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Irreversible magnetization of pin-free type-II superconductors

Ernst Helmut Brandt
Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 23 July 1999!

The magnetization of ideal type-II superconductors without vortex pinning is derived from first principles
for superconductors with constant thickness. This magnetization is irreversible due to a macroscopic geometric
barrier for flux penetration at the edges, which yields a sharply defined entry fieldHen. Above some revers-
ibility field H rev.Hen the magnetization becomes reversible and coincides with that of an ideal ellipsoid.
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It is commonly agreed that the irreversible magnetic
havior of type-II superconductors is due to pinning of t
Abrikosov vortices at inhomogeneities in the material. Ho
ever, similar hysteresis effects were also observed1 in type-I
superconductors, which do not contain flux lines, and
type-II superconductors with negligible pinning. In these tw
cases the magnetic irreversibility is caused by a geome
~specimen-shaped dependent! barrier that delays the penetra
tion of magnetic flux but not its exit. In this respect th
macroscopicgeometric barrier behaves similar to themicro-
scopic Bean-Livingston barrier2 for straight vortices pen-
etrating a parallel surface. In this paper I derive the sta
magnetization of pin-free type-II superconductors and
geometry-caused irreversibilityfrom first principles, with no
additional assumptions but given geometry. This univer
solution should allow us to detect signatures of other barr
in experiments.

The geometric irreversibility is most pronounced for th
films of constant thickness in a perpendicular field. It is a
sent only when the superconductor is of exactly ellipsoi
shape or is tapered like a wedge with a sharp edge where
penetration is facilitated. In ellipsoids the inward direct
driving force exerted on the vortex ends by the surfa
screening currents is exactly compensated by the vortex
tension,3 and thus the magnetization is reversible. In spe
mens with constant thickness~i.e., rectangular cross section!
this line tension opposes the penetration of flux lines at
four corner lines, thus causing an edge barrier; but as soo
two penetrating vortex segments join at the equator they c
tract and are driven to the specimen center by the sur
currents, see Fig. 1 below. As opposed to this, when
specimen profile is tapered and has a sharp edge, the dr
force even in a very weak applied field exceeds the resto
force of the line tension such that there is no edge barr
The resulting absence of hysteresis in wedge-shaped sam
was nicely shown by Morozovet al.4

An elegant analytical theory of the field and current p
files in thin superconductor strips with an edge barrier
been presented by Zeldovet al.,5 see also the extensions Re
6. With increasing applied fieldHa , the magnetic flux does
not penetrate until an entry fieldHen is reached; atHa
5Hen the flux immediately jumps to the center, from whe
it gradually fills the entire strip or disk. This behavior
increasingHa is similar to that of thin films with artificially
enhanced pinning near the edge,6,7 but in decreasingHa the
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behavior is different: In films with enhanced edge pinni
~critical current densityJc

edge), the current densityJ at the
edge immediately jumps from1Jc

edge to 2Jc
edge when the

ramp rate reverses its sign, while in pin-free films with ge
metric barrier the current density at the edge first stays c
stant or even increases and then gradually decreases
reaches zero atHa50. The entry fieldHen was estimated for
pin-free thin strips in Refs. 5 and 8, see also Ref. 9.

In this paper the geometry-caused magnetic irreversib
of ideal pin-free type-II superconductors is calculated for
two most important examples of circular disks~or cylinders!

FIG. 1. The magnetic field lines ofB(x,y) in slabs or strips with
aspect ratiob/a52 ~top! and b/a50.3 ~bottom! in perpendicular
magnetic fieldHa . Top left: Ha /Hc150.66, in increasing field
shortly below the entry fieldHen/Hc150.665. Top right:Ha /Hc1

50.5, decreasing field. Bottom:Ha /Hc150.34 in increasing field
just aboveHen/Hc150.32. The field lines of cylinders look very
similar. Note the straight field lines in the corners, corresponding
flux lines under tension.
11 939 ©1999 The American Physical Society
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11 940 PRB 60BRIEF REPORTS
and long strips~or slabs! with rectangular profile of arbitrary
aspect ratiob/a. I present flux-density profiles and magne
zation loops and give explicit expressions for the entry fi
Hen and for the reversibility fieldH rev above which the mag
netization curve is reversible. Finally, the modification
these results by volume pinning is briefly discussed.

First consider the known magnetization of ideal elli
soids. If the superconductor is homogeneous and isotro
the magnetization curvesM (Ha ;N) are reversibleand may
be characterized by a demagnetizing factorN with 0<N
<1. If Ha is along one of the three principal axes of t
ellipsoid, thenN is a scalar. One hasN50 for long speci-
mens in the parallel field,N51 for thin films in the perpen-
dicular field, andN51/3 for spheres. If the magnetizatio
curve in the parallel field is known,M (Ha ;0)5B/m0
2Ha , whereB is the flux density inside the ellipsoid, the
the homogeneous magnetization of the general ellips
M (Ha ;N), follows from the implicit equation

Hi5Ha2N M~Hi ;0!. ~1!

Solving Eq.~1! for the effective internal fieldHi , one ob-
tains M5M (Ha ;N)5M (Hi ;0). In particular, for the
Meissner state (B[0) one findsM (Ha ;0)52Ha and

M ~Ha ;N!52
Ha

12N
for uHau<~12N!Hc1 . ~2!

At the lower critical fieldHc1 one hasHi5Hc1 , Ha5Hc18
5(12N)Hc1 , B50, andM52Hc1. Near the upper critica
field Hc2 one has an approximately linearM (Ha ;0)
5g(Ha2Hc2),0 with g.0, yielding

M ~Ha ;N!5
g

11gN
~Ha2Hc2! for Ha'Hc2 . ~3!

Thus, if the slopeg!1 is small~and in general, ifuM /Hau
!1 is small!, demagnetization effects may be disregard
and one hasM (Ha ;N)'M (Ha ;0).

The ideal magnetization curve of type-II superconduct
with N50, M (Ha ;0) or B(Ha ;0)/m05Ha1M (Ha ;0),
may be calculated from Ginzburg-Landau~GL! theory,10 but
any other model curve may be used providedM (Ha ;0)5
2M (2Ha ;0) has a vertical slope atHa5Hc1 and decrease
monotonically in size forHa.Hc1. For simplicity in this
paper I shall assumeHc1!Hc2 ~i.e., large GL parameterk
@1) andHa!Hc2. To illustrate the essential features I ma
thus useM (Ha ;0)52Ha for uHau<Hc1 and the good ap-
proximation

M ~Ha ;0!5~Ha /uHau!~ uHau32Hc1
3 !1/32Ha ~4!

for uHau.Hc1, see the curve labeled̀ in Fig. 3 below.
In nonellipsoidal superconductors the inductionB„r ) in

general is not homogeneous, and so the concept of a de
netizing factor does not work. However, when the magne
momentm5 1

2 *r3J„r …d3r is directed alongHa , one may
define aneffective demagnetizing factor N, which in the
Meissner state (B[0) yields the same slopeM /Ha5
21/(12N), Eq. ~2!, as an ellipsoid with the same volumeV.
Here the definitionM5m/V with m5mHa /Ha is used. For
long strips and circular disks or cylinders with cross sect
2a32b in a perpendicular or axial magnetic field along t
d

ic,

d,

d

s

ag-
c

n

thickness 2b, approximate expressions for the slopesM /Ha
5m/(VHa) are given in Refs. 11 and 12. Using this an
definingq[(uM /Hau21)(b/a), one obtains the effectiveN
for any aspect ratiob/a in the form

N5121/~11qa/b!,

qstrip5
p

4
10.64 tanhF0.64

b

a
lnS 1.711.2

a

bD G ,
qdisk5

4

3p
1

2

3p
tanhF1.27

b

a
lnS 11

a

bD G . ~5!

In the limits b!a andb@a, formulas~5! are exact, and for
generalb/a the relative error is,1%. For a5b ~square
cross section! they yield for the stripN50.538 ~while N
51/2 for a circular cylinder in the perpendicular field! and
for the short cylinderN50.365 ~while N51/3 for the
sphere!.

Now we consider the full, irreversible magnetizatio
curves M (Ha) of pin-free strips and cylinders with cros
section 2a32b. Appropriate continuum equations and alg
rithms ~which apply also to pinning! have been propose
recently by Labusch and Doyle13 and by the author,14 based
on the Maxwell equations and on constitutive laws that
scribe flux flow and pinning@or thermal depinning ex-
pressed, e.g., by an electric fieldE„J,B…] and the equilibrium
magnetization in absence of pinning,M (Ha ;0). Here I shall
use the method14 and the modelM (Ha ;0), Eq.~4!. The pin-
free flux dynamics will be described as viscous motion
E5rFF(B)J with flux-flow resistivity rFF}B, but our quasi-
static results should be independent of the choice ofrFF. In
both methods theM (Ha ;0) law enters the driving force den
sity on the vortices,JH3B with definitionJH5¹3H, where
H(B) is obtained by inverting the relationB„H)5H
1M „H;0).

While the method in Ref. 13 considers a magnetic cha
density on the specimen surface which causes an effec
field H i(r ) inside the superconductor, our method14 couples
the arbitrarily shaped superconductor to the external fi
B„r ,t) via surface screening currents: In a first step the v
tor potentialA„r ,t) is calculated for given current densityJ;
then this relation~a matrix! is inverted to obtainJ for given
A and givenHa ; next the induction law is used to obtain th
electric field@in our symmetric geometry one hasE„J,B…5
2]A/]t], and finally the constitutive lawE5E„J,B… is used
to eliminateA andE and obtain one single integral equatio
for J„r ,t) as a function ofHa(t), without having to compute
B„r ,t) outside the specimen. This method, in general, is f
and elegant; but so far the algorithm is restricted to asp
ratios 0.03<b/a<30, and to a number of grid points no
exceeding 1000~on a personal computer!. Improved accu-
racy is expected by combining methods used in Ref.
~working best for smallb/a) and Ref. 14.

The penetration and exit of flux computed by the meth
in Ref. 14 is illustrated in Figs. 1 and 2 for isotropic strip
and disks without volume pinning, using a flux-flow resisti
ity rFF5rB(r ) with r5140 ~strip! or r570 ~disk! in units
where Hc15a5m05udHa /dtu51. The profiles of the in-
ductionBy(r ,y) taken along the midplaney50 of the thick
disk in Fig. 2 have a pronounced minimum near the edgr
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5a, precisely in the region where strong screening curre
flow. Away from the edges, the current densityJ5¹
3B/m0 is nearly zero; note the parallel field lines in Fig.
The quantityJH5¹3H„B… that enters the Lorentz forc
densityJH3B, is even exactly zero since we assume abse
of pinning. Our finite flux-flow parameterr and finite ramp
rate dHa /dt561 mean a dragging force which, similar t
pinning, causes a weak hysteresis and a small remanen
at Ha50; this artifact is reduced by choosing larger resist
ity or slower ramping.

The inductionBy(0,0) in the specimen center in Fig.
performs a hysteresis loop very similar to the magnetiza
loops M (Ha) shown in Figs. 2 and 3. Both loops are sym
metric, e.g.,M (2Ha)52M (Ha). The maximum ofM (Ha)
defines a field of first flux entryHen, which closely coincides
with the field Hen8 at which By(0,0) starts to appear. Th
computed entry fields are well fitted by

FIG. 2. Top: Profiles of the axial magnetic inductionBy(r ,y) in
the midplaney50 of a pin-free superconductor disk with aspe
ratio b/a50.3 in increasing field~solid lines! and then decreasing
field ~dashed lines!, plotted atHa /Hc150.4, 0.42, . . . , 0.5, 0.52,
0.6, 0.7, 0.8, 0.7, 0.6,. . . , 0.1, 0.Bc15m0Hc1. Bottom: The induc-

tion By(0,0) in the center of the same disk~solid line! and of a strip
~dashed line!, both withb/a50.3. The symbols mark the field va
ues at which the profiles are taken. Also shown is the magnetiza
loop for the same disk and strip and the corresponding revers
magnetization~dotted lines!, see also Fig. 3.
ts
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Hen
strip/Hc15tanhA0.36b/a,

Hen
disk/Hc15tanhA0.67b/a. ~6!

These formulas are good approximations for all aspect ra
0,b/a,`, see also the estimates ofHen'Ab/a for thin
strips in Refs. 5 and 8.

The virgin curve of the irreversibleM (Ha) of strips and
disks at smallHa coincides with the ideal Meissner straig
line M52Ha /(12N) of the corresponding ellipsoid, Eqs

n
le

FIG. 3. Irreversible magnetization curves2M (Ha) of pin-free
circular disks and cylinders with aspect ratiosb/a50.08, 0.15,
0.25, 0.5, 1, 2, 5, and̀ in axial field ~solid lines!. In these type-II
superconductors the irreversibility is due to a purely geometric e
barrier for flux penetration. The dashed curves are the revers
magnetization curves of the corresponding ellipsoid defined by E
~1!, ~4!, and~5!.

FIG. 4. Magnetization curves of a thick disk with aspect ra
b/a50.25 for various degrees of volume pinning,Jc50, 0.25, 0.5,
1, 1.5, 2, 3, 4 in unitsHc1 /a, and for various sweep amplitude
The inner loop belongs to the pin-free disk (Jc50), the outer loop
to strongest pinning. Also shown is the reversible magnetiza
curve of the corresponding ellipsoid~dashed curve!. All loops are
symmetric,M (2Ha)52M (Ha).
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~2! and ~5!. When the increasingHa approachesHen, flux
starts to penetrate into the corners in the form of stretc
flux lines~Fig. 1! and thusuM (Ha)u falls below the Meissner
line. At Ha5Hen flux penetrates and jumps to the center, a
uM (Ha)u starts to decrease. In decreasingHa , this barrier is
absent. As can be seen in Fig. 3, above some fieldH rev, the
magnetization curveM (Ha) becomes reversible and exact
coincides with the curve of the ellipsoid defined by Eqs.~1!,
~4!, and ~5! ~in the quasistatic limit withr21dHa /dt→0).
The irreversibility fieldH rev is difficult to compute since, in
our present algorithm, it slightly depends on the choices
the flux-flow parameterr ~or ramp rate! and of the numerica
grid, and also on the model forM (Ha ;0). In the interval
0.08<b/a<5 we find with relative error of 3%,

H rev
strip/Hc150.6510.12 ln~b/a!,

H rev
disk/Hc150.7510.15 ln~b/a!. ~7!

This fit obviously does not apply tob/a!1 ~since H rev
should exceedHen.0) nor tob/a@1 ~whereH rev should be
close toHc1). The limiting value ofH rev for thin films with
b!a is thus not known at present.

Remarkably, the irreversible magnetization curv
M (Ha) of pin-free strips and disks fall on top of each oth
if the strip is chosen twice as thick as the disk, (b/a)strip
'2(b/a)disk. This striking coincidence holds for all aspe
i,
,

d

d

f

s

ratios 0,b/a,` and can be seen from each of Eqs.~5!–~7!:
The effectiveN @or virgin slope 1/(12N)], the entry field
Hen, and the reversibility fieldH rev are nearly equal for
strips and disks with half thickness, or for slabs and cylind
with half length.

Another interesting feature of the pin-free magnetizat
loops is that the maximum ofuM (Ha)u exceeds the maxi-
mum of the reversible curve~equal toHc1) whenb/a<0.8
for strips andb/a<0.4 for disks, but at largerb/a it falls
below Hc1. The maximum magnetization may be estimat
from the slope of the virgin curve 1/(12N), Eq. ~5!, and
from the field of first flux entry, Eq.~6!.

Finally, Fig. 4 shows how the irreversible magnetizati
loop is modified when volume pinning of the flux lines
switched on. Increasing critical current densityJc ~in natural
units Hc1 /a) inflates the loops nearly symmetrically abo
the pin-free loop or~aboveH rev) about the reversible curve
and the maximum ofuM (Ha)u shifts to higher fields. Above
H rev the width of the loop is nearly proportional toJc , as
expected from previous theories11,12 that assumedHc150,
but at small fields the influence of finiteHc1 is clearly seen
up to rather strong pinning.

In conclusion, Eqs.~5!–~7! and Figs. 1–3, derived from
first principles with no assumptions but the geometry a
finite Hc1, should be used to interpret experiments on sup
conductors with no or very weak vortex pinning. A detaile
account of pinning and vortex dynamics will be published
.

z.
1J. Provost, E. Paumier, and A. Fortini, J. Phys. F4, 439 ~1974!;
A. Fortini, A. Haire, and E. Paumier, Phys. Rev. B21, 5065
~1980!.

2C. P. Bean and J. D. Livingston, Phys. Rev. Lett.12, 14 ~1964!;
L. Burlachkov, Phys. Rev. B47, 8056~1993!.

3M. V. Indenbom, H. Kronmu¨ller, T. W. Li, P. H. Kes, and A. A.
Menovsky, Physica C222, 203 ~1994!; M. V. Indenbom and E.
H. Brandt, Phys. Rev. Lett.73, 1731~1994!; E. H. Brandt, Rep.
Prog. Phys.58, 1465~1995!.

4N. Morozovet al., Physica C291, 113 ~1997!.
5E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowsk

D. Majer, B. Khaykovich, V. M. Vinokur, and H. Strikhman
Phys. Rev. Lett.73, 1428~1994!.

6E. Zeldovet al., Physica C235-240, 2761~1994!; B. Khaykovich
et al., ibid. 235-240, 2757~1994!; N. Morozovet al., Phys. Rev.
Lett. 76, 138 ~1996!.
7Th. Schuster, M. V. Indenbom, H. Kuhn, E. H. Brandt, and M

Konczykowski, Phys. Rev. Lett.73, 1424~1994!.
8M. Benkraouda and J. R. Clem, Phys. Rev. B53, 5716 ~1996!;

58, 15 103~1998!.
9I. L. Maksimov and A. A. Elistratov, Pis’ma Zh. Eksp. Teor. Fi

61, 204~1995! @JETP Lett.61, 208~1995!#; A. V. Kuznetsov, D.
V. Eremenko, and V. N. Trofimov, Phys. Rev. B56, 9064
~1997!; 57, 5412~1998!.

10E. H. Brandt, Phys. Rev. Lett.78, 2208~1997!.
11E. H. Brandt, Phys. Rev. B54, 4246~1996!.
12E. H. Brandt, Phys. Rev. B58, 6506~1998!; 58, 6523~1998!.
13R. Labusch and T. B. Doyle, Physica C290, 143 ~1997!; T. B.

Doyle, R. Labusch, and R. A. Doyle,ibid. 290, 148 ~1997!.
14E. H. Brandt, Phys. Rev. B59, 3369~1999!.


