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Magnetization processes and reorientation transition for small magnetic dots
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A theory for magnetization processes in interacting arrays of small magnetic structures at finite temperatures
is presented. Hysteresis and magnetic ordering of weakly coupled arrays of single-domain ferromagnetic
particles are examined. The dots are arranged on a planar lattice and the effects of lattice geometry are
examined via long-ranged dipolar coupling between magnetic dots. Small clusters of dots arranged in finite
arrays are shown to have complicated hysteresis determined by the shape, size, and orientation of the cluster in
externally applied fields. One result is an array induced “shape™ anisotropy that controls how reversal occurs
in the array itself. Finite temperature effects are examined and the strength of the dipolar coupling, though
weak, can be significant for closely packed particles at low temperatures. A reorientation transition from in
plane to perpendicular is shown to occur as the temperature is increased for dots with perpendicular anisotropy.
[S0163-182609)14635-9

[. INTRODUCTION behaviol® This has particular relevance to high-speed
switching propertiesand as will be shown here, thermally
The magnetic properties of single-domain fine particlesdriven magnetic reorientations.

have been extensively studied, particularly in reference to The paper is organized as follows. In Sec. II, the calcula-
applications for magnetic recordifigStudies of magnetiza- tion technique is described and results presented for array
tion processes and dynamics in artificially patterned strucsize determined hysteresis. In Sec. lIl, the effects of tempera-
tures has encouraged additional recent efforts and is cufure are discussed and a reorientation transition described. A
rently an area of intense interest. The reason is that emergiriymmary is given in Sec. IV.
technology can fabricate independent magnetic wire and dot

structures with physical extensions on the submlqrometer Il. ARRAY SIZE DETERMINED HYSTERESIS
and nanometer length scale, and so offers a new window on
the study of small-particle magnetist . The extreme preci- The basic calculation method is to numerically integrate

sion with which elements and arrays can be constructethe time-dependent Landau-Lifshitz equations of motion for
opens many fascinating possibilities for studying and conan array of interacting magnetic dots. This has an advantage
trolling unusual hysteresis processes as well as highever conventional micromagnetic modeling in that relaxation
frequency dynamic$. mechanisms involving precession can be easily taken into
The potential small size and high density of large momenticcount The same model can also be easily extended to
particle arrays mean that energies typically ignored in disinvestigate the dynamic properties of the array.
cussions of conventional fine-particle research can be signifi-
cant. For example, the dipolar field acting at the center of a
cube in a square array of perpendicularly magnetized 0.5
um-wide Fe cubes is approximately 900 Gfcifithe cubes The theory described below describes interaction and fi-
are centered on a am array. These fields are comparable tonite temperature effects for arrays of ferromagnetic dots. The
bulk cubic anisotropy fields and therefore have the potentiaflots interact weakly via dipolar stray fields, and low tem-
to strongly affect static magnetic order and magnetizatiorperatures are assumed. The dots are presumed to support
processes. Dipolar effects on static properties are often neingle domains in all cases considered, so for simplicity, the
glected in treatments of ensembles of small particles becauskots are assumed to be uniformly magnetized. This is a rea-
the fields rapidly become small as the spacing between dotonable assumption for the purposes of this paper because
is increased. This is particularly true in a two-dimensionalthe essential features of the magnetic ordering and dynamic
lattice. response are governed primarily by the net magnetic moment
Finite arrays of only a few magnetic dots can exhibit of each particle.
stronger dependencies on dipolar fields. This is because a The arrangement of dots is shown schematically in Fig. 1.
small array of dots can have a large circumference to areA dot's position is given by the positionin the array cor-
ratio, meaning that finite size effects from a truncatedy  responding to a position vector=xna+ymawherea s the
can have a large effect on static and dynamic propetties. lattice spacing and andm are integers. The time-dependent
surprising result is that even very weak coupling betweerequation of motion of a dot magnetic momentat position
magnetic dots can strongly influence nonlinear dynamid in the array is

Time integration scheme
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FIG. 1. Geometry of square array of magnetic dots. The dots are 2 0.0 1 ||
small cylinders centered on lattice points of a submicron size array. = hJJ
The position of each dot is measured relative to the dot center on an 05+ /
array of lattice size.
-1.0
dm; /dt= ym; X H;— am;Xm;xH;. () -20 -10 00 10 20
Here, vy is the gyromagnetic ratio, angl controls the rate of HM,
dissipation. This form of dissipation is chosen to conserve (b)
the magnitude of the dot moment aB|/V=M whereV is Ho=2 H,=08 H,=05

the dot volume. The fieldH; is an average effective field

acting at position: LT R A R 4 - /
H;=xH cosb,+yHq sin 6+ 2 (2K/M?)m,;]—d; . (2 ; ; ! ; :\v ! ; . >
Contributions toH; are a static applied fieldl; set an angle
0y to thex direction in the first two terms, and anisotropy _ H- 05 - 0s
and dipolar fields in the remaining terms. - o e
The shape and magnetocrystalline contributions to the o v ot v o«
anisotropies in the dots are described by a single uniaxial + 8 I S (R VY
anisotropyK with easy axis directed normal to the dot array
plane, as would be appropriate for cylindrical dots. A time- tdot vt o
.de.perlldc(jan(; dipole field, due to all the other dots in the array FIG. 2. Magnetization loops for @ square in-plane magne-
is included:

tized magnetic dot array are shown (g). The applied field is
aligned parallel to an array. The dipolar coupling strengtlhjs
m L ri-mi =0.5. Spin configurations at points along the loop are showh)in
=35 T (©)) ' .
r r: Reversal takes place first along the middle column of moments.

di=2

Unitless variables are chosen so that fields and energies are
given as ratios relative td (such askK/M?) and time is o _ . o
given by the variableyMt. The calculation is performed by Effects of applied field onentaan are shown |n'F|g. 2 for
solving the set of B2 coupled equations for a square dot @ 3x3 square array of dots magnetized in plar_le with an easy
array of dimensionN numerically using a second-order Plané anisotropy of-4m. The average magnetic moment of
Runge-Kutta method. In this technique, the time evolution ofthe dot array in the direction of a static applied field is shown
each dot in the array is calculated over a small time intervafor the applied field aligned parallel to an array edge. In Fig.
At. Typically, convergent solutions for static order can be3, the same calculation is repeated except that the applied
found with At on the order of 0.005 within 1000 time steps field is aligned along an array diagonal.

Field orientation and size effects

(in units of yMt) for small arrays(N around 4 the preces- In both_ cases a uniformly m_agnetized State foraha_y is _
sion term is dropped and only the relaxation term is kept ipunstable in the absence of a field. Below the saturation field,
Eq. (1). the dot moments rotate in order to minimize magnetostatic

As mentioned above, parameters for the calculations ar8N€rgies originating from uncompensated magnetic poles at
in units reduced by the magnetization of the dot matavial the array edges. Different spin arrangements are possible,
In these unitless variables, the dipolar term is then of thénd alignment of the magnetic field determines the configu-
form d/MeV/r3. Because of the sum over dipoles in Eq. ration the dots relax into as the _f|eld IS reduced. As shown in
(3), the dipole strength is determined by the physical strucFlgs. 2 and 3, the_tvvo different field alignments produce very
ture of the array and the strength is given by the ratio of doflifférent hysteresis loops.

volume to array cell volume. This ratio is denotedhgsand _The moment orientations in the lattice are sketched in
is given by Figs. 2b) and 3b). When the field is applied along an array
edge, magnetostatic energies are minimized near saturation
hy= mhR2/a’ (4) by slight rotations of the corner moments, as seen in Fig.

2(b) for Hy=2 M. The effect of the corner moment rotations
whereh andR are the height and radius of a dot cylinder, andcan be seen in Fig.(d as a very small reduction of the
a is the center to center distance between nearest neighbaverage array moment from complete saturation. When the
dots. Unless otherwise specified, the dipolar couplindfield is applied along a diagonal, as in FigagB the corner
strength ishy= 0.5 for the examples considered in this paper.moments align with the field whereas the moments at the
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FIG. 4. Energy a =0 for square arrays of in-plane magnetized
(b) dots saturated by a large applied field/(M,=6). The energy is
B.=08 B.=05 H=0 calculated for different orientations of the field rotated in the plane
A x> NS —_ > — of the array. Array shape effects appear in analogy to ferromagnetic
shape anisotropies with a symmetry reflecting the symmetry of the
ot L4 A - e - square lattice. The overall contribution of magnetostatic energy in-
A > N > > > — creases approximately as the ratio of circumference to area.
The geometry of the array creates an orientation depen-
H,==05 H.=-038 B=-l dence of the magnetostatic energy in the saturated state in
vy x ¥ "2 N y o« )Y analogy to ferromagnets. This is a shape anisotropy in the
v of oy Jor /v sense that the shape of the dot array determines the symme-
try properties of the magnetostatic energy in the array. A
¥ X ¥ y =~ ¥ ¥ « ¥ square lattice has fourfold symmetry, and this is reflected in

o _ the total energy of the dot array calculated as a function of
_ FIG. 3. M;_agnetlzatlon loops for 33 square m-plan_e magne- the angle of the applied field, .
tlz_ed magnetic dot array are shown (ia) Wlth th_e applled_ field The energy is shown in Fig. 4 where the free energy at
aligned along an array diagonal. Spin configurations at points alongero temperature is shown as a function of the size of the
the loop are shown ifo). lattice. The field is large enough to saturate the sample at

H/My=6. The fourfold symmetry of the lattice is evident

side centers rotate. This is depicted fdg=0.8M in Fig. and is retained as the size of the lattice is increased. The
3(b). A corresponding reduction from saturation is also seerflifference between easy and hard directions does not change
in Fig. 3@). The net effect of applied field orientation is to With increasingN, but the average energy does. The average
provide different initial conditions for the rotation of the ar- increases with increasing, but approaches a limiting value
ray moments as the field is reduced. roughly as 1IN, the ratio of circumference to area.

In both cases, several of the array moments occur by re-
versing first the moments of dots along a column of the
square array. The zero-field configurations are the same in-
dependent of the field orientation with alternating rows or The above results illustrate the great sensitivity of dot
columns of magnetization. This configuration is stable for aarray magnetization processes to array geometry for the sim-
range of field values with the field aligned parallel to anplest array geometry: a square lattice. Lattice geometry is
array. The configuration is not stable for the field alignedalso important in determining magnetization properties of
along a diagonal. dot arrays, with distortions from simple square lattices and

The sensitivity of the hysteresis loop to initial conditions other lattice symmetries leading to preferred directions of the
requires some care in performing the calculations. Perfeonagnetization and possible frustrations.
alignment along a high-symmetry direction can result in the Examples of array symmetry effects are given in Fig. 5. In
appearance of metastable states that disappear for very smélp. 5@), M(H) for a simple square array is contrasted with
misalignments of the applied field. For the reason, the resultan equal number of dots in a rhomboid array. The rhomboid
are shown with the field not directly along an array edge othas one side 50% longer than the other, and the field is
diagonal, but instead misaligned 0.1° away. aligned along a long side.N=3 for both examples. The

Even or oddN also has a strong effect on the shape of therhomboid structure displays a much lardéH product than
magnetization loops for smal. Examples are given in Ref. the square lattice by favoring parallel alignment of dot mag-
5, and not repeated here. Instead, it is noted that for dxhall netizations. The sharp drop of the magnetizatiorHgt=

Array lattice symmetry

there is a great distinction between eweand oddN mainly ~ —0.4 M is due to the reversal of a line of moments, reducing
because in zero field there is a significantly reduced remnarihe total moment to one third its full value.
average moment foN even. AsN is increased, the distinc- In Fig. 5b), the magnetizations of hexagonal arrays are

tion between even and odd becomes less pronounced, astiown. The dashed line is for a cell of seven dots and the
minor hysteresis loops are lost. solid line is for the same cell with the center dot removed
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reduces the size of the minor loops, as seen by comparison of

@ the 6- and 7-dot hysteresis loops.

1.0 e
|— square /ﬁ [ lll. FINITE TEMPERATURES

——— rthomboid ;
0.5 ¢ | A | The previous discussion has considered behavior at zero
;’"‘ T temperature. The dipolar coupling is weak compared to an-
! || | isotropy and Zeeman energies, and is strongly affected by
: | f i thermal fluctuations. An estimate of the temperature above
05 - Lol : ] which dipole-induced correlations disappear is twice the in-
/ ! teraction energy per dot. This energy is on the order of
10 Y L 2(N—1)(VM)?/Na® whereV is the volume of a dot. For
20 -10 00 10 20 0.5-um Fe cubes, this energy is on the order of iterg,
H/M, which corresponds to a temperature around 200 K. This tem-
perature increases rapidly with particle volume and total
(b) magnetic moment, so critical temperatures around room tem-
perature can be readily achieved.
1.0 : - Large thermal fluctuations destroy the hysteresis effects

0.0 ¢

M/M_

— Ggot :ex b described in Figs. 1 and 2. This can be shown by using a
———- 7 dot hex

| L mean-field theory together with the time integration tech-
nique. This is done by defining a thermally averaged effec-
tive field where all components oh appearing in the field
defined in Eqs(2) and(3) are replaced with their mean-field
averaged valuesEach dot is a large collection of strongly
ferromagnetically coupled spins, so all orientations of the
total magnetic moment of a dot are possible. The thermal
averaged magnetization for each dot at a positioan then

be represented by a Langevin function

© (m;)=gugnIL(nJIgugH;/keT)
e = e JgugH ke T
- - _ nJgugHi| B
/ ! X 2N\ 2 ~Guend COW( kT ) nJgﬂBHi}. ©
X b L4 X v i
N - o In Eqg. (5), the total angular momentum number per atord is
and the number of spins per dotnsso thatm;=gugnJ at
T=0. H; is the magnitude of the thermal averaged effective
H,=08 H.=0 H.=-038 field acting on the dot at positioin
i N ; 'Y - Because the effective field; is itself a function of the
! 3 f ¥ A ) I (m;), the time-dependent equations of motion must be
t ' X N . f v « - solved self-consistently over each interval of time. The

method to achieve self-consistency is to begin by assuming a
. ; homboid b h configuration for them;, such as saturation with zero-
FIG. 5. Array symmetry effects fofa) rhomboid andb) hex- 1o haratyre magnitudes at large fields, and then calculate the

agonal lattices. Ita), M(H) for anN =3 array of dots is shown for _ . ) . ;
a rhomboid geometry with the long side 50% longer than the Iengtr'lthermal averagem;) based on this configuration. New val

) ) . ues for them; are then found for a timét later, and new
of the short side. Irfb) M (H) is shown for seven dots in a hexago- . . . P .
nal pattern by a dashed line. The solid lineMgH) for the same (m;) calculated. The process is continued until equilibrium is

configuration without the center dot. Spin configurations at differentreached and then; and(m;) no longer change.

points along the loops are shown (i) for the hexagonal arrays. This scheme is still valid at finite temperatures as long as
Hysteresis is due to a reversal process that begins on one side of tRéliabatic assumptions apply. This means that the time step
array in the hexagonal lattices. must be supposed large compared to the thermal fluctuation

time. The moments then have sufficient time during each
. . time step to come into thermal equilibrium. This assumption
(for a total of six dots The role of the center dot is Impor- ;s enforced by setting=0 in Eq. (1), which implies that the

tant in determining the magnetization process of the arrayime evolution occurs over time steps sufficiently long that

Sketches of the moment configuration for the two hexagonahrecession effects die out via dissipation of kinetic energy to
arrays are shown in Fig.(8. A center dot affects the initial  the |attice. High-frequency transient effects require special
configuration near saturation by deforming the alignment of.onsideration and are discussed elsewfere.

moments in the hexagonal ring. As reversal develops, the Results for temperature effects on hysteresis are shown in
center dot continues to influence the orientation of the ringrig. 6. There are nine dots magnetized in the array plane and
moments. At zero field, the net moment of the array is enthe field is applied along an array diagonal as in Fign).2
hanced through the center dot moment. The center dot alsbhe reduced inverse temperaturegis 1/kgT. The effect of
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FIG. 6. Thermal effects on hysteresis for =3 square array
of in-plane magnetized dots with the field applied along an array ®)
diagonal. The reduced inverse temperaturg.iThermal fluctua- 0.05 ‘
tions cause the array “shape” anisotropy to decrease with increas- NS J
ing temperature. Interestingly, the minor loops disappear in favor of 0.04 - N=6 |
the central hysteresis loop with increasing temperature. For large R N=7 ‘ l
temperatures no hysteresis is visible. _ 0.03 + — N8 H 1‘
© o2 . |
increasing temperature is to decrease array “shape” anisot- ) I
ropy. For large temperatures no hysteresis is visible. 0.01 ¢ [
At intermediate temperatures, the minor loops disappear “‘ Y }
in favor of the central hysteresis loop. This is because the 0.00 S
hysteresis is controlled by nucleation of reversals at the array 1.0 1.5 2.0 2.5
edges and corners. The corner dots, edge dots, and central ke T

dot experience different effective fields, and therefore have . _ _

iferen themal average values. This appears a diferey, "%, | 5 Lo s corsan Fete b s e
hysteresis shapes for different temperatures. (b) different sizes of arrays. Ife) the array consists of 1perpen-
dicularly magnetized dots with uniaxial anisotrogyM,=0.2. The
Reorientation transition peak indicates a transition from perpendicular orientation to in
lane, as the temperature is decreasedbjrhe interdot coupling

Reorientation transitions have been observed and pr 15 hy=1.0.

dicted in fine particle and patterned array systérfdn the
absence of other magnetic anisotropies, a planar array of Consider an array of dots with uniaxial anisotropy
magnetic dots will spontaneously align with moments in thek/M,=0.2. Suppose the array is initially prepared so that
array plane in order to minimize magnetostatic energies. Onghe magnetizations are all aligned perpendicular to the array
can expect then that a critical temperature exists for the inp|ane at a temperature |arge enough to remove correlations
plane ordering with a magnitude determined by the numbergue to dipolar coupling but low enough to avoid superpara-
spacing, and size of the magnetic dots. magnetic behavior of the dots. With the positive anisotropy,
Such a transition is exhibited by an array of particles withthe magnetizations of each dot will orient perpendicular to
individual anisotropies that favor alignment of eachiper-  the array plane. As the temperature is lowered, dipolar fields
pendicular to the array plane. In order to describe this syshecome large enough to cause the dot moments to reorient in
tem, the anisotropK of Eq. (2) is made positive with a the array plane in order to reduce the total magnetostatic
value comparable to, but larger than, the magnetostatic ermnergy.
ergym; - hg;. The equilibrium orientation of an array of dots  This transition appears in the specific heat as a sharp peak
is then calculated at different temperatures in zero field beat the critical temperature. This is shown in Figa)iwhere
ginning at a high temperature, saturated state. Cy is plotted as a function of temperature for different val-
A useful quantity to examine is the specific heat at conyes of interdot coupling. The array consists of 64 perpen-
stant fieldCy; . This can be calculated from the internal en- dicularly magnetized dots with uniaxial anisotropy/M,
ergy U of the magnetic system by numerically evaluating=0.2. The array has been cooled in zero applied field after
Cy=dU/4T with the applied field, held constant'*?The  saturation. The peak indicates a transition from perpendicu-
internal energy at finite temperatures is calculated accordingr orientation to in plane. Note how the critical temperature
to: of the reorientation transition increases linearly with the
strength of the interactiohy.
The effect of array size is shown in Fig(bf where the
) (6) specific heat at constant field is shown as a function of tem-
perature for different sizes of arrays. The anisotropy is again
K/My=0.2 and the array has been saturated perpendicular to
wherei labels each magnetic dot. the array plane and then cooled in zero applied field. The

U=-53 (m)-| 5 a0y
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critical temperature for reorientation into the array plane in-ticles depends on their size and spacing, and can drive reori-
creases with array sizd, but approaches a limiting value as entation transitions as a critical temperature is reached. Be-

N becomes very large. The interdot couplinchjg=1.0. sides illustrating some features of weakly interacting arrays
of single domain identical dots, these results have relevance
IV. SUMMARY AND CONCLUSIONS to imperfect thin magnetic films and particle clusters which

_ ) ) _ may display similar behaviors due to competitions between

A self-consistent mean-field calculation of field and magnetocrystalline anisotropies and interparticle interac-
temperature-dependent magnetization processes in arrays fns.
small magnetic dots has been presented. Effects of array size The systems described in this paper were assumed to be
and applied field orientation were investigated, and examplegnite but regular arrays of closely spaced magnetic dots. The
presented showing how details of the magnetization procesgsulits have relevance to ultrathin film films and two dimen-
depend on the geometry of the immediate neighborhood ofjona| arrays of fine particles with distributions of sizes and
magnetic dots in a two-dimensional array. spacing also. The reason is that the largest interparticle cou-

For small groups of weakly interacting dots, the shape objing contributions to the effective field of a small magnetic
the array enters into the configuration energy of the arrayarticle in a two dimensional array is due to the immediate
analogous to shape anisotropy effects in ferromagnets. Thesighborhood. Local order and symmetries will therefore be

orientation of edge and corner magnets are most susceptibigportant for the magnetic properties of the system as a
to applied fields and their relative to the external field deteryyngle.

mines the initiation of reversal mechanisms in the array. The

shape of the array enters into the energy even when saturated ACKNOWLEDGMENTS
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