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Dynamical spin correlations in the Heisenberg ladder under a magnetic field
and correlation functions in the SO„5… ladder
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The zero-temperature dynamical spin-spin correlation functions are calculated for the spin-1
2 two-leg anti-

ferromagnetic Heisenberg ladder in a magnetic field above the lower critical fieldHc1. The dynamical structure
factors are calculated, which exhibit both massless modes and massive excitations. These modes appear in
different sectors characterized by the parity in the rung direction and by the momentum in the direction of the
chains. The structure factors have power-law singularities at the lower edges of their support. The results are
also applicable to the spin-1 Heisenberg chain. The implications are briefly discussed for the various correla-
tion functions and thep resonance in the SO~5! symmetric ladder model.@S0163-1829~99!14025-6#
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I. INTRODUCTION

Systems located in between one dimension and two
mensions, ladders, have attracted great attention both t
retically and experimentally.1 This line of research has bee
pursued both with the hope of finding some clues to
understanding of high-temperature superconductivity,
because of the experimental discoveries of new ladder c
pounds, such as a cuprate spin ladder2 SrCu2O3 and a super-
conducting ladder3 SrxCa142xCu24O41. Another spin ladder
system of current interest is the organic mater
Cu2(C5H12N2)2Cl4 whose spin-gap behavior was observ
by the measurements of the spin susceptibility, the magn
zation curve, and the NMR relaxation rate.4,5 The nonzero
magnetization is observed once the external magnetic fieH
exceeds the lower critical fieldHc1, which is equal to the
spin gap~in units where the product of the Bohr magnet
and theg factor is set to unity!. This is a quantum phas
transition driven by the external magnetic field from t
gapped spin liquid to the gapless Tomonaga-Luttinger liq
state. These experiments motivated further theoretical wo
on the various properties of the gapless regime: the ma
tization process,6,7 the spin-spin correlation functions,8,9 and
the spin-Peierls instability.10,11

In this paper we extend the theory of Sheltonet al.12 to
the two-leg Heisenberg ladder in the gapless regimeH
.Hc1) and calculate the dynamical spin-spin correlati
functions and structure factors in the ground state.13 We ob-
tain the dynamical structure factors containing massive s
excitations as well as massless excitations. The latter co
bution is characteristic of the Tomonaga-Luttinger liquid a
is commonly found in theS5 1

2 Heisenberg chain.14,15 This
component may be interpreted as coming from the Bose c
densate ofSz51 magnons.13 On the other hand, the massiv
excitations we are interested in haveSz50 magnons in their
origin. Below Hc1 the massive magnons give rise
d-function peaks in the dynamical structure factor. In t
gapless regime (H.Hc1) the d-function peaks of the mas
sive excitations turn into power-law singularities, becau
the massless excitations introduce algebraically deca
prefactors to the exponentially decaying correlation fu
PRB 600163-1829/99/60~2!/1175~13!/$15.00
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tions. An interesting feature of the antiferromagnetica
coupled Heisenberg ladder is that these massless and ma
modes appear in different sectors of the structure fact
characterized by the momentumqy in the direction of the
rungs (qy can take only 0 andp) and by the momentumq in
the direction of the chains.

Our study of the massive excitations in the gapless reg
is also motivated to better understand thep-resonance
mode16 in the SO~5! symmetric ladder model introduced re
cently by Scalapinoet al.17 In this model there is a quantum
phase transition driven by the chemical potential from
spin-gap Mott insulator to thed-wave-like superconducting
phase. It was shown in the strong-coupling limit that t
spin-gap magnon mode of the Mott insulator evolves c
tinuously into thep-resonance mode of the superconducti
phase.17 A complementary weak-coupling approach18–20was
taken to study a general two-leg ladder model of wea
interacting electrons. In particular, Linet al.20 showed that
the model is renormalized to a fixed point where a glo
SO~8! symmetry is realized that contains the SO~5!. They
also obtained the ground-state phase diagram and low-en
excitation spectra at half filling which are qualitatively
agreement with the strong-coupling picture of the SO~5!
symmetric ladder model. Yet the energy and the spec
weight of thep-resonance mode in the dynamical spin stru
ture factor are not completely understood even for the ide
constructed SO~5! symmetric ladder. An extensive numeric
exact-diagonalization study is performed to clarify this a
related issues,21 but clearly it is desirable to develop an an
lytic theory to discuss the power-law singularity which
expected to appear in the structure factor.17 The field-driven
quantum phase transition in the Heisenberg ladder we s
in this paper is analogous to the quantum phase transitio
the SO~5! symmetric ladder. ASz51 boson in the Heisen
berg ladder corresponds to a hole pair in the latter mo
and aSz50 boson to a magnon or thep-resonance mode
Therefore our Heisenberg spin ladder may be viewed as a
model for the SO~5! symmetric ladder. Using the analog
we can deduce the correlation functions for thed-wave su-
perconductivity, the charge density wave, and the spin c
relations in the SO~5! ladder from the spin-spin correlators o
the Heisenberg ladder.
1175 ©1999 The American Physical Society



c
in
he
or
d
r
e

s.

e

v

n

-

op-

ies

1176 PRB 60AKIRA FURUSAKI AND SHOU-CHENG ZHANG
This paper is organized as follows. In Sec. II we introdu
the model and analyze it in the limit of strong intercha
coupling, where it is easier to get intuitive pictures of t
physics. Detailed calculation of the dynamical spin-spin c
relation functions and the structure factors are presente
Sec. III. Here we take the opposite limit of the weak inte
chain coupling, and employ the bosonization method. In S
IV we briefly discuss implications to thep resonance in the
SO~5! symmetric ladder model and summarize the result

II. STRONG-COUPLING APPROACH

The Hamiltonian for the two-leg Heisenberg ladder w
study in this paper is

H5J (
m51,2

(
i 52`

`

Sm,i•Sm,i 111J' (
i 52`

`

S1,i•S2,i

2H (
m51,2

(
i 52`

`

Sm,i
z , ~1!

whereSm,i is spin-12 operator, and the intrachain couplingJ
is positive~antiferromagnetic!. The interchain couplingJ' is
also assumed to be positive, unless otherwise noted.

In this section we briefly discuss static correlations abo
the lower critical fieldHc1 in the strong-coupling limit,J'

@J. WhenJ/J'50, the ladder is decomposed into indepe
dent rungs, each rung consisting of two spinsS1,i and S2,i .
There are four eigenstates in each rung, the singletuSi&
e

-
in

-
c.

e

-

5(u↑↓&2u↓↑&)/A2, and the triplet statesuTi ,1&5u↑↑&, uTi ,0&
5(u↑↓&1u↓↑&)/A2, and uTi 2&5u↓↓&. Their energies are
E(Si)523J'/4, E(Ti ,1)5J'/42H, E(Ti ,0)5J'/4, and
E(Ti ,2)5J'/41H, respectively. It is then natural to intro
duce boson operatorssi

† , t i ,1
† , t i ,0

† , and t i ,2
† , which create

the singlet state and the triplet states at thei th rung.22,23,9

They obey the constraint,si
†si1t i ,1

† t i ,11t i ,0
† t i ,01t i ,2

† t i ,2

51. With these hard-core bosons we represent the spin
erators

S0,i
z [S1,i

z 1S2,i
z 5t i ,1

† t i ,12t i ,2
† t i ,2 , ~2a!

Sp,i
z [S1,i

z 2S2,i
z 5t i ,0

† si1si
†t i ,0 , ~2b!

S0,i
1 [S1,i

1 1S2,i
1 5A2~ t i ,1

† t i ,01t i ,0
† t i ,2!, ~2c!

Sp,i
1 [S1,i

1 2S2,i
1 5A2~2t i ,1

† si1si
†t i ,2!, ~2d!

S0,i
2 [S1,i

2 1S2,i
2 5A2~ t i ,2

† t i ,01t i ,0
† t i ,1!, ~2e!

Sp,i
2 [S1,i

2 2S2,i
2 5A2~ t i ,2

† si2si
†t i ,1!. ~2f!

The suffixes 0 andp refer to the momentumqy . Note that
S0,i

z andSp,i
6 do not contain thet i ,0 boson.

In the presence of a high magnetic fieldH*J' , we may
ignore thet i ,0 and t i ,2 bosons as they have higher energ
than thet i ,1 boson. In lowest order inJ the effective Hamil-
tonian thus becomes
Heff5
J

2 (
i

~ t i ,1
† sisi 11

† t i 11,11t i 11,1
† si 11si

†t i ,11t i ,1
† t i ,1t i 11,1

† t i 11,1!1~J'2H !(
i

t i ,1
† t i ,1 , ~3!

with the simplified constraintsi
†si1t i ,1

† t i ,151. As pointed out in Ref. 24, this effective Hamiltonian may be written as

Heff5J(
i

S S̃i
xS̃i 11

x 1S̃i
yS̃i 11

y 1
1

2
S̃i

zS̃i 11
z D1S J'1

J

2
2H D(

i
S̃i

z1const, ~4!
ult

-

n

whereS̃i is a spin-12 operator

S̃i
z5t i ,1

† t i ,12 1
2 , ~5a!

S̃i
15t i ,1

† si , ~5b!

S̃i
25si

†t i ,1 . ~5c!

We notice that Eq.~4! is just the Hamiltonian of the spin-1
2

XXZ chain with the external magnetic fieldH̃5J'1J/2
2H, whose properties are well understood. WhenuH̃u, 3

2 J,
the XXZ chain is not fully polarized.25 This means that the
ladder has unsaturated magnetization^S0,i

z &5^t i ,1
† t i ,1&

5M (0,M,1) when J'2J,H,J'12J. We have thus
obtained the lower and upper critical fieldsHc15J'2J and
Hc25J'12J in lowest order inJ/J' .26 The magnetization
curve forM!1 can also be obtained from the known res
for the XXZ chain:25

M5
1

2
1^S̃i

z&5A2~H2Hc1!

p2J
. ~6!

A similar result holds for 12M!1. The square-root behav
ior is a well-known universal behavior.27–30,8 When 0,M
,1 the ground state is a superfluid of thet i ,1 bosons. Within
our approximation the following equal-time spin correlatio
functions are readily obtained from those of theXXZ
chain:31

^S0,n11
z S0,1

z &5^~S̃n11
z 11/2!~S̃1

z11/2!&

5M22
c1

n2
1

c2

nh
cos~2pMn!, ~7a!
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^Sp,n11
x Sp,1

x &52^S̃n11
x S̃1

x&

5c3

~21!n

n1/h
2c4

~21!n

nh11/h
cos~2pMn!, ~7b!

wherec’s are numerical constants. ForM!1 the parameter
h is given by31

h522
4

3
M1O~M2!. ~8!

In generalh,2 for 0,M,1, andh→2 whenM→0,1.32

Thus, the leading term in̂S0,n11
z S0,1

z &, besides the constan
M2, is n2hcos(2pMn), which reflects the fact that the hard
core bosonst i ,1 have a tendency to form a density wa
with a period equal to 1/M . On the other hand, the correla
tion functions^Sp,i

z Sp, j
z & and ^S0,i

x S0,j
x & involve the massive

t i ,0 and t i ,2 bosons, and therefore decay exponentially
u i 2 j u@1. We conclude that the correlatorŝS0

zS0
z& and

^Sp
6Sp

7& show quasi-long-range order whilêSp
z Sp

z & and
^S0

6S0
7& are short ranged. These correlation functions

discussed in more detail in the next section.
Before closing this section, we make a few commen

First, Eqs.~7a! and ~7b! have the same form as the correl
tors^Sn11

z S1
z& and^Sn11

x S1
x& of theS51 Heisenberg chain in

a magnetic field larger than the Haldane gap.28,29,33An im-
portant difference is thath>2 in theS51 chain.33 We will
come back to this point in the next section. Second, from
knowledge of the exact propagator of hard-core bosons,34,35

we may expect that the correlation function^Sp,n11
x Sp,1

x &
r

e

.

e

should have terms proportional to cos(2plMn) with l
50,1,2, . . . . Third, as noted in the Introduction and to b
discussed in Sec. IV, thet i ,1 boson andt i ,0 boson corre-
spond to a pair of holes sitting on a rung and to a magno
the SO~5! symmetric ladder, respectively. Thus, we m
compare the hole-pair correlation and the spin correlat
functions with^Sp,i

x Sp, j
x & and ^Sp,i

z Sp, j
z & of our model.

III. WEAK-COUPLING APPROACH

In this section we calculate the dynamical spin-spin c
relation functions in the weak-coupling limit,J'!J. We use
the Abelian bosonization method which has been succ
fully applied to the Heisenberg ladder.36,37,12,8 In this ap-
proach we first bosonize two independent spin-1

2 Heisenberg
chains and then treat the interchain couplingJ' perturba-
tively. It is a relevant perturbation and is renormalized to
strong-coupling regime, generating a mass gap in the exc
tion spectrum. This behavior does not depend on the sig
J' , and therefore the model describes both the antiferrom
netic Heisenberg ladder forJ'.0 and theS51 Heisenberg
chain forJ',0.12 The spin gap in the latter case is nothin
but the Haldane gap.38 Since the gapless phase in a magne
field is a single phase for 0,J',`, we expect the correla
tion functions in the weak-coupling limit to have the sam
structure as in the strong-coupling limit.

We follow the formulation of Sheltonet al.,12 which we
explain below to establish the notation. We begin with t
bosonized Hamiltonian of the ladder in the continuum lim
It consists of three parts:H5H11H21H' , where
ic

en
H15E dxH v
2 F S df1

dx D 2

1S du1

dx D 2G2
m

pa0
cos~A4pf1!2

H

Ap

df1

dx J , ~9!

H25E dxH v
2 F S df2

dx D 2

1S du2

dx D 2G1
2m

pa0
cos~A4pu2!1

m

pa0
cos~A4pf2!J , ~10!

H'5
J'

2p2a0
E dx cos~A4pu2!@cos~A4pf1!2cos~A4pf2!#1

J'a0

4p E dxF S df1

dx D 2

2S df2

dx D 2G . ~11!

Herev is the spin-wave velocity,a0 is a lattice constant, andm5J'l2/2p with l being a numerical constant. The boson
fields f6 and u6 obey the commutation relations@f1(x),u1(y)#5@f2(x),u2(y)#5 iQ(y2x) and @f1(x),f2(y)#
5@f1(x),u2(y)#5@f2(x),u1(y)#5@u1(x),u2(y)#50, whereQ(x) is the step function. It is important to note thatH
appears inH1 only. Thus, the external magnetic field changes the dynamics of the fieldsf1 andu1 , while the other fields
f2 andu2 are not directly influenced by the uniform fieldH. The excitations involving these latter fields remain gapful ev
above the lower critical fieldHc1. The spin operators withqy50 andp, defined in Eqs.~2a!–~2f!, are written in terms of the
bosonic fields as

S0
z~x!5

a0

Ap

df1

dx
2~21!x/a0

2l

p
sin~Apf1!cos~Apf2!, ~12a!

Sp
z ~x!5

a0

Ap

df2

dx
2~21!x/a0

2l

p
cos~Apf1!sin~Apf2!, ~12b!

S0
1~x!5

2

p
eiApu1@~21!x/a0l cos~Apu2!1cos~Apu2!sin~Apf1!cos~Apf2!1 i sin~Apu2!cos~Apf1!sin~Apf2!#,

~12c!
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Sp
1~x!5

2

p
eiApu1@ i ~21!x/a0l sin~Apu2!1cos~Apu2!cos~Apf1!sin~Apf2!1 i sin~Apu2!sin~Apf1!cos~Apf2!#,

~12d!
be
em
s

s
e

e
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e
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where Sqy

a (x)5Sqy ,i
a for x5 ia0 (a5x,y,z). Equations

~12a!–~12d! directly follow from Eq. ~30! and Appendix A
of Ref. 12.

Sheltonet al. showed thatH1 andH2 can be greatly
simplified by fermionization. The HamiltonianH2 then be-
comes that of free massive Majorana fermionsj3(x) and
r(x) having the mass gapm and23m, respectively. This is
equivalent to the two-dimensional Ising model above or
low the critical temperature. This observation allowed th
to obtain the dynamical spin-spin correlation function39

from the known results of the Ising model.40 Physically the
j3 fermion describes theSz50 magnon excitation, wherea
the r corresponds to a singlet excitation with much high
energy.

On the other hand, thef1 and u1 fields represent the
Sz561 magnon excitations. As theSz51 bosons condens
aboveHc1, these bosonic fields have massless excitatio
We will first integrate out the massive Majorana fermio
and concentrate on the massless bosonic fields. To proc
here we introduce an approximation for dealing withH' .
This interaction Hamiltonian has three components. The
component involving only f2 and u2 , i.e.,
cos(A4pu2)cos(A4pf2) and (df2 /dx)2, has two major
effects on the dynamics ofH2 . One effect is to renormalize
the bare massm to mln(L/m), where L is a high-energy
cutoff, as noted by Sheltonet al.12 This can be absorbed b
redefining the mass. The other effect is a strong two-part
collision described by anS matrix having a superuniversa
form, as recently discussed by Damle and Sachdev.41 Since
we are only concerned with processes in which at most
Sz50 magnon is created, this strong scattering effect may
irrelevant for our discussion of the dynamical correlations
zero temperature. The second component is a coupling t
cos(A4pu2)cos(A4pf1). When integrating out theu2

field perturbatively, we find that the leading ter
^cos(A4pu2)&2cos(A4pf1)} ln(L/m)cos(A4pf1) gives
-

r

s.

ed,

st

le

e
e
t
m,

the renormalization of the mass of thef1 andu1 fields,m
→m ln(L/m), as expected from the SO~3! symmetry, where
the average is taken in the ground state ofH2 . This is again
taken care of by redefining the mass. The higher-order te
will generate, through gradient expansions, both irrelev
terms such as cos(A4p lf1) with l .1, which we can safely
ignore, and a marginal operator (]xf1)2, which should be
kept. The third component is the term (df1 /dx)2 already
present inH' and will be kept in the following calculation
Hence we reduceH' to the form

H''
J'a0

4p E dxS df1

dx D 2

, ~13!

where the coupling constantJ'a0 may be modified from its
bare value because of the emergence of the operator (]xf1)2

in the higher-order terms discussed above. We believe, h
ever, that the sign of the coupling constant is not changed
the renormalization.42 Having made this approximation, w
now integrate out thef2 andu2 fields to get the spin-spin
correlation functions. Within our approximation the field
f2 andu2 are independent off1 andu1 , and therefore the
correlation functions off2 and u2 are independent ofH.
We use Eq.~33! of Ref. 12 to represent cos(Apf2),
sin(Apf2), cos(Apu2), and sin(Apu2) in terms of the or-
der and disorder parameters of an Ising model. We then
Eqs.~38! and~39! of Ref. 12 to obtain their correlation func
tions. The correlation functions ^S0

6S0
7& involve

cos(Apf2)cos(Apu2) and sin(Apf2)sin(Apu2). They
are equivalent to free massive Majorana fermions,j3, whose
correlators are easily obtained. Finally, the correla
^]xf2(x)]xf2(0)& decays exponentially@}e22mr/v with r
5(x21v2t2)1/2# and is ignored. Hence, we arrive at the fo
lowing expression of the dynamical spin-spin correlati
functions:
^S0
z~x,t!S0

z~0,0!&5
a0

2

p
^]xf1~x,t!]xf1~0,0!&1 , ~14a!

^Sp
z ~x,t!Sp

z ~0,0!&5~21!x/a0S 2l

p D 2 A1
2

p
K0~mr/v !^cos@Apf1~x,t!#cos@Apf1~0,0!#&1 , ~14b!

^Sp
1~x,t!Sp

2~0,0!&5~21!x/a0S 2l

p D 2

A1
2^eiApu1(x,t)e2 iApu1(0,0)&1 , ~14c!
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^S0
1~x,t!S0

2~0,0!&52
a0

2p2v
^eiApu1(x,t)e2 iApf1(x,t)eiApf1(0,0)e2 iApu1(0,0)&1]1K0~mr/v !

2
a0

2p2v
^eiApu1(x,t)eiApf1(x,t)e2 iApf1(0,0)e2 iApu1(0,0)&1]2K0~mr/v !

1
a0m

2p2v
K0~mr/v !@^eiApu1(x,t)e2 iApf1(x,t)e2 iApf1(0,0)e2 iApu1(0,0)&1

1^eiApu1(x,t)eiApf1(x,t)eiApf1(0,0)e2 iApu1(0,0)&1#, ~14d!

where t is the imaginary time,A1 is a numerical constant,]65]t6 iv]x , and ^ &1 is the average with respect to th
HamiltonianH11H' . In Eqs. ~14a!–~14d! we have ignored the terms decaying much faster thane2mr/v. Therefore we
discarded the contribution from processes involving more than one massive magnon. These equations are valid foJ'.0.
WhenJ',0, on the other hand, the strongly renormalized interchain coupling combines the spinsS1,i andS2,i into a single
spin, and the ladder behaves as aS51 Heisenberg chain. As explained in Ref. 12, when taking average over the ma
Majorana fermionsj3 and r, we only need to exchange the order and disorder parameter of the Ising model. Usi
correlators off2 andu2 for J',0 in Ref. 12, we find

^S0
z~x,t!S0

z~0,0!&uJ',05^S0
z~x,t!S0

z~0,0!&uJ'.01^Sp
z ~x,t!Sp

z ~0,0!&uJ'.0 , ~15a!

^S0
1~x,t!S0

2~0,0!&uJ',05^S0
1~x,t!S0

2~0,0!&uJ'.01^Sp
1~x,t!Sp

2~0,0!&uJ'.0 , ~15b!

where the correlators in the right-hand side are those in Eqs.~14a!–~14d!. WhenJ',0, theqy5p correlators decay much
faster than theqy50 correlator and are thus negligible. Hence, the dynamical spin-spin correlation functions of theS51
Haldane chain are linear combinations of thoseqy50 andp correlators of the Heisenberg ladder (J'.0).

Now our task is to calculate the correlators off1 andu1 in the presence of the magnetic field. The HamiltonianH1 is
identical to the one used to study the commensurate-incommensurate transition in classical two-dimensional system43–46 In
fact some of the correlation functions in Eqs.~14a!–~14d! have been discussed in this context.43–46 In particular, the leading
term of the correlation function corresponding to^eiApf1(x,t)e2 iApf1(0,0)& is obtained by Schulz45 including its universal
exponent in the limitM→0. These results are used to calculate the spin-spin correlation functions by Chitra and Giam8

who unfortunately seem to have overlooked some terms including the leading term@} cos(2pMx)# in ^S0
z(x)S0

z(0)&. We think
therefore that it is still worthwhile to describe the calculation of the correlations off1 andu1 in Eqs.~14a!–~14d! in some
detail, despite the fact that the HamiltonianH1 has been analyzed in many literatures.

Following Ref. 12, we fermionizeH1 :

H15E dxF ivS cL
† d

dx
cL2cR

† d

dx
cRD2 im~cR

†cL2cL
†cR!2H~cL

†cL1cR
†cR!G

5E
2`

`

dk@vk~cR,k
† cR,k2cL,k

† cL,k!2 im~cR,k
† cL,k2cL,k

† cR,k!2H~cR,k
† cR,k1cL,k

† cL,k!#, ~16!
e
ve
f

where cL (cR) is the right-going~left-going! complex fer-
mion field, andcR(L)(x)5*(dk/A2p)eikxcR(L),k . The fer-
mion fields are related to the bosons by the standard r
tions:

cR~x!5
1

A2pa0

eiAp[f1(x)2u1(x)] ,

:cR
†~x!cR~x!ª

1

2Ap

d

dx
@f1~x!2u1~x!#, ~17a!

cL~x!5
1

A2pa0

e2 iAp[f1(x)1u1(x)] ,
la-
:cL

†~x!cL~x!ª
1

2Ap

d

dx
@f1~x!1u1~x!#. ~17b!

It is important to note that the normal ordering in the abo
equations is defined with respect to the ground state oH
50. The fermionized HamiltonianH1 is easily diagonal-
ized:

H15E
2`

`

dk@~Av2k21m22H !ak
†ak

2~Av2k21m21H !ãk
†ãk#, ~18!

where

S ak

ãk
D 5S cos~wk/2! 2 i sin~wk/2!

2 i sin~wk/2! cos~wk/2!
D S cR,k

cL,k
D , ~19!
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with tanwk5m/vk. The magnetic field plays a role of th
chemical potential to the fermions. We are concerned w
the case whereH is slightly above the lower critical field
Hc1(5m) such that 0,M!1. The ground state is obtaine
by filling the upper band (ak) up to the Fermi points
(uku,kF) and the lower band (ãk) completely; see Fig. 1
The Fermi wave numberkF is related to the magnetizatio
kF5pM /a0. This follows from

M

a0
5

1

ApL
E dx^]xf1&15

1

LE dx^:cR
†cR1cL

†cL :&1

5
1

2pE2`

`

dk^ak
†ak&1 , ~20!

where L is the length of the ladder and̂ak
†ak&15Q(kF

2uku). In calculating long-distance correlations, we c
safely ignore the lower band and keep only the low-ene
excitations around the Fermi points in the upper band. In
fermion representation the interaction termH' reads

H''
J'a0

4 E dx~c†c!2, ~21!

where c(x)5*(dk/A2p)eikxak and we have dropped th
contribution from the lower band. The total Hamiltonian f
the fermions in the upper band,Ha5H11H' , consists of
the kinetic energy, Eq.~18!, and the short-range scatterin
term, Eq.~21!. The coupling constant of the latter term
proportional toJ' in lowest order. Thus, the interaction

FIG. 1. Schematic picture of the upper and lower bands:E(k)
56Av2k21m22H. The negative-energy states are filled. T
long-distance behavior of the correlation functions are determi
by the low-energy excitations arounduku5kF , where the dispersion
is linearized.
h

y
e

repulsive for the antiferromagnetically coupled ladder, wh
it is attractive for theS51 chain.42 Obviously the scattering
term has only negligible effects in both limitsM→0 and
M→1, where we will get the correlation functions of fre
fermions.32

The low-energy physics ofHa can be easily solved by th
Abelian bosonization.47,48 We first linearize the dispersion
aroundk56kF ~Fig. 1!. We then bosonize the fermions i
the upper band:

c~x!'
1

A2pa0

~eipMx/a01 iAp[f(x)2u(x)]

1e2 ipMx/a02 iAp[f(x)1u(x)] !, ~22!

where the bosonic fieldsf(x) and u(x) obey @f(x),u(y)#
5 iQ(y2x). Using these fields, we write the Hamiltonia
Ha as

Ha5
ṽ
2E dxF1

g S df

dx D 2

1gS du

dxD
2G , ~23!

where ṽ is the Fermi velocity, andg is a parameter deter
mined by the interactiong,1 (g.1) whenJ'.0 (J',0),
andg→1 asM→0,1. Incidentally,g is related to the com-
pactification radiusR of the field f by g51/(4pR2). We
now need to expressf1 andu1 in terms off andu. Once
this is done, it is straightforward to calculate the correlati
functions sinceHa is a free-boson Hamiltonian. First w
note that for states near the Fermi surface we have

cR,k
† cR,p1cL,k

† cL,p'ak
†ap1ãk

†ãp , ~24!

where we used the approximationwk'wp'wkF
. Using Eqs.

~22! and ~24! and discarding theãk fermions, we find

d

FIG. 2. Support ofS0
zz(q,v). The shaded region shows whe

S0
zz(q,v) is nonzero.
1

Ap

df1

dx
5:cR

†~x!cR~x!1cL
†~x!cL~x!:'c†~x!c~x!5

M

a0
1

1

Ap

df

dx
1

1

pa0
cos@2pMx1A4pf~x!#. ~25!

It follows that

1

p
^]xf1~x,t!]xf1~0,0!&15

M2

a0
2

1
1

p
^]xf~x,t!]xf~0,0!&a1

1

~pa0!2
cos~2pMx!^cos@A4pf~x,t!#cos@A4pf~0,0!#&a ,

~26!
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where^ &a represents the average taken in the ground state ofHa . The averages are found to be

^]xf~x,t!]xf~0,0!&a52
g

4p S 1

~x1 i ṽt!2
1

1

~x2 i ṽt!2D , ~27!

^cos@A4pf~x,t!#cos@A4pf~0,0!#&a5
1

2 S ã0
2

x21 ṽ2t2D g

, ~28!

whereã0 is a short-distance cutoff of ordera0. Integration of Eq.~25! then yields

f1~x,t!5
ApMx

a0
1f~x,t!. ~29!

We have neglected the contribution from the oscillating term. We thus get

^cos@Apf1~x,t!#cos@Apf1~0,0!#&15cos~pMx/a0!^cos@Apf~x,t!#cos@Apf~0,0!#&a5
1

2
cos~pMx/a0!S ã0

2

x21 ṽ2t2D g/4

.

~30!

We next considere2 iApu1(x). From Eqs.~17a! and ~17b! we can express it as

e2 iApu1(x)5Apa0

2
@eip/4e2 iApf1(x)cR~x!1e2 ip/4eiApf1(x)cL~x!#. ~31!

Using the same approximation as in the derivation of Eqs.~24! and~25!, we getcR(x)'c(x)/A2 andcL(x)' ic(x)/A2. Here
we have made a further approximationwkF

'p/2 which is valid for 0,M!1. From Eqs.~22!, ~29!, and~31! we find

e2 iApu1(x)5H 1

A2
1sin@2pMx/a01A4pf~x!1~p/4!#J e2 iApu(x)1 ip/4. ~32!

From Eq.~32! we may write the correlation functions in Eqs.~14c! and ~14d! as

^eiApu1(x,t)e2 iApu1(0,0)&15
1

2
^eiApu(x,t)e2 iApu(0,0)&a1

1

4 (
e561

e2p i eMx/a0^eiApu(x,t)ei eA4pf(x,t)e2 i eA4pf(0,0)e2 iApu(0,0)&a ,

^eiApu1(x,t)e2 iApf1(x,t)eiApf1(0,0)e2 iApu1(0,0)&15
e2 ipMx/a0

2
^eiApu(x,t)e2 iApf(x,t)eiApf(0,0)e2 iApu(0,0)&a

1
eipMx/a0

4
^eiApu(x,t)eiApf(x,t)e2 iApf(0,0)e2 iApu(0,0)&a

1
e23p iMx/a0

4
^eiApu(x,t)e2 iA9pf(x,t)eiA9pf(0,0)e2 iApu(0,0)&a ,

and

(
e561

^eiApu1(x,t)ei eApf1(x,t)ei eApf1(0,0)e2 iApu1(0,0)&15
1

2 (
e561

ei epMx/a0^eiApu(x,t)ei eApf(x,t)e2 i eApf(0,0)e2 iApu(0,0)&a .

The averages in the above equations are given by

^eiApu(x,t)einApf(x,t)e2 inApf(0,0)e2 iApu(0,0)&a5e2 ipn/2S ã0

x1 i ṽt
D (1/Ag2nAg)2/4S ã0

x2 i ṽt
D (1/Ag1nAg)2/4

. ~33!

Combining these results together, we finally obtain the dynamical spin-spin correlation functions:

^S0
z~x,t!S0

z~0,0!&5M22
g

4p2 F 1

~x1 i ṽt!2
1

1

~x2 i ṽt!2G1C1cos~2pMx!S ã0
2

x21 ṽ2t2D g

, ~34!
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^Sp
z ~x,t!Sp

z ~0,0!&5C2~21!xcos~pMx!K0~mr/v !S ã0
2

x21 ṽ2t2D g/4

, ~35!

^Sp
1~x,t!Sp

2~0,0!&5~21!xH C3S ã0
2

x21 ṽ2t2D 1/4g

2C4S ã0
2

x21 ṽ2t2D (1/2Ag2Ag)2F ã0
2e2p iMx

~x1 i ṽt!2
1

ã0
2e22p iMx

~x2 i ṽt!2 G J , ~36!

^S0
6~x,t!S0

7~0,0!&5
i

8p2v
S ã0

2

x21 ṽ2t2D (1/Ag2Ag)2/4F S 2ã0e6 ipMx

x2 i ṽt
2

ã0e7 ipMx

x1 i ṽt
D ]2K0~mr/v !1~x→2x!G

6
im

4p2v
K0~mr/v !S ã0

2

x21 ṽ2t2D (1/Ag2Ag)2/4S ã0e7 ipMx

x1 i ṽt
2

ã0e6 ipMx

x2 i ṽt
D , ~37!

whereC’s are positive numerical constants, and we have seta051. The correlation function̂Sp
2(x,t)Sp

1(0,0)& is obtained by
replacingM with 2M in Eq. ~36!. In Eq. ~37! we have discarded the term proportional toe63p iMx decaying much faster tha
the kept terms. We should therefore regard Eqs.~34!–~37! as listing only the leading terms. As noted in Sec. II, we may exp
that ^Sp

6(x,t)Sp
7(0,0)& should contain algebraically decaying terms that are proportional to cos(2plMx) with any integerl.

From Ref. 46, we expect that the correlator^S0
z(x)S0

z(0)& should also have terms proportional to cos(2plMx) which decay as

x22l 2g. The appearance of the term proportional toe23p iMx suggests that̂S0
6(x,t)S0

7(0,0)& should have terms proportiona
to K0(mr/v)cos@p(2l11)Mx#. We note that the equal-time correlations^S0

z(x,0)S0
z(0,0)& and ^Sp

6(x,0)Sp
7(0,0)& agree with

Eqs.~7a! and ~7b! if we identify h with 2g. As is well known, the strongest correlation is^Sp
6(x,0)Sp

7(0,0)&;(21)xx21/h.
Note also that the value of the exponent is consistent between the weak- and strong-coupling approach:g,1 (g.1) for J'

.0 (J',0) and g→1 as M→0,1. Another interesting finding is that the exponentially decaying equal-time correl
functions have different phases byp/2: ^Sp

z (x,0)Sp
z (0,0)&}cos(pMx) and ^S0

1(x,0)S0
2(0,0)&}sin(pMx).

Now we are in a position to calculate the dynamical spin structure factors defined by

Sqy

ab~q,v!5
1

2pE2`

`

dxE
2`

`

dt^Sqy

a ~x,t5 i t 101!Sqy

b ~0,0!&e2 iqx1 ivt, ~38a!

wheret is a real time and the correlation functions in the real time are obtained by replacingt→ i t 101. We may also calculate
it from

Sqy

ab~q,v!5
1

p
Im lim

i ṽ→v1 i01

E
2`

`

dxE
2`

`

dt^Sqy

a ~x,t!Sqy

b ~0,0!&e2 iqx1 i ṽt ~38b!

for v.0. From the obvious relationSqy

ab(q,v)5Sqy

ab(2q,v)5Sqy

ab(q12p,v), we assume 0<q<p in the following discus-

sion. We first consider the correlation functions showing the quasi-long-range order. Using Eq.~A1! in Appendix, we get from
Eqs.~34! and ~36!

S0
zz~q,v!52pM2d~q!d~v!1

gv

2p ṽ
Q~v!d~v2 ṽq!

1
pC1ã0

2

2ṽ@G~g!#2
Q„v2 ṽ~q22pM !…Q„v1 ṽ~q22pM !…S 4ṽ2/ã0

2

v22 ṽ2~q22pM !2D 12g

, ~39!
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Sp
12~q,v!5

pC3ã0
2

ṽ@G~1/4g!#2
Q„v1 ṽ~q2p!…Q„v2 ṽ~q2p!…S 4ṽ2/ã0

2

v22 ṽ2~q2p!
D 121/4g

1
pC4ã0

2

ṽG~h1!G~h2!
FQ„v2 ṽ@q2p~122M !#…Q„v1 ṽ@q2p~122M !#…

3S v2 ṽ@q2p~122M !#

2ṽ/ã0
D h121S 2ṽ/ã0

v1 ṽ@q2p~122M !#
D 12h2

1Q„v2 ṽ@q2p~112M !#…Q„v1 ṽ@q1p~112M !#…

3S v1 ṽ@q2p~112M !#

2ṽ/ã0
D h121S 2ṽ/ã0

v2 ṽ@q2p~112M !#
D 12h2G , ~40!

whereh65@(1/2Ag)6Ag #2. The structure factorSp
21(q,v) can be obtained fromSp

12(q,v) by M→2M . Being obtained
from the long-distance asymptotic expansions~34! and ~36!, each term in Eqs.~39! and ~40! describe the behavior of th
structure factors correctly only near its low-energy threshold. For example, the last term (}C1) in Eq. ~39! is valid only for
v!p ṽM (uq22pM u!pM ) and cannot be extended touqu&pM . The supports of these structure factors are shown in F
2–4. They are essentially the same as those of theS5 1

2 XXZ chain14 except that the smallM in the ladder corresponds to th
nearly polarized state in theS5 1

2 chain through the relationM5 1
2 1^S̃z&. The strongest divergence is atq5p of Sp

67(q,v):

Sp
67(q,v)}@v2 ṽ(q2p)#2111/4g. The exponent approaches23/4 asM→0,1. We note that the boundaries of the suppo

of these structure factors became all straight lines because of our linearization of the dispersion relation in the continu
This is an artifact of the approximation, and the true boundary lines should be given by some nonlinear functions. Furth
some of the boundary lines may be parts of a single curve.

We next consider the massive components. Using Eqs.~35!, ~38b!, and~A3!, we get

Sp
zz~q,v!5S ã0

2ṽ
D g/2

pvṽC2

@G~g/4!#2E2`

`

dk
Q„v2«~q2k2p1pM !2 ṽuku…

«~q2k2p1pM !$@v2«~q2k2p1pM !#22 ṽ2k2%12g/4
1~M→2M !, ~41!

where «(q)5Av2q21m2. The minimum energy above whichSp
zz(q,v).0 is v5«„q2p(12M )… aroundq5p(12M ).

Near this threshold energy the structure factor reduces to

Sp
zz~q,v!5

pã0vC2

2mṽG~g/2!
Q„v2«~q2p1pM !…S ṽ/ã0

v2«~q2p1pM !
D 12g/2

1~M→2M !, ~42!

wherevuq2p(17M )u!mṽ/v anduv2«„q2p(17M )…u!m( ṽ/v)2 are assumed. The support ofSp
zz(q,v) is shown in Fig.

5. We see thatSp
zz(q,v) diverges at the low-energy threshold asSp

zz(q,v)}@v2«(q2p1pM )#211g/2. Since the two
thresholdsv5«(q2p6pM ) intersect atq5p, we expect to have a peak atq5p and v5«(pM )5H. The exponent
approaches21/2 asM→0,1, and the singularity is even stronger for 0,M,1, whereg,1. Note that the exponent jump
from 21 to 21/2 whenH crossesHc1 from below. In the strong-coupling limit of the ladder, the square-root divergence
be understood in the following way. The correlation function^Sp,i

z Sp, j
z & is a propagator of thet i ,0 bosons. If we ignored the

interaction with thet i ,1 bosons, we would get the massive free-particle propagator,K0(mr/v). Due to the interaction the
motion of thet i ,0 boson is necessarily accompanied by a superfluid flow of thet i ,1 bosons. Its main effect in the low-densit
limit amounts both to multiplying the free propagator by that of the hard-coret i ,1 bosons}(x21 ṽ2t2)21/4 and to shifting the
momentum bypM . The Fourier transform of the product has the square-root divergence at the threshold.

Finally we considerS0
67(q,v). This can be obtained from Eqs.~37! and ~38b! as described in Appendix. The result is

S0
67~q,v!5

ã0

4ph0@G~h0!#2 S ã0

2ṽ
D 2h0E

2`

`

dk
Q„v2«~q2k7pM !2 ṽuku…@v2«~q2k7pM !2 ṽk#h0

«~q2k7pM !@v2«~q2k7pM !1 ṽk#12h0

3F3

2
«~q2k7pM !2

1

2
v~q2k7pM !6mG1~q→2q!, ~43!

whereh05@(1/Ag)2Ag #2/4. Near the lower edge 0,v2«(q7pM )!m, it may be approximated by
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S0
12~q,v!5

5ã0

8p ṽG~2h011!
Q„v2«~q2pM !…S v2«~q2pM !

ṽ/ã0
D 2h0

1~M→2M !. ~44!

In general the exponent 2h0>0 and approaches 0 asM→0,1. The support ofS0
12(q,v) is shown in Fig. 6. LikeSp

zz(q,v),
S0

12(q,v) has a peak at (q,v)5(0,H), where the two thresholdsv5«(q6pM ) cross. The structure factorS0
21(q,v) is

approximately equal toS0
12(q,v)/5 near the low-energy threshold,v*«(q7pM ) andq'6pM . ThatS0

21(q,v) is much
smaller thanS0

12(q,v) is consistent with the result in the strong-coupling limit where thet i ,0 bosons are absent in the groun
state@see Eqs.~2c! and ~2e!#.
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IV. DISCUSSION

We shall discuss implications of the results we obtain
for the Heisenberg ladder to thep-resonance mode in th
SO~5! symmetric ladder model. As pointed out in Ref. 1
there is an analogy between the quantum phase trans
driven by the chemical potential in the SO~5! symmetric lad-
der model and the field-induced phase transition in
Heisenberg ladder. Obviously, the chemical potential pl
the role of the magnetic field. The analogy is most clea
seen in the strong-coupling limit.17 At half filling the ground
state of theE0 phase or the Mott insulating phase discuss
in Ref. 17 is a state in which all the rungs are in the s
singlet state. When the chemical potential is zero, there
fivefold degenerate low-lying massive modes above
ground state. The five modes consist of aS51 magnon trip-
let, a hole pair state where two holes are placed on a si
rung, and a state where two additional electrons are put
rung. When the chemical potential is turned on, the energ
the hole-pair~electron-pair! excitation decreases~increases!
while the magnon triplet is not directly affected by th
chemical potential. Thus, we see that the hole pair co
sponds to theSz51 magnon or thet i ,1 boson in the Heisen
berg ladder. The triplet magnon in the SO~5! model is an
analog of theSz50 magnon (t i ,0 boson! in the Heisenberg
ladder. Furthermore, the low-energy effective Hamilton
for the hole-pair excitations in the strong-coupling limit
similar to the effective Hamiltonian for thet i ,1 bosons. That
is, hole pairs may be viewed as hard-core bosons which r
each other when two hole pairs sit on neighboring rungs.17,21

Let us find operators playing the role of the spin operator
the Heisenberg ladder. First, the operator correspondin
Sp,i

z should change a singlet runguV&5(1/A2)(ci ,↑
† di ,↓

†

2ci ,↓
† di ,↑

† )u0& into a hole pair oru0&. Hereci ,s
† anddi ,s

† are
creation operators of an electron with spins on thei th rung
of upper~c! and lower~d! chains. Obviously thed-wave pair

FIG. 3. Support ofSp
12(q,v). The shaded regions show whe

Sp
12(q,v) is nonzero. The strongest divergence is atv56 ṽ(q

2p). The next strongest singularity is atv56 ṽ@q2p(162M )#.
d

,
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operatorD i is such an operator:D i5(ci ,↑di ,↓2ci ,↓di ,↑)/A2.
Second, the operator corresponding toS0,i

z 't i ,1
† t i ,1 should

be a number operator of hole pairs. It is given byNi[1
2(1/2)(s(ci ,s

† ci ,s1di ,s
† di ,s). Finally, from the relation

~Si ,c
1 2Si ,d

1 !uV&[~ci ,↑
† ci ,↓2di ,↑

† di ,↓!uV&52A2ci ,↑
† di ,↑

† u0&,

we find thatSi ,c2Si ,d creates a triplet magnon from a run
singlet. Thus we conclude that the spin operatorSi ,c2Si ,d is
an analog ofSp,i

z .
When the chemical potential is increased beyond

charge gap which equals the spin gap in the SO~5! symmet-
ric model, the ladder is doped with the charge carrier~holes!
and becomes superconducting with thed-wave-like symme-
try. For spatial dimension greater than or equal to two,
superconducting order is long-ranged in the ground state,
this gives rise to ad-function peak or thep resonance in the
dynamic spin structure factor. In one dimension, howev
the order is quasi-long-ranged, and therefore the peak is
pected to be replaced by a power-law singularity.17,20 The
threshold energy atq5p is also shown to be equal to th
chemical potential.17 These features are readily reproduc
from our results for the Heisenberg ladder model.

From the approximate mapping we discussed above,
d-wave pair correlation function is expected to show t
quasi-long-range order corresponding to theXY order in the
Heisenberg ladder, Eq.~7b!:

^D i
†D j&}

1

u i 2 j u1/h̃
, ~45!

FIG. 4. Support ofSp
21(q,v). The shaded regions show whe

Sp
21(q,v) is nonzero. The strongest divergence is atv56 ṽ(q

2p). The next strongest singularity is atv57 ṽ@q2p(162M )#.
Note the difference from Fig. 3.
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where the exponenth̃ is presumably smaller than 2 and a
proaches 2 in the limit where the hole densityd goes to zero.
The correlator has no (21)i 2 j factor because the hole-pa
mode has a minimum energy atq50. The charge density
correlation is related tôS0,i

z S0,j
z &, Eq. ~7a!, and is also quasi-

long ranged:

^NiNj&2d2}
cos~2pdu i 2 j u!

u i 2 j u h̃
5

cos~4kFu i 2 j u!

u i 2 j u h̃
, ~46!

where we have used the relation between the hole den
and the Fermi wave number,p(12d)52kF . The result that
the correlations of thed-wave superconductivity and 4kF
charge density wave show power-law decay with the ex
nents whose product is 1 was also obtained by Nagaosa
generic two-chain model.49 Finally the spin correlation of the
SO~5! ladder is expected to be

^~Si ,c
a 2Si ,d

a !~Sj ,c
a 2Sj ,d

a !&

}~21! i 2 jcos~pdu i 2 j u!
K0~ u i 2 j u/j!

u i 2 j u h̃/4
, ~47!

wherej is the correlation length determined by the spin g
The spin structure factor is then

S~q,v!}@v2 «̃~q2p6pd!#211h̃/4, ~48!

where «̃(q) is the magnon dispersion atd50. From Fig. 5
we see that the threshold energy atq5p is determined by
the chemical potential, as expected. Although the exponeh̃
depends on the detail of the model, we can generally c
clude that it is 2 in the low-density limit of holes (d→0),
where we may regard the hard-core bosons as free ferm
(g51). This universal exponent was independently found
Ivanov and Lee50 and by Schulz51 for the t-J ladder and was
also obtained by Koniket al. for the SO~8! Gross-Neveu
model.52 We thus find that the spin structure factor has
universal square-root divergence at the critical point. Wh
the superfluid density is finite, the interaction betwe
bosons becomes important and modifies the exponent, a
saw in the Heisenberg ladder model. We expect that
square-root singularity is a universal feature for the spec

FIG. 5. Support ofSp
zz(q,v). The shaded regions show whe

Sp
zz(q,v) is nonzero.
ity
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weight of a gapped excitation generated by injecting a m
sive particle to a superfluid in the low-density limit.

Although our argument above is based on the analogy
approximate mapping, our results should be valid as long
the weak-coupling and strong-coupling limits are in the sa
phase. We notice that Eq.~47! is the same as the ‘‘mean
field’’ result given in Sec. VII of Ref. 20. The validity of this
result is, however, questioned by Linet al. as it misses the
existence of the bound states such as the Cooper p
magnon bound states found in the SO~8! Gross-Neveu
model. On the other hand, we did not find such a bound s
in our weak-coupling calculation. It is not clear at the m
ment whether this is due to the approximation we made,
example, concerning the interaction term inH' . It was
shown by Damle and Sachdev41 that this term can indeed
lead to a bound state of two magnons whenH50. The fate
of the bound state in the gapless phase is an open ques

Finally we conclude this paper by summarizing our r
sults on the spin correlations in the gapless phase of
two-leg Heisenberg ladder. We have obtained the dynam
spin-spin correlation functions and the structure factors,
tending the bosonization theory of Sheltonet al. to the gap-
less regime. The correlation functions are classified into t
categories: algebraically decaying ones,^S0

z(x,t)S0
z(0,0)&

and ^Sp
6(x,t)Sp

7(0,0)&, and exponentially decaying one
^Sp

z (x,t)Sp
z (0,0)& and ^S0

6(x,t)S0
7(0,0)&. We have also

found that the terms}cos(2plMx) (l: integer! are quasi-
long-ranged, while the terms}cos@(2l11)pMx# are short-
ranged. The exponents of the correlation functions are c
trolled by the single parameterg, which is smaller~larger!
than 1 forJ'.0 (J',0). The parameterg approaches 1 in
the limitsM→0,1. The structure factors have power-law s
gularities at the lower edges, and the strongest divergenc
at v56 ṽ(q2p) in Sp

67(q,v) due to the dominantXY spin
correlation. The next strongest singularity is found at t
lower edge ofSp

zz(q,v): v5$v2@q2p(16M )#21m2%1/2.
The exponent is universally given by21/2 in the limitsM
→0,1.
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APPENDIX: INTEGRALS

In this appendix we list integral formulas we used to calculate the dynamical structure factors.
For the gapless modes, we need the following integral:

E
2`

`

dxE
2`

`

dt
e2 iqx1 ivt

~x1 ṽt2 i01!g1~x2 ṽt1 i01!g2
5Q~v2 ṽq!Q~v1 ṽq!

2p2eip(g12g2)/2

ṽG~g1!G~g2!
S 2ṽ

v2 ṽq
D 12g1S 2ṽ

v1 ṽq
D 12g2

.

~A1!

For the structure factorSp
zz(q,v) we first take the Fourier transform of the correlation function in the imaginary time

I p
zz~q,i ṽ ![E

2`

`

dxE
2`

`

dt
K0~mAx21v2t2/v !

~x21 ṽ2t2!g
e2 iqx1 i ṽt5

v

~2ṽ !2g21

G~12g!

G~g!
E

2`

`

dkE
2`

`

dn
~n21 ṽ2k2!g21

~v2n!21«2~q2k!

5
v

~2ṽ !2g21

G~12g!

G~g!
E

2`

`

dkS p

«~q2k!$@ṽ1 i«~q2k!#21 ṽ2k2%12g
1E

ṽuku

`

dn
2sin~pg!~n22 ṽ2k2!g21

~ṽ2 in!21«2~q2k!
D .

~A2!

After the analytic continuation we take the imaginary part to find

ImI p
zz~q,v1 i01!5

v

~2ṽ !2g21 S p

G~g! D
2E

2`

`

dk
Q„v2«~q2k!2 ṽuku…

«~q2k!$@v2«~q2k!#22 ṽ2k2%12g
~A3!

for v.0. Whenvuqu!mṽ/v, «(q2k)1 ṽuku'«(q)1 ṽuku. In this case we may approximate the last integral as

Q„v2«~q!…

m E dk
Q„v2«~q!2 ṽuku…

$@v2«~q!#22 ṽ2k2%12g
5Q„v2«~q!…

B~g,1/2!

ṽm
@v2«~q!#2g21, ~A4!

whereB(a,b) is the beta function. From Eqs.~A3! and ~A4! we finally obtain

ImI p
zz~q,v1 i01!5Q„v2«~q!…

p2

G~2g!

v

mṽ
S ṽ

v2«~q!
D 122g

, ~A5!

which is valid forv2«(q)!m.
We next considerS0

67(q,v). According to Eq.~36!, we need the following Fourier transform:

I 0
12~q,i ṽ ![2 i E

2`

`

dxE
2`

`

dt
K0~mAx21v2t2/v !

~x21 ṽ2t2!g~x2 i ṽt!
e2 iqx1 i ṽt5 i

G~12g!

G~11g!

v

~2ṽ !2gE2`

`

dkE
2`

`

dn
~n1 i ṽk!g~n2 i ṽk!g21

~v2n!21«2~q2k!

5
G~12g!

G~11g!

v

~2ṽ !2gE2`

`

dkS ip@v1 i ṽk1 i«~q2k!#g

«~q2k!@v2 i ṽk1 i«~q2k!#12g
22sin~pg!E

ṽuku

`

dn
~n1 ṽk!g~n2 ṽk!g21

~v2 in!21«2~q2k!
D . ~A6!

After the analytic continuation we obtain

ImI 0
12~q,v1 i01!5

v

g~2ṽ !2g S p

G~g! D
2E

2`

`

dk
Q„v2«~q2k!2 ṽuku…@v2«~q2k!2 ṽk#g

«~q2k!@v2«~q2k!1 ṽk#12g
. ~A7!

Using the same approximation as in Eq.~A4!, we obtain

ImI 0
12~q,v1 i01!5Q„v2«~q!…

p2

G~112g!

v

mṽ
S v2«~q!

ṽ
D 2g

~A8!

for 0,v2«(q)!m andvuqu!mṽ/v. In the same way we get

ImI 0
21~q,v1 i01![Im lim

i ṽ→v1 i01

i E
2`

`

dxE
2`

`

dt
K0~mAx21v2t2/v !

~x21 ṽ2t2!g~x1 i ṽt!
e2 iqx1 i ṽt

5
v

g~2ṽ !2g S p

G~g! D
2E

2`

`

dk
Q„v2«~q2k!2 ṽuku…@v2«~q2k!1 ṽk#g

«~q2k!@v2«~q2k!2 ṽk#12g
, ~A9!

which reduces to Eq.~A8! for 0,v2«(q)!m andvuqu!mṽ/v.
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