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Second harmonics and compensation effect in ceramic superconductors
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A three-dimensional lattice of the Josephson junctions with a finite self-conductance is employed to model
the ceramic superconductors. The nonlinear ac susceptibility and the compensation effect are studied by Monte
Carlo simulations in this model. The compensation effect is shown to be due to the existence of the chiral glass
phase. We demonstrate, in agreement with experiments, that this effect may be present in the ceramic super-
conductors which show the paramagnetic Meissner effect.@S0163-1829~99!07525-6#
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One of the most fascinating discoveries in condensed m
ter physics is the paramagnetic Meissner effect~PME! in
certain ceramic superconductors.1,2 The nature of the unusua
paramagnetic behavior may be related to the appearanc
spontaneous suppercurrents~or of orbital moments!.3 The
latter appear due to the existence ofp junctions character-
ized by the negative Josephson couplings.3,4 Furthermore,
Sigrist and Rice argued that the PME in the high-Tc super-
conductors is consistent with thed-wave superconductivity.5

This effect is succesfully reproduced in a single loop mod5

as well as in a model of interacting junction-loops.6,7

The mechanism of the PME based on thed-wave symme-
try of the order parameter remains ambiguous because
not clear why this effect could not be observed in ma
ceramic materials. More importantly, the paramagnetic
sponse has been seen even in the conventional Nb~Refs.
8–10! and Al ~Ref. 11! superconductors. In order to expla
the PME in terms of conventional superconductivity one c
employ the idea of the flux compression inside of a sam
Such phenomenon becomes possible in the presence o
inhomogeneities12 or of the sample boundary.13 Thus the in-
trinsic mechanism leading to the PME is still und
debate.11,14

Recently Heinzelet al.15 have shown that the PME ma
be analyzed by the compensation technique based on
measurement of the second harmonics of the magneti
susceptibility. Their key observation is that the so-cal
compensation effect~CE! appears only in the samples whic
show the PME but not in those which do not. Overall, th
effect may be detected in the following way. The sample
cooled in the external dc field down to a low temperature a
then the field is switched off. At the fixed lowT the second
harmonics are monitored by applying the dc and ac field
the sample. Due to the presence of nonzero spontaneou
bital moments the remanent magnetization or, equivalen
the internal field appears in the cooling process. If the dir
tion of the external dc field is identical to that during the fie
cooled ~FC! procedure, the induced shielding currents w
reduce the remanence. Consequently, the absolute valu
the second harmonicsux2u decreases until the signal of th
second harmonics is minimized at a fieldHdc5Hcom. Thus
the CE is a phenomenon in which the external and inte
fields are compensated and the second harmonics bec
zero.
PRB 600163-1829/99/60~1!/118~4!/$15.00
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The goal of this paper is to explain the CE theoretica
by Monte Carlo simulations. Our starting point is based
the possible existence of the chiral glass phase16 in which the
remanence necessary for observing the CE should occu
the cooling procedure. Such remanence phenomenon is s
lar to what happens in spin glass. Furthermore, the P
related to the CE can also be observed in the chiral g
phase.7,16,17 There are several experimental results18 which
appear to corroborate the existence of such a glassy pha
ceramic high-Tc superconductors.

In the chiral glass phase the frustration due to existenc
0- and p-junctions ~0-junctions correspond to positive Jo
sephson contact energies! leads to nonzero supercurrents16

The internal field~or the remanent magnetization! induced
by the supercurrents in the cooling process from high te
peratures to the chiral glass phase may compensate the
ternal dc field.

We model ceramic superconductors by the thr
dimensionalXY model of the Josephson network with fini
self-inductance. We show that in the FC regime the CE
pears in the samples which show the PME but not in th
containing only 0-junctions. In the zero field cooled~ZFC!
regime decreasing the external dc field also gives rise to
CE in the frustrated ceramics. Both of these findings ag
with the experimental data of Heinzelet al.15

We neglect the charging effects of the grain and consi
the following Hamiltonian:6,7

H52(̂
i j &

Ji j cos~u i2u j2Ai j !1
1

2L (
p

~Fp2Fp
ext!2,

Fp5
f0

2p (̂
i j &

p

Ai j , Ai j 5
2p

f0
E

i

j

AW ~rW !drW, ~1!

whereu i is the phase of the condensate of the grain at thei th
site of a simple cubic lattice,AW is the fluctuating gauge po
tential at each link of the lattice,f0 denotes the flux quan
tum, Ji j denotes the Josephson coupling between thei th and
j th grains,L is the self-inductance of a loop~an elementary
plaquette!, while the mutual inductance between differe
loops is neglected. The first sum is taken over all near
neighbor pairs and the second sum is taken over all elem
tary plaquettes on the lattice. Fluctuating variables to
summed over are the phase variables,u i , at each site and the
118 ©1999 The American Physical Society
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gauge variables,Ai j , at each link.Fp is the total magnetic
flux threading through thepth plaquette, whereasFp

ext is the
flux due to an external magnetic field applied along thz
direction,

Fp
ext5H HS if p is on the ^xy& plane

0 otherwise,
~2!

where S denotes the area of an elementary plaquette.
external fieldH includes the dc and ac parts and it is giv
by

H5Hdc1Haccos~vt !. ~3!

It should be noted that the dc field is necessary to gene
even harmonics.

In the present paper, we consider two models with t
types of bond distributions. Model I: the sign of the Josep
son couplings could be either positive~0-junction! or nega-
tive (p-junction! and the spin glass type bimodal (6J) dis-
tribution of Ji j is taken. The coexistence of 0- an
p-junctions gives rise to frustration even in zero exter
field and the chiral glass phase may occur at l
temperatures.16 Model II: the interactionsJi j are assumed to
be ‘‘ferromagnetic’’ and distributed uniformly between
and 2J. Obviously, there is no frustration in zero extern
field in this model. It has been also demonstrated that
PME is present in model I but not in model II.7

The ac linear susceptibilty of models I and II has be
studied7 by Monte Carlo simulations. It was found that, du
to the frustration, model I exhibits much stronger dissipat
than model II in the low frequency regime. Here we go b
yond our previous calculations of the linear
susceptibility.7 We study the dependence of the second h
monics as a function of the dc field. In this way, we c
make a direct comparison with the CE observed in
experiments.15 The second harmonics of a similar Josephs
network model with a finite self-inductance were conside
by Wolf and Majhofer.19 However, these authors dealt wit
the two-dimensional version of model II and the CE has
been studied. In this paper we are mainly interested in
CE in the frustrated three-dimensional system described
model I.

The dimensionless magnetization along thez axis mor-
malized per plaquette,m̃, is given by

m̃5
1

Npf0
(

pP^xy&
~Fp2Fp

ext!, ~4!

where the sum is taken over allNp plaquettes on thêxy&
plane of the lattice. The real and imaginary parts of the
second order susceptibilityx28(v) andx29(v) are calculated
as

x28~v!5
1

phac
E

2p

p

m̃~ t !cos~2vt !d~vt !,

x29~v!5
1

phac
E

2p

p

m̃~ t !sin~2vt !d~vt !, ~5!
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wheret denotes the Monte Carlo time. The dimensionless
field hac, dc field hdc and inductanceL̃ are defined as fol-
lows:

hac5
2pHacS

f0
, hdc5

2pHdcS

f0
, L̃5~2p/f0!2JL. ~6!

The dependence ofL̃ on the parameters of the system su
as the critical current and the typical size of the grains
discussed in Refs. 7 and 17.

Our results have been obtained by employing Mo
Carlo simulations based on the standard Metropolis upda
technique. While Monte Carlo simulations involve no re
dynamics, one can still expect that they give useful inform
tion on the long-time behavior of the system. In fact, t
amplitude of the ac field we use is much smaller than
typical energy of the dc part. On the other hand, the cha
teristic time for the sintered samples, which are believed
be captured by our model, is of order 10212s.19 This time has
the same order of magnitude as a single Monte Carlo s
So the period of oscillations chosen in the present work
much longer than the characteristic time~see below!. For
such a weak and slowly changing ac field the system can
regarded as being in quasiequilibrium and the Monte Ca
updating may be applied.A priori, the validity of this ap-
proximation is not clear but it may be justified by compari
our results with those obtained by other approaches to
dynamics such as considered in Ref. 19. For the first h
monics, our method and the method of Ref. 19 yield res
that agree qualitatively. Furthermore, our results presente
Fig. 1 for the second harmonics are also in a qualitat
agreement with the corresponding results obtained by s
ing the equations of motion.19 So one can expect that th
standard Monte Carlo may actually give reasonable res
for the CE.

We choose the gauge where the bond variablesAi j along
the z direction are fixed to be zero. The lattices studied
simple cubic withL3L3L sites and free boundary cond

FIG. 1. The dependence ofux2u on hdc for model I and model II

at T50.1. The values ofL̃ are chosen to be equal to 1, 3, and 10
shown next to the curves. The results are averaged over 20 sam
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tions are adopted. In all calculations presented below,
takeL58 andv50.001. The sample average is taken ov
20–40 independent bond realizations.x2(v) has been esti-
mated following the procedure in Refs. 7 and 20. Namely
the beginning of a given Monte Carlo run, we first switch
the field ~3!. Then, after waiting for initialt0 Monte Carlo
steps per spin~MCS!, we start to monitor the time variatio
of the magnetization,t0 is being chosen so that all transie
phenomena can be considered extinct. We sett0 to be 2

3104 MCS. After passing the pointt5t0 ,m̃(t) is averaged
over typically 200 periods, each period contai
tT MCS (tT52p/v). The real and imaginary parts of th
second order ac susceptibility are then extracted via Eq.~5!.
We sethac50.1, corresponding to'0.016 flux quantum per
plaquette. Smaller value ofhac turned out to leave the result
almost unchanged.

The dependence ofux2u,ux2u5A(x28)
21(x29)

2, on hdc at

T50.1J is presented in Fig. 1. For small values ofL̃, the
oscillation ofux2u shows up. Such oscillation has been fou
for the two-dimensional superconductors in Ref. 19 and
nature is related to the lattice periodicity. Our new obser
tion is that the oscillatory behavior is still present in t
superconductors with 0- andp-junctions ~model I! but to
less extent compared to model II. It is clear from Fig. 1 th
ux2u does not decrease at largehdc but gets saturated. This i
an artifact of the assumption that the Josephson contac
ergiesJi j are field-independent. The field dependence ofJi j
should remove the saturation ofux2u at strong dc fields.19,21

In order to study the difference between model I a
model II through the CE we have to consider the weak fi
region where the PME may be observed. For model I
PME appears clearly forhdc<1.7 So the largesthdc we take
is 1. In this weak field regime there is no periodicity ofux2u
versushdc which may complicate the study of the CE. Th
chiral glass phase is found to exist below a critical value
the inductanceL̃c where 5<L̃c<7.16 One has to choose
therefore, anL̃ which is smaller than its critical value and i
what follows we takeL̃54.

In this paper we focus on the system sizeL58, L̃54,
v50.001, andT50.1. Our preliminary studies show that th
qualitative results do not depend on the choise of the par
eters of the system.

Figure 2 shows the dependence of second harmonic
hdc in the FC regime for the superconductors described
model I. Our calculations follow exactly the experimen
procedure of Heinzelet al.15 First the system is cooled in th
dc fieldhdc51 from T50.7 down toT50.1 which is below
the paramagnet-chiral glass transition temperat
Tc'0.17.16 The temperature step is chosen to be equa
0.05. At each temperature, the system is evolved throug
3104 Monte Carlo steps. When the lowest temperature
reached the dc field used in cooling is switched off and
apply the combined field given by Eq.~3!. We monitor the
second harmonics reducing the dc field fromhdc51 to zero
stepwise by an amount ofDhdc50.05. ux2u reaches mini-
mum at the compensation fieldhcom50.760.05. At this
point, similar to the experimental findings,15 the intersection
of x28 andx29 is observed. This fact indicates that atHcom the
system is really in the compensated state. Furthermore
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accord with the experiments, at the compensation point
real and imaginary parts should change their sign.15 Our re-
sults show thatx28 changes its sign roughly athdc5hcom. A
similar behavior is also displayed byx29 but it is harder to
observe due to a smaller amplitude ofx29 .

Figure 3 shows the dependence of the second harmo
on hdc in FC regime for model II. The calculations are ca
ried out in the same way as for model I. A difference is th
we start to cool the system fromT51.4 which is above the
superconducting transition pointTs'0.9 (Ts is estimated

FIG. 2. The second harmonics of model I obtained after fi
cooling in a dc fieldhdc51 fromT50.7 toT50.1. The temperature
is reduced in steps of 0.05. At the lowestT50.1 the dc field used in
cooling is switched off and the second harmonics are generate
applying the combined field~3!. The dc field is stepwise reduce

from hdc51 to hdc50. The inductance is chosen to be equal toL̃
54. The arrows indicate the sense of the changes in the dc fi
The results are averaged over 40 samples and are qualitativel
same as those presented in Fig. 1 of Ref. 15.

FIG. 3. The procedure to generate the second harmonics is
same as in Fig. 2 but for model II. The system is cooled in a dc fi
hdc51 from T51.4 to T50.1. The results are averaged over
samples.
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from the maximum of the specific heat7 for L̃54 and the
results are not shown here!. The temperature step is set equ
to 0.1. Obviously,ux2u decreases with decreasinghdc mono-
tonically. Thus, there is no CE because the remanent ma
tization does not appear in the cooling process. This resu
again in accord with the experimental data.15

We now turn to the ZFC regime. The experiments15 show
that no CE can be expected if after the ZFC procedure
increases the dc field. However, if the field is decrease
remanent magnetization is developed and the CE appea15

The results of our simulations for the ceramic supercond
ors described by model I are shown in Fig. 4. As in the
regime the system is cooled fromT50.7 toT50.1 but with-
out the external field. Then atT50.1 we apply the field
given by Eq.~3! and study three cases. In one of themhdc is
decreased fromhdc51 to 20.5. The values ofux2u are rep-
resented by solid circles in Fig. 4. The CE is clearly seen
hcom50.1560.05. At this point the real and imaginary par
of the second harmonics also intersect~the results are no
shown!. It is not surprising that thehcom in the ZFC regime
appears to be smaller than in the FC regime. Figure 4 sh
also the dependence ofux2u on the dc field when it change
from hdc50 to 1 ~open hexagons! and from hdc50 to
20.5 ~open squares!. Obviously, no CE is observed in thi
case. The results presented in Fig. 4 qualitatively agree
those shown in Fig. 2 of Ref. 15.

In conclusion we have shown that the CE may be
plained, at least qualitatively, by using the chiral glass p
ture of the ceramic superconductors. The CE is shown
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appear in the chiral glass phase in which the PME is pres
but not in the samples without the PME.
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FIG. 4. The dependence ofux2u on hdc obtained in the ZFC
regime for model I. The solid circles correspond to the case w
the dc field is decreased fromhdc51 to 20.5. The open hexagon
and squares correspond to the increase ofhdc from zero to 1 and to
its decrease from zero to20.5, respectively. The inductance

chosen to be equal toL̃54. The sense of changes of the dc field
marked by the arrows. The results are averaged over 25 sam
The compensation field in the case when the field is decrease
hcom50.1560.05.
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