
PHYSICAL REVIEW B 15 OCTOBER 1999-IVOLUME 60, NUMBER 15
Universal law for piecewise dimer diffusion

F. Montalenti* and R. Ferrando†

INFM and CFSBT/CNR, Dipartimento di Fisica dell’Universita` di Genova, via Dodecaneso 33, 16146 Genova, Italy
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We present a theoretical study of the dissociation-reassociation~DR! mechanism for one-dimensional dimer
diffusion. Through a random-walk calculation we find an exact analytical expression for the jump-length (u l u)
probability distributionP(u l u), and we show that such a distribution is very well approximated, already for
small u l u (u l u*3), by its simple asymptotic formP(u l u)51/(pu l u2). We derive the exact expression of the
time-dependent probability distributionF( l ,t), a quantity which is usually measured in scanning tunneling
microscopy and field-ion microscopy experiments, both in the case in which the dimer diffuses only by the DR
mechanism and in the case in which other mechanisms~such as the concerted jump and the leapfrog! are
possible. This expression is useful in fitting the experimental data. Theoretical and experimental consequences
are discussed.@S0163-1829~99!03239-7#
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I. INTRODUCTION

The knowledge of the single-adatom surface-diffus
mechanisms and energetics is the starting point for more
bitious studies of fundamental technological interest such
thin film and crystal growth.1 Thanks to a great amount o
literature~mainly concentrated in the last decade! the single-
adatom problem for a wide set of surface geometries
chemical species is now deeply investigated. Still, it is s
ficient to consider the smallest cluster, the dimer, in orde
find some important questions which are still open. Inde
the role that dimer diffusion plays in growth processes is
yet fully understood.2

Recently, dimer surface diffusion has attracted a con
erable attention because new diffusion mechanisms were
perimentally discovered and theoretically investigated, b
on metal and on semiconductor surfaces. Indeed, in a s
ning tunneling microscopy~STM! experiment, Borovsky,
Krueger, and Ganz3 discovered a new diffusion path for th
silicon dimer on Si~001!; this mechanism has been theore
cally investigated in a subsequent paper by Goringe
Bowler.4 Concerning metals, Linderothet al.,5 again by
STM, found evidence for a novel diffusion mechanism
Ptn /Pt(110)(132)(n>3), called leapfrog~LF!. The present
authors showed6 that this mechanism is present not only
long-chain diffusion, but also in dimer diffusion, and that
seems to be a common feature of metal dimer diffusion
(110)(132) surfaces.7

In the case of dimer diffusion, the breakup of the dim
into two isolated adatoms~i.e., the dissociation process! must
be considered. Experimental2,8–10 and theoretical7,11–13 re-
sults showed different behaviors depending on the chem
and on the geometry of the systems: dissociation seems
favorite with respect to other dimer diffusion mechanisms
Pt2 /Pt(110)(132),8 Al2 /Al(110),11 and Cu2 /Au(110)(1
32),7 while in Pt2 /Pt(111),2,12 W2 /W(110),9,10,13

AuCu/Au(110)(132), and Au2 /Au(110)(132) ~Ref. 7!
other processes seem to be easier than dissociation. In a
above-mentioned systems, however, the activation barrie
dissociation is higher than the single-adatom diffusion b
rier. Therefore, after dissociation, the two adatoms move
PRB 600163-1829/99/60~15!/11102~8!/$15.00
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a much shorter time scale than the average time betw
breakup events, until they reassociate again. Thus, as
recently observed by Borovsky, Krueger, and Ganz,14 typical
atom-tracking data, at suitable temperatures, would only
veal dimer motion. Hence such a dissociation-reassocia
~DR! mechanism should be considered as an effectivepiece-
wise dimer diffusion mechanism, giving rise toeffective
dimer long jumps.

In this paper we derive the exact expression for the jum
length probability distributionP(u l u) for a dimer diffusing by
the DR mechanism in one dimension. We show thatP(u l u)
decays slowly with the lengthl @P(u l u)} l 22#, so that dimer
diffusion by the DR mechanism is dominated by effecti
long jumps. Then we derive an exact expression for the tim
dependent probability densityF( l ,t). The latter quantity is
usually measured in STM and in field-ion microscopy~FIM!
experiments. Our expression forF( l ,t) contains a single pa
rameter~the dissociation rate of the dimer!; therefore a fitting
of the experimental data by means of our formula would le
to the determination of the dissociation rate, and an Arrh
ius plot of this rate would give the dissociation barrier a
prefactor. We consider also the case in which other mec
nisms are possible besides DR, and show that the behavi
F( l ,t) depends strongly on the competition between DR a
the other mechanisms. In the case of the presence of a s
mechanism besides DR@as it happens, for example, i
fcc(110) unreconstructed surfaces, where DR and conce
jumps ~CJ! are possible#, we show thatF( l ,t) depends on
two parameters, the dissociation rate itself and the ratio
tween the dissociation rate and the rate of the other me
nism. A fitting of F( l ,t) would thus lead to the determina
tion of both rates.

The paper is organized as follows. In Sec. II we derive
exact analytical expression for the effective long-jump d
tribution P( l ) ( l is an integer! induced by the DR mecha
nism in one dimension, and study its asymptotic behavior
Sec. III we calculate the time-dependent probability distrib
tion. In Sec. IV the finite-size effects, caused by the fin
extension of the terraces on the surface, are discussed
the aid of kinetic Monte Carlo simulations. In Sec. V w
11 102 ©1999 The American Physical Society
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PRB 60 11 103UNIVERSAL LAW FOR PIECEWISE DIMER DIFFUSION
consider the diffusion of dimers in real systems, where ot
dimer diffusion mechanisms are competing with DR. Sect
VI contains the conclusions.

II. UNIVERSAL LAW FOR PIECEWISE DIMER
DIFFUSION IN ONE DIMENSION

Let us consider the following problem: a dimer is depo
ited on a metal surface where diffusion, for both the dim
and the single adatom, is mainly a one-dimensional proc
Channeled surfaces where both out-of-channel jumps and
changes are unlikely~for both adatoms and dimers! are
among the systems which satisfy this requirement. Our
is to calculate the dimer jump-length probability distributio
P( l ) which is induced by the DR mechanism. We note th
the other possible dimer diffusion mechanisms~for example,
the concerted jump and the leapfrog! cause only one-site
moves~i.e., single jumps!, whereas the DR mechanism ca
cause, in principle, jumps of any length~see below!.

In order to calculateP( l ), we assume that the dimer dis
sociates at time step 0, so that at time step 1 we have
separated adatoms with one empty cell in between. In
following steps one-site moves of one of the two adato
take place. If the two adatoms reassociate again, thus re
ating a dimer, we consider this situation stable, i.e., the a
toms remain fixed in such position. Note that, on a suita
time scale, this assumption is realistic since dissociatio
usually a much slower process with respect to the sin
adatom moves. The configuration space for the first f
steps is displayed in Fig. 1. Of course, reassociation is p
sible only in an even number 2m of steps. Ifa is the nearest-
neighbor distance, and if the dimer center of mass is ina/2 at
step 0, we ask which is the probabilityP( l ) of finding the
dimer reassociatedl sites away@with its center of mass in
( l 11/2)a]. P( l ) is given by

FIG. 1. All possible configurations reachable by the two a
toms~full black circles! in the first four steps or their random walk
When the dimer reassociates, the corresponding configuratio
removed.
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P~ l !5 (
m5 l

`

Q~2m!p~2m,l !, ~1!

where p(2m,l ) is the probability the two adatoms have
meet each other for the first time in the positionl after 2m
steps. In the following, we define a2m random walkas a
random walk during which the two adatoms do not reasso
ate for the first 2m21 steps and they do associate exactly
the 2mth step.Q(2m) is the probability for the two adatom
to perform such a random walk. Now we calculatep(2m,l )
andQ(2m) independently. First, we considerQ(2m). While
the dimer is dissociated, the relative coordinatexr5x22x1
21 of the two adatoms takes randomly positive values, st
ing from the value 0. At the reassociation,xr returns back to
0. Therefore, this problem is mapped exactly onto the pr
lem of the first return to the origin of a single unbiased ra
dom walker in one dimension. This problem has been
actly solved a long time ago, and we omit any detail~the
latter can be found, for example, in Refs. 15 and 16!. In one
dimension, the random walker comes back to its origi
position with probability 1~Polya’s theorem, for example
see Ref. 15!. Q(2m) reads

Q~2m!5S 2m

m D S 1

4D m 1

~2m21!
. ~2!

Q(2m) is the correct weight for a 2m random walk; now we
look for the probability that the final reassociation occurl
sites away from the initial position, i.e., we concentrate
p(2m,l ). Let us consider the evolution of the center-of-ma
coordinateXG in a 2m random walk. We indicate withR and
L the number of right and left moves ofXG , respectively,
with R1L52m. The total displacement ofXG is n5R2L.
Since the adatoms have the same probability of jumping
the right or to the left, the probability of a 2m random walk
with R moves to the right andL to the left, is simply

p~2m,R,L !5
~2m!!

R!L! S 1

2D 2m

. ~3!

R and L must be both even or both odd, which gives ann
always even. The displacement ofXG is given by the integer
l 5n/2, andp(2m,l ) is given by

p~2m,l !5
~2m!!

~m2 l !! ~m1 l !! S 1

2D 2m

. ~4!

Finally, substituting in Eq.~1!

P~ l !5 (
m5 l

`

8S 2m

m D S 1

4D 2m 1

~2m21!

~2m!!

~m2 l !! ~m1 l !!
, ~5!

where (8 indicates that the sum starts fromm51 when l
50. In our derivation, the evolution ofXG has been treated
as a simple unbiased random walks. Thismodus operandi
may appear obvious, but it must be used with care~for ex-
ample, it is wrong in two or three dimensions!. Indeed, the
evolution ofXG during a 2m random walk is a constraine
random walk. For example, let us consider a 2 random w
after one step, the two adatoms are separated by one e
site. If there was no constraint, at the second step, they c
reach anyone of the four configurations displayed in Fig

-

is



, s
gu
a-
t
o

do
n

d

n

di

mp-

of
for

-
as
ys-

h
an
re-

ly
n

or-
lly
all
e
a
cu-

r
e

11 104 PRB 60F. MONTALENTI AND R. FERRANDO
~II !. Without constraint,XG has the same probability~1/2! to
make a left or a right move at step 2. But in a 2 random walk
only the two moves leading to reassociation are allowed
that a constraint effectively acts by excluding some confi
rations. Still, by weighting only on the allowed configur
tions, it is again true thatXG moves to the right or to the lef
with probability 1/2. It is straightforward to verify that, als
for m.2, such constraint does not influence theXG motion,
which can be correctly treated as a simple unbiased ran
walk. On the contrary, for two-dimensional walkers, the co
straint does not allow us to treatXG as a simple unbiase
random walk.

Let us now inspect, with the aid of Eq.~5!, the asymptotic
behavior ofP( l ) for large values ofl. The key observation is
that all the factorials in Eq.~5! are much greater than 1 i
this limit. Indeed, for every largel, only terms withm@ l
contribute toP( l ) since the probability of reassociatingl
sites away in a number of steps close tol is extremely small.
Simple random-walk considerations suggest that a final
placementl is likely to be reached by 2m' l 2 steps, as con-
firmed by solving numerically Eq.~5! ~see Fig. 2!. Hence
also (m2 l )! @1 and if we consider Eq.~5! with n5m2 l

P~ l !5 (
n50

`
@2~ l 1n!#! @2~ l 1n!#!

~ l 1n!! ~ l 1n!!n! ~n12l !!

3S 1

4D 2(l 1n) 1

2l 12n21
, ~6!

we can replace all the factorials in Eq.~6! by using the
Stirling approximation (l !→ exp(2l)(2pl)1/2l l). A simple
calculation gives

P~ l !→ 1

p (
n51

`
~ l 1n!2(l 1n)

nn~2l 1n!(2l 1n)

3$@n~n12l !#~2l 12n21!2%21/2. ~7!

FIG. 2. p(m,l ) computed from Eq.~4!, for four typical largel
values. Note that the maxima correspond tom5 l 2/2.
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By making an expansion in powers ofl /n, after some calcu-
lations one has

P~ l !→ 1

2pE1

`

expS 2 l 2

x Ddx

x2
'

1

2p l 2
. ~8!

Since for everyl>1, P(u l u)52P( l ), we obtain the final re-
sult

lim
l→`

P~ u l u!5
1

p l 2
. ~9!

This result shows that the DR mechanism causes a ju
length distributionP(u l u) which slowly decays withu l u. We
recall that, concerning adatoms diffusion, the occurrence
double jumps have been experimentally demonstrated
different systems such as Ir/W~110!,17 Na/Cu~100!,18

Pd/W~211!,19 and Pt/Pt~110!(132).20 In some of these sys
tems, an indication of the role played by triple jumps w
given too, but longer jumps could not be analyzed in a s
tematic way, as well as in many molecular-dynamics~MD!
simulations~see Refs. 21 and 22!. This was due to the lack
of longer-jump statistics, because of the quick decay~expo-
nential, see Refs. 23–25! of the single-adatom jump-lengt
probability distribution. On the other hand, dimers can be
ideal system in order to detect long jumps. Indeed, very
cently, Borovsky, Krueger, and Ganz14 could easily observe
in their atom-tracking data on Si2 /Si(001) effective triple
jumps induced by the DR mechanism.

In Fig. 3 the exactP(u l u), as numerically calculated from
Eq. ~5!, is compared with its asymptotic limit. The extreme
simple law given by Eq.~9! gives a very good approximatio
for the P(u l u) already forl *3. The results shown in Fig. 3
and Table I are in fairly good agreement with those of G
inge and Bowler.4 These authors calculated numerica
P( l ), without giving the exact analytical expression. Sm
differences@from our exact results, the 67% of the effectiv
jumps (u l u.0) cause a one-site move, while they find
higher percentage, 71%] may be due to some lack of ac
racy in their numerical calculations.

FIG. 3. Exact probability jump-length distributionP(u l u) ~dia-
monds! given by Eq.~5! compared with its asymptotic behavio
1/(pu l u2) ~solid line!. Only for l .3, significant differences can b
noted.
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PRB 60 11 105UNIVERSAL LAW FOR PIECEWISE DIMER DIFFUSION
The slow decay ofP( l ) has important consequences. A
obvious, all the moments will diverge, and in particular:

^ l 2&5(
l

P~ l !l 25`. ~10!

Does this mean that the DR mechanism forces dimers d
sion to be anomalous? Clearly, the answer is negative. W
out some care in the interpretation of our results, a para
would be produced. Indeed all dimer-diffusion barriers a
higher than the single adatom one, while following Eq.~10!,
dimers diffusion coefficient would be larger~infinite! than
the adatom one. The answer to such paradox resides in
approximation we used to model dimer diffusion, and to fi
the general form forP( l ) @Eq. ~5!#. In particular, we ne-
glected the time spent while the dimer is dissociated. Thi
a good approximation until the number of adatom moves
much less than the ratio between the dimer and the ada
time scale. Let us clarify this point with an example. A2
diffusion on Au(110)(132) is a good example of a syste
where the hypothesis for Eq.~5! is satisfied. In such a sys
tem, following our calculations of Ref. 6, the single-adato
barrier isEj50.31 eV, while the dominant diffusion mecha
nism is leap-frog, with a barrier ofELF50.45eV. So, for
single-adatom diffusion, the typical time-scaletad is given
by nad

21 exp(Ej /kBT), while for dimers tdim

5ndim
21 exp(ELF /kBT). Assuming equal prefactors, the rat

between the two time scales is at room temperature

tdim

tad
'220. ~11!

Since the most important contributions toP( l ) come from
single-adatom random walks of length of' l 2 steps, neglect-
ing the time spent while the dimer is dissociated is wrong
l *15.

III. TIME-DEPENDENT PROBABILITY DISTRIBUTION

Let us construct the time-dependent probability distrib
tion F( l ,t) ~the probability of being at sitel at timet starting
from the origin at time zero! for the dimer. Such observabl
quantity is of main interest, since one of the experimen
ways to investigate the long-jump distribution is to carry
a final displacement analysis~for example, see Ref. 20!.The
problem of findingF( l ,t) for a dimer diffusing in one di-
mension was considered in some pioneering works by E

TABLE I. Exact values forP(u l u) computed from Eq.~5!, nor-
malized on all DR events~second column!, and on nonzero dis-
placements~third column!.

u l u P(u l u) P* ( l )5P(u l u)/@12P(0)#

0 0.3632
1 0.4241 0.666
2 0.0846 0.133
3 0.0360 0.056
4 0.0199 0.031
5 0.0125 0.020
6 0.0086 0.013
-
h-
x

e

the

is
is
m

r

-

l

r-

lich and co-workers.26,27 In these papers diffusion on adja
cent channels onW(211)-like surfaces was investigate
Though the geometry here considered is different~diffusion
occurs in only one channel!, the theoretical treatment is th
same.

The master equation for a one-dimensional rand
walker making jumps of any length with a jump-length pro
ability distributionP(k) is given by

d

dt
F~ l ,t !5r (

k52`

`

P~k!$F~ l 1k,t !2F~ l ,t !%, ~12!

wherer is the total jump rate~in the case of the DR mecha
nism r is the dissociation ratenDi). Multiplying both mem-
bers of~12! by eiql , and summing overl, one obtains

d

dt
F~q,t !5r (

k52`

`

P~k!F~q,t !$e2 iqk21%. ~13!

In Eq. ~13! we introduced the Fourier transformF(q,t)
5( le

iqlF( l ,t). From Eq. ~13!, if the initial condition
F( l ,0)5d l ,0 is imposed, it follows immediately:

F~q,t !5e2 f (q)t, ~14!

where

f ~q!5r(
k

P~k!$12e2 iqk%5r (
k.0

P~ uku!$12 cos~qk!%,

~15!

and P(uku)5P(k)1P(2k). By taking the inverse Fourie
transform of Eq.~14!, one finally obtains

F~ l ,t !5
1

2pE0

2p

cos~ql !

3expS 2rt (
k.0

$12 cos~qk!%P~ uku! Ddq.

~16!

With some calculations, it is possible to write Eq.~16! in
a different way. Let us assume that only single jumps
possible. ThusP(1)51, andP(k)50, kÞ1. Hence we find
the well-known formula

F1~ l ,t !5e2r 1tI l~r 1t !, ~17!

where we introduced the modified Bessel functions

I l~r j t !5
1

2pE0

2p

cos~ql !er j t cos(q)dq. ~18!

It is straightforward to verify that, if only jumps of lengthn
are allowed, then

Fn~nl,t !5e2tr nI l~r j t !. ~19!

As in Eqs.~17! and ~19!, in the following we shall indicate
with Fn the time-dependent probability distribution for
system where only jumps ofn cells are allowed, andr n is the
corresponding jump rate. Let us now consider a syst
where both single and double jumps are possible. We m
ask what is the probability of being inl at the timet, starting
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11 106 PRB 60F. MONTALENTI AND R. FERRANDO
from the origin at the time 0. We divide the real walk into a
possible couples of subwalks made of (l 22n) single jumps
only and of (2n) double jumps only. Each of such couple
would give a contribution toF( l ,t):

F̃~ l ,t !5P1~ l 22n,t !P2~2n,t !. ~20!

By summing over all possible walks of this kind, and usi
Eq. ~19!, one obtains for such single- and double-jump pro
ability distributions28,29

F~ l ,t !5e2t(r 11r 2) (
n52`

`

I l 22n~r 1t !I n~r 2t !. ~21!

By repeating our walk division into sets of subwalks co
posed by jumps of a given length, it should be straightf
ward for the reader to verify that, if jumps of any length a
allowed, then

F~ l ,t !

5e2tr (
n2,n3, . . .52`

`

I l 2(
j 52
` jn j

„rP~1!t…)
k52

`

I nk
„rP~k!t…,

~22!

wherer 5( j r j is the total jump rate.
A method used by the experimentalists to detect lo

jumps ~see again Ref. 20! is to fit the displacements distri
bution F( l ,t) at a given timet with Eq. ~22!, allowing only
jumps of a maximum length~typically only single jumps or
single and double jumps are considered since longer-ju
statistics is poor!. In Fig. 4, we showF( l ,t) calculated from
Eq. ~16! with P(k) given by Eq.~5!, in a typical experimen-
tal situation (rt 53), together with a single-jump probability
distribution fit and a single- and double-jump probabilit
distribution fit. The fit turns out to be poor in both case
even if a certain improvement is achieved allowing dou
jumps.

In systems where DR is the dominant dimer-diffusi
mechanism, Eqs.~16! and~22! can be used in the analysis o
the experimental data, to extract from them the dissocia
ratenDi by fitting the single parameterr of the distribution.
An Arrhenius plot ofnDi would then give the dissociatio
barrier and prefactor. The case of systems where o
mechanisms compete with DR is treated in Sec. IV.

FIG. 4. F( l ,t) for rt 53 ~black solid line1 diamonds!, com-
pared with single-jump~gray solid line 1 squares! and single-
and/or double-jump~black dashed line1 circles! probability distri-
bution best fits. Both fits are clearly poor.
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IV. FINITE-SIZE EFFECTS

In the preceding sections the two adatoms were left fre
move in an infinite lattice. Of course this is not the case i
typical experiment, where terraces, steps, other small c
ters, and isolated adatoms are present. If one of the di
adatoms meets a defect during its random walk, it will
captured by the defect. In order to study the typical effect
a finite lattice on the universal long-jump distributionP(u l u),
we performed a set of Monte Carlo~MC! simulations. In
such simulations, in the initial position the two adatoms a
separated by one lattice spacing, and at every step on
them jumps either to the left or to the right. The simulati
ends when the two adatoms are in the dimer configuratio
when one of them reaches the lattice boundaries. In Fig
results for an infinite lattice are compared with lattices co
posed by 100, 50, 20, and 10 sites. For every lattice,P(u l u) is
calculated by averaging over 106 simulations. As it can be
easily seen, only in the 10-site latticeP(u l u) is significantly
affected by finite-size effects. However, much larger cle
terraces can be obtained by the experimentalists. For
other lattices, in a relevant range of jump lengths,P(u l u)
extracted from MC simulations does not deviate significan
from the values given by Eq.~5!.

V. THE JUMP-LENGTH PROBABILITY DISTRIBUTION
IN REAL SYSTEMS

Equation~16! gives the jump-length probability distribu
tion P( l ) induced by the DR mechanism. This probabili
distribution is universal since we found it under very gene
hypothesis. Very often, in real systems, other dim
diffusion mechanisms must be taken into account too. Le
calculate the explicit form of the probability distributions fo
a real system, where piecewise diffusion is in competit
with another diffusion mechanism~mechin the following!,
for example CJ or LF. As we already remarked, all know
diffusion mechanisms~except DR! for one-dimensional
dimer diffusion cause single-site moves. The frequen

FIG. 5. P(u l u) extracted from MC simulations of dimer diffu
sion on finite lattices. Only for the extremely small 10-unit-ce
~u.c.! lattice, deviations from the infinite lattice are significant.
this figure we did not show the exact values given by Eq.~5!, since
they are perfectly reproduced by the MC simulation for the infin
lattice.
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PRB 60 11 107UNIVERSAL LAW FOR PIECEWISE DIMER DIFFUSION
nmechof themechmechanism is given by the Arrhenius for

nmech5nmech
0 exp~2Emech/kBT!, ~23!

wherekB is the Boltzmann constant,Emech is the activation
barrier for themechprocess, andnmech

0 its frequency prefac-
tor. The frequencynDi of the DR mechanism follows an
Arrhenius form as well

nDi5nDi
0 exp~2EDi /kBT!, ~24!

whereEDi is the activation barrier for dissociation andnDi
0

its frequency prefactor. The total frequencyn tot of a diffu-
sion event~DR or mech! is given by

n tot5nmech
0 exp~2Emech/kBT!

1nDi
0 @12P~0!#exp~2EDi /kBT!. ~25!

The total probabilityPtot(1) for a one-site move is given b

Ptot~1!5$nmech
0 exp~2Emech/kBT!1nDi

0 @12P~0!#

3P* ~1! exp~2EDi /kBT!%/n tot , ~26!

where theP* (k) are normalized on nonzero displacemen

FIG. 6. Deviations ofPtot(1) ~left! and Ptot(2) ~right! as a
function of Emech2EDi for three different temperatures. Whe
mech becomes dominant (a→`), Ptot(1)→1 @and Ptot(1)
2P* (1)→12P* (1)'0.33] and Ptot(2)→0, since the single-
jump contribution becomes fully dominant. On the other hand
DR dominates (a→0), the universal behavior is quickly reache
For k>3, Ptot(k) displays the same qualitative behavior ofPtot(2).
The curves have been computed by assuming equal prefactor
DR andmech.

FIG. 7. Final-displacement probability distributionF( l ,t) plot-
ted for four different values ofa, at a fixed time (n tott53). Note
that the curves fora510 ~triangles! and for a520 ~circles! are
only slightly different, since the single-jump contribution is dom
nant. For small values ofa, F( l ,t) is much more spread out be
cause of the long-jump contribution coming from the DR mec
nism.
P* ~k!5
P~ uku!

12P~0!
. ~27!

By defininga as

a5
nmech

0

nDi
0 @12P~0!#

exp@2~Emech2EDi !/kBT#, ~28!

we find

Ptot~1!5
a1P* ~1!

a11
. ~29!

For ak-sites jump (k.1), the total probabilityPtot(k) is

Ptot~k!5
P* ~k!

11a
. ~30!

Note that for everyk, P* (k) is a universal number, given b
Eqs. ~5! and ~27!. Thus, if Ptot(1) is experimentally deter-
mined in a direct way@as it seems to be possible fo
Si2 /Si(001) ~Ref. 14!#, a is immediately found, by inverting
Eq. ~29!

a5
Ptot~1!2P* ~1!

12Ptot~1!
. ~31!

By making this measure at different temperatures, from
Arrhenius plot ofa @Eq. ~29!#, it is possible to extract the
energy differenceECJ2EDi . Note thata can be obtained by
a final-displacement analysis as well: indeed for everyk,
Ptot(k) only depends ona as a parameter. Equation~16! for
the real system reads

f

for

-

FIG. 8. Though the energy barriers are all of the same order,
opposite sign ofEmech2EDi @greater than 0 for Au2 /Au(110)(1
32), less than 0 for Au2 /Au(110)(131)] causes a very differen
behavior of the two systems: indeed, Au2 /Au(110)(131) follows
the universal behavior, whileF( l ,t) for Au2 /Au(110)(132) is a
single-jump probability distribution. The two curves are comput
for T5165 K, andn tott53.
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F~ l ,t !5
1

2pE0

2p

cos~ql !

3expX2n tott (
k.0

$12 cos~qk!%Ptot~k!Cdq.

~32!

For a given observation timet, onceF( l ,t) is experimentally
determined,a can be found by fitting the data with Eq.~32!.
It is worth noticing that, in principle, once the energy diffe
ence~with the correct sign! Emech2EDi is found, both en-
ergy barriers can be found by making a standard Arrhen
analysis ofn tot at low temperatures, where the mechani
characterized by the lower energy barrier dominates. In
6 the deviations ofPtot(k) from the universal behavio
P* (k) are plotted as a function ofEmech2EDi at three dif-
ferent temperatures, assuming the same prefactor for
processes. The influence ofa on theF( l ,t) shape is inves-
t
in
q

e-

h
he

la

th

e
o

on

og

ar
s

g.

th

tigated in Fig. 7 for a typical valuen tott53. Small values of
a (a→0) represent a system where dissociation domina
while at largea, the single-jump contribution induced by th
mechmechanism increases.

Let us now consider two explicit examples: gold dime
diffusion on both Au(110)(131) and Au(110)(132) sur-
faces. Following our MD results,6 for the unreconstructed
surface the dimer diffusion mechanism competing with D
is CJ, with ECJ50.47 eV, while EDi50.45 eV. On the
missing-row geometry, there are two dimer diffusion mech
nisms competing with DR: LF, withELF50.45 eV, and CJ,
with ECJ50.52 eV, whileEDi50.51 eV. Up to now, we al-
ways considered only one diffusion mechanism compet
with DR. The generalization to two different mechanism
mech1 and mech2 @CJ and LF for Au2 /Au(110)(132)]
competing with DR is straightforward. Indeed, all the resu
we found in this section are still valid, if we generalize th
definition of a to
a5
nmech1

0 exp~2Emech1 /kBT!1nmech2
0 exp~2Emech2 /kBT!

nDi
0 exp~2EDi /kBT!@12P~0!#

. ~33!
.

e

n
nd
the
to

rre-
la-

er-
b-

ith
her

n-
For both systems the energy barriers are quite close, bu
Au(110)(131) dissociation has the lowest barrier, while
Au(110)(132), LF is easier than dissociation. By using E
~32!, where both frequency prefactors (nDi

13158 ps21,
nCJ

13155 ps21, nDi
13254.7 ps21, nCJ

13255.2 ps21, nLF
132

52.5 ps21) and energy barriers are taken from our MD r
sults, we obtain, forT5165 K, for an observation time
n tott53, the final-displacement curves shown in Fig. 8. T
two curves are indeed qualitatively very different. For t
missing-row reconstructed surface,F( l ,t) is dominated by
the single-jump contribution sincea is large (a'60). On
the other hand, the unreconstructed surface almost disp
the universal behavior sincea'0.25.

VI. CONCLUSIONS

In this paper we presented an analytical derivation for
long-jump probability distributionP(u l u) induced by the DR
mechanism on one-dimensional dimer diffusion. We show
that such probability distribution decays with the inverse
in

ys

e

d
f

the jump length squared@for single adatoms,P(u l u) decays
exponentially#. Such law for the probability distribution ca
be experimentally checked both by direct atom-tracking a
by a final-displacement analysis. In systems where DR is
dominant dimer-diffusion mechanism, this analysis leads
the determination of the dissociation rate and of the co
sponding energy barrier. As demonstrated by MC simu
tions, even in presence of surface defects,P(u l u) does not
change significantly in a wide range of jump lengthsu l u. In
real systems, where DR is in competition with other dim
diffusion mechanisms, deviations of the jump-length pro
ability distribution from the universal law are connected w
the activation-energy difference between DR and the ot
dimer-diffusion mechanism.
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