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Magnetization processes and reorientation transition for small magnetic dots
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A theory for magnetization processes in interacting arrays of small magnetic structures at finite temperatures
is presented. Hysteresis and magnetic ordering of weakly coupled arrays of single-domain ferromagnetic
particles are examined. The dots are arranged on a planar lattice and the effects of lattice geometry are
examined via long-ranged dipolar coupling between magnetic dots. Small clusters of dots arranged in finite
arrays are shown to have complicated hysteresis determined by the shape, size, and orientation of the cluster in
externally applied fields. One result is an array induced ‘‘shape’’ anisotropy that controls how reversal occurs
in the array itself. Finite temperature effects are examined and the strength of the dipolar coupling, though
weak, can be significant for closely packed particles at low temperatures. A reorientation transition from in
plane to perpendicular is shown to occur as the temperature is increased for dots with perpendicular anisotropy.
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I. INTRODUCTION

The magnetic properties of single-domain fine partic
have been extensively studied, particularly in reference
applications for magnetic recording.1 Studies of magnetiza
tion processes and dynamics in artificially patterned str
tures has encouraged additional recent efforts and is
rently an area of intense interest. The reason is that emer
technology can fabricate independent magnetic wire and
structures with physical extensions on the submicrom
and nanometer length scale, and so offers a new window
the study of small-particle magnetism.2,3 The extreme preci-
sion with which elements and arrays can be construc
opens many fascinating possibilities for studying and c
trolling unusual hysteresis processes as well as h
frequency dynamics.4

The potential small size and high density of large mom
particle arrays mean that energies typically ignored in d
cussions of conventional fine-particle research can be sig
cant. For example, the dipolar field acting at the center o
cube in a square array of perpendicularly magnetized
mm-wide Fe cubes is approximately 900 G/cm3 if the cubes
are centered on a 1-mm array. These fields are comparable
bulk cubic anisotropy fields and therefore have the poten
to strongly affect static magnetic order and magnetizat
processes. Dipolar effects on static properties are often
glected in treatments of ensembles of small particles bec
the fields rapidly become small as the spacing between
is increased. This is particularly true in a two-dimension
lattice.

Finite arrays of only a few magnetic dots can exhi
stronger dependencies on dipolar fields. This is becau
small array of dots can have a large circumference to a
ratio, meaning that finite size effects from a truncatedarray
can have a large effect on static and dynamic properties5 A
surprising result is that even very weak coupling betwe
magnetic dots can strongly influence nonlinear dynam
PRB 600163-1829/99/60~16!/11694~6!/$15.00
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behavior.6 This has particular relevance to high-spe
switching properties7 and as will be shown here, thermall
driven magnetic reorientations.

The paper is organized as follows. In Sec. II, the calcu
tion technique is described and results presented for a
size determined hysteresis. In Sec. III, the effects of temp
ture are discussed and a reorientation transition describe
summary is given in Sec. IV.

II. ARRAY SIZE DETERMINED HYSTERESIS

The basic calculation method is to numerically integra
the time-dependent Landau-Lifshitz equations of motion
an array of interacting magnetic dots. This has an advan
over conventional micromagnetic modeling in that relaxat
mechanisms involving precession can be easily taken
account.5 The same model can also be easily extended
investigate the dynamic properties of the array.

Time integration scheme

The theory described below describes interaction and
nite temperature effects for arrays of ferromagnetic dots. T
dots interact weakly via dipolar stray fields, and low tem
peratures are assumed. The dots are presumed to su
single domains in all cases considered, so for simplicity,
dots are assumed to be uniformly magnetized. This is a
sonable assumption for the purposes of this paper bec
the essential features of the magnetic ordering and dyna
response are governed primarily by the net magnetic mom
of each particle.

The arrangement of dots is shown schematically in Fig
A dot’s position is given by the positioni in the array cor-
responding to a position vectorr i5xna1yma wherea is the
lattice spacing andn andm are integers. The time-depende
equation of motion of a dot magnetic momentm at position
i in the array is
11 694 ©1999 The American Physical Society
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dmi /dt5gmi3H i2ami3mi3H i . ~1!

Here,g is the gyromagnetic ratio, anda controls the rate of
dissipation. This form of dissipation is chosen to conse
the magnitude of the dot moment asumu/V5M whereV is
the dot volume. The fieldH i is an average effective field
acting at positioni:

H i5xH0 cosuH1yH0 sinuH1z@~2K/M2!mzi#2di . ~2!

Contributions toH i are a static applied fieldH0 set an angle
uH to the x direction in the first two terms, and anisotrop
and dipolar fields in the remaining terms.

The shape and magnetocrystalline contributions to
anisotropies in the dots are described by a single unia
anisotropyK with easy axis directed normal to the dot arr
plane, as would be appropriate for cylindrical dots. A tim
dependent dipole fielddi due to all the other dots in the arra
is included:

di5(
i

Fmi

r i
3 23

r i•mi

r i
5 r i G . ~3!

Unitless variables are chosen so that fields and energie
given as ratios relative toM ~such asK/M2! and time is
given by the variablegMt. The calculation is performed b
solving the set of 3N2 coupled equations for a square d
array of dimensionN numerically using a second-orde
Runge-Kutta method. In this technique, the time evolution
each dot in the array is calculated over a small time inter
Dt. Typically, convergent solutions for static order can
found with Dt on the order of 0.005 within 1000 time step
~in units of gMt! for small arrays~N around 4! the preces-
sion term is dropped and only the relaxation term is kep
Eq. ~1!.

As mentioned above, parameters for the calculations
in units reduced by the magnetization of the dot materialM.
In these unitless variables, the dipolar term is then of
form d/M}V/r 3. Because of the sum over dipoles in E
~3!, the dipole strength is determined by the physical str
ture of the array and the strength is given by the ratio of
volume to array cell volume. This ratio is denoted ashd and
is given by

hd5phR2/a3, ~4!

whereh andRare the height and radius of a dot cylinder, a
a is the center to center distance between nearest neig
dots. Unless otherwise specified, the dipolar coupl
strength ishd50.5 for the examples considered in this pap

FIG. 1. Geometry of square array of magnetic dots. The dots
small cylinders centered on lattice points of a submicron size ar
The position of each dot is measured relative to the dot center o
array of lattice sizea.
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Field orientation and size effects

Effects of applied field orientation are shown in Fig. 2 f
a 333 square array of dots magnetized in plane with an e
plane anisotropy of24p. The average magnetic moment
the dot array in the direction of a static applied field is sho
for the applied field aligned parallel to an array edge. In F
3, the same calculation is repeated except that the app
field is aligned along an array diagonal.

In both cases a uniformly magnetized state for thearray is
unstable in the absence of a field. Below the saturation fi
the dot moments rotate in order to minimize magnetost
energies originating from uncompensated magnetic pole
the array edges. Different spin arrangements are poss
and alignment of the magnetic field determines the confi
ration the dots relax into as the field is reduced. As shown
Figs. 2 and 3, the two different field alignments produce v
different hysteresis loops.

The moment orientations in the lattice are sketched
Figs. 2~b! and 3~b!. When the field is applied along an arra
edge, magnetostatic energies are minimized near satura
by slight rotations of the corner moments, as seen in F
2~b! for H052 M. The effect of the corner moment rotation
can be seen in Fig. 2~a! as a very small reduction of th
average array moment from complete saturation. When
field is applied along a diagonal, as in Fig. 3~a!, the corner
moments align with the field whereas the moments at

re
y.
an

FIG. 2. Magnetization loops for a 333 square in-plane magne
tized magnetic dot array are shown in~a!. The applied field is
aligned parallel to an array. The dipolar coupling strength ishd

50.5. Spin configurations at points along the loop are shown in~b!.
Reversal takes place first along the middle column of moments
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side centers rotate. This is depicted forH050.8 M in Fig.
3~b!. A corresponding reduction from saturation is also se
in Fig. 3~a!. The net effect of applied field orientation is t
provide different initial conditions for the rotation of the a
ray moments as the field is reduced.

In both cases, several of the array moments occur by
versing first the moments of dots along a column of
square array. The zero-field configurations are the same
dependent of the field orientation with alternating rows
columns of magnetization. This configuration is stable fo
range of field values with the field aligned parallel to
array. The configuration is not stable for the field align
along a diagonal.

The sensitivity of the hysteresis loop to initial conditio
requires some care in performing the calculations. Per
alignment along a high-symmetry direction can result in
appearance of metastable states that disappear for very
misalignments of the applied field. For the reason, the res
are shown with the field not directly along an array edge
diagonal, but instead misaligned 0.1° away.

Even or oddN also has a strong effect on the shape of
magnetization loops for smallN. Examples are given in Ref
5, and not repeated here. Instead, it is noted that for smaN,
there is a great distinction between evenN and oddN mainly
because in zero field there is a significantly reduced remn
average moment forN even. AsN is increased, the distinc
tion between even and odd becomes less pronounced,
minor hysteresis loops are lost.

FIG. 3. Magnetization loops for a 333 square in-plane magne
tized magnetic dot array are shown in~a! with the applied field
aligned along an array diagonal. Spin configurations at points a
the loop are shown in~b!.
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The geometry of the array creates an orientation dep
dence of the magnetostatic energy in the saturated sta
analogy to ferromagnets. This is a shape anisotropy in
sense that the shape of the dot array determines the sym
try properties of the magnetostatic energy in the array
square lattice has fourfold symmetry, and this is reflected
the total energy of the dot array calculated as a function
the angle of the applied fielduH .

The energy is shown in Fig. 4 where the free energy
zero temperature is shown as a function of the size of
lattice. The field is large enough to saturate the sample
H/M056. The fourfold symmetry of the lattice is eviden
and is retained as the size of the lattice is increased.
difference between easy and hard directions does not ch
with increasingN, but the average energy does. The avera
increases with increasingN, but approaches a limiting valu
roughly as 1/N, the ratio of circumference to area.

Array lattice symmetry

The above results illustrate the great sensitivity of d
array magnetization processes to array geometry for the
plest array geometry: a square lattice. Lattice geometry
also important in determining magnetization properties
dot arrays, with distortions from simple square lattices a
other lattice symmetries leading to preferred directions of
magnetization and possible frustrations.

Examples of array symmetry effects are given in Fig. 5.
Fig. 5~a!, M (H) for a simple square array is contrasted w
an equal number of dots in a rhomboid array. The rhomb
has one side 50% longer than the other, and the field
aligned along a long side.N53 for both examples. The
rhomboid structure displays a much largerMH product than
the square lattice by favoring parallel alignment of dot ma
netizations. The sharp drop of the magnetization atH05
20.4 M is due to the reversal of a line of moments, reduc
the total moment to one third its full value.

In Fig. 5~b!, the magnetizations of hexagonal arrays a
shown. The dashed line is for a cell of seven dots and
solid line is for the same cell with the center dot remov

g

FIG. 4. Energy atT50 for square arrays of in-plane magnetize
dots saturated by a large applied field (H/M056). The energy is
calculated for different orientations of the field rotated in the pla
of the array. Array shape effects appear in analogy to ferromagn
shape anisotropies with a symmetry reflecting the symmetry of
square lattice. The overall contribution of magnetostatic energy
creases approximately as the ratio of circumference to area.
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PRB 60 11 697MAGNETIZATION PROCESSES AND REORIENTATION . . .
~for a total of six dots!. The role of the center dot is impor
tant in determining the magnetization process of the ar
Sketches of the moment configuration for the two hexago
arrays are shown in Fig. 5~c!. A center dot affects the initia
configuration near saturation by deforming the alignmen
moments in the hexagonal ring. As reversal develops,
center dot continues to influence the orientation of the r
moments. At zero field, the net moment of the array is
hanced through the center dot moment. The center dot

FIG. 5. Array symmetry effects for~a! rhomboid and~b! hex-
agonal lattices. In~a!, M (H) for anN53 array of dots is shown for
a rhomboid geometry with the long side 50% longer than the len
of the short side. In~b! M (H) is shown for seven dots in a hexag
nal pattern by a dashed line. The solid line isM (H) for the same
configuration without the center dot. Spin configurations at differ
points along the loops are shown in~c! for the hexagonal arrays
Hysteresis is due to a reversal process that begins on one side
array in the hexagonal lattices.
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reduces the size of the minor loops, as seen by compariso
the 6- and 7-dot hysteresis loops.

III. FINITE TEMPERATURES

The previous discussion has considered behavior at
temperature. The dipolar coupling is weak compared to
isotropy and Zeeman energies, and is strongly affected
thermal fluctuations. An estimate of the temperature ab
which dipole-induced correlations disappear is twice the
teraction energy per dot. This energy is on the order
2(N21)(VM)2/Na3 whereV is the volume of a dot. For
0.5-mm Fe cubes, this energy is on the order of 10214erg,
which corresponds to a temperature around 200 K. This t
perature increases rapidly with particle volume and to
magnetic moment, so critical temperatures around room t
perature can be readily achieved.

Large thermal fluctuations destroy the hysteresis effe
described in Figs. 1 and 2. This can be shown by usin
mean-field theory together with the time integration tec
nique. This is done by defining a thermally averaged eff
tive field where all components ofm appearing in the field
defined in Eqs.~2! and~3! are replaced with their mean-fiel
averaged values.8 Each dot is a large collection of strongl
ferromagnetically coupled spins, so all orientations of t
total magnetic moment of a dot are possible. The therm
averaged magnetization for each dot at a positioni can then
be represented by a Langevin functionL:

^mi&5gmBnJL~nJgmBHi /kBT!

5gmBnJFcothS nJgmBHi

kBT D2
kBT

nJgmBHi
G . ~5!

In Eq. ~5!, the total angular momentum number per atom iJ
and the number of spins per dot isn, so thatmi5gmBnJ at
T50. Hi is the magnitude of the thermal averaged effect
field acting on the dot at positioni.

Because the effective fieldHi is itself a function of the
^mi&, the time-dependent equations of motion must
solved self-consistently over each interval of time. T
method to achieve self-consistency is to begin by assumin
configuration for themi , such as saturation with zero
temperature magnitudes at large fields, and then calculate
thermal averagêmi& based on this configuration. New va
ues for themi are then found for a timeDt later, and new
^mi& calculated. The process is continued until equilibrium
reached and themi and ^mi& no longer change.

This scheme is still valid at finite temperatures as long
adiabatic assumptions apply. This means that the time
must be supposed large compared to the thermal fluctua
time. The moments then have sufficient time during ea
time step to come into thermal equilibrium. This assumpt
is enforced by settingg50 in Eq.~1!, which implies that the
time evolution occurs over time steps sufficiently long th
precession effects die out via dissipation of kinetic energy
the lattice. High-frequency transient effects require spe
consideration and are discussed elsewhere.6

Results for temperature effects on hysteresis are show
Fig. 6. There are nine dots magnetized in the array plane
the field is applied along an array diagonal as in Fig. 2~b!.
The reduced inverse temperature isb51/kBT. The effect of
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increasing temperature is to decrease array ‘‘shape’’ ani
ropy. For large temperatures no hysteresis is visible.

At intermediate temperatures, the minor loops disapp
in favor of the central hysteresis loop. This is because
hysteresis is controlled by nucleation of reversals at the a
edges and corners. The corner dots, edge dots, and ce
dot experience different effective fields, and therefore h
different thermal average values. This appears as diffe
hysteresis shapes for different temperatures.

Reorientation transition

Reorientation transitions have been observed and
dicted in fine particle and patterned array systems.9,10 In the
absence of other magnetic anisotropies, a planar arra
magnetic dots will spontaneously align with moments in
array plane in order to minimize magnetostatic energies. O
can expect then that a critical temperature exists for the
plane ordering with a magnitude determined by the numb
spacing, and size of the magnetic dots.

Such a transition is exhibited by an array of particles w
individual anisotropies that favor alignment of eachmi per-
pendicular to the array plane. In order to describe this s
tem, the anisotropyK of Eq. ~2! is made positive with a
value comparable to, but larger than, the magnetostatic
ergymi•hdi . The equilibrium orientation of an array of do
is then calculated at different temperatures in zero field
ginning at a high temperature, saturated state.

A useful quantity to examine is the specific heat at co
stant fieldCH . This can be calculated from the internal e
ergy U of the magnetic system by numerically evaluati
CH5]U/]T with the applied fieldH0 held constant.11,12The
internal energy at finite temperatures is calculated accord
to:

U52
1

2 (
i

^mi&•S z
2K

M
^mzi&1^di& D , ~6!

wherei labels each magnetic dot.

FIG. 6. Thermal effects on hysteresis for anN53 square array
of in-plane magnetized dots with the field applied along an ar
diagonal. The reduced inverse temperature isb. Thermal fluctua-
tions cause the array ‘‘shape’’ anisotropy to decrease with incr
ing temperature. Interestingly, the minor loops disappear in favo
the central hysteresis loop with increasing temperature. For la
temperatures no hysteresis is visible.
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Consider an array of dots with uniaxial anisotrop
K/M050.2. Suppose the array is initially prepared so th
the magnetizations are all aligned perpendicular to the a
plane at a temperature large enough to remove correlat
due to dipolar coupling but low enough to avoid superpa
magnetic behavior of the dots. With the positive anisotro
the magnetizations of each dot will orient perpendicular
the array plane. As the temperature is lowered, dipolar fie
become large enough to cause the dot moments to reorie
the array plane in order to reduce the total magnetost
energy.

This transition appears in the specific heat as a sharp p
at the critical temperature. This is shown in Fig. 7~a! where
CH is plotted as a function of temperature for different va
ues of interdot coupling. The array consists of 64 perp
dicularly magnetized dots with uniaxial anisotropyK/M0
50.2. The array has been cooled in zero applied field a
saturation. The peak indicates a transition from perpend
lar orientation to in plane. Note how the critical temperatu
of the reorientation transition increases linearly with t
strength of the interactionhd .

The effect of array size is shown in Fig. 7~b! where the
specific heat at constant field is shown as a function of te
perature for different sizes of arrays. The anisotropy is ag
K/M050.2 and the array has been saturated perpendicul
the array plane and then cooled in zero applied field. T

y

s-
f
e

FIG. 7. Specific heat in a constant field (H/M051) as a func-
tion of temperature for~a! different values of interdot coupling, an
~b! different sizes of arrays. In~a! the array consists of 16perpen-
dicularly magnetized dots with uniaxial anisotropyK/M050.2. The
peak indicates a transition from perpendicular orientation to
plane, as the temperature is decreased. In~b! the interdot coupling
is hd51.0.
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critical temperature for reorientation into the array plane
creases with array sizeN, but approaches a limiting value a
N becomes very large. The interdot coupling ishd51.0.

IV. SUMMARY AND CONCLUSIONS

A self-consistent mean-field calculation of field an
temperature-dependent magnetization processes in arra
small magnetic dots has been presented. Effects of array
and applied field orientation were investigated, and exam
presented showing how details of the magnetization proc
depend on the geometry of the immediate neighborhood
magnetic dots in a two-dimensional array.

For small groups of weakly interacting dots, the shape
the array enters into the configuration energy of the ar
analogous to shape anisotropy effects in ferromagnets.
orientation of edge and corner magnets are most suscep
to applied fields and their relative to the external field det
mines the initiation of reversal mechanisms in the array. T
shape of the array enters into the energy even when satu
for arbitrarily large arrays of regularly spaced dots, and m
explain recently observed variations of magnetostatic exc
tions measured on submicron arrays of patterned magn
dots.3

The strength of the interactions between magnetic p
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ticles depends on their size and spacing, and can drive re
entation transitions as a critical temperature is reached.
sides illustrating some features of weakly interacting arr
of single domain identical dots, these results have releva
to imperfect thin magnetic films and particle clusters whi
may display similar behaviors due to competitions betwe
magnetocrystalline anisotropies and interparticle inter
tions.

The systems described in this paper were assumed t
finite but regular arrays of closely spaced magnetic dots.
results have relevance to ultrathin film films and two dime
sional arrays of fine particles with distributions of sizes a
spacing also. The reason is that the largest interparticle c
pling contributions to the effective field of a small magne
particle in a two dimensional array is due to the immedi
neighborhood. Local order and symmetries will therefore
important for the magnetic properties of the system a
whole.
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