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Electronic structure of quantum spheres with wurtzite structure
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The hole effective-mass Hamiltonian for the semiconductors with wurtzite structure is given. The effective-
mass parameters are determined by fitting the valence-band structure near the top with that calculated by the
empirical pseudopotential method. The energies and corresponding wave functions are calculated with the
obtained effective-mass Hamiltonian for the CdSe quantum spheres, and the energies as functions of sphere
radiusR are given for the zero spin-orbital coupling~SOC! and finite SOC cases. The energies do not vary as
1/R2 as the general cases, which is caused by the crystal-field splitting energy and the linear terms in the
Hamiltonian. It is found that the ground state is not the optically activeS state for theR smaller than 30 Å ,
in agreement with the experimental results and the ‘‘dark exciton’’ theory.@S0163-1829~99!01040-1#
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I. INTRODUCTION

Semiconductor nanocrystals offer the opportunity to
plore the evolution of electronic and optical proporties as
size of the system decreases from bulk to the nanom
scale. In addition, their strongly size-dependent optical pr
erties render them attractive candidates as tunable light
sorbers and emitters in optoelectronic devices. New fabr
tion methods have enabled the synthesis of hig
monodisperse (sR,4%) CdSe nanocrystals with radii tun
able between 10 and 50 Å , which have a luminescence w
high quantum yield (10–15 % at 10 K!.1 Recently, Hines
et al.2 have reported making core-shell~CdSe!ZnS nanocrys-
tallites that photoluminesce with a quantum yield of 50%
530 nm. Mikulec et al.3 synthesized high quantum yiel
~30–50 %! core-shell~CdSe!ZnS nanocrystallites of variou
sizes with narrow band edge luminescence spanning mo
the visible spectrum from 470 nm to 625 nm. Empedoc
et al.4 used far-field microscopy to image and obtain ultran
rrow single dot luminescence~SDL! spectra from single
CdSe nanocrystallites at 10 K. The elimination of spec
inhomogeneities reveals new spectral phenomena inclu
light driven spectral diffusion, which is consistent with
Stark effect.

The Stark effect of the quantum dots and the electro
states of the overcoated quantum dots~quantum-dot
quantum-well structures! have been investigated by Chan
and Xia5,6 for those with zinc-blende structure in the fram
work of the effective-mass envelope-function theory.7 For
CdS, CdSe, and ZnS nanocrystallites the common lat
structure is hexagonal~wurtzite!, which was proved by high-
resolution TEM and x-ray diffraction.1 Efros et al.8 consid-
ered the crystal shape asymmetry and the intrinsic cry
field ~hexagonal! within the framework of a quasicubi
model, and obtained optically passive~dark exciton! and op-
tically active ~bright exciton! states for CdSe quantum dot
The theoretical results are in agreement with the size de
dence of Stokes shifts obtained in fluorescence line narr
ing and photoluminescence experiments for CdSe nanoc
PRB 600163-1829/99/60~16!/11540~5!/$15.00
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tals. In this paper we shall study the electronic states
quantum dots with wurtzite lattice structure from their ho
effective-mass Hamiltonian. Chunget al.9 derived the
effective-mass Hamiltonian for wurtzite semiconductors, b
not including thep linear terms, which have been proved
be essential for the energy bands near the valence-band
We derived the correct effective-mass Hamiltonian
wurtzite semiconductors including thep linear terms,10 and
shall use this Hamiltonian as the basis of the present stud
spherical quantum dot with a finite potential barrier w
studied in our previous paper.6 For simplicity, in this paper
we assume that the quantum sphere is surrounded by a
finitely high potential barrier represented by the matrix m
terial, but the finite potential barrier can be taken into a
count conveniently in our method. The remainder of t
paper is organized as follows. In Sec. II we introduce
model of the system being considered and present the ca
lation method. Our numerical results and discussions
given in Sec. III. Finally, we draw a brief conclusion in Se
IV.

II. MODEL AND CALCULATION

The hole effective-mass Hamiltonian for wurtzite sem
conductors was derived in Ref. 10 for the case of zero sp
orbital coupling~SOC!,

TABLE I. Fitting parameters of CdS, CdSe, and ZnS atom
pseudopotentials.

v1 v2 v3 v4

Cd 0.0564 1.0287 1.2920 3.8489
S 0.3297 2.5053 1.6005 1.7289
Cd 0.1067 1.4241 1.3132 3.1482
Se 0.1744 3.0802 1.7910 2.6251
ZnS 0.0536 1.2390 0.9270 4.3598
S 0.2337 3.1110 1.3657 3.1969
11 540 ©1999 The American Physical Society
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where the basic functions areX-like, Y-like (G6), andZ-like
(G1) functions, respectively,L,M , . . . ,S,T are effective-
mass parameters, andDc is the crystal-field splitting energy
For the II-VI compounds such as CdS, ZnS, and CdSe,
G6 energy levels of the valence band are higher than theG1
energy level, soDc is greater than zero@hereafter we take the
negative hole energy as positive, as shown in Eq.~1!#. The
effective-mass parameters are determined by fitting the
ergy bands near the valence-band top with those calcul
by the empirical pseudopotential method as in Ref. 10. T
form factors of the atomic pseudopotentials are fitted w
Cohen’s formula,11

V~G!5
v1~G22v2!

ev3(G22v4)11
, ~2!

where v1 , v2 , v3, and v4 are empirical parameters dete
mined by the experimental energy values orab initio theo-
retical calculation values at some special points of the B
louin zone.

Table I gives the fittedv12v4 values for the CdS, CdSe
and ZnS atomic pseudopotentials, where the unit ofG is
a.u.21. At the same time, the effective-mass parameters
hexagonal semiconductors are listed in Table II for Cd
CdSe, and ZnS material, respectively.

Tranforming the basic functionsX, Y, and Z into u11&
51/A2(X1 iY), u10&5Z, and u121&51/A2(X2 iY), the
hole Hamiltonian~1! can be written as

H5
1

2m0U P1 S T

S* P3 S

T* S* P1
U , ~3!

where

P15g1p22A2

3
g2P0

(2) ,

P35g18p212A2

3
g28P0

(2)12m0Dc ,

T5hP22
(2)1dP2

(2) ,

~4!
e

n-
ed
e

h

l-

f
,

T* 5hP2
(2)1dP22

(2) ,

S5Ap0P21
(1)1A2g38P21

(2) ,

S* 52Ap0P1
(2)2A2g38P1

(2) .

P(2),P(1) are the second-order and first-order tensors of
momentum operator, respectively. The effective-mass
rametersg1 ,g2 , . . . are related to thoseL,M ,N, . . . as fol-
lows:

g15 1
3 ~L1M1N!, g25 1

6 ~L1M22N!, g35 1
6 R,

g185 1
3 ~T12S!, g285 1

6 ~T2S!, g385 1
6 Q, ~5!

h5 1
6 ~L2M1R!, d5 1

6 ~L2M2R!.

To make the coefficientA of the linear term dimensionless
we introducep05A2m0Dc.

Taking u11&, u11&, andu121& as the basic functions, th
spin-orbital coupling Hamiltonian is written as12

Hso5U2l 0 0 0 0 0

0 0 0 A2l 0 0

0 0 l 0 2A2l 0

0 A2l 0 l 0 0

0 0 2A2l 0 0 0

0 0 0 0 0 2l

U ,

~6!

where the first three basic functions correspond to spin
and the second three basic functions correspond to
down,

l5
\3

4m0
2c2

^Xu
]V

]x

]

]y
uY&5

Dso

3
. ~7!

Dso is the spin-orbital splitting energy. From the Hamiltonia
~6! we obtain the energies of the valence-band top,

E5H 1

2
@~Dc1l!6ADc

222Dcl19l2# ~G7!

2l ~G9!.

~8!
.8749
.6532
.6629
TABLE II. Effective-mass parameters for hexagonal semiconductors.

mx mz L M N R S T Q A

CdS 0.1806 0.1788 5.0269 0.3956 0.4789 4.6367 0.4196 5.6767 2.000 0
CdSe 0.1756 0.1728 4.6851 0.3389 0.3716 4.3491 0.5719 5.3542 2.267 0
ZnS 0.2173 0.2115 4.0784 0.3483 0.4096 3.7352 0.3467 4.6821 1.600 0
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From Eq. ~8! and the experimental values of valence-ba
energies, the parametersDc andl can be determined.

The eigenenergies and corresponding eigenstates in
quantum spheres are calculated as in Ref. 12. The wave f
tions are expanded with the spherical Bessel functions
spherical harmonic functions for the zero SOC case,

C5(
l ,n S al ,nCl ,nj l~kn

l r !Yl ,m21~u,f!

bl ,nCl ,nj l~kn
l r !Yl ,m~u,f!

dl ,nCl ,nj l~kn
l r !Yl ,m11~u,f!

D , ~9!

where j l(x) is the spherical Bessel function ofl order, an
l

5kn
l R is the nth zero point of j l , R is the radius of the

sphere, andCl ,n is the normalization constant,

Cl ,n5
A2

R3/2

1

j l 11~an
l !

. ~10!

Because of the hexagonal symmetry, only thez compo-
nent of the angular momentumM is a good quantum numbe
The linear terms in the Hamiltonian~3! couple the states o
even angular momentuml and oddl; the summation overl in
the expansion of wave function~9! includes both even and
odd l, contrary to the case of zinc-blende semiconductors
that case,12 the summation overl includes either evenl or
odd l due to the second-order tensor operators.

In the case of finite SOC, we start from the hole Ham
tonian~3! for both states of spin up and spin down, to whi
we add the SOC Hamiltonian~6!, and keep thez component
of the total angular momentum as a constant. For exampl
we takeM50 in Eq. ~9! for the first three basic functions
then we takeM51 in Eq. ~9! for the second three basi
functions, in order that thez component of the total angula
momentum is 1/2.

From Table II we see that the conduction band of
electron is strictly not isotropic, with different effective ma
in the z andx,y directions. The effective-mass Hamiltonia
of the electron is written as

He5
1

2mx
~px

21py
2!1

1

2mz
pz

2 , ~11!

where mx and mz are the effective masses in thex and z
directions, respectively. The Hamiltonian~11! can be written
as

He5
p2

2ma
2

1

2mb
A2

3
P0

(2) , ~12!

with the effective masses

1

ma
5

1

3 S 2

mx
1

1

mz
D , ~13!

1

mb
5

1

3 S 1

mx
2

1

mz
D . ~14!

The Hamiltonian~12! couples the states with either eve
angular momentuml or odd l; only thez componentm is a
d

he
c-
d

n

-
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e

good quantum number. From Table II we see that for II-
compounds the difference betweenmx and mz is so small
that we can neglect the coupling between differentl states,
and consider thatl and m are good quantum numbers. Th
eigenenergy of the electron stateCln j l(kn

l r ) is

Elm,n5
\2

2ma
S an

l

R D 2

. ~15!

III. RESULTS AND DISCUSSIONS

We calculated the energies and wave functions of h
states of CdSe quantum spheres for the zero and finite S
cases.

~i! Zero SOC case. The energies as functions of sphe
radius for the z components of angular momentumM
50,1,2 are shown in Figs. 1–3, respectively. The symbo
each energy level represents the main component of its w
function. For example,Px means that the state consis
mainly of thel 51 state of the effective-mass envelope fun
tion multiplied with theX andY Bloch states of valence-ban
top.

The unit of energy in Figs. 1–3 is

«05
g1

2m0
S \

RD 2

. ~16!

Then we see that the main difference of the energy dep
dence on the sphere radiusR between those of hexagonal an
cubic structures is that they are constants for the cubic st
ture, but are not for the hexagonal structure. This is due
two reasons. The first is the presence of the crystal-fi
splitting energy between theG6 and G1 energy levelsDc ,

FIG. 1. Energies of hole states (M50) of quantum spheres a
functions of sphere radius for the zero SOC case.
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which is a constant. Because we take«0 as units of energy,
when the radiusR decreases, the energies of quantum ene
levels attached to theG1 (Z) state decrease asDcR

2, and
intersect or interact with energy levels attached to

FIG. 2. Energies of hole states (M51) of quantum spheres a
functions of sphere radius for the zero SOC case.

FIG. 3. Energies of hole states (M52) of quantum spheres a
functions of sphere radius for the zero SOC case.
y

e

G6 (X,Y) states. This is apparently shown in Figs. 1 and
for the M50 andM52 cases, respectively. The second
the linear terms in the hole Hamiltonian~3!. Similarly, if we
take«0 as units of energy, then the linear terms will have
factor R, which increases withR increasing. Due to the in-
teraction of the linear terms, the energy levels decline wh
R increases, and some wave functions contain mixing
even and oddl states as shown in Figs. 2 and 3. Compar
three figures, we found that the ground state is not theSstate
(Sx of M51), rather it is theP state (Px of M50).

~ii ! Finite SOC case. The actual CdSe has a large spi
orbital splitting energy at the valence-band top (Dso

50.4 eV), so we have to consider the finite SOC case. T
energies as functions of sphere radius for thez component of
angular momentumM51/2,2/3 are shown in Figs. 4 and 5
respectively. When the radiusR increases, the energies o
states approach the strong SOC limit. For the case ofM
53/2 as shown in Fig. 5, the lower several energy lev
become flat, varying strictly as 1/R2. It is interesting to no-
tice that the hole ground state is notSx of M53/2 for the
radiusR smaller than 30 Å , rather it isPx of M51/2. This
result is in agreement with the ‘‘dark exciton’’ theory pro
posed recently by Efroset al.8 The holeSx state is optically
active, while the holePx state is optically passive. From ou
accurate calculation, this is only limited in the range ofR
smaller than 30 Å , rather than 50 Å given in Ref. 8.

The energy difference ofSx andPx states as functions o
the sphere radiusR is shown in Fig. 6. WhenR is larger than
30 Å , the difference becomes negative, which means
Sx becomes the ground state. This result is in agreement
the experimental results of the resonant Stokes shift.8 The

FIG. 4. Energies of hole states (M51/2) of quantum spheres a
functions of sphere radius for the finite SOC case.
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theoretical absolute values are slightly larger than the exp
mental values, because we calculated only the band e
energies and we have not taken into account the exciton
fect. If we consider the exciton effect, the difference may
smaller.

IV. CONCLUSION

We gave the hole effective-mass Hamiltonian for t
semiconductors of wurtzite structure, which is different fro
those of zinc-blende structure not only in the symmetry,

FIG. 5. Energies of hole states (M53/2) of quantum spheres a
functions of sphere radius for the finite SOC case.
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also in the presence of linear terms of the momentum op
tor. The effective-mass parameters are determined by fit
the valence-band structure near theG point with that calcu-
lated by the empirical pseudopotential method. The ener
and corresponding wave functions are calculated with
effective-mass Hamiltonian for the CdSe quantum sphe
The energies as functions of sphere radius are given for
zero and finite SOC cases. For spheres of cubic structure
energies vary as 1/R2, but for spheres of hexagonal structu
it is not the case. It is caused by the crystal-field splitti
energy between theG6 and G1 energy levels and the linea
terms in the Hamiltonian. The ground state is thePx of the
M50 state, not theSx of the M51 state for the zero SOC
case. For the finite SOC case, the ground state is thePx of
M51/2 only for the sphere radius smaller than 30 Å ,
agreement with the experimental results and the ‘‘dark ex
ton’’ theory.
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FIG. 6. Energy differences ofSx (M53/2) andPx(M51/2)
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