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Universal law for piecewise dimer diffusion
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We present a theoretical study of the dissociation-reassocid@i@hmechanism for one-dimensional dimer
diffusion. Through a random-walk calculation we find an exact analytical expression for the jump-Ighgth (
probability distributionP(|l]), and we show that such a distribution is very well approximated, already for
small || (|I|=3), by its simple asymptotic forn®(|I|)=1/(|1|?). We derive the exact expression of the
time-dependent probability distributio®(1,t), a quantity which is usually measured in scanning tunneling
microscopy and field-ion microscopy experiments, both in the case in which the dimer diffuses only by the DR
mechanism and in the case in which other mechani@ush as the concerted jump and the leapfrag
possible. This expression is useful in fitting the experimental data. Theoretical and experimental consequences
are discussedS0163-182609)03239-7

[. INTRODUCTION a much shorter time scale than the average time between
breakup events, until they reassociate again. Thus, as very
The knowledge of the single-adatom surface-diffusionrecently observed by Borovsky, Krueger, and GHhypical
mechanisms and energetics is the starting point for more anatom-tracking data, at suitable temperatures, would only re-
bitious studies of fundamental technological interest such ageal dimer motion. Hence such a dissociation-reassociation
thin film and crystal growttl. Thanks to a great amount of (DR) mechanism should be considered as an effegtigee-
literature(mainly concentrated in the last decadee single-  wise dimer diffusion mechanism, giving rise teffective
adatom problem for a wide set of surface geometries andimer long jumps
chemical species is now deeply investigated. Still, it is suf- | this paper we derive the exact expression for the jump-
ficient to consider the smallest cluster, the dimer, in order tQangth probability distributioP(|1]) for a dimer diffusing by
find some important questions Whlch are still open. In_oleedme DR mechanism in one dimension. We show Rt |)
the role that dimer diffusion plays in growth processes is noﬁecays slowly with the length[ P(|1])=I 2], so that dimer

yet fully understood. o o . .
Recently, dimer surface diffusion has attracted a consid(—jlfflJSIon by the DR mechanism is dominated by effective

. PR : long jumps. Then we derive an exact expression for the time-
erable attention because new diffusion mechanisms were ex- . . L
perimentally discovered and theoretically investigated, bot ependent probab_lhty densnjz(_l,t). The Iatt_er quantity is
on metal and on semiconductor surfaces. Indeed, in a scaH-Sua”_y measured in STM .and in field-ion mlcrosgc(EyM)
ning tunneling microscopy(STM) experiment, Borovsky, €XPeriments. Our expression fox(l,t) contains a single pa-
Krueger, and Garizdiscovered a new diffusion path for the rameter(the @ssomaﬂon rate of the dimetherefore a fitting
silicon dimer on Si001); this mechanism has been theoreti- Of the experimental data by means of our formula would lead
cally investigated in a subsequent paper by Goringe anéP the determination of the dissociation rate, and an Arrhen-
Bowler* Concerning metals, Linderotlet al,> again by ius plot of this rate would give the dissociation barrier and
STM, found evidence for a novel diffusion mechanism inprefactor. We consider also the case in which other mecha-
Pt,/Pt(110)(1X 2)(n=3), called leapfrodLF). The present nisms are possible besides DR, and show that the behavior of
authors showeétthat this mechanism is present not only in ®(I,t) depends strongly on the competition between DR and
long-chain diffusion, but also in dimer diffusion, and that it the other mechanisms. In the case of the presence of a single
seems to be a common feature of metal dimer diffusion ormechanism besides DRas it happens, for example, in
(110)(1x 2) surfaces. fce(110) unreconstructed surfaces, where DR and concerted
In the case of dimer diffusion, the breakup of the dimerjumps (CJ are possiblg we show thatb(l,t) depends on
into two isolated adatoms.e., the dissociation processust  two parameters, the dissociation rate itself and the ratio be-
be considered. Experimemtdri® and theoreticd*"**re-  tween the dissociation rate and the rate of the other mecha-
sults showed different behaviors depending on the chemistrgism. A fitting of ®(I,t) would thus lead to the determina-
and on the geometry of the systems: dissociation seems to lien of both rates.
favorite with respect to other dimer diffusion mechanisms in  The paper is organized as follows. In Sec. Il we derive the
Pt /Pt(110)(1x2) 2 Al,/Al(110),*! and Cy/Au(110)(1 exact analytical expression for the effective long-jump dis-
x2),” while in  Pu/Pt(111)2*?  W,/W(110)2!%13  tribution P(l) (I is an integer induced by the DR mecha-
AuCu/Au(110)(1x2), and Ay/Au(110)(1x2) (Ref. 7 nism in one dimension, and study its asymptotic behavior. In
other processes seem to be easier than dissociation. In all ti&ec. 11l we calculate the time-dependent probability distribu-
above-mentioned systems, however, the activation barrier fdion. In Sec. IV the finite-size effects, caused by the finite
dissociation is higher than the single-adatom diffusion barextension of the terraces on the surface, are discussed with
rier. Therefore, after dissociation, the two adatoms move omhe aid of kinetic Monte Carlo simulations. In Sec. V we
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OCO0OO0Oe®0OO0Oe0O0o0 . e
0080060000 wherep(2m,l) is the prok_aablll_ty the two ada_\t_oms have to
meet each other for the first time in the positioafter 2m
0008000 @00 yip steps. In the following, we define 2m random walkas a
ot random walk during which the two adatoms do not reassoci-
0C0O0O0O®O0 @000 ate for the first Zn—1 steps and they do associate exactly at
the 2mth step.Q(2m) is the probability for the two adatoms
A to perform such a random walk. Now we calcula@m,|)
cococoeoco0e0O0 andQ(2m) independently. First, we considé&(2m). While
©oceo0o000e00 the dimer is dissociated, the relative coordingte x,— X4
0O0OO0C®e®e®O00O0C0Oo .
6608008000 —1 of the two adatoms takes randomly positive values, start-
0cocOee0000 ing from the value 0. At the reassociatioq,returns back to
cocecoe0o000 0. Therefore, this problem is mapped exactly onto the prob-
OO0 00O e0O0 00 . .. . .
080000 S0 O lem of the first return to the origin of a single unbiased ran-
ccoceoco0eco00 dom walker in one dimension. This problem has been ex-
cecooo0o0000 actly solved a long time ago, and we omit any detéile
0O0O0OO0O®e®00 0O .
6000800600 latter can be found, for example, in Refs. 15 andl 116 one
00000 ® 8000 dimension, the random walker comes back to its original
OO0 ®@00®®0 00

position with probability 1(Polya’s theorem, for example,
see Ref. 15 Q(2m) reads

2m\/1\™ 1

m)(4) (2m—-1)° 2)
(2m) is the correct weight for ard random walk; now we

ook for the probability that the final reassociation occlrs

sites away from the initial position, i.e., we concentrate on

p(2m,l). Let us consider the evolution of the center-of-mass

coordinateXg in a 2m random walk. We indicate witR and

L the number of right and left moves &g, respectively,

with R+L=2m. The total displacement ofg isn=R—L.

Let us consider the following problem: a dimer is depos-Since the adatoms have the same probability of jumping to
ited on a metal surface where diffusion, for both the dimerthe right or to the left, the probability of an2 random walk
and the single adatom, is mainly a one-dimensional proces®ith R moves to the right and to the left, is simply
Channeled surfaces where both out-of-channel jumps and ex- om
changes are unlikelyfor both adatoms and dimersare _ (2m)! (E)

: . ; . . p(2mR,L)= —— . (©)]
among the systems which satisfy this requirement. Our aim RIL! |2
is to calculate the dimer jump-length probability distribution . .
P(1) which is induced by the DR mechanism. We note thatRI andL must be bqth even or both o<_jd, which givesran
the other possible dimer diffusion mechanis(fts example, a_vvays even. The d|§plqcement>o(f; is given by the integer
the concerted jump and the leapfjogause only one-site |=n/2, andp(2m,1) is given by

FIG. 1. All possible configurations reachable by the two ada-
toms(full black circles in the first four steps or their random walk.
When the dimer reassociates, the corresponding configuration is Q(2m)=
removed.

consider the diffusion of dimers in real systems, where othe
dimer diffusion mechanisms are competing with DR. Sectio
VI contains the conclusions.

II. UNIVERSAL LAW FOR PIECEWISE DIMER
DIFFUSION IN ONE DIMENSION

moves(i.e., single jumps whereas the DR mechanism can (2m)! 1)\2m

cause, in principle, jumps of any lengtbee below. p(2m,l)= ﬁ(i) 4)
In order to calculatd’(l), we assume that the dimer dis- (m=Dl(m+D!

sociates at time step 0, so that at time step 1 we have twpinally, substituting in Eq(1)

separated adatoms with one empty cell in between. In the

following steps one-site moves of one of the two adatoms oo, (2m\/1\2™ 1 (2m)!

take place. If the two adatoms reassociate again, thus recre- P(|)—mE:| m (4 (2m—1) (m=DI(m+1)! " 5)

ating a dimer, we consider this situation stable, i.e., the ada-

toms remain fixed in such position. Note that, on a suitablevhereX’ indicates that the sum starts from=1 whenl

time scale, this assumption is realistic since dissociation is=0. In our derivation, the evolution ofg has been treated
usually a much slower process with respect to the singleas a simple unbiased random walks. Thiedus operandi
adatom moves. The configuration space for the first foumay appear obvious, but it must be used with odoe ex-
steps is displayed in Fig. 1. Of course, reassociation is posmple, it is wrong in two or three dimensign$ndeed, the
sible only in an even numbem2 of steps. Ifais the nearest- evolution of Xg during a 2n random walk is a constrained
neighbor distance, and if the dimer center of mass &Mat  random walk. For example, let us consider a 2 random walk:
step 0, we ask which is the probabiliB(l) of finding the after one step, the two adatoms are separated by one empty
dimer reassociatetl sites away{with its center of mass in site. If there was no constraint, at the second step, they could
(I+1/2)a]. P(l) is given by reach anyone of the four configurations displayed in Fig. 1
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FIG. 2. p(m,l) computed from Eq(4), for four typical largel
values. Note that the maxima correspondrte: 12/2.

(1. Without constraintXg has the same probabiliit/2) to
make a left or a right move at step 2. Bata 2 random walk
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FIG. 3. Exact probability jump-length distributioR(|1|) (dia-
monds given by Eq.(5) compared with its asymptotic behavior
1/(w|1]?) (solid line). Only for I>3, significant differences can be
noted.

By making an expansion in powers ldh, after some calcu-
lations one has

o] 1F —1%\dx 1
D=27), ™A~

x2  2q7l2

®

only the two moves leading to reassociation are allowed, so

that a constraint effectively acts by excluding some configuSince for every=1, P(|I|)=2P(l), we obtain the final re-

rations. Still, by weighting only on the allowed configura- sult

tions, it is again true thaXg moves to the right or to the left

with probability 1/2. It is straightforward to verify that, also 1

for m>2, such constraint does not influence ¥g motion, lim P(JI))= —.
. : : rl?

which can be correctly treated as a simple unbiased random !

walk. On the contrary, for two-dimensional walkers, the con-

straint does not allow us to treXi; as a simple unbiased

©

— 00

This result shows that the DR mechanism causes a jump-

random walk.
Let us now inspect, with the aid of E(p), the asymptotic
behavior ofP(l) for large values of. The key observation is

that all the factorials in Eq(5) are much greater than 1 in

this limit. Indeed, for every largé, only terms withms|
contribute toP(l) since the probability of reassociatirig
sites away in a number of steps closd te extremely small.

length distributionP(|l|) which slowly decays withl|. We
recall that, concerning adatoms diffusion, the occurrence of
double jumps have been experimentally demonstrated for
different systems such as Irid10),” Na/Cu100),8
Pd/W(211),* and PY/Pt110)(1x 2).2° In some of these sys-
tems, an indication of the role played by triple jumps was
given too, but longer jumps could not be analyzed in a sys-

Simple random-walk considerations suggest that a final distématic way, as well as in many molecular-dynantietd)

placement is likely to be reached by~1? steps, as con-
firmed by solving numerically Eq5) (see Fig. 2 Hence
also (m—1)!>1 and if we consider E(5) with n=m—|

“ [20+m]2(1+n)]!
P<'>=§o a+m1d+nmint(n+20)!

2(1+n) 1
21+2n—-1"

1

><_
4

(6)

we can replace all the factorials in E¢) by using the
Stirling approximation ' — exp(-I(2#)¥4"). A simple
calculation gives

1« (I+n)2*n

P()——= >,

7 n=1 n"(2l +n)@+N

x{[n(n+2)](21+2n—1)2 12, (7)

simulations(see Refs. 21 and 22This was due to the lack
of longer-jump statistics, because of the quick de@gpo-
nential, see Refs. 23-2%f the single-adatom jump-length
probability distribution. On the other hand, dimers can be an
ideal system in order to detect long jumps. Indeed, very re-
cently, Borovsky, Krueger, and Gatzould easily observe

in their atom-tracking data on SiSi(001) effective triple
jumps induced by the DR mechanism.

In Fig. 3 the exacP(]!|), as numerically calculated from
Eq. (5), is compared with its asymptotic limit. The extremely
simple law given by E@9) gives a very good approximation
for the P(|l|) already forl=3. The results shown in Fig. 3
and Table I are in fairly good agreement with those of Gor-
inge and Bowlef These authors calculated numerically
P(1), without giving the exact analytical expression. Small
differenced from our exact results, the 67% of the effective
jumps (lI|>0) cause a one-site move, while they find a
higher percentage, 71%] may be due to some lack of accu-
racy in their numerical calculations.
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TABLE |. Exact values forP(|I|) computed from Eq(5), nor-  lich and co-workerg®?’ In these papers diffusion on adja-
malized on all DR eventgsecond colump and on nonzero dis- cent channels olW(211)-like surfaces was investigated.
placementgthird column). Though the geometry here considered is differ@liffusion

occurs in only one channelthe theoretical treatment is the
||| P(|||) P*(|):P(|||)/[17P(0)] same.
0 0.3632 The master equation for a one-dimensional random
1 0.4241 0.666 Wa_ll_<er r_nak_lng_jumps of_ any length with a jump-length prob-
5 0.0846 0133 ability distribution P(k) is given by
3 0.0360 0.056 d »
4 0.0199 0.031 G @=r > P({®(I+kt)—d(,0)}, (12
5 0.0125 0.020 k= —e
6 0.0086 0.013 wherer is the total jump ratéin the case of the DR mecha-

nismr is the dissociation ratep;). Multiplying both mem-

bers of(12) by €'9', and summing ovet, one obtains
The slow decay oP(l) has important consequences. As (12) by g

obvious, all the moments will diverge, and in particular: d * .

qP@=r > PR)®(q{e -1} (13
k= —o0

12y=2, P()I?=c0, 10

{5 2 (7= (10 In Eq. (13) we introduced the Fourier transford®(q,t)

_ _ _ . =3,e9d(l,t). From Eq. (13), if the initial condition
Does this mean that the DR mechanism forces dimers d|ffuq)(| 0)= 5, o is imposed, it follows immediately:

sion to be anomalous? Clearly, the answer is negative. With-
out some care in the interpretation of our results, a paradox d(q,t)=e @Y (14)
would be produced. Indeed all dimer-diffusion barriers are
higher than the single adatom one, while following ELp), where

dimers diffusion coefficient would be largéinfinite) than

the adatom one. The answer to such paradox resides in thef(q)=r >, P(k){1—e "% }=r >, P(|k|){1— cogqk)},
approximation we used to model dimer diffusion, and to find K k=0

the general form forP(l) [Eq. (5)]. In particular, we ne- (15
glected the time spent while the dimer is dissociated. This igind P(|k])=P(k)+P(—k). By taking the inverse Fourier
a good approximation until the number of adatom moves isransform of Eq.(14), one finally obtains

much less than the ratio between the dimer and the adatom

time scale. Let us clarify this point with an example. Au 1 (2=

diffusion on Au(110)(1x2) is a good example of a system e(y= Efo codql)

where the hypothesis for E¢5) is satisfied. In such a sys-

tem, following our calculations of Ref. 6, the single-adatom

barrier isE;=0.31 eV, while the dominant diffusion mecha- ><exp< —”go {1~ codak)}P(k]) |da.
nism is leap-frog, with a barrier o, =0.4%V. So, for

single-adatom diffusion, the typical time-scatg, is given (16)

71 . .
by _y Vad expE; /kgT), W_h'le for  dimers  74in _ With some calculations, it is possible to write E@6) in
= vgim €XPELr /KeT). Assuming equal prefactors, the ratio 4 gifferent way. Let us assume that only single jumps are
between the two time scales is at room temperature possible. Thu®(1)=1, andP(k)=0, k+ 1. Hence we find
the well-known formula

Tdim 220 (11)

Tad ) @l(l,t):e7r1t||(rlt), (17)
Since the most important contributions RU) come from where we introduced the modified Bessel functions
single-adatom random walks of length-el? steps, neglect- 1 (2
ing the time spent while the dimer is dissociated is wrong for )y — _J T rit cos()
=15, L(r;t) 5 cogql)ei dg. (18

It is straightforward to verify that, if only jumps of length
. TIME-DEPENDENT PROBABILITY DISTRIBUTION are allowed, then

Let us construct the time-dependent probability distribu- o tral (.
tion ®(l,t) (the probability of being at siteat timet starting ©n(nl, =70l (rjt). (19
from the origin at time zenofor the dimer. Such observable As in Egs.(17) and(19), in the following we shall indicate
quantity is of main interest, since one of the experimentalwith ®,, the time-dependent probability distribution for a
ways to investigate the long-jump distribution is to carry onsystem where only jumps ofcells are allowed, and, is the
a final displacement analys{for example, see Ref. 20he  corresponding jump rate. Let us now consider a system
problem of finding®(l,t) for a dimer diffusing in one di- where both single and double jumps are possible. We may
mension was considered in some pioneering works by Ehrask what is the probability of being inat the timet, starting
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D(,rt=3) 0.2 Jump-length probability distribution (MC simulations)
0.5 T T T T T
—— Exact result 0.15 7,10 u.e. infinite cell —
0.45 - 100 u.c. ---= q
ingle-jump fi 50 u.c. -
—=— Single-jump fit 0.1 0.4 b 20 32 .......... i
10 do s
- »-- Single/Double-jump fit 0.05 0.35
l T + 0 0.3
-10 0 10 -
Final Displacement (1) = 0.25
=1
. ) . 0.2
FIG. 4. ®(l,t) for rt=3 (black solid line+ diamond$, com-
pared with single-jump(gray solid line + squares and single- 0.15
and/or double-jumgblack dashed line- circles probability distri- 0.1

bution best fits. Both fits are clearly poor.

from the origin at the time 0. We divide the real walk into all 0 1 2 3 4 5 6
possible couples of subwalks made bf@2n) single jumps
only and of (4) double jumps only. Each of such couples

would give a contribution tab(l,t): FIG. 5. P(]l]) extracted from MC simulations of dimer diffu-

sion on finite lattices. Only for the extremely small 10-unit-cells
~ (u.c) lattice, deviations from the infinite lattice are significant. In
®(1,t)=Py(I—2n,t)P»(2n,t). (20) this figure we did not show the exact values given by Gy, since
they are perfectly reproduced by the MC simulation for the infinite
By summing over all possible walks of this kind, and usingattice.
Eqg. (19), one obtains for such single- and double-jump prob-

ablllty distribution§8'29 IV. FINITE-SIZE EFFECTS

In the preceding sections the two adatoms were left free to
* move in an infinite lattice. Of course this is not the case in a
d(l,t)=e t1tr2) 2 I _on(rat)1,(rot). (22 typical experiment, where terraces, steps, other small clus-
n=-v ters, and isolated adatoms are present. If one of the dimer
) o adatoms meets a defect during its random walk, it will be
By repeating our walk division into sets of subwalks com-cantred by the defect. In order to study the typical effect of
posed by jumps of a given length, it should be straightfor-y finjte Jattice on the universal long-jump distributiex|!|),
ward for the reader to verify that, if jumps of any length are,, o performed a set of Monte Carl®IC) simulations. In

allowed, then such simulations, in the initial position the two adatoms are
separated by one lattice spacing, and at every step one of
O(l,t) them jumps either to the left or to the right. The simulation

. ends when the two adatoms are in the dimer configuration or
o when one of them reaches the lattice boundaries. In Fig. 5
-€ ”nz,na, ~_ . I|,2T:2jnj(rP(1)t)k1;[2 I (FPCK)D), results for an infinite lattice are compared with lattices com-
posed by 100, 50, 20, and 10 sites. For every lati{d,)) is

(22 calculated by averaging over &8imulations. As it can be
_ _ easily seen, only in the 10-site latti®{|l|) is significantly
wherer =2r| is the total jump rate. _ affected by finite-size effects. However, much larger clean
A method used by the experimentalists to detect longerraces can be obtained by the experimentalists. For all
jumps (see again Ref. 2)(_)3 to f_|t the dlsplaceme_nts distri-  other lattices, in a relevant range of jump lengtRg]1|)
bution®(1,t) at a given timet with Eq. (22), allowing only  ytracted from MC simulations does not deviate significantly
jumps of a maximum lengttypically only single jumps or = f.om the values given by Ed5).
single and double jumps are considered since longer-jump

statistics is poor In Fig. 4, we showb(l,t) calculated from ;" \p 3,\p_| ENGTH PROBABILITY DISTRIBUTION

Eq. (16) with P(k) given by Eq.(5), in a typical experimen- IN REAL SYSTEMS

tal situation ¢t =3), together with a single-jump probability-

distribution fit and a single- and double-jump probability- Equation(16) gives the jump-length probability distribu-

distribution fit. The fit turns out to be poor in both cases,tion P(l) induced by the DR mechanism. This probability

even if a certain improvement is achieved allowing doubledistribution is universal since we found it under very general

jumps. hypothesis. Very often, in real systems, other dimer-
In systems where DR is the dominant dimer-diffusiondiffusion mechanisms must be taken into account too. Let us

mechanism, Eqg16) and(22) can be used in the analysis of calculate the explicit form of the probability distributions for

the experimental data, to extract from them the dissociatiom real system, where piecewise diffusion is in competition

rate vp,; by fitting the single parameterof the distribution.  with another diffusion mechanisitimechin the following),

An Arrhenius plot ofvp; would then give the dissociation for example CJ or LF. As we already remarked, all known

barrier and prefactor. The case of systems where othatiffusion mechanisms(except DR for one-dimensional

mechanisms compete with DR is treated in Sec. IV. dimer diffusion cause single-site moves. The frequency
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P (1)-P*(1) 04 EneenEpi (6V) (v =3, T=165 K)
[ 015 005 005 0.15 - 0.3
—o0k [ 9% ‘ ‘ l e 0
F 0.3 F-0.02
I 0.25 | 0.04 025
02 r 008 —— Au(110)(1X7) - 02
Fo.15 I -0.08 ~&- Au(110)(1X2)
F 01 -0.1 [ 015
r0.05 L.0.12
015 005 008 _~o.150 S0 - 0.1
EqeorEp; (€V) P (2)-P(2) 0.05
FIG. 6. Deviations ofP,(1) (left) and P,,(2) (right) as a
function of E...i— Ep; for three different temperatures. When ‘ ‘ ‘ e 0
mech becomes dominant ao(—®), P (1)—1 [and P(1) 10
—P*(1)—1-P*(1)~0.33] and Py(2)—0, since the single- - -9 0 5 10

jump contribution becomes fully dominant. On the other hand, if
DR dominates &—0), the universal behavior is quickly reached.
Fork=3, P,y(k) displays the same qualitative behavioq§,(2).
The curves have been computed by assuming equal prefactors fi
DR andmech

FIG. 8. Though the energy barriers are all of the same order, the
opposite sign ofE ..~ Ep;i [greater than 0 for AW Au(110)(1
X 2), less than 0 for AW/ Au(110)(1X 1)] causes a very different
BEhavior of the two systems: indeed, Aéu(110)(1x 1) follows
the universal behavior, whiléd (1,t) for Au,/Au(110)(1Xx2) is a

. L . single-jump probability distribution. The two curves are computed
VmechOf themechmechanism is given by the Arrhenius form ¢or 7= 165 K, andw,,t=3.

Vmech™ V%echexq —Emecn/KeT), (23 P( | k|)
wherekg is the Boltzmann constang, .., is the activation * (k)= 1-P(0)° (27)
barrier for themechprocess, and:%echits frequency prefac-
tor. The frequencyvp; of the DR mechanism follows an By defininga as
Arrhenius form as well
=0 —En 0
Voi = oi X~ FoifkaT), 24 o= 5" e ~ (Epear Eoi)/kaT],  (28)
whereEp, is the activation barrier for dissociation ang; vpil1-P(0)]
its frequency prefactor. The total frequengy,; of a diffu- .
sion event(DR or mech is given by we find
Vtot= Vomechexlx ~Emecn/ksT) a+P*(1)
0 Piot(1)= Tarl (29
+vpi[1—P(0)]exp( — Ep; /kgT). (25 a

The total probabilityP(1) for a one-site move is given by For ak-sites jump k>1), the total probabilityP;q(k) is
Piot(1) ={VmecheXM — Emecr/ksT) + vpi[ 1 - P(0)] B0
X P* (1) exp( — Ep; ks T) M viot» (26) Pk =77 (30)

where theP* (k) are normalized on nonzero displacements ) ) )
Note that for everk, P* (k) is a universal number, given by

DLy, t=3) Egs. (5) and(27). Thus, if Py, (1) is experimentally deter-
025 mined in a direct way[as it seems to be possible for
02 |=-a=0 Si, /Si(001) (Ref. 14], a is immediately found, by inverting
0.15 | -#— =1
0.1 |—+a=10 Eq' (29)
0.05|—* 0=20

-10 5 0 5 1,00 a= Ptot( 1) -P* (1) (31)
Final Displacement (1) 1 _ Ptot( 1) .

FIG. 7. Final-displacement probability distributidn(l,t) plot- . . .
ted for four different values of, at a fixed time g t=3). Note ~ BY making this measure at different temperatures, from the

that the curves forr=10 (triangles and for =20 (circles are  Arrhenius plot ofa [Eq. (29)], it is possible to extract the
only slightly different, since the single-jump contribution is domi- €nergy differencé&c;—Ep; . Note thata can be obtained by
nant. For small values of, ®(l,t) is much more spread out be- a final-displacement analysis as well: indeed for eviery
cause of the long-jump contribution coming from the DR mecha-Po¢(K) only depends om as a parameter. Equatigh6) for
nism. the real system reads
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1 (2= tigated in Fig. 7 for a typical value;,;t=3. Small values of
O(l,t)= EJ cogql) a (a—0) represent a system where dissociation dominates,
0 while at largea, the single-jump contribution induced by the
mechmechanism increases.
xexp — viot 2 {1— cogqk)}Po(K) |dg. Let us now consider two explicit examples: gold dimers
k=0 diffusion on both Au(110)(X 1) and Au(110)(X2) sur-
(32 faces. Following our MD resulf$for the unreconstructed

For a given observation timeonced (1, t) is experimentally §urface the dimer diffusion mephamsm competing with DR
determinedg can be found by fitting the data with E@2). 1S CJ, with Ec;=0.47 eV, while Ep;=0.45 eV. On the

It is worth noticing that, in principle, once the energy differ- Missing-row geometry, there are two dimer diffusion mecha-
ence(with the correct SighEeci— Ep; is found, both en-  Nisms competing with DR: LF, witl, =0.45 eV, and CJ,
ergy barriers can be found by making a standard Arrheniuith Ec;=0.52 eV, whileEp;=0.51 eV. Up to now, we al-
analysis ofv,,, at low temperatures, where the mechanismways considered only one diffusion mechanism competing
characterized by the lower energy barrier dominates. In Figwith DR. The generalization to two different mechanisms
6 the deviations ofP,(k) from the universal behavior mechland mech2[CJ and LF for Ay/Au(110)(1x2)]

P* (k) are plotted as a function &,..— Ep; at three dif- competing with DR is straightforward. Indeed, all the results
ferent temperatures, assuming the same prefactor for botlie found in this section are still valid, if we generalize the
processes. The influence afon thed(l,t) shape is inves- definition of o to

_ V?nechl eXF( - EmechL/kBT) + Vomechz EX[X - Emechz /kBT)
vp; exf— Ep; /keT)[ 1~ P(0)]

a

(33

For both systems the energy barriers are quite close, but ithe jump length squareldor single adatomsP(|l|) decays
Au(110)(1x 1) dissociation has the lowest barrier, while in exponentially. Such law for the probability distribution can
Au(110)(21x2), LF is easier than dissociation. By using Eq. be experimentally checked both by direct atom-tracking and
(32), where both frequency prefactorsyf{'=8 ps?, by a final-displacement analysis. In systems where DR is the
v1=5 pst, p2=47pst pL52=52ps?, X2  dominant dimer-diffusion mechanism, this analysis leads to
=2.5 ps'!) and energy barriers are taken from our MD re-the determination of the dissociation rate and of the corre-
sults, we obtain, forT=165 K, for an observation time SpPonding energy barrier. As demonstrated by MC simula-
ot =3, the final-displacement curves shown in Fig. 8. Thetions, even in presence of surface defe@gll|) does not
two curves are indeed qualitatively very different. For thechange significantly in a wide range of jump lengthls In
missing-row reconstructed surfac®(l,t) is dominated by real systems, where DR is in competition with other dimer-
the single-jump contribution since is large (@~60). on  diffusion mechanisms, deviations of the jump-length prob-
the Other hand’ the unreconstructed Surface a|most d|sp|a%)|l|ty diStl’ibution from the UniVersal |a.W are Connected W|th
the universal behavior sinae~0.25. the activation-energy difference between DR and the other
dimer-diffusion mechanism.

VI. CONCLUSIONS
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