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We present results for acoustic wave propagation in periodic composites consisting of solid spheres in a fluid
host. We show that for solid scatterers in fluid host material combinations the extensively used plane-wave
method is inadequate to produce accurate results and a new approach is required. Our band-structure results are
obtained by using a multiple-scattering approach based on an extension of the well-known Korringa-Kohn-
Rostoker method.S0163-182009)04841-9

[. INTRODUCTION of the calculations have been performed using the plane-
wave (PW) method.(In Ref. 8 a variational method was used
The propagation of acoustic and elastic waves in periodidased on an expansion in functions localized around each
media is a problem of increasing interest in recent years. Fdattice point) PW, which is based on the expansion of the
the condensed matter physicists the interest is focused on tiperiodic coefficients in the wave equation in Fourier sums,
guestion of the existence or not of spectral gaps in theshas been applied to a variety of realistic as well as ideal
periodic media(phononic band gapsin analogy with the material combinations. Study within PW has shown that gaps
electronic band gaps in metals or the photonic band gaps ican exist under rather extreme conditions that concern
photonic crystals. Materials with phononic band gégsec- mainly the elastic parameter&ensity, velocities of the
tral regions where sound and vibrations are not pernjittedcomponents of the composite, the volume fraction of one of
can be proved very important for a lot of branches of sciencéhe two components, and the topology. More specifically, it
and technology: They can be used as sound filters, for theas been found that the density contrast of the components of
improvement of the design of transducers, as vibrationlesthe composite plays a crucial role for the appearance of a
environment for sensitive devices, etc. The interest forgap. For solids, gaps are favored by high-density scatterers in
acoustic and elastic wave propagation stems also from tha low-density host. In contrast, for fluids, low-density scat-
rich physics of the acoustic and elastic waves as well: theerers in a high-density host is the most favorable combina-
existence of a term proportional to the mass density variatiotion for gaps to appedr Also gaps seem to prefer the cer-
in the acoustic and elastic wave equation or the mixed lonmet topology (isolated scattereysrather than the network
gitudinal and transverse vector character of the elastic wavespology. Optimum(for gap formation volume fraction of
are characteristics that distinguish them from other types othe scatterers ranges between 10-50 %. Ifealwide gap
classical wavegwaves obeying a second-order equation inrealistic material combinations, according to the above con-
the time domaih The investigation of the possible new fea- ditions, can be composites consisting of heavy metal scatter-
tures in the propagation coming from these particular charers(e.g., Fe, steel, Bbin a polymer hoste.g., epoxy.®*°
acteristics is a challenging problem. Moreover, the acoustic Although the existing theoretical study of 2D or 3id
and elastic composite media offer some important advaner solid composites is quite extensive, this is not the case for
tages (absence of interactions, precise tuning of the fre-mixedcomposites, i.e., composites consisting either of solid
quency for the experimental investigation of questions re-scatterers in a fluid host or of fluid scatterers in a solid host.
lated to localization—note that band gaps tend to be region¥he aim of this work is to study the case silid scatterers
where localized states start to appear if we gradually disorden a fluid host As we will show in the following, the PW is
a periodic system. unable to give accurate results in this case. The attempts to
Based on the above considerations, several band-structufied a method for the calculation of the band structure for
calculations for acoustic or elastic waves propagating in pesolid scatterers in a fluid led us to extend to acoustic waves a
riodic composites consisting of spheres in a host materialariational multiple-scatteringMS) approach based on the
[three dimensional3D)] or rods in a host materidtwo di-  well-known (in the band-structure electronic community
mensional2D)], where both the scatterefspheres or rods Korringa-Kohn-RostoketKKR) theory®~2° The success of
and the host are either fluids or solids appeaf Experimen-  this theory in the electronic band-structure calculations and,
tal studies were also perfornfetf'°demonstrating the use- recently, in electromagnetic ~wave band-structure
fulness of acoustic waves in illustrating general features otalculations’~2% combined with its ability to describe both
wave propagation in inhomogeneous or random media. Modtuid and solid scatterers an@host importantly both peri-
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odic and random media were the main reasons for our inter- 6.0
est in the MS method. In the present work we apply the MS
method in periodic composite systems consisting of spherical 50
scatterers.

The structure of this paper is as follows: We will briefly 4.0 F

present first PW, discussing its inability to describe compos-
ites with solid scatterers in a fluid. Then we will present our
MS method, focusing also on the differences in the applica-
tion of this method between the acoustic and the electronic 20 |
case. Finally, we will present some of our main results. The
results and some of our arguments will be discussed in con- 10 b
nection with single-scattering data. It has been shown that
single-scattering analysis, i.e., examination of the form of the 0.0 . . . .
single-scattering cross section, can give predictions and un- 0.0 Lo 20 3.0 4.0 5.0
derstanding for the band-structure characterigticsluding kg

the possible existence and the position of the papsa pe-
P b gaps. p FIG. 1. Total dimensionless cross section/{rrz) VS Korg

riodic multiple-scattering system{:**?° Usually, widely
separated strong resonances in the cross section are com's/Co for a solid sphere in watefsolid ling) and for a flid

bined to give flat bands in a periodic system, while gaps tenaphere of the same density and Lawwefficient\ (dashed ling
also embedded in water, is the sphere radius.
to appear between these flat bands.

s
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PW is a fast and easy-to- -apply method that is based on th
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PW, fails in the description of the propagation. Indeed, the
Il. ABOUT PW attempts for such a calculation led to no convergence at all
and unphysical solutions.

On the other hand, one can obtain reasonable solutions
and the periodic wave amplitude in Fourier series. ApprOX|rhSIng Eq.(2) (this is the method of some existing band-
mating these infinite Fourier series with finite sums, the sostructure calculatiorty). Starting from Eq.(2), however,
lution of the wave equation is reduced to the solution of a means that one ignores completely the difference of the wave
finite matrix eigenvalue equation. equatlon inside the scatterers and, in fact, one replaces the

The elastic wave equation in isotropic systems has thSOIId scatterers with fluid scatterefsf the samex and p)
following form: ?g_no_nng completely the.transverse component of the wave
: within the scatterers. This transverse component, due to sur-
1( 9 au P face scattering, can be strongly coupled to the longitudinal
—[—( )\—) +—u +w?u'=0, (1) component inside as well as outside the scatterers. Thus, we
pLX\ X)X, expect that it can considerably influence the longitudinal
whereu' are the Cartesian components of the displacemerfifopagation modes in the entire system.
vector, p(r) is the mass density, ankl(r) and u(r) the In order to obtain a first indication whether such an influ-
Lame coefficients of the mediumA=p(c?—2c?), n  ©€Nce exists and to what extent, we examine first the single-
:PCtZ: wherec, andc, are the longitudinal and the trans- scattering case. In Fig. CBO!Id line) we shc_JW the scattering
verse velocities, respectivdlyFor N terms in the Fourier Cr0SS section for a solid sphere with parameters
sums &N scatterers in the periodic medirgg. (1) leads — 20 glcn?, ¢;=3.0 km/s, andzy=1.5 km/s, embedded
to a ANX 3N eigenvalue equation, giving\ permitted fre- 1" water.  For the water p,=1.0 glend, o=,
quencies that correspond to mixed longitudinal and trans= =1.5 km/s.[In the above and in what follows the subscript
verse waves. 0 (=out) denotes the host material and the subscript
For fluid systemsu=0 and by introducing the pressure (= |_n) the scattering material Whlle tHeandt denc_>te I_ong_|-
p=—\Vu, the above equation takes the form tudinal and transverse,. respectwﬂzﬂ]he dashed line in Fig.
1 shows the cross section for a fluid sphere of the saiaed
1 \ as the solid ondp=p;, A=pi(c?—2c?)], embedded
o) +w?p(r)=0. (2)  also in water. As it is clear from Fig. 1, the substitution of a
solid sphere by a fluid one of the sameand \ [what PW
Equation(2) is the starting point for the application of PW in with Eq. (2) doed produces huge changes in the cross sec-
fluid systemdfluid scatterers in a fluid hostFor N terms in  tion. This, combined with our experience of the strong con-
the Fourier sums one obtains in this casdaN system. nection between the single-scattering cross section and the
Let us come now to the case of solid scatterers embedddshnd structure, is an indication that we can expect consider-
in a fluid host. In that case the eigenmodes of the wholeable difference also in the band structure. Thus, the band-
system(which areN for N scatterers correspond to pure structure results provided by the combination of E2).and
longitudinal waves. There are, however, transverse modethe PW method can be very inaccurate. The confirmation of
that cannot propagate, but they are localized inside the scathis last statement will come from the comparison of the PW
terers.(For a longitudinal wave incident on a scatterer, oneresult with the result of the MS method, which we present
can show that the field inside the scatterer will be both lonnext. The MS method takes into account the exact character
gitudinal and transvers®) Due to the special, no propagat- of the problem and it can be also applied to the full fluid case
ing character of these modes, Ef), with the application of  (fluid scatterers and hoswith limited additional effort.
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lll. MULTIPLE-SCATTERING (MS) METHOD
fdr’= lim J dr’. (8)
v r's<rgte

As has been already mentioned, our multiple-scattering €0

method is based on the KKR theory. We start from theThe |imiting procedure in Eq(8) ensures that we approach

acoustic wave equation in a periodic medium, E2). An  the surface of the sphere from the outside, including thus the
alternative way to write this equation is surface singularity.

By noticing that for nonoverlapping spheres and r’

) w? , 1 inside a unit shell centered at the origin of the coordinate
Vep(r)+ C—Op(f)+w JETR p(r)+p(r) system the functio obeys the equation
1 V2G(r—r")+K3G(r—r')=a8(r—r’), 9
X[V—}Vp(r)=0. 3) ) .
p(r) and by using the wave equation and the Gauss theorem, the

volume integral in Eq(8) can be transformed to a surface

Equation(3) has the form integral. After some algebraic manipulations one can find

Ho()p(1)+U(1)p(r) =0, @ ™
where Ho(r)p(r)=0 [Ho(r)=V?+ w?c,?] represents the lim f [p(r')V, G(r=r")—=G(r—=r")V,.p(r')]dS’
wave equation in the absence of scatterersi¢ the wave gt s'
velocity in the host materialEquation(4) has the same form
as the Schidinger equation for the electron waves. This | p(r) for r>rg 10
analogy indicates that one can apply the KKR theory in a “lo for r<rq, (10

similar way as in the electronic case. There is, however, an . . ]

important difference between our case and the electroni¥hereS’ is a spherical surface of radius, centered at the
case. The difference stems from the fact that the potential iRMigin of the coordinates. ~

our case has @-function singularity at the surface of the  Ther’—rs+ in the above limit denotes that we approach
scatterers due to the fact8ip 1. Thus, the contribution of the sphere surface from the outside. This is a direct conse-
the surface scattering to the volume integrals is not negliguence of Eq(8) and it is very important in our case as the
gible (as in the electronic cakg. Due to this difference we integrated functions are not continuous across the surface
will present our calculations in some detail despite the facfthe pressure is continuous but its derivative has a step func-
that analogous calculations have been presented in the literflon discontinuity and thus the side limits do not coincide.

ture for the electronic cadé 2018 This discontinuity of the integrated functions does not occur
It can be easily showfi that in a periodic system E¢3) N the electron wave case, where the usual practice is to
is equivalent to the following integral equation: consider the above integral as an “inwards” integral (
—rs—).
The solution of Eq(10) for r <r gives the eigenfrequen-
D(f)Zf G(r=r")V(r")p(r')dr’, (5)  cies of our periodic system for each Bloch’s veckor To
v

obtain this solution we use the fact that both the functions
G(r—r') andp(r') can be expanded in spherical functions

wherev is the volume of a unit shell and the functi@r :
of r andr’ (see Appendix B

—r') is given by

G(I’—I”)ZE eik'RnGo(r—r’—Rn). (6) G(r_r,)zz 2 [Alml’m’jl(kor)jl’(kor,)

Im 7y

+Koj i (Koh) Yy (Kol ") 87 Sy
Gy is the Green’s functidii for the homogeneous equation ol 1(kof )Y (Kol) O S ]
Ho(r)p(r)=0: XYim(OYS o (r) (for r<r’), (11

1 eik0|r—r’|
G&Pﬁﬂ=—2;|P{w, Ko=

p(r)]pr=r =p°(r")

@ 7
o (7)
=2 amlii(kof )+t (ko )] Yim(r).
The local potentiaV/(r) in Eq. (5) is zero outside the unit Im
shell centered at the origin of the coordinate sysfénis (12

lated toU by U(r)=2,V(r—R,)], and th field, __ )
:)Ezf)e (c))bey); (rt)he . Bﬂimh’snn ignditiﬁre;?ﬁﬁqle)} (In the above equationg andy, are the first- and second-
) 1 n

—exp(k-R,)p(r). kind spherical Bessel functions of ordeand h,=j,+iy,.)

Taking into account that for acoustic waves the local po-, Substituting Eq(11) and Eq.(12) into Eq.(10) we obtain

tentialsV are nonzero only inside and at the surface of theN€ final multiple-scattering equation:

scatterergsee Eq(3)], the integral over the unit shell in Eq.
(5) is reduced to an integral over the volume of a scatterer 2 [A|m|'m'—ko|m(t|_rl)5n'5mmf]a|rm/=0- (13
(r'srg, rgis the scatterer radilis I'm’
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The coefficientsA;, v in the above equations are called and by taking into account the form gf[see Eq(D1)]. (c;
structure constants and they dependkon w, and the lat- is the wave velocity inside the scattergiSor solid scatterers
tice structure. Their calculation is described in Appendix B.the conversion of10) to an “inwards” integral is a more
The coefficientd, , relating the incident to the scattered field complicated problem.

at each scatterer, can be calculated by solving a single-
scattering problenisee Appendix D

: . A. Calculational detail
Equation(13) can be written as aiculational detarls

As we discussed above, the eigenmodes of a periodic sys-
tem are obtained by requiring nonvanishing solutions for the
linear homogeneous systei). Thus, one has to calculate
the matrixA, the determinant of which has to be set equal to
. ) ) zero[see Eq(14)]. The order of the matriA depends on the
which corresponds to a linear homogeneous algebraic sy$yymber of the angular momentum terms that we keep in the
tem. The condition for this system to have nonvanishing sofje|q function(12) [or (17)]. In our calculations we obtained
lutions, det(\)=0, gives the eigenfrequencies of our peri- good convergence by keeping the maximum numbet of

odic composite. . =lnhax=3 or 4, while for the lower bands we had good
A careful examination of the above equations shows thag,nyergence with,,, less than 3.

the elastic parameters of the scattering material affect the angther parameter of the problem is the size of the peri-
calculation only through the scattering coefficiefitst; can ¢ system. In the results shown in this paper we have con-
be calculated very easily and accurately for both solid angjgered a system of 400-500 lattice vectors in the direct as
fluid scatterers. Thus, the method can be applied to botlye|| as the reciprocal lattice, with excellent convergence.
solid and fluid scatterers changing only the form of a single- The solution of the secular equatiéhv) by checking the
scattering problem. This, however, is not the only advantagganishing of the determinant through its sign change in-
of the method. Its most important advantage, as has beepy|yes the risk of losing some multiple solutions. One way to
already mentioned, is that it can be applied also in disordereg;ce this difficulty is to diagonaliza first and then find the
systems. It can treat systems with positional as well as suté-ign changes of each of the resuliing diagonal elements

2 A|m|rmra|rmr:O<:>E ALL/aLr:O,

I'm’ L'

L=(l,m),
(14

stitutional disordefthe latter can be done by combining the (which have no multiple roojs

KKR method with the coherent potential approximation

(CPA) method.

An alternative way to obtain Eq14) is to convert the
“outwards” integral (10) to an “inwards” integral and to
use the pressure field inside a sphéiiéhis is the way that

Among the calculational problems of the MS method one
worth mentioning is the problem of the spurious “roots”
(sign changes of the determinant that do not correspond to
actual eigenfrequencies of the sysjee met these kinds
of roots in two caseqa) Fork,=w/c,~|k+G,| (G, is any

the KKR has been applied in the electronic case, but thergector of the reciprocal lattige For these values df, the

the distinction between “inwards” and “outwards”
does not matter as the two integrals coincidehe conver-
sion to an “inwards” integral(for fluid scattererscan be

integral strycture constant,, become singulafsee Appendixes

B and Q and there is a possibility that the determinant or an
eigenvalue ofA may change sign without the existence of a

done by taking into account the boundary conditions of thggg) eigenfrequency of the systeffor actual eigenfrequen-

acoustic scattering problem,

lim p(r’)= lim p(r’),

’ ’
r—rgt r'—rg—

(19

Jd J
lim —,p(r’): lim &—p(r’).
r .

pi or’

’ ’
r—rgt r—rg—

With the boundary conditionél5), the integral(10) (for
r<rg, r<r') becomes

lim
’ s’

r ~>rs—

J
pip(r') —G(r=r")
ar

a
—pOG(r—r’)?p(r')]dSﬁO (16)

and Eq.(14) can be obtained by substituting in this integral

the expansion of the functio® [see Eq.(11)], the pressure
field inside a scatterer,

P =3 dindi (ki) Yin(1), K=o (47

cies one or more eigenvalues Af have to approach zero
continuously as we approach the eigenfrequenEgr the
calculation of eigenmodes of the system with= w/c,~ |k

+G,| the MS method is a bit inconveniento) We met
spurious roots also for frequencies for which the coefficient
t; becomes zero. The actual eigenmodes of the system close
to these frequencies, if they exist, can be found if one re-
places the\ by its submatrix which arises by subtracting the

rows and the columns corresponding to théor which t,
=0."

IV. RESULTS AND DISCUSSION

In what follows we present some of our main results. One
of our aims is to examine how important is the nonvanishing
rigidity of the scatterers for the band structure. For that rea-
son we compare our reliable MS results with results obtained
within PW or, equivalently, with band-structure results for
corresponding fluid scattere(Buid scatterers with the same
N\ andp as the solid ongs

Ouir first result(see Fig. 2 concerns the material combi-
nations of Fig. 1. Figure(@) shows the band structure along
theLI" andI'X directions for an fcc periodic composite con-
sisting of solid sphere@vith the same parameters as in Fig.
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FIG. 2. Dispersion relation along thd” andI"X directions for 0.0 : : : : : . : :
an fcc periodic composite consisting of solid spheres in water. The 00 10 20 30 40 50 60 70 80 90
parameters are as followsp,/pi=1/2, co/c;=1/12, \y/\; wrje,
=1/4, c,/c;j=1/2. Volume fractions of spheres=50%. c, is
the wave velocity in the host aralthe lattice constani{a) shows
the result within MS method an(b) the same within PW and Eq.

2.

FIG. 4. Solid line: single-scattering cross sect'@hwri for a
glass sphere in water host. Dashed line: single-scattering cross sec-
tion for a fluid sphere with the and\ as in the glass, also embed-
ded in waterc, is the wave velocity in the water and the sphere

radius.
1) in water host. The volume fraction of the sphered ds

=50%. Figure b) shows the band structure for fluid petween the two curves is considerably less than the differ-
spheres of the sameandp as the solid ones and in the same gnce between the solid and dashed line in Fig. 1.
periodic arrangement, also in water host. Figui® 2 what The reduction of the difference between the PW and the
PW{with Eq. (2)] gives for the material combination of Fig. s result in the case described in Fig. 3 compared to that of
2(a). As can be seen the PW results are very different fronfig. 2, which actually means reduction of the influence of the
those of the MS method. This difference shows that the rer|g|d|ty of the ScattererS, can be attributed to the |arger ve-
placement of the solid scatterers with fluids can change thgycity and density contrast between scatterers and host. As
band structure drastically. has been discussed in the p&éthe velocity and mainly the
_Arealistic case similar to the previous one is presented ijensity contrast between scatterers and host are the most
Fig. 3. Figure 3 shows the band structure for a system conmportant parameters controlling the scattering and thus the
sisting of glass spheres in water, in sc structure and glassropagation in the composite system. As these contrasts in-
volume fraction f=45%. (For glassp=2.5 glcmf, ¢,  crease, other parameters, as the rigidity of the scatterers, be-
=57 km/s, Ct:3'4 km/S) Again, here, the left panel is come less important_
our MS method result and the right one is what the combi- T demonstrate this point we examine the case of steel
nation of Eq.(2) and PW provides in this case, i.e., the bandspheres in air. The band structure obtained by the MS
structure for fluid spheres of the sameandp as in glass.  method(see Fig. 5, circlesis the same as that obtained for
As can be seen in Fig. 3, the difference between the M$juid spheres with the. andp as in steelsee Fig. 5, solid
and the PW result is reduced compared to the previous cas@e). The origin of this coincidence comes from the ex-

(Fig. 2. This reduction can been predicted by calculating theremely large density contrast between steel and air. This
cross section for a glass sphere embedded in water and the

cross section of a fluid sphere of the samandp as in the
glass embedded also in watesee Fig. 4 The difference 100 b
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FIG. 5. Dispersion relation along tHel"X directions for a fcc
FIG. 3. Dispersion relation along thé XI'R directions for a sc  periodic composite consisting of steel spheres in(stieel volume
periodic composite consisting of glass spheres in water. Glass vofraction f =65%). The circles indicate our MS result and the solid
ume fractionf =45%. ¢, is the wave velocity in the water arathe line the corresponding PW resutt, is the wave velocity in the air
lattice constant. anda the lattice constant.
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Iarge density contrast is the dominant parameter for the scat- Yim(D)=(=D)™YE (), Yim(—=1)=(— DY, (7).
tering and, consequently, for the band structure. Thus, the (A3)
existence of a nonvanishing shear velocity in the spheres
does not play a significant role. We can also understand it by
taking into account that a steel sphere in air is almost equiva-
lent to a “hard” (inpenetrablg sphere, which permits no
wave to get in. Thus, the details of wave propagation insidd(K[r =r'[)Yi,(r—r")
the sphere are irrelevant.

An examination of material combinations other than these S ik (h , ,
shown in Figs. 2, 3, and 5 leads to the result that the role of =, T (KDY (09w’ for r<r
the scatterer shear velocity @r becomes important for the —
band structure only when both the density and the longitudi- G0 , ,
nal velocity contrast between scatterers and host are rela- I%, By (KDY (NG im(F7) for r>r7,
tively low. When either the velocity or the density contrast (Ad)
starts to get higher, the role of the scattergrgor u) be-
comes less and less important. The most extreme case is thahere
of high-density contrast, where the shear velocity in the scat-
terers does not seem to affect the band structure at all. This (R) _ Y
last case is the one that the PW method can describe very gl’m’lm(D)_% (=1) 47C1rmimLm
accuratelyt!

2. Transformations of elementary spherical functions

XRL(kD)YLM(D), R:J or h.
V. CONCLUSIONS (AB)

In this work we extended the multiple-scattering KKR ¢, " are the Gaunt numbef&:
method and we presented band-structure results for acoustic
waves propagating in periodic composites consisting of solid
spherical scatterers in a fluid host. We calculated the band C|/m/|mLM=f Y (DYF(N) Y m(r)dQ, (AB)
structure for a variety of material combinations and we ex-
amined whether and under what conditions the scatterer m
shear velocity affects the propagation. For this purpose we — (-1
compared the MS-KKR results with those based on the PW N
method, which calculates the band structure approximating
the solid scatterers with fluid ones. We found that the scat-
terer’'s shear velocity is important for the determination of
the band structure only in the case of low-density and low-

velocity contrast between scatterers and host. The symbols with the parentheses are tfiesgmbols?® For
given I,m,I’;m’ the only value ofM that gives nonzero

Ci/m/imum 1S M=m—m'. Thus, the double sum in EGA5)
is in fact a sum only ovek, with M=m—-m’.
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APPENDIX A: TRANSEFORMATIONS OF FUNCTIONS: = _”‘% Jkn)Yim(rhy(kr’)
ELEMENTARY FUNCTIONS: USEFUL EXPANSIONS
_ XYr(r'), r<r’. (A7)
1. Expansion of a plane wave

The regular spherical functign(k|r —r’|)Y;m(r—r’) can

eik-r:4ﬂ_% i1, (K0 Y (1) Y (K), (A1) be transformet as
where the spherical harmonids,,(r) are given by j|(k|r—r'|)Y|m(r—r’)=$f eik'(“r')Y,m(k)ko
Yim(1)=Yim(F) = Z'i('_'—ml)!rzp.Wcose)eimﬂ oy Wy
4 (I+[m])! = 2 ik Yim (D Gimn(r).
r=(r,0,¢), m=0 (A2) (A8)

and From Eq.(A4) and Eq.(A8) it can also be seen that
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1 cogk|r—r’])
AT r—r]

—k21|<kr>v|m<r)y.<kr>v (ry, r<r’. (A9)

APPENDIX B: THE STRUCTURE CONSTANTS Ajnrme

Starting from the expression of the free space Green’s

function, G, [Eq. (7)], and using Eq(6) and the formulas of
Appendix A, we can express the functi@{r—r')=G(r")
(with r"<|R,| for eachR,#0) ag’

G(r") =2 e FiGy(r"~Ry)
Rn

cogker”)
—2 Dimjr(kor )YLM(r”)__,n. PR
r
(B1)
where
: ik-R !
D y=—ikg RZ;tO e "nhy (koRy) YT M(Rn)+ 5L05M0
" (B2)

Expanding the functiong, (kor”)Y_ m(r"”) and cosgr)/r”
according to Eq(A8) and Eq.(A9) and comparing with Eq.
(11), we can expresh /i, as

(B3)

_ il=1"—=L
Alml’m’_§ 4 Cirm/imumDim -

Thus, the structure constant,, ., can be calculated
throughD|,. The calculation oD, requires calculation
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where7 is a positive number. Applying Ewald’s conditiéh,

S e (Ra) 2624 ik (Ry— 77\/_ E o (k+Gp) 242 +iGy 1
3 1
Ry U§ Gp
(CH

to the first integral in Eq(C3) and comparing the result with
Eqg. (B1) in the limit r"—0, one can obtain the following
expressions for the coefficienB y, :

Dy w=D{}+DE+D S odwmo. (CH)
1 4git
D(l):__ o
HY vé (k+Gp)2— K>
_ 2 2 |k+G |L
X el =0l n—— v (k+ Gy,
kO
(Co)
2L+1
D= - f = 2, Rt Ry
XJOO gZLe—R§§2+k§/4§2d§, (C?)
N
. = (K2 S
D6y = ILﬁE (e)

27 &5 sl(2s—1)

(The it difference between our expressions for fhey,’s
and the corresponding expressions of Ref. 18 is due to the
difference in the definition of th®, .)

The structure constant,,, are calculated combining
the above expressions far, ,, with Eq. (B3). The conver-

of a sum over all lattice sites. In order to ensure the convergence of the sums iB(}} andD (3} depends on the choice of
gence of this sum a usual practice is the application ofhe parameter. UsuaIIyagood choice is a value that makes

Ewald’s summatiof? (see Appendix ¢
APPENDIX C: CALCULATION OF THE SUMS—EWALD'’S
SUMMATION

Ewald’s summation has been applied in the literdfire
the sum contained in the functid&(r—r’)=G(r") [see Eq.

D{) of the same order witb (3} .
From the above it means that the calculation of the sum

ZLM<k>=R§0eik'RnhL(koRnth(Rn) (C9

according to Ewald’s procedure is done through the expres-

(6)]. Using the integral representation of the Hankel functionsion s, i (ko) Y, m(r)Z (k). Taking into account that

hg, G can be written as

G(r)=—7—"° Ee'k Roho(Kolr” = Ra)) (CY)
elk-R T o (= R)2E2+Kag?
n| e n o™ d
277\/—; fO ¢
(€2
-1 .
— e|k~Rn
277\/; ;n
\ 2 n
‘f d§+f /zdf ei(r 7Rn)2§2+k§/4§21 (CS)
V7

1
E iL(ko r>YLM<r>zLM<k>+J4_ o(Kor) Yoo(r)

ikolr =Ryl
ik-R, €

|r_Rn| ,

i1

" A7 % 10

and transforming the right-hand side according to Ewald’s

procedure in the limitr —0, one can obtain the Ewald’s

expression foZ, ;. Also,

Hom(k)= RZ:O e " Rah (koRy) Yim(Ry)

=(=D"MZ (k). (C1y
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APPENDIX D: CALCULATION OF THE SCATTERING APPENDIX E: SIMPLE MULTIPLE-SCATTERING
COEFFICIENTS t, FORMALISM

The coefficientt,, connects the scattered to the incident In the following we will show that we can obtain the
field at each scattere(To avoid the confusion between the multiple-scattering secular equatidb4) without the use of
subscript that denotes the spherical harmonic and the sulthe integral equatiofil0) and using only a physical multiple-
script that denotes “longitudinal,” in this appendix we will scattering picture. This picture is based on the simple idea
denote the first witi.) For a fluid scatterer in a fluid host it that in a multiple-scattering systefeither periodic or ran-
can be calculated by considering the pressure fid@sand  dom) the incident wave at each scatterer p,'°, has to be
(17) and applying the boundary conditio(s5). The result- equal to the sum of the scattered waves from all the other
ing expression is scatterers, plus, possibly, an external fipfdincident to the

composite systertf. This idea can be expressed mathemati-
o~ (Kolpo)in(kirs)in(kors) + (ki/p)in(kirs)in(kor o cally as follows:
" (Kol po)in(kir ) Ni(Kor o) = (ki /i) (Kir Nn(Kor )

1 ~1 pinnc(r)Zpo(rH’;n i), (E1)
T iltiw,’ w,=Im(t, ") =real. (D1)

) ) ) ~where the subscript denotes the scatterer at the lattice po-
For a solid scatterer in a fluid host the boundary condisition R,,. We can write the incident and the scattered wave

tions at the surface of the scatterer require Continuity of th%t each |attice position as a sum Of e|ementary spherica'
normal component of the displacement veatorcontinuity  \waves:

of the normal component of the stress vector, and vanishing
of the tangential component of the stress ve&tdf. Taking

into account that in a homogeneous mediungr) inc ) =pinc(r—R.)=> a i, (k.lr—R.DYi(r—R
=(1/pw)Vp(r), one can calculate the incident displacement Po (=P =Ry % imJ1 (Kol = Rol)Yim (1 =Ro),
vector for a given pressure field. Applying, then, the above (E2)
mentioned boundary conditions, can be calculated as fol-

lows:

PR =pS(r—Rn) =2 bih(Kolr =R Yim(r —Ry).
s A Az Im E3

tn=D— Ay4 QApy Aoz =m,
"lasy as ass n Relating the scattered wave by each scatterer with the inci-
dent wave at the same scatterer by solving a simple single-

scattering problentsee Appendix [ one can relate the co-

a1 812 A3 efficientsbll. with the all, :
Dy=|ax ax ax, v,=Im(t,"); (D2)
a1 Az ass bim=tam- (E4)
an=h(Z,), an=—jNZ)), The scattering coefficients [see Eq(D1) and Eq.(D2)] are

independent of the lattice positiononly in the case of iden-
tical scatterers.

We are interested for the eigenfrequencies of the system,
which means solutions with external field equal to zero. Set-

ajg=—nN(N+1)jo(Zi)/Zy, a=—]jn(Zy); (D3I)

ay1=Zo[ —Nohn(Z)], ting p°(r)=0 in Eq. (E1), using Eqs(E2), (E3), and (E4),
and the expansions of the elementary spherical functions
A= —Z;i[2mijn(Zii) — Nijn(Zii) ], hy (Kol —Rp|) Yim(r — Rp) in functions with center aR,, [see

Eq. (A4)], Eq. (E1) takes the form

as= —2n(N+ 1) il Jn(Z4i) = Jn(Zei)/ Z4i ],

i a|nm: 2 2 t"ar’m’gl(:w)l’m’(Rp_Rn)- (E9
A24= Zo[ Nojn(Zo) ] (D4) PEN | m’
o B ., . (The coefficientsgl(g)l,m, are given in Appendix A.More-
an=a3=0,  ag= = 2uilJn(Zi) = ]n(Zi)/Zii], over, using Bloch’s theorem one can relate the coefficients
a,, of the different lattice sites
agz= — il Ziijn(Zg) + (N—=1)(N+2)j n(Zi)/ Zyi].

(9 af,=e/“ (o Roa, . (E6)
In the above equation&,=wrg/c,, Zij=wrg/c), Zi
=wr¢/ci, andrg is the sphere radius. Substituting Eq(E®6) into Eq. (E5), we obtain



PRB 60 MULTIPLE-SCATTERING THEORY FOR THREE. .. 12 001

ik-(R,— h . ik-R; ~(h
2 2 elk (Rp Rn)gl(m)l’m’(RP_Rn) E (—Iko elk R]gl(m)l’m’(Rj)_}'l
I'm’ [P#N m R;70
-1 -1
_(tl’ )§||/5mm/ aln,m,=0, (E7) _kolm(tl, )5||/5mmr]a|rm/:0. (E8)
It is easy, using the formulas of the Appendixes A and B, to
which can be rewritten as show that Eq(ES) is identical with the secular equati¢h3).
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