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Irreversible magnetization of pin-free type-Il superconductors
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The magnetization of ideal type-ll superconductors without vortex pinning is derived from first principles
for superconductors with constant thickness. This magnetization is irreversible due to a macroscopic geometric
barrier for flux penetration at the edges, which yields a sharply defined entryHigldAbove some revers-
ibility field H,.,>He, the magnetization becomes reversible and coincides with that of an ideal ellipsoid.
[S0163-18209)04441-0

It is commonly agreed that the irreversible magnetic be-behavior is different: In films with enhanced edge pinning
havior of type-1l superconductors is due to pinning of the(critical current density]ﬁdg‘), the current densityl at the
Abrikosov vortices at inhomogeneities in the material. How-edge immediately jumps from J2% to — J8%° when the
ever, similar hysteresis effects were also obseriedype-1  ramp rate reverses its sign, while in pin-free films with geo-
superconductors, which do not contain flux lines, and inmetric barrier the current density at the edge first stays con-
type-Il superconductors with negligible pinning. In these twostant or even increases and then gradually decreases and
cases the magnetic irreversibility is caused by a geometrireaches zero &t ,=0. The entry fieldH,, was estimated for
(specimen-shaped dependemrrier that delays the penetra- pin-free thin strips in Refs. 5 and 8, see also Ref. 9.
tion of magnetic flux but not its exit. In this respect the In this paper the geometry-caused magnetic irreversibility
macroscopiaeometric barrier behaves similar to ttécro-  of ideal pin-free type-Il superconductors is calculated for the
scopic Bean-Livingston barriér for straight vortices pen- two most important examples of circular disks cylinders
etrating a parallel surface. In this paper | derive the static
magnetization of pin-free type-1l superconductors and its ///j N /// k\\\
geometry-caused irreversibilifyom first principles with no
additional assumptions but given geometry. This universal
solution should allow us to detect signatures of other barriers
in experiments.

The geometric irreversibility is most pronounced for thin
films of constant thickness in a perpendicular field. It is ab-
sent only when the superconductor is of exactly ellipsoidal
shape or is tapered like a wedge with a sharp edge where flux
penetration is facilitated. In ellipsoids the inward directed
driving force exerted on the vortex ends by the surface
screening currents is exactly compensated by the vortex line
tension® and thus the magnetization is reversible. In speci-
mens with constant thicknesise., rectangular cross sectjon

this line tension opposes the penetration of flux lines at the

four corner lines, thus causing an edge barrier; but as soon as \\\ W// \\\ ////
two penetrating vortex segments join at the equator they con- / \

tract and are driven to the specimen center by the surface

currents, see Fig. 1 below. As opposed to this, when the

specimen profile is tapered and has a sharp edge, the driving

force even in a very weak applied field exceeds the restoring
force of the line tension such that there is no edge barrier.
The resulting absence of hysteresis in wedge-shaped samples
was nicely shown by Morozoet al* _ . /
An elegant analytical theory of the field and current pro- Pin—free superconducting slab and strip
files in thin superconductor strips with an edge barrier has
been_ pr(_asented_ by ZeId_aN a_I.,5 see also the ext_ensmns Ref. aspect ratidb/a=2 (top) and b/a=0.3 (botton) in perpendicular
6. With mcreasmg.applled er|H'|-a, the lmagnet|c flux does magnetic fieldH,. Top left: H,/H.,=0.66, in increasing field
not penetrate until an entry fielt, is reached; atHa  shortly below the entry fieltH,/H,=0.665. Top rightH,/H
=Hen the flux immediately jumps to the center, from where =5, decreasing field. Bottont,/H;=0.34 in increasing field
it gradually fills the entire strip or disk. This behavior in just aboveH,,/H.;=0.32. The field lines of cylinders look very
increasingH , is similar to that of thin films with artificially  similar. Note the straight field lines in the corners, corresponding to
enhanced pinning near the edifebut in decreasindd, the  flux lines under tension.

FIG. 1. The magnetic field lines &{(x,y) in slabs or strips with
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and long stripgor slabg with rectangular profile of arbitrary
aspect ratido/a. | present flux-density profiles and magneti-
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thickness B, approximate expressions for the slopésH ,
=m/(VH,) are given in Refs. 11 and 12. Using this and

zation loops and give explicit expressions for the entry fielddefiningg=(|M/H,|—1)(b/a), one obtains the effectivd

Hen and for the reversibility fieldH ., above which the mag-

netization curve is reversible. Finally, the modification of

these results by volume pinning is briefly discussed.
First consider the known magnetization of ideal ellip-

soids. If the superconductor is homogeneous and isotropic,

the magnetization curved (H,;N) arereversibleand may
be characterized by a demagnetizing fadbmwith O<N

<1. If H, is along one of the three principal axes of the

ellipsoid, thenN is a scalar. One had=0 for long speci-
mens in the parallel fieldy=1 for thin films in the perpen-
dicular field, andN=1/3 for spheres. If the magnetization
curve in the parallel field is knownM(H,;0)=B/ug
—H,, whereB is the flux density inside the ellipsoid, then

for any aspect ratit/a in the form

N=1-1/(1+qa/b),

ar b a
qstrip=z+0.64tan 0.645In 1'7+1'25 ,

a
1+ —

it (5

2 2 an12f)
Qdisk_ﬁ + ﬁtan . a n

In the limitsb<a andb>a, formulas(5) are exact, and for
generalb/a the relative error is<1%. Fora=b (square
cross sectionthey yield for the stripN=0.538 (while N

the homogeneous magnetization of the general ellipsoid=21/2 for a circular cylinder in the perpendicular figland

M(H,;N), follows from the implicit equation
Hi=H,—NM(H;:0). ()

Solving Eq.(1) for the effective internal field;, one ob-
tains M=M(H,;N)=M(H;;0). In particular, for the
Meissner stateB§=0) one findsM(H,;0)=—H, and

Ha

M (HaiN) = = 7=

for [Hy<(1-N)Hq. (2
At the lower critical fieldH.; one hasH;=H.;, Hy,=H/;
=(1-N)H,;, B=0, andM = —H,. Near the upper critical
field H.,, one has an approximately lineawi(H,;0)
=y(Ha—H¢2) <0 with y>0, yielding

Y

M(HaiN)= 7275

(Ha=Heo) for Ha~Hg. (3
Thus, if the slopey<1 is small(and in general, ifM/H,|
<1 is smal), demagnetization effects may be disregarde
and one haM(H,;N)~M(H,;0).

The ideal magnetization curve of type-Il superconductor
with N=0, M(H,;0) or B(H,;0)/ue=H,+M(H,4;0),
may be calculated from Ginzburg-LandésL) theory® but
any other model curve may be used providddH,;0)=
—M(—H,;0) has a vertical slope &,=H_, and decreases
monotonically in size forH,>H.;. For simplicity in this
paper | shall assumk;<H,, (i.e., large GL parametes
>1) andH,<H,,. To illustrate the essential features | may
thus useM (H,;0)=—H, for |H,/<H; and the good ap-
proximation

M(Ha;0)=(Ha/[HaD(JHAP—H3DY-H, (@)

for |H,|>H,,, see the curve labeled in Fig. 3 below.
In nonellipsoidal superconductors the inductiB(r) in

+
d

for the short cylinderN=0.365 (while N=1/3 for the
sphere.

Now we consider the full, irreversible magnetization
curvesM(H,) of pin-free strips and cylinders with cross
section 2 2b. Appropriate continuum equations and algo-
rithms (which apply also to pinninghave been proposed
recently by Labusch and Doyfeand by the autho¥ based
on the Maxwell equations and on constitutive laws that de-
scribe flux flow and pinning[or thermal depinning ex-
pressed, e.g., by an electric fidk§J,B)] and the equilibrium
magnetization in absence of pinnirng,(H,;0). Here | shall
use the methdd and the modeM (H,;0), Eq.(4). The pin-
free flux dynamics will be described as viscous motion by
E=per(B)J with flux-flow resistivity pgrcB, but our quasi-
static results should be independent of the choicpgpf In
both methods th& (H,;0) law enters the driving force den-
sity on the vortices],, X B with definitionJ,=V X H, where
H(B) is obtained by inverting the relatioB(H)=H
M(H;0).

While the method in Ref. 13 considers a magnetic charge
density on the specimen surface which causes an effective

Sield H;(r) inside the superconductor, our metfbdouples

the arbitrarily shaped superconductor to the external field
B(r,t) via surface screening currents: In a first step the vec-
tor potentialA(r,t) is calculated for given current densily
then this relatior(a matrixy is inverted to obtain) for given

A and givenH,; next the induction law is used to obtain the
electric field[in our symmetric geometry one h&£J,B)=
—dA/lat], and finally the constitutive laie= E(J,B) is used

to eliminateA andE and obtain one single integral equation
for J(r,t) as a function oH(t), without having to compute
B(r,t) outside the specimen. This method, in general, is fast
and elegant; but so far the algorithm is restricted to aspect
ratios 0.03<b/a=<30, and to a number of grid points not
exceeding 100Qon a personal computerimproved accu-

general is not homogeneous, and so the concept of a demagcy is expected by combining methods used in Ref. 13
netizing factor does not work. However, when the magnetiqworking best for smalb/a) and Ref. 14.

momentm= 1 [rx J(r)d® is directed alongH,, one may
define aneffective demagnetizing factor, Nvhich in the
Meissner state §=0) yields the same slopav/H,=

—1/(1—-N), Eqg.(2), as an ellipsoid with the same volurie
Here the definitioM =m/V with m=mH_,/H, is used. For

The penetration and exit of flux computed by the method
in Ref. 14 is illustrated in Figs. 1 and 2 for isotropic strips
and disks without volume pinning, using a flux-flow resistiv-
ity per=pB(r) with p=140 (strip) or p="70 (disk) in units
where H,,=a=uo=|dH,/dt|=1. The profiles of the in-

long strips and circular disks or cylinders with cross sectionductionB,(r,y) taken along the midplang=0 of the thick
2ax2b in a perpendicular or axial magnetic field along thedisk in Fig. 2 have a pronounced minimum near the edge
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Pin-Free Disks and Cylinders
b/a=0.08, 0.15, 0.25,0.51, 2, 5,

(]

Negative Magnetization —-M/H

0 0.2 0. . ofq 08
Applied Field Ha/HC1
FIG. 3. Irreversible magnetization curvesM (H,) of pin-free
circular disks and cylinders with aspect ratibsa=0.08, 0.15,
0.25, 0.5, 1, 2, 5, anéb in axial field (solid lines. In these type-I
superconductors the irreversibility is due to a purely geometric edge
barrier for flux penetration. The dashed curves are the reversible

magnetization curves of the corresponding ellipsoid defined by Eqgs.
(1), (4), and(5).

HS"P/H ., =tanhy/0.3@/a,

HYYH ., =tanh/0.670/a. (6)

These formulas are good approximations for all aspect ratios

FIG. 2. Top: Profiles of the axial magnetic inductiBy(r,y) in  0<b/a<w, see also the estimates bf,~+/b/a for thin
the midplaney=0 of a pin-free superconductor disk with aspect strips in Refs. 5 and 8.
ratio b/a=0.3 in increasing fieldsolid lineg and then decreasing The virgin curve of the irreversibltdi (H,) of strips and
field (dashed lings plotted atH,/H ,=0.4, 0.42,. . ., 05,052, disks at smalH, coincides with the ideal Meissner straight
0.6,0.7,0.8,0.7,0.6,..,0.1, 0.B;; = ugH¢;. Bottom: The induc- line M=—H,/(1—N) of the corresponding ellipsoid, Egs.
tion B,(0,0) in the center of the same didolid line) and of a strip
(dashed ling both withb/a=0.3. The symbols mark the field val- z T T T
ues at which the profiles are taken. Also shown is the magnetizatior 1.5} V4 < ' Disk with b/a=0.25 |
loop for the same disk and strip and the corresponding reversible - y.
magnetizatior(dotted lineg, see also Fig. 3.

ation —M/H

=a, precisely in the region where strong screening currents

flow. Away from the edges, the current densify=V % e //
X B/ uq is nearly zero; note the parallel field lines in Fig. 1. < - B iatebe
The quantityJy=VXH(B) that enters the Lorentz force ¢ ot
densityJ, X B, is even exactly zero since we assume absencé‘g -

of pinning. Our finite flux-flow parametgr and finite ramp ~ $-05

ratedH,/dt=*=1 mean a dragging force which, similar to
pinning, causes a weak hysteresis and a small remanent flu
atH,=0; this artifact is reduced by choosing larger resistiv- 0 0.5 N
ity or slower ramping. Applied Field H_H,
The IndUCtlonBy(Q’o) in the speqmen center in F!g. 2 FIG. 4. Magnetization curves of a thick disk with aspect ratio
performs a hystereS|_s qup very similar to the magnetization . _ 5 55 tor various degrees of volume pinnidg=0, 0.25, 0.5,
loops M (H,) shown in Figs. 2 and 3. Both loops are sym-1 15 5 3 4 in unitH,, /a, and for various sweep amplitudes.
metric, €.9.M(—Hga)=—M(H,). The maximum oM(Ha)  The inner loop belongs to the pin-free disk.£0), the outer loop
defines a field of first flux entrifl¢,, which closely coincides o strongest pinning. Also shown is the reversible magnetization

with the field Hg, at which B,(0,0) starts to appear. The curve of the corresponding ellipsoidashed curve All loops are
computed entry fields are well fitted by symmetric,M(—Hg)=—M(H,).

Pinning: J.a/H,; =0,0.25,0.5,1,15,2,3,4

1.5 2
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(2) and (5). When the increasingil, approachesi,,, flux  ratios O<b/a< and can be seen from each of EGH—(7):
starts to penetrate into the corners in the form of stretchedhe effectiveN [or virgin slope 1/(+N)], the entry field
flux lines (Fig. 1) and thugM (H )| falls below the Meissner Hen, @nd the reversibility fieldH ., are nearly equal for
line. At H,=H,, flux penetrates and jumps to the center, andStrips and disks with half thickness, or for slabs and cylinders

; L with half length.
Lll\gs(eHnat)l :;ag;sntg:igreena?:.lzlin dse C;Eii?géotrzs Fki)lez,gletm—:‘s Another interesting feature of the pin-free magnetization
e 9. 2, : : loops is that the maximum dM(H,)| exceeds the maxi-
magnetization curvé (H,) becomes reversible and exactly

"9 : A . mum of the reversible curvéequal toH.;) whenb/a<0.8
coincides with the curve of the ellipsoid defined by EAS, ¢ strins andb/a=<0.4 for dis(lls, but z;tl)largeb/a it falls
(4), and (5) (in the quasistatic limit withp ~*dH,/dt—0).

below H.,. The maximum magnetization may be estimated

The irreversibility fieldH,,, is difficult to compute since, in rom the slope of the virgin curve 1/AN), Eq. (5), and
our present algorithm, it slightly depends on the choices OErom the field of first flux entry, Eq(6). T

the flux-flow parametep (or ramp rat¢and of the numerical Finally, Fig. 4 shows how the irreversible magnetization

grid, and <also on_the model fC.M(Ha;O)' Inotheinterval loop is modified when volume pinning of the flux lines is
0.08<b/a<5 we find with relative error of 3%, switched on. Increasing critical current denslty(in natural

HSUP/H . =0.65+0.12 In(b/a), units _Hclla) inflates the loops nearly symmetri_cally about
rev el n(b/a) the pin-free loop ofaboveH ) about the reversible curve,
HYS9H 1 =0.75+0.15 In(b/a). 7) and the maximum ofM (H,)| shifts to higher fields. Above

H ey the width of the loop is nearly proportional th,, as
This fit obviously does not apply thb/a<1l (since H,, expected from previous theorfés? that assumed; =0,
should exceeti,>0) nor tob/a>1 (whereH ., should be  but at small fields the influence of finité., is clearly seen
close toHy). The limiting value ofH ., for thin films with  up to rather strong pinning.
b<a is thus not known at present. In conclusion, Egs(5)—(7) and Figs. 1-3, derived from
Remarkably, the irreversible magnetization curvesfirst principles with no assumptions but the geometry and
M(H,) of pin-free strips and disks fall on top of each other finite H.;, should be used to interpret experiments on super-
if the strip is chosen twice as thick as the disk/d)s,  conductors with no or very weak vortex pinning. A detailed
~2(b/a)gsk- This striking coincidence holds for all aspect account of pinning and vortex dynamics will be published.
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