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Frequency dependence of scaling exponents of hyperpolarizability in polyenes: A density-matrix
renormalization-group approach

G. P. Zhang*
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~Received 5 April 1999; revised manuscript received 14 June 1999!

Scaling properties of the second-order hyperpolarizabilityg in polyenes are investigated by the Lanczos-
based density-matrix renormalization-group scheme. The numerical results suggest that the exponenth, char-
acterizing the scaling lawg/N}Nh, is inversely proportional to the incident photon frequencyv. The static
exponent sets the maximum. The full relation can be cast into an analytical expression ash(v)5b/(v1a),
which allows one to directly compare the results measured at different frequencies and objectively evaluate the
nonlinear optical performance of one specific material. The microscopic conditions for this relation are also
discussed.@S0163-1829~99!01540-4#
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I. INTRODUCTION

One of the intriguing properties in the quasi-on
dimensional polymer chain is that the second-order opt
hyperpolarizability g sharply increases with lengthN as
g/N}Nh.1 This greatly motivates many experimental2–6 as
well as theoretical investigations.7–10 The exponenth quan-
tifies the increment ofg per unit and naturally becomes th
focus of many studies. Rigorously speaking, the above s
ing law is only valid for a short chain. For a long chain,h
itself depends on chain length, and in particular saturates
in the thermodynamical limit. Thus, the most meaning
range forh is at lengthN shorter than the saturation lengt
Theoretically,h also depends on the model and parame
used. For a noninteracting model, it is found thatx (3)

}Eg
26 ,11 whereEg is the energy gap. In the interacting cas

the situation is less obvious due to the complicated natur
electron correlation. Moreover, different from the thermod
namical properties, the scaling property of hyperpolariza
ity is rather elegant and should be calculated with a m
sophisticated algorithm. One notices that the first attemp
the symmetrized density-matrix renormalization-gro
method ~DMRG! failed to yield reliable results overN
520.12 Nevertheless, generally one believes thath ranges
from 3 to 8. It should be noted that most of these expone
are calculated at zero frequency. Experimentally,2–6 on the
other hand, they are mostly measured at different nonz
frequencies.13,14 In other words, they are not static. Thu
there is no simple connection between the exponents ex
mentally measured and those theoretically calculated as
photon frequency may play a role here. As noted in vario
experiments,14 this indeed becomes a big practical difficul
to objectively evaluate the nonlinear optical performance
one specific material. Our aim is to bridge this gap and bu
some quantitative relations.

The paper is arranged as follows. In Sec. II, we pres
the theoretical scheme and critically comment on the fail
of the recent DMRG calculations. Section III is devoted
the results and discussions while the conclusion is prese
in Sec. IV. In the Appendix, we explain the details of o
numerical implementations.
PRB 600163-1829/99/60~16!/11482~5!/$15.00
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II. METHODOLOGY

We employ a combined version of the Lanczos iterat
scheme and density-matrix renormalization-group~LDMRG!
method15,16 to investigate the frequency dependence of
scaling exponent of the second hyperpolarizabilities in po
enes. The numerical calculation was done up toN532,
where the scaling properties can be well fitted by the ab
scaling law. Our system is modeled by the one-dimensio
dimerized extended-Hubbard model,17

Ĥ52t(
i ,s

@11~21! id#~ci 11,s
† ci ,s1H.c.!

1U(
i

ni↑ni↓1V(
i

nini 11 , ~1!

whereci ,s
† (ci ,s) is the electron creation~annihilation! op-

erator with the spin orientations(5↑,↓) at site i and ni ,s

5ci ,s
† ci ,s . Hereafter the on-site and intersite interactionsU

andV are in units of hopping integralt, andt is chosen to be
1. Other parameters will be specified later. The half-filli
case is considered. As before, we also use the current op
tor to form the starting vectoru f i&. For theAg states, one
constructsu f i& by applying the current operator onto th
ground state twice~for details, see the Appendix!. 200 states
of the density matrices are kept in each block with the tru
cation error below 1029 and the relative error smaller tha
1022.18

Before we go further, it is worthwhile to make some cri
cal comments on the performance of the standard DM
scheme to calculate the dynamical properties as one alre
noticed its failure before. This helps to understand why
LDMRG can handle the nonlinear optical properties succe
fully. It is known that the usual DMRG is best suited for th
ground-state calculations, while for the excited states it is
straightforward. A seeming reason is that these excited st
lie high above the ground state and the truncation erro
large, but actually as we found, this is not the major orig
The main problem is that one misses one’s targets du
DMRG iterations, or ‘‘targeting catastrophe,’’ while on
cannot easily spot such missing in real calculations. Let
11 482 ©1999 The American Physical Society
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analyze it in more detail. We know that in the ground-st
calculations, one only needs to target the lowest-lying s
and has no difficulty in identifying such a state. However,
the excited-state calculations, this becomes difficult si
with an increase of chain length, quite often those des
excited states move out of and new states move into
original energy window. If one still sticks to one’s origina
way of targeting states and does not preselect the states
tiously, one is very likely to target spurious or irreleva
states of different origins, which ultimately leads to the t
geting catastrophe and the breakdown of calculations. To
best of our knowledge, such failure has never been caref
identified before, but it has already appeared in many of
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recent DMRG calculations.10,12The typical symptom of such
targeting catastrophe is that upon the increase of ch
length, there is a sudden change of either eigenenergy,
relation length, or transition matrix elements. It has taken
quite a long time to figure out how to fix the problem effe
tively, but the answer turns out to be rather simple:Filter out
those irrelevant states beforehand and discriminatingly t
get states~for a complete description, see the Appendi!.
This is the essence of the LDMRG scheme, which ensu
that one will correctly target states by getting rid of nume
ous irrelevant states and avoiding the targeting catastro
Other technical details can be found in Ref. 15.

We use the formula from Ref. 19 to computeg,
g~2vs ;v1 ,v2 ,v3!5K~2vs ;v1 ,v2 ,v3!~2\!23I 1,2,3

3F (
a,b,c

S mgamabmbcmcg

~va2vs!~vb2v12v2!~vc2v1!
1

mgamabmbcmcg

~va* 1v3!~vb2v12v2!~vc2v1!

1
mgamabmbcmcg

~va* 1v1!~vb* 1v11v2!~vc2v3!
1

mgamabmbcmcg

~va* 1v1!~vb* 1v11v2!~vc* 1vs!
D

2(
a,c

S mgamagmgcmcg

~va2vs!~va2v3!~vc2v1!
1

mgamagmgcmcg

~va2v3!~vc* 1v2!~vc2v1!

1
mgamagmgcmcg

~va* 1vs!~va* 1v3!~vc* 1v1!
1

mgamagmgcmcg

~va* 1v3!~vc2v2!~vc* 1v1!
D G , ~2!
the
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e

rge
no-

As
the
whereg refers to the ground state;a andc denoteBu states;
b representsAg states; m i j is the transition matrix ele-
ment between statesi and j. vs5v11v21v3 .
K(2vs ;v1 ,v2 ,v3) is a constant which depends on the i
cident photon frequenciesv1 ,v2 ,v3.19 I 1,2,3 represents the
permutation overv1 ,v2 ,v3 . \ is the Planck constant ove
2p.

III. RESULTS AND DISCUSSIONS

Quite different from many other techniques, such as
correction vector method,20 the LDMRG algorithm enables
us to calculate the optical responses over the entire frequ
range, i.e., both at zero and nonzero frequencies, with
repeating the same procedure for each frequency explic
This saves not only CPU time but also the computer mem
space. To have some flavor of the dispersion ofg, in Fig. 1
we plot the third-harmonic generationsug(23v)u@[ug
(23v;v,v,v)u# for four different chain lengths. Here w
takeU52 andV50.8. For convenience, hereafter, the a
plitudes ofugu are in the same but arbitrary units, so they a
comparable throughout the different figures. The freque
v is also in units oft. In Fig. 1~a!, the lengthN is 10. One
can see three clear peaks in the spectrum, where we in
duce a small damping of 0.05t. The first peak is atv
50.318, corresponding to the three-photon absorption du
the 1Bu . The second~also largest! peak appears atv
e

cy
ut
y.
ry

-
e
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to

50.755, which corresponds to the transitionuCgs&
→uC1Bu

&→uC2Ag
&→uC1Bu

&→uCgs&. Its intensity is about
three times that of the first peak. Another small peak is at
right-hand shoulder of the main peak. Different from the fi
peak, it can be shown that this peak results from the fin
size effect. In the long chain limit, it will disappear. As w
increase the length toN512, this peak really goes away@see
Fig. 1~b!#. Compared with Fig. 1~a!, both the first and second
peaks are redshifted. This is due to the fact that the cha
becomes more delocalized as the length increases. It is

FIG. 1. Dispersion of the second-order hyperpolarizability.
the chain length increases, the peaks’ positions redshift and
intensities enhance sharply. HereU52 andV50.8.
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11 484 PRB 60G. P. ZHANG
ticeable that a significant enhancement of intensity w
length is achieved. Further increasing the length toN524
@see Fig. 1~c!#, we find that the intensity contrast betwee
these two peaks becomes larger than that atN510. Besides
a similar redshift of two main peaks, they move closer,
do not overlap even if we increase the chain length up
N532 @see Fig. 1~d!#.

To have a clear view, in Fig. 2 we illustrate both the pe
energy~inset! and the peak intensity as a function ofN. The
filled circles refer to peak 1~the smaller one! while the filled
up-triangles refer to peak 2~the larger one!. As expected,
both peak energies decrease with the increase of lengN
~redshifting!. The smaller peak converges more slowly th
the larger one. The gap between these two peaks is 0.1
N532. From Fig. 2, one sees more clearly that both int
sities ug(23v;v,v,v)u/N increase sharply upon the in
crease of chain length. A fit of these intensities to the pow
law, Nh, is shown in solid lines, where we findh54.6 is for
peak 1 while 3.5 for peak 2. This means that the incremen
the intensity of the smaller peak is faster than that of
larger one although the absolute value of the small pea
much smaller. To our knowledge, this is the first eviden
that the exponent depends on the photon frequency: a la
h corresponds to a smaller frequency.

Up to now, to the best of our knowledge, there have b
very few theoretical investigations addressing the frequen
dependent exponent, especially in the interacting c
though many experiments call for it.2–6,13,14Understandably,
to calculate these exponents accurately is still a big challe
to theory, in particular with the presence of the electron c
relation. It is advantageous that we are able to do it qua
tatively and comfortably within the LDMRG scheme. As a
ready noted above, we do see evidence of the freque
dependence of the exponent. The same thing is true for
static scaling dependence ofug(0)u/@[ug(0;0,0,0)u#. For
U52, the results are displayed in Fig. 3~a!. A polynomial
fitting to the static scaling dependence ofg on N shows that
ug(0)u scales asug(0)u/N}N5.1. This static exponent is
larger than the dynamical exponents of both peaks 1 an
which means the same thing: a smaller frequency leads
largerh. For other parameters, such asU53, V51.2 @with
the static results shown in Fig. 3~b!#, we also observe a simi
lar dependence ofh on frequency.

FIG. 2. The intensities and positions of two peaks in Fig
change with chain length. The scaling behavior ofg exhibits the
frequency dependence.
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We would like to verify whether this represents a gene
feature or not. In order to do so, we performed extens
calculations for different parameters, both with and witho
dimerizations, which represent a wide range of conjuga
polyenes and hopefully cover other linear chains as well. T
results are shown in Fig. 4. The used parameters21 are given
in the following order:@U, V, d]: ~0! @3.0, 1.2, 0.07#; ~1!
@3.0, 1.2, 0.0#; ~2! @3.0, 1.8, 0.07#; ~3! @1.0, 0.4, 0.0#; ~4! @3.0,
1.5, 0.0#; ~5! @5.0, 3.0, 0.2#; ~6! @3.0, 1.8, 0.0#; ~7! @3.0, 0.6,
0.0#; ~8! @3.0, 1.5, 0.04#; ~9! @4.0, 2.4, 0.1#; (3) @2.0, 0.8,
0.0#; ( ^ ) @4.0, 2.4, 0.2#. To have an easy view, we normaliz
the photon frequency with respect to their maximal pe
frequencies. The figure shows that for different paramet
the dependence ofh on v changes a lot, but all exhibit a
common tendency:h is inversely proportional to the inci-
dent photon frequency. Interestingly, our finding is also sup
ported by the previousab initio results22 ~see the inset in Fig.
4!. One notices a similar decrease of the exponent with
photon frequency. The full relation can be cast into an a
lytical expression,

FIG. 3. The static hyperpolarizability increases more shar
than that of nonzero frequencies for bothU52 and 3. This demon-
strates a similar tendency as shown in Fig. 2.

FIG. 4. An extensive numerical justification for the frequenc
dependence relation of the exponenth. Note the photon frequencie
v are normalized to their respective maximal frequenciesvmax.
The used parameters are given in the following order:@U, V, d]: ~0!
@3.0, 1.2, 0.07#; ~1! @3.0, 1.2, 0.0#; ~2! @3.0, 1.8, 0.07#; ~3! @1.0, 0.4,
0.0#; ~4! @3.0, 1.5, 0.0#; ~5! @5.0, 3.0, 0.2#; ~6! @3.0, 1.8, 0.0#; ~7!
@3.0, 0.6, 0.0#; ~8! @3.0, 1.5, 0.04#; ~9! @4.0, 2.4, 0.1#; (3) @2.0, 0.8,
0.0#; ( ^ ) @4.0, 2.4, 0.2#. Inset: the data are from Ref. 22.
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h~v!5
b

v1a
, ~3!

wherea andb are material-specific constants;v is the inci-
dent photon frequency. The physical meanings ofa andb are
that the ratiob/a represents the static exponent anda de-
scribes how quickly the photon frequency affects the ex
nent. For U52, V50.8, we find that a50.12 and b
50.61. Experimentally, Puccettiet al. obtainedh54.65 at
1.34 mm for their series I withbis-donor substitution at the
end.14 If they can measure another point, one can extract
constants and eventually extrapolate the static exponent

We believe that such analytical expression is useful
experimentalists. As known, many measurements, espec
these earlier ones, were mostly performed at one or
wavelengths, such as 532 and 1064 nm. It is hard to ju
whether they give an objective evaluation of one mater
Quite often, one chooses material by looking for those
hibiting largeg.6 Unfortunately, such selection neither ne
essarily ensures a large enhancement of theg with chain
length, nor rules out the frequency effect. Thus theory ind
can play an active role here. The above analytical form
provides a simple way to make a direct comparison am
exponents measured at different frequencies and rationa
their differences.13 Since the present results are obtain
with explicitly taking into account the electron interactio
the conclusion should be quite general, at least for th
low-dimensional systems.

Finally, it is also equally important to investigate the m
croscopic conditions for the above relation. We found t
within all our tested cases, for the well-defined peaks,
exponents obey the above relationship very well, but
those ill-defined ones they may behave differently. Here
give an example. ForU53 and V/U50.4, d50.07, atN
58, a peak is located atv51.2. Its intensity increases wit
chain length up toN522 and then decreases. Thus, in th
case, even the usual scaling law does not work. This
consequence of the finite-size effect. The chain-length
pendence of hyperpolarizabilities for those ill-defined pe
hardly fits into any simple picture. Fortunately, these pe
are of little interest in practice since their susceptibilities
usually too small. Nevertheless, one should be cautiou
apply the above relation to those ill-defined peaks.

IV. CONCLUSIONS

In conclusion, we have explored the scaling properties
the second-order optical hyperpolarizabilityg by the
Lanczos-based DMRG method for the finite polyenes. O
results suggest that there is a clear dependence of the sc
exponenth on the incident photon frequencyv: h becomes
smaller asv increases. The static exponent is the maxim
which one can get for one specific material. The relation
be concisely cast into an analytical expression,h(v)
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5b/(v1a). This builds up a simple connection between t
static and dynamic exponents, which gives a way to have
objective comparison among the experimentally measu
scaling exponents. Since our results are obtained within
interacting model Hamiltonian, the conclusion should be
neric, at least for low-dimensional systems of our intere
Finally, we discuss the microscopic conditions of the re
tion.
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APPENDIX

In this appendix, we give some additional details of o
LDMRG scheme, which are very critical to calculate th
dynamical properties. The main point is to effectively targ
states. We recommend two different ways of targeting sta

~i! For the one-photon states, one can useF5JuCgs& to
form the density matrixr i i 85( jF i j F i 8 j ~after normalizing
F). J is the current operator.15 Here one implicitly includes
the weights for all the desired states since the weight itse
the amplitude of the transition matrix element. The beauty
such targeting is that one surely targets only dipole-allow
states because other states contribute a zero weight.
helps one to avoid the targeting catastrophe. For the t
photon or three-photon states, one usesF5J2uCgs& or
J3uCgs& to form density matrices. Analogously, we can c
cumvent the targeting catastrophe. If all these states are
sired, then the whole density matrix is simply a summat
over them. Note that in any case the ground state mus
targeted.

~ii ! Explicitly targeting states. One uses all the expli
eigenstates$Cn% to form density matrices, such asr i i 8
5(n, jwnCn

i j Cn
i 8 j . The weightswn can be the same for al

the states or slightly larger for most significant states. T
scheme requires that one explicitly calculates eigenst
$Cn%. Through the LDMRG, we are sure that these sta
must be our desired states. In addition, we strongly sug
that besides the usual Lanczos and Davidson schemes
should consider using the asymmetrical shifting diagonal
ements~ASDE! method. We find that the ASDE is muc
superior to the traditional scheme, in particular when
absolute values of diagonal elements are very large.

Finally, let us make some remarks on these two schem
Our experience shows that scheme~i! usually gives an over-
all good shape of the spectrum while scheme~ii ! gives a
most accurate result for a few particular states or peaks. T
depending on one’s specific requirements, one may cho
~i! or ~ii ! or combine~i! and ~ii !.
*Present address: Max-Planck-Institut fu¨r Mikrostrukturphysik,
Weinberg 2, D-06120 Halle, Germany. Electronic addre
zhang@mpi-halle.mpg.de
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