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Electronic structure of quantum spheres with wurtzite structure
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The hole effective-mass Hamiltonian for the semiconductors with wurtzite structure is given. The effective-
mass parameters are determined by fitting the valence-band structure near the top with that calculated by the
empirical pseudopotential method. The energies and corresponding wave functions are calculated with the
obtained effective-mass Hamiltonian for the CdSe quantum spheres, and the energies as functions of sphere
radiusR are given for the zero spin-orbital couplit§OQ0 and finite SOC cases. The energies do not vary as
1/R? as the general cases, which is caused by the crystal-field splitting energy and the linear terms in the
Hamiltonian. It is found that the ground state is not the optically ackstate for theR smaller than 30 A,
in agreement with the experimental results and the “dark exciton” thd&9163-18269)01040-1

[. INTRODUCTION tals. In this paper we shall study the electronic states of
quantum dots with wurtzite lattice structure from their hole
Semiconductor nanocrystals offer the opportunity to ex-effective-mass Hamiltonian. Chungt al® derived the
plore the evolution of electronic and optical proporties as theeffective-mass Hamiltonian for wurtzite semiconductors, but
size of the system decreases from bulk to the nanometdlot including thep linear terms, which have been proved to
scale. In addition, their strongly size-dependent optical propbe essential for the energy bands near the valence-band top.
erties render them attractive candidates as tunable light ave derived the correct effective-mass Hamiltonian for
sorbers and emitters in optoelectronic devices. New fabricawurtzite semiconductors including thelinear terms.’ and
tion methods have enabled the synthesis of highlyshall use this Hamiltonian as the basis of the present study. A
monodisperse ¢z<4%) CdSe nanocrystals with radii tun- spherical quantum dot with a finite potential barrier was
able between 10 and 50 A , which have a luminescence witgtudied in our previous pap@For simplicity, in this paper
high quantum vyield (10-15% at 10)K Recently, Hines We assume that the quantum sphere is surrounded by an in-
et al? have reported making core-shélldSeZnS nanocrys- finitely high potential barrier represented by the matrix ma-
tallites that photoluminesce with a quantum yield of 50% atterial, but the finite potential barrier can be taken into ac-
530 nm. Mikulec et al® synthesized high quantum yield count gonven|e_ntly in our method. The rema|r_1der of the
(30-50 9% core-shell(CdSeZnS nanocrystallites of various Paper is organized as follows. In Sec. Il we introduce a
sizes with narrow band edge luminescence spanning most #odel of the system being considered and present the calcu-
the visible spectrum from 470 nm to 625 nm. Empedocleéaﬂon method. Our numerical results and discussions are
et al* used far-field microscopy to image and obtain ultrana-given in Sec. lll. Finally, we draw a brief conclusion in Sec.
rrow single dot luminescencéSDL) spectra from single V.
CdSe nanocrystallites at 10 K. The elimination of spectral
inhomogeneities reveals new spectral phenomena including
light driven spectral diffusion, which is consistent with a

Stark effect. The hole effective-mass Hamiltonian for wurtzite semi-

The Stark effect of the quantum dots and the electronigonductors was derived in Ref. 10 for the case of zero spin-
states of the overcoated quantum dotguantum-dot orpital coupling(SOOQ),

guantum-well structurgshave been investigated by Chang
and Xia*® for those with zinc-blende structure in the frame-
work of the effective-mass envelope-function thebryor
CdS, CdSe, and ZnS nanocrystallites the common lattic
structure is hexagonalvurtzite), which was proved by high-

Il. MODEL AND CALCULATION

TABLE |. Fitting parameters of CdS, CdSe, and ZnS atomic
gseudopotentials.

resolution TEM and x-ray diffractioh.Efros et al® consid- - Y2 ' T

ered the crystal shape asymmetry and the intrinsic crystatd 0.0564 1.0287 1.2920 3.8489
field (hexagonal within the framework of a quasicubic S 0.3297 2.5053 1.6005 1.7289
model, and obtained optically passitdark exciton and op- Cd 0.1067 1.4241 1.3132 3.1482
tically active (bright exciton states for CdSe quantum dots. Se 0.1744 3.0802 1.7910 2.6251
The theoretical results are in agreement with the size deperns 0.0536 1.2390 0.9270 4.3598
dence of Stokes shifts obtained in fluorescence line narrows 0.2337 3.1110 1.3657 3.1969

ing and photoluminescence experiments for CdSe nanocrys
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. LpZ+Mp;+Np; Rp.py Apobx+ Qpyp,
H=5— Rppy Lpj+MpZ+Np3 Apopy+Qpyp, , (1)
0
ApoPx+QpeP,  Apopy+Qpyp,  S(PZ+p2)+Tpi+2moA,

|
where the basic functions arelike, Y-like (I's), andz-like T* = PP+ 5P,
(I'y) functions, respectivelyl,M, ... ST are effective-
mass parameters, aid is the crystal-field splitting energy. SIAPOP(—l%WL \/EyéP(_z),
For the II-VI compounds such as CdS, ZnS, and CdSe, the
I's energy levels of the valence band are higher tharl'the S = _Apop(lz)_ \/Eyép(lz)-

energy level, sd\ is greater than zerfhereafter we take the

negative hole energy as positive, as shown in @y. The P® P®) are the second-order and first-order tensors of the
effective-mass parameters are determined by fitting the ermomentum operator, respectively. The effective-mass pa-
ergy bands near the valence-band top with those calculatedmetersy,,y-, ... are related to thode,M,N, ... as fol-

by the empirical pseudopotential method as in Ref. 10. Théows:

form factors of the atomic pseudopotentials are fitted with

Cohen’s formuld} y1=3(L+M+N), 7=5(L+M—-2N), 7y;=3R,

gy Va(G*ve) , $=§T+29), %=4T-9. %=iQ.
(©)= @iy 1 @
7=(L-M+R), &6=i(L-M-R).

wherev,, v,, v3, andv, are empirical parameters deter- - . . .
mined by the experimental energy valuesatr initio theo- To make the coefficiend of the linear term dimensionless,

retical calculation values at some special points of the BrilWe introducep,=y2moA..
louin zone. Taking|11), |11), and|1—1) as the basic functions, the

Table | gives the fitte; — v, values for the CdS, CdSe, SPin-orbital coupling Hamiltonian is written &
and ZnS atomic pseudopotentials, where the unitGofs

a.u”l. At the same time, the effective-mass parameters of —A 0 0 0 0
hexagonal semiconductors are listed in Table Il for CdS, 0 0 NAY 0 0
CdSe, and ZnS material, respectively. B
Tranforming the basic functionX, Y, and Z into |11) Ho= 0 0 \ 0 van o ,
=1/2(X+iY), |10)=2Z, and |1—-1)=1/J2(X—iY), the 0 Jy2n o A 0 0
hole Hamiltonian(1) can be written as 0 0o — \/E)\ 0 0 0
P, S T 0 0 0 0 0 -\
1 (6)
S* P; S
5 ; 3 ) . . .
2m0 ™ s p where the first three basic functions correspond to spin up
! and the second three basic functions correspond to spin
down,
where
2 NI LAMKAVEES 0
Pi=y1p%~ \/;szt()z), améc ax ay
A, is the spin-orbital splitting energy. From the Hamiltonian
2 i i -
Py= ylp2+2 \@yéPBZ)JeroAc. (6) we obtain the energies of the valence-band top,
1
_ + 2_ 2
T= 7P+ 5P, £l 2[(Ac+)\)_\/AC 2AN+9NT] (T ®
4 -\ (Tg).

TABLE Il. Effective-mass parameters for hexagonal semiconductors.

m, m, L M N R s T Q A

Cds 0.1806 0.1788 5.0269 0.3956 0.4789 4.6367 0.4196 5.6767 2.000 0.8749
CdSe 0.1756 0.1728 4.6851 0.3389 0.3716 4.3491 05719 5.3542 2267 0.6532
ZnS 0.2173 0.2115 4.0784 0.3483 0.4096 3.7352 0.3467 4.6821 1.600 0.6629
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From Eg.(8) and the experimental values of valence-band 30 T y T y T y T y T
energies, the parametets and\ can be determined. M=0

The eigenenergies and corresponding eigenstates in th -
guantum spheres are calculated as in Ref. 12. The wave func
tions are expanded with the spherical Bessel functions anc
spherical harmonic functions for the zero SOC case,

a.nCi 1 (KADY) o 1(6,6)
«y:IE b nCrndi (K )Y m(6,6) |, (9)
C A\ Crali(KED Y mea(6,0)

wherej,(x) is the spherical Bessel function bforder, o/,
=kl R is the nth zero point ofj,, R is the radius of the
sphere, andC, , is the normalization constant,

V21

R¥2j . a(ah)

Energy (&)

(10

I,n

Because of the hexagonal symmetry, only theompo-
nent of the angular momentulw is a good quantum number.
The linear terms in the Hamiltonia(8) couple the states of
even angular momentutrand odd; the summation ovdrin
the expansion of wave functio®) includes both even and R ('&)
oddl, contrary to the case of zinc-blende semiconductors. In
that CaSé,Z the Summat|0n Ovel’ |nC|UdeS elthel‘ eVe'h or FIG. 1. Energies of hole stateM(: 0) of quantum Spheres as
odd | due to the second-order tensor operators. functions of sphere radius for the zero SOC case.

In the case of finite SOC, we start from the hole Hamil-
tonian(3) for both states of spin up and spin down, to whichgood quantum number. From Table Il we see that for II-VI
we add the SOC Hamiltonia($), and keep th& component  compounds the difference betweer, and m, is so small
of the total angular momentum as a constant. For example, that we can neglect the coupling between differestates,
we takeM =0 in Eq. (9) for the first three basic functions, and consider thalt and m are good quantum numbers. The
then we takeM=1 in Eq. (9) for the second three basic eigenenergy of the electron stmjl(k'nr) is
functions, in order that the component of the total angular
momentum is 1/2. 72

From Table Il we see that the conduction band of the Elm,nzz_ma
electron is strictly not isotropic, with different effective mass
in the z andx,y directions. The effective-mass Hamiltonian
of the electron is written as

a2
B

Ill. RESULTS AND DISCUSSIONS

We calculated the energies and wave functions of hole
1 1 states of CdSe quantum spheres for the zero and finite SOC
|_|e:2_mx(p>2<+ Py + 2—mzp§ : 1D cases. | P
(i) Zero SOC caseThe energies as functions of sphere
where m, and m, are the effective masses in tikeandz  radius for thez components of angular momentuid
directions, respectively. The Hamiltoni&hl) can be written  =0,1,2 are shown in Figs. 1-3, respectively. The symbol of
as each energy level represents the main component of its wave
function. For exampleP, means that the state consists

p? 1 2 @) mainly of thel =1 state of the effective-mass envelope func-
He= 2m, 2m, §P ' 12 tion multiplied with theX andY Bloch states of valence-band
top.
with the effective masses The unit of energy in Figs. 1-3 is
2
1 1/2 1 _n(h
Then we see that the main difference of the energy depen-
1 11 1 dence on the sphere radiRbetween those of hexagonal and
m, 3lm, m, (14 cubic structures is that they are constants for the cubic struc-

ture, but are not for the hexagonal structure. This is due to
The Hamiltonian(12) couples the states with either even two reasons. The first is the presence of the crystal-field
angular momentunh or oddl; only thez componentmis a  splitting energy between thEg andI'; energy levelsA,
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FIG. 2. Energies of hole stated(=1) of quantum spheres as FIG. 4. Energies of hole stateM(= 1/2) of quantum spheres as
functions of sphere radius for the zero SOC case. functions of sphere radius for the finite SOC case.

which is a constant. Because we takgas units of energy, Xy This i v sh i Ei 1 and 3
when the radiuR decreases, the energies of quantum energy 6 (X )_states. 1S 1S apparently shown in Figs. 1 and
levels attached to thE, (Z) state decrease as.R?, and or the M=0 andM =2 cases, respectively. The second is

intersect or interact with energy levels attached to thehe linear terms in the hole Hamiltoni&8). Similarly, if we
take e as units of energy, then the linear terms will have a

40 T y T y T y T y T factor R, which increases witlR increasing. Due to the in-
F+P teraction of the linear terms, the energy levels decline when
a5 L H +F — R increases, and some wave functions contain mixing of
even and odd states as shown in Figs. 2 and 3. Comparing
H+F H+D, three figures, we found that the ground state is noShtte
30 E G v (S, of M=1), rather it is theP state @, of M=0). _
x (i) Finite SOC caseThe actual CdSe has a large spin-
EP+D, PG, orbital splitting energy at the valence-band toph{
B G +D G +D =0.4 eV), so we have to consider the finite SOC case. The

R energies as functions of sphere radius forzlftemponent of
20 __’W D,+F, angular momentunM = 1/2,2/3 are shown in Figs. 4 and 5,
respectively. When the radiuR increases, the energies of
D, P+F. states approach the strong SOC limit. For the casé/of
15 | F +H FoH =3/2 as shown in Fig. 5, the lower several energy levels
i X7 become flat, varying strictly asR?. It is interesting to no-
D +G D +G tice that the hole ground state is ngt of M =23/2 for the
10 - X radiusR smaller than 30 A, rather it iB, of M =1/2. This
P +F, P 4+F result is in agreement with the “dark exciton” theory pro-
o posed recently by Efrost al® The holeS, state is optically
active, while the holdP, state is optically passive. From our
M=2 accurate calculation, this is only limited in the rangePRof
0 N T T S smaller than 30 A, rather than 50 A given in Ref. 8.
20 40 60 80 100 The energy difference @&, and P, states as functions of
R (A) the sphere radiuR is shown in Fig. 6. WheR is larger than
30 A, the difference becomes negative, which means that
FIG. 3. Energies of hole state#I(=2) of quantum spheres as S, becomes the ground state. This result is in agreement with
functions of sphere radius for the zero SOC case. the experimental results of the resonant Stokes $Hifie

Energy (e,)
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FIG. 6. Energy differences o8, (M=3/2) andP,(M=1/2)
states as functions of the sphere radius.

S, t also in the presence of linear terms of the momentum opera-
tor. The effective-mass parameters are determined by fitting
the valence-band structure near theoint with that calcu-
0 . ) . ) , . . ) . lated by the empirical pseudopotential method. The energies
20 40 60 80 100 and corresponding wave functions are calculated with our
0 effective-mass Hamiltonian for the CdSe quantum spheres.
R (A) The energies as functions of sphere radius are given for the
zero and finite SOC cases. For spheres of cubic structure the
energies vary as R?, but for spheres of hexagonal structure
it is not the case. It is caused by the crystal-field splitting

theoretical absolute values are slightly larger than the exper{§r1ergy between thEs andI'y energy levels and the linear

mental values, because we calculated only the band ed rins in the Hamiltonian. The Er"“”d state is ®ieof the
. . . =0 state, not the&s, of the M=1 state for the zero SOC
energies and we have not taken into account the exciton ef:

fect. If we consider the exciton effect, the difference may beMaiel' /g O(; ;Ir;efgrm;[ﬁ essopi ec;gsreé J:E gsrn(zglr;grsttk?; |§%;hzf in
smaller. ,

agreement with the experimental results and the “dark exci-
ton” theory.

FIG. 5. Energies of hole stateM(= 3/2) of quantum spheres as
functions of sphere radius for the finite SOC case.

IV. CONCLUSION
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