ARTICLES

Structural stability of some possible phases of SiC₂N₄

J. E. Lowther

Department of Physics, University of the Witwatersrand, Johannesburg, South Africa (Received 24 February 1999)

The potentially superhard material β -SiC₂N₄ is compared with β -C₃N₄ where electron density considerations suggest that the strength of the materials relates to the C-N bond. A recently postulated cubic phase has been modeled and related to the β phase. The structure may be a promising precursor to a superhard β phase if the necessary concentration of N can be realized. [S0163-1829(99)06041-5]

I. INTRODUCTION

The β form of Si₃N₄ was the prototype material leading to the postulate that C_3N_4 may be harder than diamond.^{1,2} It is softer than β -C₃N₄ with a measured bulk modulus of 256 GPa,³ as compared to the theoretically predicted value for β -C₃N₄ of 437 GPa.⁴ Recently tertiary ceramics in the form Si-C-N are being investigated⁵⁻⁸ for potentially superhard properties. Amorphous forms of Si-C-N materials are well documented⁹ but often such materials are reported to segregate into SiC or Si₃N₄ when heated; a stable crystalline form of Si-C-N that does not behave in such a manner is being sought. Crystalline Si-C-N compounds that have so far been produced have had their structure contested depending upon the nature of the locality about Si. Using extended x-rayabsorption fine-structure studies (EXAFS) either a local tetrahedral¹⁰ or random¹¹ structure about Si has been suggested. In both these cases Si atoms are linked by a C-N network. More recent EXAFS measurements⁸ coupled with computer modeling favored the local tetrahedral Si-N-C arrangement. The crystalline structure of this Si-C-N material was found to have a structure very near to that of α -Si₃N₄(P3₁c) with a unit cell of dimension a = 6.904 Å and c = 5.260 Å.

The importance of the local tetrahedral structure has also been noted in the analysis of a lower density form of SiC₂N₄ compound recently produced by Riedel and co-workers.⁶ Here x-ray diffraction showed the possibility of an apparent cubic (*Pn*3*m*) phase with a cubic unit cell of measured dimension a = 6.1885 Å. In such a material the local Si related tetrahedral structure is realized as SiN₄ units that are connected through N-C-N chains. The flexibility of the N-C-N bond has been considered an essential feature for more extended SiC₂N₄ structures.^{6,12}

Following earlier theoretical results on β -C₃N₄, one of the hardest forms of SiC₂N₄ is expected to be β -SiC₂N₄. This is obtained by replacing two C atoms in the 14 atom unit cell of β -C₃N₄ with Si atoms maintaining the lowest C-N bond lengths. Possibly this form can be attained through a synthesis starting from one of structures discussed above. The purpose of this paper, therefore, is to consider details of the structures and to relate these to the potentially superhard form of the material β -SiC₂N₄.

II. COMPUTATIONAL DETAILS

Soft Troullier-Martins¹³ non-spin-polarized pseudopotentials with plane waves of 64 Ry were used throughout with a *k*-point sampling using a [444] Monkhorst-Pack grid.¹⁴ Energy-volume relations were calculated using a plane-wave algorithm¹⁵ for each structure and the results fitted to a standard equation of state¹⁶ from which an estimate of the bulk modulus can be obtained. Each structure was optimized for a specified cell geometry with lattice relaxation included in each case. This procedure is proving to be quite reliable in the computational design of advanced materials.

A. β -C₃N₄ and β -SiC₂N₄

In Fig. 1 we show the structure of β -SiC₂N₄ as viewed along the *c* axis of the hexagonal unit cell. The starting structure for β -SiC₂N₄ was β -C₃N₄ but with relaxation the Si atoms moved yielding an overall symmetry of *P*2/*m* as opposed to *P*6₃/*m* as for β -C₃N₄. The *P*2/*m* structure is identical to *P*6₃/*m* when the magnitude of the unit-cell vectors **a** and **b** is the same and the angle between **a** and **b** is 120°, held fixed here. Our results are given in Table I.

The relaxation of atoms in both structures is such that the lowest C-N bond length is 1.45 Å and the bulk modulus of SiC_2N_4 is about $\frac{2}{3}$ of C_3N_4 . This result agrees with previous calculations¹⁷ and implies that the origin of the bulk modulus relates to the strong C-N bond. This is confirmed by further

FIG. 1. β phase of SiC₂N₄.

11 943

Material	Unit cell (Å)	Fractional coordinates	B(GPa)	В′	Binding energy (eV)
β -C ₃ N ₄	a = b = 6.41	C:(0.1780,0.7720,0.2500)	432	3.95	-6.673
$(P6_{3}/m)$	c = 2.40	N:(0.3310,0.0330,0.2500)			
		N:(0.3333,0.6667,0.2500)			
β -SiC ₂ N ₄	a=6.78	Si:(0.6038,-0.1709,0.2500)	330	4.01	-6.601
(P2/m)	b = 6.92	C:(0.1661,0.7550,0.2500)			
	c = 2.58	C:(-0.7883,-0.5853,0.2500)			
		N:(0.3101,-0.0049,0.2500)			
		N:(-0.2821,-0.3445,0.2500)			
		N:(-0.0299,0.3080,0.2500)			
		N:(0.3130,0.6572,0.2500)			

TABLE I. Calculated properties of β -C₃N₄ and β -SiC₂N₄. Spin-polarization correction energies of -0.78(Si), -1.4(C), and -2.92(N) have been used when calculating the binding energies.

calculations on β -Si₂CN₄ and β -Si₃N₄,¹⁷ where a steady reduction in the bulk modulus is found.

In Figs. 2 and 3 we show the calculated charge density in one of the hexagonal planes. There are two important features to be noted on comparing these figures. First, very little charge is located about the Si atom—again suggesting that Si bonding is insignificant compared with the C-N bond. Second is the direction of the C-N bonding; if we look at the N atom we see that the main charge is *not* directed along the C-N bond itself but with N(2p) orbitals being directed perpendicular to the bond. Surprisingly the C-N bond is very similar in both silicon-carbon-nitride and carbon nitride again suggesting the importance of the C-N bond.

B. Near-cubic forms of SiC₂N₄

Recently a low-density phase of SiC_2N_4 has been investigated⁶ with a possible cubic structure (Pn3m) shown in Fig. 4(a). In such a structure, Si surrounded tetrahedrally by four N atoms is the essential building block and a linear Si-N-C-N-Si bridging unit. The measured unit-cell constant is 6.18 Å, and Riedel et al. noted that this size of cell would have a short interatomic spacing between the C and N atoms of 1.19 Å. They, therefore, suggested that the measured cell constant may correspond to an effective value relating to a random distribution of N atoms about the Si-C-Si unit. The linearity of the N-C-N bond can also be maintained in a similar symmetry in the manner suggested in Fig. 4(b) and more recently Kroll et al.¹² have suggested another structure for the cubic phase involving the N-C-N bond with overall $P\bar{4}n2$ symmetry shown in Fig. 4(c). The nonlinear C-N-C bond is expected to lead to a softening of the structure.¹⁸ As yet the several cubic structures have not been related to the potentially super-hard β -SiC₂N₄ phase. We have calculated the structure of the three possible phases and the results are given in Table II. Each of the structures has a rather low bulk modulus suggesting a low compressibility and, for that matter, possibly a low resistance to shear deformation in view of the almost linear bond directionality.

FIG. 2. Charge density (in units of me/bohr³) of $\beta C_3 N_4$ plotted perpendicular to the *c* axis.

FIG. 3. Charge density βSiC_2N_4 .

FIG. 4. Cubic phase of SiC_2N_4 . Large open circles are Si, small black circles C and small open circles N. The directional nature of the Si-N-C-N-Si bond is shown for each case.

As with the β structure discussed earlier, it is interesting to examine the charge density especially along the Si-N-C-N-Si bond. In the exact cubic structure labeled a in Fig. 4 this is shown in Fig. 5. Unlike the β phase, the bond is quite directional.

C. Transition to the β phase

In Fig. 6 we show the energy-volume relations for each model of the cubic phase and for the β -SiC₂N₄ phase. The energy of each of the cubic phases lies *below* that of the β phase. This is not unlike the situation for graphite and diamond and so a cubic to β -phase synthesis may be possible. In Fig. 7 we show the related energy-pressure relation as obtained from the equation of state; the pressures needed to transform each of the cubic phases to the β phase lie in the range 6–12 GPa.

Another way of estimating the transition pressure needed to change from one phase to another is from the slope at the energy intersection of the common phases—this is the pres-

TABLE II. Calculated properties of some possible *cubic* phases of SiC_2N_4 . Phase *b* is a defective form of phase *a* used to model the bonding indicated in Fig. 4(b). The experimentally observed lattice parameter is a = 6.18 Å (Ref. 6).

Phase	a (Å)	B (GPa)	<i>B'</i>	Binding energy (eV)
a (Pn3m)	6.64	106	3.90	-6.649
b	6.65	95	2.68	-6.630
$c~(P\bar{4}n2)$	6.32	32	4.89	-6.653

FIG. 5. Charge density of the Pn3m phase a of cubic SiC₂N₄.

sure necessary to overcome the energy barrier between the two phases. In the softer of the three cubic phases the pressure is quite large—about 62 GPa. However, if we simulate the transformation from graphite into diamond in a similar

FIG. 6. Energy-volume behavior of different phases of SiC_2N_4 . *a*, *b*, and *c* label the different phases shown in Fig. 4. The pressure shown is obtained from the intersection point of the *c* phase and the β phase.

FIG. 7. Energy pressure for different phases of SiC_2N_4 . *a*, *b*, and *c* label the different phases shown in Fig. 4.

way we calculate a pressure of P = 80 GPa is needed to transform graphite into diamond by overcoming the energy barrier. A commercial synthesis process involves pressures far less than this. The transformation process of graphite into diamond itself is not continuous but involves changes from graphite into other (rhombohedral) graphitic forms through to hexagonal diamond and finally diamond. In addition, chemical influences (such as a metal flux) and temperature factors are important in the synthesis. Collectively these latter features are influencing the relative energetics of the various phases. Thus we must conclude in a conversion from the cubic form of SiC_2N_4 to the β phase that the lower calculated value of between 6-12 GPa would signify some lower limit on the required pressure provided another route can be used to overcome the energy barrier separating the phases. The upper limit of pressure, namely 62 GPa, is the pressure without other factors.

III. DISCUSSION

We have established that the origin of any potential hardness in a tertiary material like β -SiC₂N₄ relates to the C-N bond that is in appearance very similar to that in β -C₃N₄. In view of the potential hardness of β -SiC₂N₄, and the recent discovery of relatively low-density phases, routes through which the material can be synthesized merit investigation. For each of the cubic structures we have investigated there is not agreement with experiment. Two of the structures with a linear N-C-N bond have cell constants far larger than the observed value. A nonlinear N-C-N bond does give a lower cell constant yet still this is larger than the observed value. We do not think that the reason for the disagreement is due to the computational model or if another structure is applicable. Rather we would concur with the speculation⁶ that a random or nonstoichiometric distribution of N is responsible for the observed lattice constant. This would not be unlikely as it is well known that it is difficult to get large amounts of N to interact with C. Further work, both experimental and theoretical, is needed to resolve this issue, yet if indeed the needed amounts of N can be accommodated to create some potential cubic structures that have been investigated here then such structures hold promise for a synthesis of the potentially superhard β -SiC₂N₄.

ACKNOWLEDGMENTS

Thanks are expressed to Dr. P. Kroll, Dr. E. Kroke, and Professor Dr. R. Riedel for providing reprints of their work. The F.R.D. is thanked for their financial support.

- ¹A. Y. Liu and M. L. Cohen, Science **245**, 841 (1989).
- ²A. Y. Liu and M. L. Cohen, Phys. Rev. B **41**, 10727 (1990).
- ³O. Borgen and H. M. Seip, Acta Chem. Scand. 15, 1789 (1961).
- ⁴A. M. Liu and R. M. Wentzcovitch, Phys. Rev. B **50**, 10 362 (1994).
- ⁵R. Riedel, H. J. Kleebe, H. Schonfelder, and F. Aldinger, Nature (London) **374**, 526 (1995).
- ⁶R. Riedel, A. Greiner, G. Miche, W. Dressler, H. Fuess, J. Bill, and F. Aldinger, Angew. Chem. Int. Ed. Engl. **36**, 603 (1997).
- ⁷A. Bendeddouche, R. Berjoan, E. Beche, T. Merie-Mejean, S. Schamm, V. Serin, G. Taillades, A. Pradel, and R. Hillel, J. Appl. Phys. **81**, 6147 (1997).
- ⁸Y. K. Chang, H. H. Hseich, W. F. Pong, M. H. Tsai, T. E. Dunn, F. Z. Chien, P. K. Tseng, K. L. Tsang, W. K. Su, L. C. Chen, S. L. Wei, K. H. Chen, D. M. Bhusari, and Y. F. Chen, Phys. Rev. B **58**, 9018 (1998).
- ⁹M. Driss-Khodja, A. Georghiu, G. Dufour, H. Roulet, C. Sen-

emaud, and M. Cauchetier, Phys. Rev. B 53, 4287 (1996).

- ¹⁰A. Gheorghiu, S. Senemaud, H. Roulet, G. Dufour, T. Moreno, S. Bodeur, C. Reynaud, M. Cauchetier, and M. Luce, J. Appl. Phys. **71**, 4118 (1992).
- ¹¹F. Tenegal, A. M. Flank, and N. Herlin, Phys. Rev. B 54, 12 029 (1996).
- ¹²P. Kroll, R. Riedel, and R. Hoffman, Phys. Rev. B 60, 3126 (1999).
- ¹³N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
- ¹⁴H. J. Monkhorst and J. D. Pack, Phys. Rev. B **13**, 5188 (1976).
- ¹⁵M. Bockstede, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. **107**, 187 (1997).
- ¹⁶F. Birch, J. Geophys. Res. 57, 227 (1952).
- ¹⁷Cheng-Zhang Wang, En-Ge Wang, and Qingyun Dai, J. Appl. Phys. 83, 1975 (1998).
- ¹⁸E. Kroke (private communication).