is smaller

for the lower part of the bands and greater near the top of the
where bands indicating that states near the top of the bands are

bay IM S(q,bg)) [ 9°ng
2 dbg,
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FIG. 3. The electrical conductivity as a function of the chemi-
cal potential(filling of the bandg for disordered Si_.-Ge. with ¢
=0.4 (dashed curveandc=0.1 (solid curve.

antibonding bands now contains two overlaping subbands;
the host subband and the impurity subband. The pedkisf

in the impurity subband region and the low-energy tail part
of I' is in the host subband region. Both the bandwidth and
the height of the impurity subband increase with concentra-
tion. Therefore forc=0.4, as shown in Fig. 1, approaches

a symmetric shape characteristic of the merging of the two
subbands.

B. Disorder contribution to o

The integration ovek, in Eq. (44) is done using Monte

FIG. 1. The real part and imaginary part of the self-energies forCarlo sampling of 2000 random points jth of the Bril-

the bonding and antibonding bands fof Si Ge, with c=0.4 cal-

culated usinga) ATA and (b) self-consistent CPA.

louin zone of the diamond structure given ky<k, <Kk,
<1, kytky+k,<3. It is found that for the room-
temperature caséng / dw, is very close to a delta function at

preferentially damped by the presence of the impuritiesthe chemical potentigk. The calculated disorder scattering
However, a increases, this preferential damping moves tocontribution to the static electrical conductivity in E§2) is
lower part of the bands and the corresponding damping als@iven in Fig. 3 as a function of the filling of the two bands

increasegsee Fig. L Alternatively, the In®=T" in Fig. 2

for two concentrations=0.1 andc=0.4. This is equivalent

can be understood as follows. Each of the bonding and tht® investigating dependence on doping density. The maxima

Seif energy (half bandwidth)

-2 -1 0 1 2
energy (half bandwidth)

of the conductivity occur near the bottom of both the bond-
ing and antibonding bands. These maxima reduce in intensity
asc increases toward= 0.5 and increase in intensity again
for higherc, as a result of stronger multiple impurity scatter-
ings occuring at the intermediate concentration range and
causing a reduction of the electrical conductivity. The shape
of the o curve may be understood as follows. At small oc-
cupation numbers of the band, the Fermi level is located in
the host band and the carriers move mostly between the host
atoms, having a high mobility. When the occupation number
increases, the Fermi level approaches the impurity band and
more carriers are energetically found in the impurity band
region and their mobility is thus reduced. Thus we see the
asymmetry of thes curve in the bonding and antibonding
band regions. Also to be noted is that for higher concentra-
tion c, the impurity subband plays a relatively more impor-
tant role. As shown in Fig. 3, the distinguishing contribution
from impurity subbands foc=0.4 produces shoulder struc-

FIG. 2. The real part and imaginary part of the self-energies fottures in the energy ranges<E<2.5 and—1<E<O0, where

the bonding and antibonding bands fog SiGe, with c=0.1 cal-

culated using self-consistent CPA.

the impurity subbands are located, whereas these shoulders
are absent foc=0.1.
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FIG. 4. The absolute value of thermopovesra)™)| as a func- FIG. 5. The absolute value of thermopowér«)®| as a func-
tion of the chemical potentigfilling of the band$ for disordered  tion of the chemical potentigfilling of the bands for disordered
Si;_.-Ge, with ¢=0.4 (dashed curveandc=0.1 (solid curve. Si,_-Ge. with ¢=0.4 (dashed curyeandc=0.1 (solid curve.

We also calculate the effects of energy dgapand rela- Vilenkin and Taylof® were the first to derive the term

tive strength of disordeA on the conductivityo. The in- (oa)® coming from the contribution of phonon momentum
crease of the gap antl does not alter the shape of the con- and they neglected it as small in comparison ton}(?.
ductivity curve. The change in the shape of the curve isFurthermore, Jonson and Mali@ound that it is negligible
insignificant. The increase of the strength of disordenas  at both high and low temperatures for a metal. Here we find
two effects. It moves the gap to lower energies and it lowershe calculated absolute value af¢)® in Eq. (51), which is

the conductivity. For negative values 4f that is, for the related to the term with phonon momentum, is about an order
host atoms having higher atomic level than the impurity at-of magnitude smaller than that {{fo-a)(®)| for semiconduc-

oms, we haver(E,—A)=c(—E,A). tors but is not entirely negligible at room temperature. As
shown in Fig. 6, the impurity subbands again produce struc-
C. Dependences ofea)™, (¢a)?, and (oa)® tures forc=0.4 similar to the case d{oa)@)].
on ¢ and band filling
The dielectric functions for pure Si and Ge given by D. Discussion of the numerical resuits

Srinivasan® employing Penn’s model for an extended range In general, because of the charge transfer between the two
of g are used. Equatio5) is then used to obtain the aver- bands for a mixed crystal, the transport coefficients near the
aged dielectric function for the evaluation of the density-band gaps are different from those from the single band ap-
density correlation functions in E¢43). In Fig. 4, for ease proach. This becomes most important for higher alloy con-
of presentation, the calculated results of the absolute value @fentrations.
(0a)™ due to disorder scattering far=0.1 and 0.4 are In semiconducting alloy systems there are four prominent
displayed as a function of the filling of the two bands as inelectron-scattering mechanisms with different relative
Fig. 3. Note that this representation does not display explic-
ity the change in a sign ofda)™) in some regions of 0.07 . . T T .
energy in Fig. 4. It is interesting to note that their depen- :
dence on the occupancy of bands is quite different from that 0.06 -
of the static electrical conductivity in Fig. 3. Theora)™)|
for holes is greater than for electrons. Again, likeit de-
creases with concentratian

The calculated absolute magnitufiera)®)| in Eq. (50)
for the disordered $i .-Ge. is similarly shown in Fig. 5 for
c=0.1 andc=0.4. Since this quantity is related to the
electron-phonon coupling, its dependence of the filling of the '§ 0.02 -
bands is quite symmetric in contrast to the corresponding —
or |(ca)™)| curve. It follows more or less the shape of the  0.01
host crystal electron density of states for low impurity con-
centrations. Forc=0.4, the impurity subbands produce 0.00
prominent structures in the regions<E<2.5 and—1<E )
<0 similar to that fore. But instead of shoulders, new peaks
appear. The increase of the strength of disordercfel0.1 FIG. 6. The absolute value of thermopowéra)®)| as a func-
moves the curve to lower energy in a similar manner as fotion of the chemical potentidfilling of the band$ for disordered
the case obr. Si; _.-Ge. with ¢=0.4 (dashed curveandc=0.1 (solid curve.
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weights at different situations: the scattering by acousticatronic part. In this work we calculated only the electron-
phonons, alloy disorder, ionized impurities, and the intervalphonon contribution to the electronic part of the ther-
ley scattering. Amitf’ made measurements of the Seebecknopower of a mixed semiconductor. The intervalley
coefficients in the “competitive” region and analyzed the scattering, ionized-impurity scattering for heavily doped
data based on the relative importance of these mechanisn@lloys were not included. For comparison with the
The conclusion is that a qualitative interpretation is obtainedneasured transport coefficients of Si-Ge mixed crystal with
only when all the mechanisms are invoked. c=0.3 in Ref. 31, the calculations presented here give
Experimental measurements of the thermoelectric trang(0@)®[=2116 (2 cmdeg) ' wV, and |(0a)¥|=132.7
port coefficients in the Si-Ge systems as a function of tem{( cmdeg) * uV. The measuredoa), on the other hand, at
perature and for a limited number of doping densities and'=2.2<10'%c.c. is 26670() cmdeg *uV. Thus the
compositionc have been reported previousfz*® The ther-  present calculated disorder contribution 0a()?) is an or-
mal resistivity as a function of compositianwas found to ~ der of magnitude smaller andr¢)® is two orders of mag-
have a broad maximum near the middle of the alloynitude smaller than the measurerh). It is safe to conclude
compositior’*? However, for power generation applica- that the electron-phonon interaction in this disordered system
tions at high temperatures, a high melting point and a largavith c=0.3 contributes only 10% of the totéda).
band gap are also important, favoring the Si-rich alloys. Dis- To measure the quality of materials for thermoelectric de-
mukeset al®! measured the thermoelectric transport coeffi-vice applications one defines a figure of métin terms of
cients for several Si-ricln-type andp-type alloys as func- several transport coefficients appearing in Elg):
tions of carrier concentration and temperature. They found
that at 300 K and for constant carrier concentration the See- oa’T
beck coefficiente and the electrical resistivity increases ZT= K
only slightly with increasing Si content in the range 0.4,
while for c=0.8 thea is about 23% smaller than that for ~ Sofo and Mahai? analyzed the optimum band gap of a ther-
=0.3in the Sj_.-Ge. system presumably due to the changemoelectric material with best performance. The optimum
of number of valleys in the band structures for higher Geband gap at operating temperatiireas found by them to be
content®®3! The dependences of andp on carrier concen- 10kgT. The Si-Ge systems have band gaps that obey this
tration and temperature are very pronounced. For a giverule for better thermoelectric materials at operating tempera-
temperatureq andp decrease when the carrier concentrationture around 1000 K. Measurements as well as model calcu-
increases. On the other hand, for given carrier concentratioiations for lattice thermal conductivity in the Si-Ge alloy
the @ and p increase with temperature. Additional featuressystems have been very extensive. Theoretical model calcu-
are observed fon-type alloys at high temperature. Theand  lations using the relaxation time approximation all indicate
p for n-type alloys reach maxima and then decrease withihat the lattice thermal conductivity of the Si-Ge mixed crys-
temperature possibly due to the onset of intrinsic conductiontals is an order of magnitude lower than the parent pure
For heavily dopech-type andp-type Si and Ge crystals crystals and decreases with increasing temper&taféBe-
Fistul’ *® measured ther and p as functions of carrier con- cause the carrier mobility is only slightly smaller in the
centration and temperature. He found that within the limitsmixed crystal than in the pure crystals, the estimated thermo-
of the experimental error the value aefat room temperature electric figure of merit of the mixed crystals can reath
does not depend upon the chemical nature of the dopants ar€0.8 forc=0.3 at 1000 K using the experimental measured
the phonon drag is negligible. Similar measurements wergalues of transport coefficieritsin Eq. (52), while the esti-
also done for samples of different carrier concentrations bynatedZT is =~0.1 at 300 K. The maximum figure of merit
other authord’*8In the next paragraph, a discussion of theabove 1000 K, on the other hand, has been estimated to be
electron-phonon contribution will be shown to be an order ofZT~1.13*' The present calculation at room temperature
magnitude smaller. shows that the thermopower from disorder effect in the nor-
These two sets of measurement lead naturally to our estmal carrier concentration range is 30—45% less than that of
mation of the difference of the results between the pure anthe pure Si, which confirms that the increaseZdffrom Eq.
the mixed crystals with the same carrier concentration. Thi52) in this disordered system may arise mainly from the
gives the disorder contribution to thewhich may be com- disorder effect on the thermal conductivity.
pared with the calculations of this work. For=0.3 andn
=2.2x10%c.c. caseé'? the difference is 22QuV/K; for
n=6x10"c.c. case"*® it is 130 wV/K. The disorder
contributions to the Mott term are calculated to be In this contribution, an expression for the energy—current-
oM =120,V/K and 130uV/K, respectively, for these two density is given in a general setting which unifies the results
concentrations. The agreement is fairly good in view of thefound in the literature in an elegant way. The general
uncertainty in assuming that the same relationship betweedensity-density correlation function which describes semi-
chemical potential and carrier concentration holds for botlconductors is considered here which is different from the
pure Si and the mixed-crystal system. In the next paragrapltase of metals often treated in the literature. This formulation
a discussion of the electron-phonon contribution will bealso incorporates coherent potential approximations useful in
shown to be an order of magnitude smaller. dealing with disordered mixed crystals as well as electron-
For Si-Ge mixed crystals the phonon mean free paths arphonon interactions. In metals, Jonson and M&Haand
short, and therefore, unlike pure Si or Ge, the phonon drathat the nonadiabatic part of electron-ion contributions is
contributions are negligible in comparison with the elec-negligible so that Mott's formula for thermoelectric power

(52

VI. SUMMARY
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continues to hold. In the case of strongly coupled electronformer determines the dispersion of the bonding band and
ion systems which may occur in semiconductors, this conantibonding bands. The dependence 0¥, is included in

clusion needs to be examined. Here it is found that the frethe latter and ignored in the former part. It may be estimated
guently omitted term is one order of magnitude smaller tharthrough a mean field seen by an atom when the impurity is

the Mott term, but not entirely negligible. present
The electronic, adiabatic electron-phonon, and nonadia-
batic electron-phonon contributions to the thermoelectric (Vi=(1-c)Vg_g+CVa_n. (A2)

power in disordered mixed crystals using multiband CPA are

derived in this work. Only the disorder contributions to the A simplified approach can be developed when only
thermopower and electrical conductivity in mixed Si-Ge nearest-neighbor interactions are considered. Then the fol-
crystals are investigated as an illustration of the formalismowing substitutions representing the antibonding and bond-
given here. Here the Wannier/Bloch representation is used timg states are made:

describe the system under consideration. The nonparabolicity

of the bands with band gap and the semiconductor dielectric 1

functions are included to give a realistic description of the In,a)=—[[n,2)+[n,2)],
semiconducting system. The results for this system show that V2

the disorder effect does not introduce significant change in (A3)
the electrical conductivity but indicates a decrease in its ther- 1

mopower. Therefore it is the dramatic reduction in the ther- In,b)= E[|n,1)—|n,2)],

mal conductivity of disordered systems that raises the ther-
moelectric figure of merit. Since the calculated concentratiorso that Eq.(A1) can be rewritten in the following simpler
and band occupancy dependences of the diagonal and offarm:

diagonal transport coefficients are different, one may also

use these dependences to tailor the maximum value of ther- @ b)

moelectric figure of merit in a mixed crystal. The formalism H=2 [n.a)e2())(n.al+2> [n,b)(ey’(x))(n,bl
presented here for the thermopower in disordered crystals is A "

i . ; (A4)
quite general and may be used in the study of other semicon- +E b oAl ,
ducting systems. 22:41, [In,@)Vign",al=[n,b)Vi£n",bl],
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APPENDIX @ ande represent the energies for the antibonding and

. . . . bonding states at the center of the Brillouin zone, respec-
In this Appendix, we give the salient features of the elec g P

. ; ; “tively. The last summation in EqA4) is the dispersion for
tronic structure of a model semiconductor with the two basqhe bonding and antibonding states. For example, for the

atomsi :1.' 2 associated with egch lattice po'rnpf a ;inc- diamond lattice the dispersion relation for the antibonding
blend lattice. (These two basis atoms are identical forstate can be expressed, in units of half bandwidas

group-IV materialg. This model is used in the calculations
presented in this paper. The Hamiltonian of this system in

k k k
the Wannier representation is s(k)=| cog 772 * cod 772 Y co§7-r2 :
= i)e! i kK k wk,]Y?
H=2, Inierodn.l TSP st s (p6)
' 2 2 2
+ [N, Vi (ryi—rap(n’,jl. (A1)  For the bonding band the dispersion relation-is(k).
n,n’,ij Using the Hamiltonian in Eq(A4) we obtain the two-
ni#n’j band Green’s-function matrix given in E@Q7). At this stage

In,i) represents the Wannier state associated witmthéat- it is convenient to use a model density of staté3() to
tice point of thei™™ sublattice. The diagonal tergf,(x) de- obtain an analytical solution of the integral in E89). Let

pends upon whether the sitei is occupied by the host atom

or the impurity atom x=atonB or A). i) 1—(E—1—E)2 1/2. ‘E—l—E<1
In general, in CPA the/,, is considered to be indepen- T 2 ' 2|
dent of the impurity concentrationas it only appears in the 0)(E)= 1 211/2 E
dispersive part of the Hamiltonian for the metals. In the (—)[1— E+1+—2 } CE+1+ <1
present case for semiconductovs, appears both in the dis- m 2 2
persive and nondispersive parts. The latter determines the 0 elsewhere.

splitting of the bonding and antibonding states and the (A7)
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Here and elsewhere, the energy units are in terms of the halér z=x+iy, and
bandwidth. This density of states has no critical point except
at the band edges.

This model density of states produces an analytical form
of the electron Green'’s function for the pure semiconductors.

[(XZ_yZ_ 1)2+4X2y2]1/4

2xy
21 Cty))

X2_y2_ 1'

tan !

B

The analytical solution of the integral in E@®9) using com-
plex variables is found to be

2

A
x( 1-Bcos=

(0) =
f0(z)=2 5

0~ | +yBsin

y<
A 0<]

0~

A
=

5 +2i

+|z|B sinZ 6 1—Bcos§

A
—XxBsin= (A8)

20>—|z|Bcos—

2

(A9)
f-=1 when Re&?<1, and §-.=0 otherwise,

otherwise.
(A10)

§-=1 when Re?>1, and §-=0

These analytical results are used in the computations dis-

cussed in the paper.
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