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The zero-temperature dynamical spin-spin correlation functions are calculated for tr‘é tsprleg anti-
ferromagnetic Heisenberg ladder in a magnetic field above the lower criticaHijgldrhe dynamical structure
factors are calculated, which exhibit both massless modes and massive excitations. These modes appear in
different sectors characterized by the parity in the rung direction and by the momentum in the direction of the
chains. The structure factors have power-law singularities at the lower edges of their support. The results are
also applicable to the spin-1 Heisenberg chain. The implications are briefly discussed for the various correla-
tion functions and ther resonance in the §6) symmetric ladder mode[S0163-18209)14025-§

[. INTRODUCTION tions. An interesting feature of the antiferromagnetically
coupled Heisenberg ladder is that these massless and massive
Systems located in between one dimension and two dimodes appear in different sectors of the structure factors,
mensions, ladders, have attracted great attention both thebaracterized by the momentugy in the direction of the
retically and experimentally This line of research has been "ungs @y can take only 0 andr) and by the momentumg in
pursued both with the hope of finding some clues to théhe direction of the chains. _
understanding of high-temperature superconductivity, and Our study of the massive excitations in the gapless regime

because of the experimental discoveries of new ladder cont$ IS0 motivated to better understand taeresonance
pounds, such as a cuprate spin lad@C,0; and a super- modé® in the S@5) symmetric ladder model introduced re-

conducting addrSr,Cay, ,Cl,:Ou. Another spin ladder cently by Scalapin@t all’ In this model there is a quantum
evstem of current inétl(_a:estA iéll the organic materia/PNaSe transition driven by the chemical potential from the
Cyuz(C5H12N2)2C|4 whose spin-gap behaviorgwas observedSpin'gap Mott insulator to thd-wave-like superconducting

by th f th ; ibility. th hase. It was shown in the strong-coupling limit that the
y the measurements of the spin susceptibility, the magnetisyin_qa, magnon mode of the Mott insulator evolves con-
zation curve, and the NMR relaxation rdt2The nonzero

VS d X tinuously into therr-resonance mode of the superconducting
magnetization is observed once the external magneticHield phase” A complementary weak-coupling approd&f°was
exceeds the lower critical fielt,, which is equal to the izken to study a general two-leg ladder model of weakly
spin gap(in units where the product of the Bohr magnetoninteracting electrons. In particular, Liet al2° showed that
and theg factor is set to unity This is a quantum phase the model is renormalized to a fixed point where a global
transition driven by the external magnetic field from the SO8) symmetry is realized that contains the (8D They
gapped spin liquid to the gapless Tomonaga-Luttinger liquichlso obtained the ground-state phase diagram and low-energy
state. These experiments motivated further theoretical worksxcitation spectra at half filling which are qualitatively in
on the various properties of the gapless regime: the magnegreement with the strong-coupling picture of the (50
tization proces§, the spin-spin correlation functioiS,and  symmetric ladder model. Yet the energy and the spectral
the spin-Peierls instabilit}?* weight of thesr-resonance mode in the dynamical spin struc-

In this paper we extend the theory of Sheltenal!?to  ture factor are not completely understood even for the ideally
the two-leg Heisenberg ladder in the gapless regitHe ( constructed SG&) symmetric ladder. An extensive numerical
>H.;) and calculate the dynamical spin-spin correlationexact-diagonalization study is performed to clarify this and
functions and structure factors in the ground stafd/e ob-  related issue& but clearly it is desirable to develop an ana-
tain the dynamical structure factors containing massive spilytic theory to discuss the power-law singularity which is
excitations as well as massless excitations. The latter contrexpected to appear in the structure fadfofhe field-driven
bution is characteristic of the Tomonaga-Luttinger liquid andguantum phase transition in the Heisenberg ladder we study
is commonly found in thes=3 Heisenberg chaif:*> This in this paper is analogous to the quantum phase transition in
component may be interpreted as coming from the Bose corthe SA5) symmetric ladder. AS*=1 boson in the Heisen-
densate of?=1 magnons? On the other hand, the massive berg ladder corresponds to a hole pair in the latter model,
excitations we are interested in ha8e=0 magnons in their and aS*=0 boson to a magnon or the-resonance mode.
origin. Below H.; the massive magnons give rise to Therefore our Heisenberg spin ladder may be viewed as a toy
é-function peaks in the dynamical structure factor. In themodel for the S@) symmetric ladder. Using the analogy,
gapless regimeH{>H_;) the s-function peaks of the mas- we can deduce the correlation functions for thavave su-
sive excitations turn into power-law singularities, becauseperconductivity, the charge density wave, and the spin cor-
the massless excitations introduce algebraically decayingelations in the S() ladder from the spin-spin correlators of
prefactors to the exponentially decaying correlation functhe Heisenberg ladder.
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This paper is organized as follows. In Sec. Il we introduce=(|1|)—||1))/y2, and the triplet statelsT; L )=[11), |Tio
the model and analyze it in the limit of strong interchain :(|”>+|”>)/\/§, and |T;_)=|||). Their energies are
coupling, where it is easier to get intuitive pictures of theg(s)=-3J, /4, E(T;.)=J,/4—H, E(T,9)=J,/4, and
physics. Detailed calculation of the dynamical spin-spin cor-g(T; _)=J,/4+H, respectively. It is then natural to intro-
relation functions and the structure factors are presented ifuce boson operatoss , t' . , t',, andt! _, which create
Sec. lll. Here we take the opposite limit of the weak inter-e singlet state and the ’triplet' states at itre rung?2239
chain coupling, and employ the bosonization method. In SeCThey obey the constraints-*si+t7r+ti ++tj°0ti O+t‘T—ti -
IV we briefly discuss implications to the resonance inthe  _ 1 \ith these hard-core bosons we reprlésént the spin op-
SQ(5) symmetric ladder model and summarize the results. erators

Il. STRONG-COUPLING APPROACH Si=S+Sh =t i —tl (28
The Hamiltonian for the two-leg Heisenberg ladder we 7 ez 2 .t +
study in this paper is S5i=S1i— S =t SitSitio (2b)
: °° Soi =51+ S2;=V2(t] . ti g tleti ), (20
H=J ElZiE S/,L,i's,u,i+l+JLi > S-S
u=12i=—o ===

Shi=S{i—S=V2(—t] s+t ), (2d)

— Z g— — —

H,u:zl,z i:Z_w S @) Spi=S+S;;= \/E(tﬁ—ti,o"'t;r,otiﬁ), (2¢)
wheresS, ; is s_pin% operator, and the intrachain couplidg S, i=S-S= \/E(tiT,—Si_SiTti,-%—)- (2f)
is positive(antiferromagnetic The interchain coupling, is
also assumed to be positive, unless otherwise noted. The suffixes O andr refer to the momenturmy, . Note that

In this section we briefly discuss static correlations aboveSj; andS;; do not contain the; ; boson.
the lower critical fieldH, in the strong-coupling limitJ, In the presence of a high magnetic figld=J, , we may
>J. WhenJ/J, =0, the ladder is decomposed into indepen-ignore thet; o andt; _ bosons as they have higher energies
dent rungs, each rung consisting of two sp8js andS,; . than thet; , boson. In lowest order id the effective Hamil-

There are four eigenstates in each rung, the sin@gt tonian thus becomes

J
Heﬁ=§ E (tiT,+SiSiT+1ti+1,++tiT+1,+Si+13iTti,++ti1i+ti,+tiT+1,+ti+1,+)+(Jl_H)Z tiT,+ti,+, ©)
| I

with the simplified constraim?si+ti+ti,+= 1. As pointed out in Ref. 24, this effective Hamiltonian may be written as

-~ ~ 1. J ~
Heﬁ=JZi 8%, ,+99, ,+ Esf”f+l)+ JL+§—H)Z &+ const, (%)
|
where$ is a spin} operator Hep=J, +2J in lowest order ind/J, .?° The magnetization

curve forM<1 can also be obtained from the known result
for the XXZ chain®®

FSIZ:tiT,-Fti,+_%r (58) 1 -, Z(H_Hcl)
M=3 &=\ "2 (6)

S =tl,s, (5b)
A similar result holds for M <1. The square-root behav-
- ior is a well-known universal behavidf—2*8 When 0<M
S =siti 4. (50) <1 the ground state is a superfluid of the bosons. Within
our approximation the following equal-time spin correlation
We notice that Eq(4) is just the Hamiltonian of the spif-  functions are readily obtained from those of theXz

XXZ chain with the external magnetic field=J, +J/2  chain®
—H, whose properties are well understood. Whigih< 3J,

the XX Z chain is not fully polarized® This means that the (150 =((She 1+ 12(S+1/2)

ladder has unsaturated magnetizati(ziSéQ:(t;r’+ti'+>

=M.(0<M<1) WhenJL—J<H.<_JL+.2J. We have thus :Mz_ﬂJr ECOS(ZWMH), (79)
obtained the lower and upper critical fieltg,=J, —J and n®> n”
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(St n+13)7(71>:2<~3:1+1§§> should have terms proport?onal to cos{l!?!n) with |
' ’ =0,1,2 .... Third, as noted in the Introduction and to be
(=" (=" discussed in Sec. IV, thg . boson andt; , boson corre-
=Cs nim _C4n7,+ 1/77“03277Mn)’ (7b) spond to a pair of holes sitting on a rung and to a magnon in

_ the SA5) symmetric ladder, respectively. Thus, we may
wherec’s are 1numer|cal constants. Fdt<1 the parameter compare the hole-pair correlation and the spin correlation
7 is given by functions with(S} S} ;) and(S7 ;S ;) of our model.

4
7=2-3M +O(M?). (8) Ill. WEAK-COUPLING APPROACH

In this section we calculate the dynamical spin-spin cor-
relation functions in the weak-coupling limil, <J. We use
the Abelian bosonization method which has been success-
fully applied to the Heisenberg ladd&3"'?8In this ap-
proach we first bosonize two independent spikleisenberg

In generaly<2 for 0<M<1, and »—2 whenM—0,1%?

Thus, the leading term iSg,,, 1S5 1), besides the constant
M2, is n~ "cos(27Mn), which reflects the fact that the hard-
core bosong; . have a tendency to form a density wave

V_V'th a pe_nod eqzualzto M. On ):[hex other hand, the corr_ela- chains and then treat the interchain couplihg perturba-
tion functions(S; ;7 ;) and(S;Sp;) involve the massive  yely |t is a relevant perturbation and is renormalized to a
tig andt; _ bosons, and therefore decay exponentially forgyong-coupling regime, generating a mass gap in the excita-
li—j[>1. We conclude that the correlator$;S;) and  tion spectrum. This behavior does not depend on the sign of
(S;S,) show quasi-long-range order whilkS.S?) and  j | and therefore the model describes both the antiferromag-
(Sy'Sy) are short ranged. These correlation functions areetic Heisenberg ladder far, >0 and theS=1 Heisenberg
discussed in more detail in the next section. chain forJ, <0.}* The spin gap in the latter case is nothing
Before closing this section, we make a few commentsput the Haldane gafy. Since the gapless phase in a magnetic
First, Egs.(7a) and(7b) have the same form as the correla- field is a single phase for9J, <=, we expect the correla-
tors(S;, 1S7) and(S;, ;S;) of theS=1 Heisenberg chain in tion functions in the weak-coupling limit to have the same
a magnetic field larger than the Haldane ¢&f3An im-  structure as in the strong-coupling limit.
portant difference is thag=2 in theS=1 chain® We will We follow the formulation of Sheltort al,*“ which we
come back to this point in the next section. Second, from the&xplain below to establish the notation. We begin with the
knowledge of the exact propagator of hard-core bo$dfs, bosonized Hamiltonian of the ladder in the continuum limit.
we may expect that the correlation functi¢s, .S, ,) It consists of three part§i=",+H_+H, , where

|.'12

de.\?2 [do.\?] m H de.,
H+=j dx[% ( jx) dx) —WaOCOS(\/47T¢+)_\/—;%], 9
dgp_\? [de_\?] 2
H,=f dx[% ( fx + ax + 7T‘,:r:)cos(\/47n9,)+ Wiaocos(\Mrrd))], (10

Ji

2
2 ao

w5

J
fdxcos(\/ﬂe_)[cos{\/Eq/hr)—cos(\/Egb_)]nL Z:OJ dx[ ix ix

Herev is the spin-wave velocitya, is a lattice constant, angh=J, \?/27r with \ being a numerical constant. The bosonic
fields ¢. and 6. obey the commutation relationss , (X),0,(y)]=[¢_(X),0_(y)]=i®O(y—x) and [¢(X),d_(Y)]
=[+(X),0_(Y)]=[_(X),0.(Y)]=[60.(X),0_(y)]=0, where®(x) is the step function. It is important to note thidt
appears ir{, only. Thus, the external magnetic field changes the dynamics of the fieldand 4, , while the other fields
¢_ and 6_ are not directly influenced by the uniform fiettl The excitations involving these latter fields remain gapful even
above the lower critical fieltH ;. The spin operators with, =0 and, defined in Eqs(2a)—(2f), are written in terms of the
bosonic fields as

H, = . (11

SH(x) = j—% %—(—DX’%%M V., )cogme_), (129
Si(x)= j—% %—(—1)*’%%01 Vg )sinme_), (12

So (¥)= %e‘ﬁ‘ﬂ[(— 1)\ cog \m0_) +cog mo_)sin(\me., )cod \mp_)+i sin(\mo_)cog Vme.)sin(\mp_)],
(129
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Sy(x)= %e‘ 0L (= 1)) sin(\m6_) +cog o) cog N )sin(\md_) +i sin(\To_)sin(\me., )cogVmh_)],
(120

where Sg‘;y(x)=Sgy'i for x=iag(a@=x,y,z). Equations the renormalization of the mass of tile. and ¢, fields, m

(128—(12d directly follow from Eq.(30) and Appendix A —mIn(A/m), as expected from the %8 symmetry, where

of Ref. 12. the average is taken in the ground staté4of. This is again
Sheltonet al. showed that{, and H_ can be greatly taken care of by redefining the mass. The higher-order terms

simplified by fermionization. The Hamiltoniak_ then be- ~ Will generate, through gradient expansions, both irrelevant

comes that of free massive Majorana fermighgx) and  terms such as cogérl ) with 1>1, which we can safely

p(x) having the mass gam and — 3m, respectively. This is ignore, and a marginal operatof, )%, which should be

equivalent to the two-dimensional Ising model above or bekept. The third component is the termd. /dx)* already

low the critical temperature. This observation allowed thempresent in*{, and will be kept in the following calculation.

to obtain the dynamical spin-spin correlation functidns Hence we reducé{, to the form

from the known results of the Ising mod@lPhysically the

&5 fermion describes th&=0 magnon excitation, whereas J, ag de. |2
the p corresponds to a singlet excitation with much higher H, =~ . f X( dx | (13
energy.

On the other hand, the, and 6, fields represent the
S*=+1 magnon excitations. As tH&*=1 bosons condense where the coupling constadt a, may be modified from its
aboveH,;, these bosonic fields have massless excitationdare value because of the emergence of the operator, ()
We will first integrate out the massive Majorana fermionsin the higher-order terms discussed above. We believe, how-
and concentrate on the massless bosonic fields. To proceegier, that the sign of the coupling constant is not changed by

here we introduce an approximation for dealing with . the renormalizatioi? Having made this approximation, we
This interaction Hamiltonian has three components. The firshow integrate out thep_ and 6_ fields to get the spin-spin
component involving only ¢_ and #_, ie.  correlation functions. Within our approximation the fields

cos(/4m6_)cosiAmp_) and dé_/dx)?, has two major ¢ andéd_ are independent ap, andé, , and therefore the
effects on the dynamics 6f_ . One effect is to renormalize correlation functions okp_ and 6_ are independent ofi.

the bare massn to min(A/m), where A is a high-energy We use Eq.(33) of Ref. 12 to represent cogre ),
cutoff, as noted by Sheltoet al*? This can be absorbed by sin(yw¢_), cos(/m6_), and sing/76_) in terms of the or-
redefining the mass. The other effect is a strong two-particleler and disorder parameters of an Ising model. We then use
collision described by a matrix having a superuniversal Egs.(38) and(39) of Ref. 12 to obtain their correlation func-
form, as recently discussed by Damle and Sacd&ince tions. The correlation functions (S;S;)  involve

we are only concerned with processes in which at most ongos(/7¢_)cos(/m76_) and sing/wé_)sin(m6_). They
S*=0 magnon is created, this strong scattering effect may bare equivalent to free massive Majorana fermigiswhose
irrelevant for our discussion of the dynamical correlations atorrelators are easily obtained. Finally, the correlator
zero temperature. The second component is a coupling terniy, ¢ _(x) dy¢_(0)) decays exponentially=e™ 2" with r
cos(4mo_)cosy4me,). When integrating out thed = (x2+v279)>?] and is ignored. Hence, we arrive at the fol-
field perturbatively, we find that the leading term lowing expression of the dynamical spin-spin correlation

(cos(4m0_))_cos\4md.)= In(A/m)cos/4m¢d.) gives functions:

a2
(S50 1)SH(0,0)= (3564 (X, 75+ (0,0)) 1, (143
, , o[ 2N 2AT
<sw(x,r)sw(o,0)>=(—1)xao(7> ?Ko(mrlvxcos{Gdu(x,r)]cos{ﬁ¢+(0,0)]>+, (14b

PN -
<S;(X,T)S,n.(0,0)>:(_l)X/a()(?) A%<el\3770+(X,7)efl\3ﬂ'0+(0,0)>+, (140)
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<SO (X T)SO(O O)>_— <el\ﬂrr9+(x T)e iV (X, T)elwn'¢>+(00)e |\~rr0+(00)> 0—,+ o(mr/U)
7T

<e VT, (X, T)eI\AT¢+(X T)e I\,7T¢+(00)e Iwrrf}+(00)> J_K (mr/U)
27

agm
+
2w

KO( mr/ov )[(ei \“‘?HJF(X,T)e—i v“?zfur(x,r)e—i v“?dur(0,0)e—i \f;BJr(O,O)) N

n <ei V70, (%,7) @i T 4 (X, 1) gi T (0.0)g i «?0+(o,0)>+]' (14d)

where 7 is the imaginary timeA, is a numerical constanfl.=d,*ivd,, and({ ), is the average with respect to the
HamiltonianH, +H, . In Egs.(14a—(14d we have ignored the terms decaying much faster #iafh”. Therefore we
discarded the contribution from processes involving more than one massive magnon. These equations arelyatid.for
WhenJ, <0, on the other hand, the strongly renormalized interchain coupling combines theSgpinsd S,; into a single

spin, and the ladder behaves a§-al Heisenberg chain. As explained in Ref. 12, when taking average over the massive
Majorana fermionsé; and p, we only need to exchange the order and disorder parameter of the Ising model. Using the
correlators of¢_ and §_ for J, <0 in Ref. 12, we find

(S5, D S(0.0)], <0=(S5(x, NS00}y, -0+ (SL(X, I S(0,0)]5, 0. (159
(S5 (.75 (0,0)]3, <0=(S5 (X, 7S5 (0,0)]5, 0+ (S5(X,7)S;(0,0)]5, -0, (15b)

where the correlators in the right-hand side are those in B48)—(14d. WhenJ, <0, theq,= = correlators decay much
faster than theg,=0 correlator and are thus negligible. Hence, the dynamical spin-spin correlation functions $f the
Haldane chain are linear combinations of thoge- 0 and correlators of the Heisenberg ladde), (~0).

Now our task is to calculate the correlatorsédf and 8, in the presence of the magnetic field. The Hamiltoritén is
identical to the one used to study the commensurate-incommensurate transition in classical two-dimensiondf®sffstems.
fact some of the correlation functions in Eq$4a—(14d) have been discussed in this cont&t® In particular, the leading
term of the correlation function corresponding (tg"™*+*De~1V7¢+(0.0)) s obtained by Schuf? including its universal
exponent in the limitM — 0. These results are used to calculate the spin-spin correlation functions by Chitra and Gi@marchi,
who unfortunately seem to have overlooked some terms including the leadinfsteros(2rMx)] in (S5(x) S5(0)). We think
therefore that it is still worthwhile to describe the calculation of the correlations,ofnd 6, in Egs.(143—(140d in some
detail, despite the fact that the Hamiltoniaf, has been analyzed in many literatures.

Following Ref. 12, we fermionizé{, :

H+=f dx

= f, dklv k(CJFre,kCR,k_ CI,kCL,k) - im(CJFr{,kCL,k_ CI,kCR,k) - H(CL,kCR,k_F C[,kCL,k)]y (16)

iv(lfiw —w*ix/f —im(yki — ol vp) —H(y v+ YlhyR)
LdX L RdX R RYL LYR L¥YL R¥YR

where ¢ (¥R) is the right-going(left-going complex fer-

mion field, andypr)(x)=[(dk/\2m)e**cry . The fer- () (X) = dx[¢+(x)+ 0,(x)]. (17b
mion fields are related to the bosons by the standard rela- \/—
tions: It is important to note that the normal ordering in the above

equations is defined with respect to the ground statél of
=0. The fermionized Hamiltoniari, is easily diagonal-

lﬁR(X): 1 eiy“F[¢+(X)—0+(X)], ized:
27Tao -
m:j dig (Jo2ET P H)ala
LPR(X) YR(X) = 2\/— dx[¢+(x) 6-(x)], (178 — (VoA +mP+H)aja], (18
where
- —iAL b (x)+ 04 (X)] | _(cose/2) —isin(ed2) (CRvk)
0 27Taoe ' (5k>_(—i5in(¢’k/2) cos ¢, /2) CLk/ (19
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E(k) o

\\ 0 / - K
/kF

0 27 M q

FIG. 2. Support 0fS{%(q, ). The shaded region shows where

, .
FIG. 1. Schematic picture of the upper and lower barf{) Sy, @) is nonzero.

=* o'k m—H. The negative-energy states are filled. The o iy for the antiferromagnetically coupled ladder, while

long-distance behawo_r o_f the correlaﬂon functions are deter_mlnec& is attractive for theS=1 chain’2 Obviously the scattering
by the low-energy excitations aroutk| =k, where the dispersion

g ! term has only negligible effects in both limitd—0 and
is linearized. : . .
M—1, where we will get the correlation functions of free

32
with tang,=m/vk. The magnetic field plays a role of the fermions: _ .
chemical potential to the fermions. We are concerned with 1 he low-energy physics dft, can be easily solved by the

the case wherél is slightly above the lower critical field Abelian bosonizatioA’*® We first linearize the dispersion
H.,(=m) such that & M<1. The ground state is obtained aroundk= = kg (Fig. 1). We then bosonize the fermions in
by filing the upper band &) up to the Fermi points (M€ upper band:

(|k|<kg) and the lower banda,) completely; see Fig. 1. 1 _
The Fermi wave numbek; is related to the magnetization P(X) ~ ——— (& ™X/ 2t INTLA(x) = 6]
ke=mM/ag. This follows from 2may
—imMx/ag—i VA b(x) + 6(X)]
1 1 o . te 0 ), (22)
a_o:_\/;LJ' dX<f9x¢+>+=[f Ax(:¢r¥rt L )+ where the bosonic fieldg(x) and 8(x) obey[ #(x),6(y)]
=i®(y—x). Using these fields, we write the Hamiltonian
1 (= + H, as
= —f dk(a,ay) + , (20
27 ) 2 2
v 1/d¢ de
where L is the length of the ladder an¢h/a,), =0 (kg Ha_if dx g\ dx 9 ax/ | (23

—|kl). In calculating long-distance correlations, we can - ) ) ]
safely ignore the lower band and keep only the low-energyvherev is the Fermi velocity, and) is a parameter deter-
excitations around the Fermi points in the upper band. In th&ined by the interactiog<1 (g>1) whenJ, >0 (J, <0),

fermion representation the interaction tet) reads andg—1 asM—0,1. Incidentally,g is related to the com-
pactification radiusR of the field ¢ by g=1/(4wR?). We

J,ag - now need to expres$, and 6, in terms of¢$ and §. Once
H. ~ 4 j dx(¢'9)%, (2D this is done, it is straightforward to calculate the correlation
. functions sinceH, is a free-boson Hamiltonian. First we

where y(x)= [ (dk/\27)e'**a, and we have dropped the note that for states near the Fermi surface we have
contribution from the lower band. The total Hamiltonian for 5
the fermions in the upper ban#{,=H, +H, , consists of ChiCrptCl kCLp~ala,+ala,, (24)
the kinetic energy, Eq(18), and the short-range scattering
term, Eq.(21). The coupling constant of the latter term is ~
proportional toJ, in lowest order. Thus, the interaction is (22) and(24) and discarding the, fermions, we find

where we used the approximatign~ ¢,~ Py Using Egs.

de

1 do, M 1 1
. wa(wa(xHwﬁ<x>wL<x>:~w<x>w(x>=a—o+J—;&”—aocos{szHmax)]. (25

Jr ax

It follows that

2

1 M 1
7 (e (0D BBLO0).= 2 + DX TI0.0)et

cog2mMx)(cog VAT (X, 7)]cog VAT$(0,0])a,
(26)

(77'610)2
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where( ), represents the average taken in the ground stat¢,ofThe averages are found to be

g 1 1
=——-— = = , 2
<[?X¢(X17-)(9x¢(010)>a 471_ (X+iv7’)2+ (X—iUT)z) ( 7)
1/ a2 \°
(cof VAm(x,1)]co§ VAT $(0.0])a=3| =7 . (28)
wherea, is a short-distance cutoff of ordeg,. Integration of Eq(25) then yields
M
b (x,7)= ﬁo S p0x,), 29

We have neglected the contribution from the oscillating term. We thus get

1 Z2 g/4
(co§ V7, (x,7)]cog m ¢, (0,0)]) . =cog mMx/ag){cog \m (X, 7)]cog Vm¢(0,0])a= >cos M X/ao)< ijﬁ) .
(30
We next considee™ 7%+ From Eqs(17a and (17b) we can express it as
e—i V704 (X) — o [WTao[ei 7T/4e—i VI (X) l/lR(X) + e—iﬂ'/4ei VI (X) (/lL(X)] (31)

Using the same approximation as in the derivation of E2.and(25), we getyr(X)~ ¥(x)/\2 andy (X)~iy(x)/\/2. Here
we have made a further approximatiotgﬁwlz which is valid for 6<M<1. From Eqgs(22), (29), and(31) we find

i 1 - i
e—'~wﬂ+<X>:{E+sin[2wM xlag+ AT P(X) + (wld)] e T Fiml4, (32
From Eq.(32) we may write the correlation functions in Eq440 and(14d) as

(e \s?9+(x,r)e—iﬁe+(o,0)>+: %<ei \e'q—fe(x,r)e—iﬁe(o,o»aJr% E g2 eMx/ag g v?ﬁ(x,r)eie\e“ﬁd)(x,f)efie\fﬁ(ﬁ(o,o)efi\57_7(9(0,0)>a,

e==*1

e—i-:er/aO
<ei \s‘?(hr(x,r)efi V“?¢+(x,r)ei ﬁ¢+(o,0)ef i V“?9+(0,0)> L= <ei \s‘?f)(x,r)e*i V/FQS(X,T)ei ﬁgb(o,O)e—i ¢?9(0,0)>a
2
ei7TMx/aO
INTO(X, 7) Qi VT (X, T) a— i VT $p(0,0)a—i V7 6(0,0
+ 7 <e| 70X T)el P(X T)e iNmp( )e iVé( )>a
e—SWiMx/aO
iINT (X, 7) @1 V97 B(X,7) ol VIT $(0,0)a—i V7 6(0,0
+ 7 <e| TO(X T)e iV9m (X ’T)el Té( )e iVmo( )>a’
and
L o . L 1 _ L o o L
2 <el v'779+(XyT)e|E\37T¢+(ny)e|6\97T¢+(Oy0)e*|V‘779+(0y0)>+ — el ewMX/a0<elVWO(X,T)elewn'qS(X,T)e*Ie\c‘ﬂ'¢>(0,0)efl wrrt‘)(0,0))
a-
e=*1 2 e=*x1

The averages in the above equations are given by

~ (11g-nVg)%/4 3 (INg+nJg)%a
<ei VmO(x,7) giNVTh(x, 7) g = INVT$(0,0)g V'?a(0,0)>a= g-imn/2 'CL .0~ (33
X+ivt X—lvrt
Combining these results together, we finally obtain the dynamical spin-spin correlation functions:
g 1 a; \°
Z 4 — M2
(X,7)5(0,0)=M*— — ——+ — +Cco827MX)| ——=— ] (34)
(S . ) 472 | (x+iv7)?  (x—iv7)? ' x2+v272
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=2 g/4
i) , (35)

(SE(%,7)S5(0,0)) = Cy(—1)*cog mMx)Ko(mr/v) NREI

2 1/4g 32 (1/2yg—g)? 32e27Mx  Z2g-2miMx
S; x,7)S_(0,0)=(—1)" C3| =——=— —Cy|l ——=— —+ = , (36
(S7(x1)S,(00)=(~1) S(Xz—i-vzrz 4 X2+vz7'2) (x+ivn)?  (x—iv7)?

87

0
X2+vz7'2

32 ) (LVg— Vg) %4

(Sp (x,7)S5(0,0)=

— - d_Ko(mr/v)+(x——Xx)
X—lvt X+lvTt

( Zaoeiiﬂ'MX aoeIiWMX

(37

- 32 (1Ng—g)%/4 FpeTITMX B etiTMX
+ Ko(mr/v)| ———=5— B
0 ~ iv ivr |’
477'2U X2+l)27'2 X+ivr X—lvTt

whereC'’s are positive numerical constants, and we havagetl. The correlation functiolS, (x,7)S; (0,0)) is obtained by
replacingM with —M in Eq. (36). In Eq.(37) we have discarded the term proportionakfc®™™* decaying much faster than
the kept terms. We should therefore regard E84)—(37) as listing only the leading terms. As noted in Sec. Il, we may expect
that (S_(x,7)S.(0,0)) should contain algebraically decaying terms that are proportional to €04 with any integer.
From Ref. 46, we expect that the correlat&(x)S;(0)) should also have terms proportional to cag{@x) which decay as
x~2%9_ The appearance of the term proportionabt™M* suggests thatS, (x,7)Sg (0,0)) should have terms proportional
to Ko(mr/v)cogm(21+1)Mx]. We note that the equal-time correlatiof8(x,0)S5(0,0)) and(S: (x,0)S>(0,0)) agree with
Egs. (78 and(7b) if we identify » with 2g. As is well known, the strongest correlation(iS} (x,0)S: (0,0))~ (— 1)*x~ /7,
Note also that the value of the exponent is consistent between the weak- and strong-coupling agprdach: 1) for J,
>0(J, <0) andg—1 asM—0,1. Another interesting finding is that the exponentially decaying equal-time correlation
functions have different phases hy?2: (S%(x,0)S%(0,0))=cos@@Mx) and(S; (x,0)S, (0,0)) = sin(mMx).

Now we are in a position to calculate the dynamical spin structure factors defined by

1 (= (= _
sgyﬁ(q,w):zﬁwdxﬁxdt@gy(x,ﬁit+o+)sgy(o,0)>e-'qx+'wt, (383

wheret is a real time and the correlation functions in the real time are obtained by replaciitg- 0. We may also calculate
it from

Se(q,0)==im i "dx| dr(s (x,m)SE (0,0)e K Ior 38D
qy(qiw)_;m im Y X _oc T< qy(va) qy( !)>e ( )

io—w+i0"

for w>0. From the obvious relatioﬁa’f(q,w) = ng(—q,w) =Sa’yﬁ(q+27r,w), we assume &q= in the following discus-

sion. We first consider the correlation functions showing the quasi-long-range order. Usi@#gLEm Appendix, we get from
Egs.(34) and (36)

S(q,w) = 27M?5(q) 8(w) + Zg“l () 3(w—73q)

mo

Wclag

Pt
+~—2
2v[T'(9)]

O(0—v(q—27M))O(0+v(q—27M)) g2

: (39
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1-1/4g

. 7Cs33 - 3 42032
St (q.w) _0(w+3(q-m)O(w-5(g—m)| —

oI (Udg)] 0~ o2(q— )

7TC45%
o
ol ()L ()

O(w—o[g—m(1-2M)])O (w+v[q—m(1—2M)])

X(w—i[q—w(l—zw] 7+t 2v/3, Lo
2vla, w+v[q—m(1-2M)]
+0(w—v[q—7(1+2M)])O(w+o[g+ 7(1+2M)])
ny—1 1-7_

w+o[q—m(1+2M)]
2vla,

2vla,

w—v[q—m(1+2M)]

(40)

where 7. =[(1/2/g) = Vg ]2. The structure facto8, " (q,») can be obtained frors; ~(q,w) by M— — M. Being obtained
from the long-distance asymptotic expansid84) and (36), each term in Eqs(39) and (40) describe the behavior of the
structure factors correctly only near its low-energy threshold. For example, the lastat€@m (n Eq. (39) is valid only for

w<7uM (|q—27M|<7M) and cannot be extended | < 7M. The supports of these structure factors are shown in Figs.
2—4. They are essentially the same as those o8thé XX Z chaint* except that the smaM in the ladder corresponds to the

nearly polarized state in th&= 1 chain through the relatioh! =%+<~SZ). The strongest divergence is@t 7 of S_(q,w):

SI7(q,0)<[@—v(q— )] 1" ¥, The exponent approachesd/4 asM—0,1. We note that the boundaries of the supports
of these structure factors became all straight lines because of our linearization of the dispersion relation in the continuum limit.
This is an artifact of the approximation, and the true boundary lines should be given by some nonlinear functions. Furthermore,
some of the boundary lines may be parts of a single curve.

We next consider the massive components. Using 8§, (38b), and(A3), we get

"éo)g’z mvCy f“ dk O(w—e(q—k—m+7M)=0|k|)
2v) [T(gi9?) = e(q—k—m+aM){[w—e(q—k—m+7M)]?—02K?}1 94

where £(q) = Vv?g%+m?. The minimum energy above whick4q,»)>0 is o=&(q—7(1—M)) aroundg=7(1—M).
Near this threshold energy the structure factor reduces to

1-g/2

a,vC vla
02 bl +H(M=—M), (42)

—ZmEF(g/Z) O(w—e(gq—m7+a7M)) PR ey

SHq,0)=

wherev|q—7(1FM)|<mu/v and|w—&(q— (15 M))|<m(v/v)? are assumed. The support$f(q, ») is shown in Fig.
5. We see thaS?(q,w) diverges at the low-energy threshold 8§(q,w)*[w—e&(q— 7+ 7M)] 1*92, Since the two
thresholdsw=¢(q— 7= 7M) intersect atq=m, we expect to have a peak g&= 7 and w=¢(7wM)=H. The exponent
approaches-1/2 asM—0,1, and the singularity is even stronger focM <1, whereg<<1. Note that the exponent jumps
from —1 to — 1/2 whenH crossed;; from below. In the strong-coupling limit of the ladder, the square-root divergence may
be understood in the following way. The correlation funct(@j,'isfm) is a propagator of thg o bosons. If we ignored the
interaction with thet; , bosons, we would get the massive free-particle propagltgimr/v). Due to the interaction the
motion of thet; ; boson is necessarily accompanied by a superfluid flow ofjthebosons. Its main effect in the low-density
limit amounts both to multiplying the free propagator by that of the hard-gorebosonsx (x?+v272) ~¥*and to shifting the
momentum byrM. The Fourier transform of the product has the square-root divergence at the threshold.

Finally we consideiS; *(q,). This can be obtained from Eq&87) and(38b) as described in Appendix. The result is

&% (q0)= Ao (E_O)ZWOJde(w—s(q—ki7TM)—5|k|)[w—s(q—kIwM)—Ek]”O

4wy 12\ 20 e(q—kT mM)[w—s(q—kTF 7M)+ok]* 70
3 1
x| 58(a—kT M)~ Sv(g—kF 7M)=m|+(q——q), (43)

where 7o=[(1/Y/g) — Vg 1?/4. Near the lower edge<Ow—£(qF 7M)<m, it may be approximated by
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27]0

e Bay o _
S Q01O e(a M) (M= —M). (44)

w—e(gq—7mM)

U/a.o

In general the exponenty=0 and approaches 0 &—0,1. The support 08; ~(q,w) is shown in Fig. 6. LikeS?{(q, w),

Ss ~(g,) has a peak atq,»)=(0,H), where the two thresholds=e&(q=+ 7M) cross. The structure fact®; *(q,w) is
approximately equal t&; ~(q,w)/5 near the low-energy threshold=s(q+ 7wM) andg~ = 7M. ThatS; *(qg,w) is much
smaller tharS; ~(q, ) is consistent with the result in the strong-coupling limit wheretthgosons are absent in the ground
state[see Eqgs(2c) and (2¢)].

IV. DISCUSSION operatord; is such an operatod;=(c; ;d; | —¢;,d; ;)/+/2.

. et
We shall discuss implications of the results we obtaineg>€cond. the operator correspondingS~t;,t;,, should
be a number operator of hole pairs. It is given Ky=1

for the Heisenberg ladder to the-resonance mode in the 1 n : _

SQ(5) symmetric ladder model. As pointed out in Ref. 17, ~ (1/2)24(¢ ,Ci o+ di ;di ;). Finally, from the relation

there is an analogy between the quantum phase transition

driven by the chemical potential in the 88 symmetric lad-

der model and the field-induced phase transition in the(S'.—S'y)|Q)=(cl,c; —dl di )|Q)=—2c dI,|0),
Heisenberg ladder. Obviously, the chemical potential plays

the role of the magnetic field. The analogy is most clearly

seen in the strong-coupling limif.At half filling the ground  we find thatS .— S 4 creates a triplet magnon from a rung
state of theE, phase or the Mott insulating phase discussedsinglet. Thus we conclude that the spin oper&q—S 4 is

in Ref. 17 is a state in which all the rungs are in the spinan analog ofs% ;.

singlet state. When the chemical potential is zero, there are \When the chemical potential is increased beyond the
fivefold degenerate low-lying massive modes above theharge gap which equals the spin gap in thd®®ymmet-
ground state. The five modes consist 31 magnon trip-  ric model, the ladder is doped with the charge cartierles

let, a hole pair state where two holes are placed on a singlgnd becomes superconducting with thevave-like symme-
rung, and a state where two additional electrons are put on@y. For spatial dimension greater than or equal to two, the
rung. When the chemical potential is turned on, the energy ofuperconducting order is long-ranged in the ground state, and
the hole-pair(electron-pair excitation decrease@ncreases this gives rise to a-function peak or ther resonance in the
while the magnon triplet is not directly affected by the dynamic spin structure factor. In one dimension, however,
chemical potential. Thus, we see that the hole pair correthe order is quasi-long-ranged, and therefore the peak is ex-
sponds to th&s’=1 magnon or the; ;. boson in the Heisen- pected to be replaced by a power-law singulatfts® The
berg ladder. The triplet magnon in the &P model is an  threshold energy aj= is also shown to be equal to the
analog of theS*=0 magnon {; o boson in the Heisenberg chemical potential’ These features are readily reproduced
ladder. Furthermore, the low-energy effective Hamiltonianfrom our results for the Heisenberg ladder model.

for the hole-pair excitations in the strong-coupling limit is  From the approximate mapping we discussed above, the
similar to the effective Hamiltonian for thtg . bosons. That d-wave pair correlation function is expected to show the

is, hole pairs may be viewed as hard-core bosons which repglasi-long-range order corresponding to ¥\ order in the
each other when two hole pairs sit on neighboring ruigs.  Heisenberg ladder, Eq7b):
Let us find operators playing the role of the spin operators in

the Heisenberg ladder. First, the operator corresponding to

S.; should change a singlet runLﬂ>=(1/\/5)(ciJr’TdiT’l 1
—ciT’ldiT’T)|0> into a hole pair 0f0). Herec . andd; , are (AfAyor ———, (45)
creation operators of an electron with spiron theith rung Ji—j M

of upper(c) and lower(d) chains. Obviously the-wave pair

“)

'
Vv

K — Yy
0 n(1-2M) = n(1+2M) g

— } - -
0 n(1-2M) =& n(1+2M) ¢

NS

FIG. 4. Support of5_"(q,®). The shaded regions show where
FIG. 3. Support ofS; " (q,®). The shaded regions show where S_*(q,w) is nonzero. The strongest divergence isaat = (q

S, (g,0) is nonzero. The strongest divergence iscat *v(0  — ). The next strongest singularity is at= ¥ o[ q— m(1+2M)].
— ). The next strongest singularity is at=*v[q— m(1=2M)]. Note the difference from Fig. 3.
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OF |

H
m

P —

T

i
n(1-M) = =(1+M) 4 -tM 0 =M q

FIG. 6. Support ofS; ~(g,w) andS; *(g,®). The shaded re-
gions show wheré&; ™ (q,) are nonzero.

FIG. 5. Support ofS?A(q, ). The shaded regions show where
S, w) is nonzero.

weight of a gapped excitation generated by injecting a mas-
sive particle to a superfluid in the low-density limit.

Although our argument above is based on the analogy and
approximate mapping, our results should be valid as long as
the weak-coupling and strong-coupling limits are in the same
phase. We notice that E§47) is the same as the “mean-

where the exponeny is presumably smaller than 2 and ap-
proaches 2 in the limit where the hole densitgoes to zero.
The correlator has no<{1)"'"! factor because the hole-pair
mode has a minimum energy g&=0. The charge density
correlation is related t0S;;Sp;), Eq. (748, and is also quasi-

long ranged: field” result given in Sec. VIl of Ref. 20. The validity of this
orsli—i akeli—i result is, however, questioned by Lét al. as it misses the
(NiN,)— 8%« cog2md|i —j|) _ cod4keli—j) (46)  existence of the bound states such as the Cooper pair-

li—j|7 li—j|” magnon bound states found in the @D Gross-Neveu
model. On the other hand, we did not find such a bound state

in our weak-coupling calculation. It is not clear at the mo-

where we have used the relation between the hole densityent whether this is due to the approximation we made, for
and the Fermi wave number(1— 6) =2k . The resultthat  example, concerning the interaction term 4, . It was
the correlations of thed-wave superconductivity andké  ghown by Damle and Sachd®vhat this term can indeed
charge density wave show power-law decay with the expOread 1o a bound state of two magnons whér 0. The fate
nents whose product is 1 was also obtained by Nagaosa for & the pound state in the gapless phase is an open question.
generic two-chain modéP Finally the spin correlation of the Finally we conclude this paper by summarizing our re-
SQO) ladder is expected to be sults on the spin correlations in the gapless phase of the
o o o o two-leg Heisenberg ladder. We have obtained the dynamical
(S S (S~ Sa)) spin-spin correlation functions and the structure factors, ex-
Ko(li—jl/&) tending the bosonization theory of Sheltenal. to the gap-
LALLM T (47)  less regime. The correlation functions are classified into two
Ji—j|" categories: algebraically decaying onésj(x,7)S5(0,0))
where¢ is the correlation length determined by the spin gap."’mzd <SW(XZ’ 7)S,(0,0)), and expoinentlally decaying ones,
The spin structure factor is then (S5(x,7)S7(0,0)) and (Sy(x,7)S5(0,0)). We have also
found that the termsccos(271Mx) (I: intege) are quasi-

long-ranged, while the termscog(2l+1)wMx] are short-
S(q,w)oc[w—E(q—Triq-ra)]‘“;?/“, (48 ranged. The exponents of the correlation functions are con-
trolled by the single parametey, which is smaller(largen
than 1 forJ, >0 (J, <0). The parametey approaches 1 in
wheres(q) is the magnon dispersion @=0. From Fig. 5 the limitsM —0,1. The structure factors have power-law sin-
we see that the threshold energycgt 7 is determined by gularities at the lower edges, and the strongest divergence is

the chemical potential, as expected. Although the expopent atw= *v(q—) in S, " (q,») due to the dominarXY spin
depends on the detail of the model, we can generally coneorrelation. The next strongest singularity is found at the
clude that it is 2 in the low-density limit of holess(-0),  lower edge ofS?A(q,): w={vq—m(1+M)]?+m?}¥2
where we may regard the hard-core bosons as free fermiofighe exponent is universally given by1/2 in the limitsM
(g=1). This universal exponent was independently found by—0,1.
lvanov and Le® and by Schul?* for thet-J ladder and was

also obtained by Koniket al. for the S8) Gross-Neveu
model®? We thus find that the spin structure factor has a
universal square-root divergence at the critical point. When We thank I. Affleck, L. Balents, E. Demler, M. P. A.
the superfluid density is finite, the interaction betweenFisher, W. Hanke, H. H. Lin, M. Oshikawa, and D. Scala-
bosons becomes important and modifies the exponent, as vpéno for useful discussions. A.F. is supported by the Mon-
saw in the Heisenberg ladder model. We expect that théusho overseas research grant. This work is supported by
square-root singularity is a universal feature for the spectraNSF under Grant Nos. DMR-9400372 and DMR-9522915.
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APPENDIX: INTEGRALS

In this appendix we list integral formulas we used to calculate the dynamical structure factors.
For the gapless modes, we need the following integral:

. . e*iquriwt 2 2 Iﬂ'(yJr y_)I2 2’5 1=y
dxf dt—— _ ~0 O(w+ a
Lo L o atrion) - 0T va)O(wtua)= T (y )T (y.) (w—vq>

1-vy_

2v
w+;q

(A1)

For the structure factd®-4q, ) we first take the Fourier transform of the correlation function in the imaginary time:
Qe ginary

- o0 ® (m\/X2+v27'2/U) ~ v I'(l—1y) 2+v2k2)7 1
z , = d 0 —igx+ior_— - dk
=(aiv) f—x Xf—oo (X2+v272)7 (2v)27t I'(y) f f " (o—v) +&2(q—k)
v TA-y) (= ( T +foc . 23ir(wy)(v2—52k2)7‘1)
20t T )\ e(q-k)i[o+ie(q—k) P+ Sk ” (w—iv)2+e2(q—k) |

(A2)
After the analytic continuation we take the imaginary part to find
2 O(w—e(q—k)—vlk
)21\ =" e(q-k){[w—e(q—k)]?—v2kZ1™Y

for >0. Whenv|q|<mu/v, e(q—k)+v|k|~&(q)+v|k|. In this case we may approximate the last integral as

O(w—e(q)) 0(w—z(q)—v|k|) B(yl 2) _
dk = = - 2yt A4
S =0 5(@) [o—e(a)] (A%)
whereB(a,b) is the beta function. From EgéA3) and (A4) we finally obtain
2 ~ 1-2vy
Y44 Nt — _ ) 7T L v
Iml24g,0+i0")=0(w e(q)’F(Zy) m;<w—s(q)) , (A5)

which is valid foro—e(q)<m.
We next consideB; " (q,®). According to Eq.(36), we need the following Fourier transform:

» ” 022 B _ ~ =
Ig_(q,i:o)z—ifiwdxji Ko(myx“+v /v) —igx+iowr_ IF(l Y) jiw J (v+ivk)Y(v—ivk)”

TR+ (x—To7) I(1+y) 2v)27 " (0= )2+ 8%(q—K)
-y v (= im[w+ivk+ie(q—k)]” (v+vk)"(v=ok)?" 1
S T(1+y) (25)27joo (s(q—k)[w—i5k+is(q—k)]1 ,—2sinmy) v\k\dv(w—lv)z-i—sz(q—k) (A6)

After the analytic continuation we obtain

2= O(o—e(q—k)—v|k])w—e(q—k) —vk]”
Imlg(qo+i0")=—a— (—FW )f gr2le=e@ k) —vlkloe(g 1_) okI” (A7)
y(20)27\ T'(y) e(q—K)[w—e(q—k)+vk]*"”
Using the same approximation as in E44), we obtain
_ . 7 v [0—s(q)|”
Iml g (q,w+IO+)=(w—s(q))r(1+27)m—;( = (A8)
for 0<w—=&(q)<m andv|q|<mv/v. In the same way we get
myx°+uv27/ ~
Imly " (q,+i0*)=Im lim f dxf Kol —_— 0) o-igtiar
T wtiot (X +v 72)7(X+|v7')
v ( ™ )7 3 2@—e@—k —vlk)lw—e(q—k +vk]” A9)
y(20)27\ T () e(q—K)[w—e(q—k) —ovk]*~7 ’

which reduces to EqA8) for 0<w—&(g)<m andv|q|<mo/v.
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