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Frequency dependence of scaling exponents of hyperpolarizability in polyenes: A density-matrix
renormalization-group approach
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Scaling properties of the second-order hyperpolarizabifityn polyenes are investigated by the Lanczos-
based density-matrix renormalization-group scheme. The numerical results suggest that the exponant
acterizing the scaling law/NeN7, is inversely proportional to the incident photon frequeacyThe static
exponent sets the maximum. The full relation can be cast into an analytical expressjén)asb/(w+a),
which allows one to directly compare the results measured at different frequencies and objectively evaluate the
nonlinear optical performance of one specific material. The microscopic conditions for this relation are also
discussed[S0163-182809)01540-4

I. INTRODUCTION I. METHODOLOGY

L . . : We employ a combined version of the Lanczos iteration
. One_ of the Intriguing  properties in the quasl-one- ¢-peme and density-matrix renormalization-grdupMRG)
d|men3|onql pqumer chain Is that the segond-order optical,athod®16 to investigate the frequency dependence of the
hyperpolarizability y sharply increases with lengthl as  gcajing exponent of the second hyperpolarizabilities in poly-
yIN<N7.! This greatly motivates many experimeRtalas enes. The numerical calculation was done upNe 32,
well as theoretical investigatiorls!® The exponent; quan-  where the scaling properties can be well fitted by the above
tifies the increment ofy per unit and naturally becomes the scaling law. Our system is modeled by the one-dimensional
focus of many studies. Rigorously speaking, the above scabliimerized extended-Hubbard modél,
ing law is only valid for a short chain. For a long chaimn,
itself depends on chain length, and in particular saturates to 1 . : +
in the thermodynamical limit. Thus, the most meaningful H:_tg [1+(=1)'8](Cis1,4Ci st H.C)
range fory is at lengthN shorter than the saturation length. '
Theoretically,n also depends on the model and parameters
used. For a noninteracting model, it is found thgf
=" 61 wherek, is the energy gap. In the interacting case,
the situation is Iess obvious due to the complicated nature ofherec! . (c; ) is the electron creatiofannihilation) op-
electron correlation. Moreover, different from the thermody-erator with the spin orientatioor(=T,]) at sitei andn; ,
namical properties, the scaling property of hyperpolarizabil-= ciT’(,ci,(,. Hereafter the on-site and intersite interactidhs
ity is rather elegant and should be calculated with a morendV are in units of hopping integra) andt is chosen to be
sophisticated algorithm. One notices that the first attempt byt. Other parameters will be specified later. The half-filling
the symmetrized density-matrix renormalization-groupcase is considered. As before, we also use the current opera-
method (DMRG) failed to yield reliable results oveN  tor to form the starting vectoff;). For theA, states, one
=20.12 Nevertheless, generally one believes thatanges constructs|f;) by applying the current operator onto the
from 3 to 8. It should be noted that most of these exponentground state twicéfor details, see the Appendix200 states
are calculated at zero frequency. Experimentaifpn the  of the density matrices are kept in each block with the trun-
other hand, they are mostly measured at different nonzeroation error below 10° and the relative error smaller than
frequencles13 14 In other words, they are not static. Thus 10 2.8
there is no simple connection between the exponents experi- Before we go further, it is worthwhile to make some criti-
mentally measured and those theoretically calculated as theal comments on the performance of the standard DMRG
photon frequency may play a role here. As noted in variouscheme to calculate the dynamical properties as one already
experiments? this indeed becomes a big practical difficulty noticed its failure before. This helps to understand why the
to objectively evaluate the nonlinear optical performance folLDMRG can handle the nonlinear optical properties success-
one specific material. Our aim is to bridge this gap and buildully. It is known that the usual DMRG is best suited for the
some guantitative relations. ground-state calculations, while for the excited states it is not
The paper is arranged as follows. In Sec. Il, we presenstraightforward. A seeming reason is that these excited states
the theoretical scheme and critically comment on the failurdie high above the ground state and the truncation error is
of the recent DMRG calculations. Section Ill is devoted tolarge, but actually as we found, this is not the major origin.
the results and discussions while the conclusion is presentéthe main problem is that one misses one’s targets during
in Sec. IV. In the Appendix, we explain the details of our DMRG iterations, or “targeting catastrophe,” while one
numerical implementations. cannot easily spot such missing in real calculations. Let us
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analyze it in more detail. We know that in the ground-staterecent DMRG calculation¥:*?The typical symptom of such
calculations, one only needs to target the lowest-lying statéargeting catastrophe is that upon the increase of chain
and has no difficulty in identifying such a state. However, inlength, there is a sudden change of either eigenenergy, cor-
the excited-state calculations, this becomes difficult sinceelation length, or transition matrix elements. It has taken us
with an increase of chain length, quite often those desireduite a long time to figure out how to fix the problem effec-
excited states move out of and new states move into thaévely, but the answer turns out to be rather simpligter out
original energy window. If one still sticks to one’s original those irrelevant states beforehand and discriminatingly tar-
way of targeting states and does not preselect the states caget states(for a complete description, see the Appendix
tiously, one is very likely to target spurious or irrelevant This is the essence of the LDMRG scheme, which ensures
states of different origins, which ultimately leads to the tar-that one will correctly target states by getting rid of numer-
geting catastrophe and the breakdown of calculations. To theus irrelevant states and avoiding the targeting catastrophe.
best of our knowledge, such failure has never been carefullpther technical details can be found in Ref. 15.

identified before, but it has already appeared in many of the We use the formula from Ref. 19 to compuge

V=0, 01,02,03)=K(—0,;01,0y,03)(—%) 31,3

% MgattabMhcMceg n MgattabMbcicg
a (wa= o) (0p— w1~ wy)(wc—wy) (0h + w3)(wp— w1~ wy) (W= wq)
MgatabMhcieg n MgatabMhciceg
(03 + o) (0 T o1+ 0) (0~ 03)  (0F + o) (0 + 01+ 0))(0f +0,)
Mgatagtgciceg MgaMtagMgctcg
(wa=0,) (@~ w3) (@~ @) (wa— w3)(wg + wy) (W~ wq)
MgaMagtgcetlcg n MgaMagtgetcg 1 %)
(03 +0,) (0} +03)(0F T01)  (0F+03)(0c—w)(wf +w1)] |
|
whereg refers to the ground stata;andc denoteB,, states; =0.755, which corresponds to the transitiohlfgs>
b representsA, states;u;; is the transition matrix ele- —[W¥g >H|\If2A )—[W1g )—|Wgs). Its intensity is about
ment between statesi and j. w,=witw,+w3.  three times that of the first peak. Another small peak is at the

K(—ws;01,0z,03) is a constant Wh|Ch depends on the in- right-hand shoulder of the main peak. Different from the first
cident photon frequencies; ,w,,w3.* 11, 3 represents the peak, it can be shown that this peak results from the finite-
permutation ovemw;,w,, 3. fi is the Planck constant over sjze effect. In the long chain limit, it will disappear. As we
2. increase the length td =12, this peak really goes awasee
Fig. 1(b)]. Compared with Fig. 8), both the first and second
peaks are redshifted. This is due to the fact that the charge
IIl. RESULTS AND DISCUSSIONS becomes more delocalized as the length increases. It is no-

Quite different from many other techniques, such as the

correction vector methotf, the LDMRG algorithm enables 2 b) @ 12

us to calculate the optical responses over the entire frequency 2 128
range, i.e., both at zero and nonzero frequencies, without = 4 wé
repeating the same procedure for each frequency explicitly. o 11¢e

This saves not only CPU time but also the computer memory

space. To have some flavor of the dispersiorypfn Fig. 1 ' 18

we plot the third-harmonic generationsy(—3w)|[=|y 5 © ~
(—3w;w,w,w)|] for four different chain lengths. Here we T 4 2
takeU=2 andV=0.8. For convenience, hereafter, the am- % =

plitudes of| y| are in the same but arbitrary units, so they are
comparable throughout the different figures. The frequency
w is also in units oft. In Fig. 1(a), the lengthN is 10. One

can see three clear peaks in the spectrum, where we intro-
duce a small damping of 0.06 The first peak is atw FIG. 1. Dispersion of the second-order hyperpolarizability. As
=0.318, corresponding to the three-photon absorption due tthe chain length increases, the peaks’ positions redshift and the
the 1B,. The second(also largest peak appears at intensities enhance sharply. Hee=2 andV=0.8.
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FIG. 2. The intensities and positions of two peaks in Fig. 1Srates a similar tendency as shown in Fig. 2.
change with chain length. The scaling behaviorjo€xhibits the ) ) . .
frequency dependence. We would like to verify whether this represents a generic
feature or not. In order to do so, we performed extensive
ticeable that a significant enhancement of intensity withcalculations for different parameters, both with and without
length is achieved. Further increasing the lengtiNte 24  dimerizations, which represent a wide range of conjugated
[see Fig. 10)], we find that the intensity contrast between Polyenes and hopefully cover other linear chains as well. The
these two peaks becomes larger than that-atl0. Besides results are shown in Fig. 4. The used paramétene given
a similar redshift of two main peaks, they move closer, butn the following order:[U, V, J]: (0) [3.0, 1.2, 0.07, (1)
do not overlap even if we increase the chain length up td3.0, 1.2, 0.0; (2) [3.0, 1.8, 0.0T; (3) [1.0, 0.4, 0.0: (4) [3.0,
N=232[see Fig. 1d)]. 1.5, 0.0; (5) [5.0, 3.0, 0.2 (6) [3.0, 1.8, 0.¢; (7) [3.0, 0.6,

To have a clear view, in Fig. 2 we illustrate both the peak0-0l; (8) [3.0, 1.5, 0.04 (9) [4.0, 2.4, 0.1 (X) [2.0, 0.8,
energy(insed and the peak intensity as a functiondfThe ~ 0.0]; (®) [4.0, 2.4, 0.2 To have an easy view, we normalize
filled circles refer to peak Ithe smaller onewhile the filled ~ the photon frequency with respect to their maximal peak
up-triangles refer to peak @he larger ong As expected, frequencies. The figure shows that for different parameters,
both peak energies decrease with the increase of leNgth the dependence of on w changes a lot, but all exhibit a
(redshifting. The smaller peak converges more slowly thancommon tendencyz is inversely proportional to the inci-
the larger one. The gap between these two peaks is 0.15 @ent photon frequencynterestingly, our finding is also sup-
N=32. From Fig. 2, one sees more clearly that both intenported by the previouab initio result$” (see the inset in Fig.
sities | y(—3w;w,w,w)|/N increase sharply upon the in- 4). One notices a similar decrease of the exponent with the
crease of chain length. A fit of these intensities to the powephoton frequency. The full relation can be cast into an ana-
law, N7, is shown in solid lines, where we fingl=4.6 is for  lytical expression,
peak 1 while 3.5 for peak 2. This means that the increment of
the intensity of the smaller peak is faster than that of the 7
larger one although the absolute value of the small peak is
much smaller. To our knowledge, this is the first evidence
that the exponent depends on the photon frequency: a larger
7 corresponds to a smaller frequency.

Up to now, to the best of our knowledge, there have been
very few theoretical investigations addressing the frequency-
dependent exponent, especially in the interacting case,
though many experiments call for4t®**4Understandably,
to calculate these exponents accurately is still a big challenge
to theory, in particular with the presence of the electron cor-
relation. It is advantageous that we are able to do it quanti-
tatively and comfortably within the LDMRG scheme. As al-
ready noted above, we do see evidence of the frequency P T A
dependence of the exponent. The same thing is true for the 0.0 02 04 06 08 1.0
static scaling dependence p§(0)|/[=]v(0;0,0,0)]. For /D
U=2, the results are displayed in Fig@® A polynomial
fitting to the static scaling deg?nder!ce)obn N shows tha,t dependence relation of the exponentNote the photon frequencies
|7(0)| scales as|y(0)|/N=N>% This static exponent is ., are normalized to their respective maximal frequencigs,.
larger than the dynamical exponents of both peaks 1 and Zine used parameters are given in the following orfler:V, 8: (0)
which means the same thing: a smaller frequency leads to@.0, 1.2, 0.0F (1) [3.0, 1.2, 0.3; (2) [3.0, 1.8, 0.0F (3) [1.0, 0.4,
larger 5. For other parameters, suchlds=3, V=1.2[with 0.0 (4) [3.0, 1.5, 0.9; (5) [5.0, 3.0, 0.2 (6) [3.0, 1.8, 0.0; (7)
the static results shown in Fig(l8], we also observe a simi- [3.0, 0.6, 0.¢; (8) [3.0, 1.5, 0.0% (9) [4.0, 2.4, 0.1; (X) [2.0, 0.8,
lar dependence o# on frequency. 0.0]; (®) [4.0, 2.4, 0.2 Inset: the data are from Ref. 22.

FIG. 4. An extensive numerical justification for the frequency-
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b =b/(w+a). This builds up a simple connection between the
n(w)= »ta’ 3 static and dynamic exponents, which gives a way to have an
objective comparison among the experimentally measured
wherea andb are material-specific constantis;is the inci-  scaling exponents. Since our results are obtained within an
dent photon frequency. The physical meaninga ahdb are  interacting model Hamiltonian, the conclusion should be ge-
that the ratiob/a represents the static exponent amdle- neric, at least for low-dimensional systems of our interest.
scribes how quickly the photon frequency affects the expofFinally, we discuss the microscopic conditions of the rela-
nent. ForU=2, V=0.8, we find thata=0.12 andb tion.
=0.61. Experimentally, Puccetét al. obtained»=4.65 at
1.34 um for their series | withbis-donor substitution at the
end* If they can measure another point, one can extract two ACKNOWLEDGMENTS

constants and eventually extrapolate the static exponent.  The author would like to acknowledge support from the
We believe that such analytical expression is useful tQyax-Planck-Institut fu Physik komplex Systeme, in Dres-

eXperimentaliStS. As knOWﬂ, many measurements, eSpeCialH’en’ Germany' where the main part of work was done.
these earlier ones, were mostly performed at one or two

wavelengths, such as 532 and 1064 nm. It is hard to judge

whether they give an objective evaluation of one material. APPENDIX
Quite often, one chooses material by looking for those ex-
hibiting large y.® Unfortunately, such selection neither nec-
essarily ensures a large enhancement of theith chain
length, nor rules out the frequency effect. Thus theory indee

can play an active role here. The above analytical formula (i) For the one-photon states, one can W, to
! . . _ ) dse gs

provides a simple way to_make a direct comparison among. . density matrixp;;, =S, ®;,; (after normalizing

exponents measured at different frequencies and rauonahzgﬁ) Jis the current operatdf. Here one implicitly includes

f’cifr']r e‘i‘gﬁéﬁ{;"‘t"‘iié'?ﬁteo tgscé’l:ﬁts?ﬂ; ’gzg{trznairrfte‘:gg‘i'gﬁdthe weights for all the desired states since the weight itself is

the conclusion should be quite general, at least for tho,sthe amphtut_je o_f the transition matrix element. The beauty of

low-dimensional systems ' &uch targeting is that one surely targets only d|poIe7aIIowed.
X . states because other states contribute a zero weight. This

Flnally, Itis glgo equally important to |.nvest|gate the mi- helps one to avoid the targeting catastrophe. For the two-
croscopic conditions for the above relation. We found that hoton or three-photon states, one usks-J2|W ) or
1 gs

within all our tested cases, for the well-defined peaks, th§3|qf ) to form density matrices. Analogously, we can cir-
gs : '

exponents obey the above relationship very well, but for . i
those ill-defined ones they may behave differently. Here Wec_umvent the targeting catastrophe. If all these states are de

. - = _ Sired, then the whole density matrix is simply a summation
give an exar_nple. Fol=3 andV/Q—OA_, 5._ 0.07, atN_ over them. Note that in any case the ground state must be
=8, a peak is located at=1.2. Its intensity increases with

! ~ L targeted.
Zgglerj E\?g;ht#g Lc;\lljalzszcgﬁsgﬂ;gx %%ereans;is\'lvgrklfs-’”l]?st?slsgl (i) Explicitly targeting states. One uses all the explicit
consequence of the finite-size effect. The chain-length de_lgenstate:s_{\lfiy} 0 form.densny matrices, such s
pendence of hyperpolarizabilities for those ill-defined peakszzv,jwv\l’vjq’vj_- The weightsw, can be ﬂ_le same for all _
hardly fits into any simple picture. Fortunately, these peakdhe states or slightly larger for most significant states. This
are of little interest in practice since their susceptibilities areScheme requires that one explicitly calculates eigenstates
usually too small. Nevertheless, one should be cautious t6¥.}. Through the LDMRG, we are sure that these states

In this appendix, we give some additional details of our
LDMRG scheme, which are very critical to calculate the
ynamical properties. The main point is to effectively target
tates. We recommend two different ways of targeting states.

apply the above relation to those ill-defined peaks. must be.our desired states. In addition, we strongly suggest
that besides the usual Lanczos and Davidson schemes, one
IV. CONCLUSIONS should consider using the asymmetrical shifting diagonal el-

ements(ASDE) method. We find that the ASDE is much
In conclusion, we have explored the scaling properties osuperior to the traditional scheme, in particular when the

the second-order optical hyperpolarizability by the absolute values of diagonal elements are very large.
Lanczos-based DMRG method for the finite polyenes. Our Finally, let us make some remarks on these two schemes.
results suggest that there is a clear dependence of the scali@yir experience shows that schefheusually gives an over-
exponenty on the incident photon frequenay. » becomes all good shape of the spectrum while schefii¢ gives a
smaller asw increases. The static exponent is the maximummost accurate result for a few particular states or peaks. Thus
which one can get for one specific material. The relation canlepending on one’s specific requirements, one may choose
be concisely cast into an analytical expressiomw) (i) or (ii) or combine(i) and(ii).
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