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Conservative and dissipative tip-sample interaction forces probed with dynamic AFM
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The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy
(AFM) were investigated using a combination of computer simulations and experimental AFM data obtained
by the frequency modulation technique. In this way it became possible to reconstruct complete force versus
distance curves and damping coefficient versus distance curves from experimental data without using fit
parameters for the interaction force and without using analytical interaction models. A comparison with
analytical approaches is given and a way to determine a damping coefficient curve from experimental data is
proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when
approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experi-
mental data obtained with a silicon tip and a mica sample in UF0163-18209)01839-]

[. INTRODUCTION and molecularily resolved images of thin organic adsorbate
layers'®14 Often in these examples only attractive forces
The tiny forces between a nanometer sized probe andere involved and the FM technigtfewas applied using
sample have been intensively examined since the advent tdrge amplitudes. This technique is chosen here to analyze
atomic force microscopyAFM). As there are numerous ap- and quantify tip-sample forces, but our results can also be
plications of AFM to a wide range of surfaces, the forcesapplied to other AFM techniques.
involved need to be understood in order to give a quantita- In contrast to the case of extremely small vibration
tive interpretation of AFM images. Furthermore, the analysisamplitudes® the theoretical analysis of large amplitude dy-
of the forces is relevant beyond AFM itself: the physics ofnamic AFM is not straightforward. It is not trivial to assign
nanometer sized particles or a tip and their interaction witithe acting forces to the imag&sbecause the forces for each
surfaces are of interest to the fields of cluster physics, enviposition of the tip represent a spacial integral of the pressure
ronmental science, the fabrication of nanostructures etc. acting on the extensions of the tip. In addition, usually only
A variety of different theoretical models describing the the time averaged quantities of the moving ¢gmplitude,
tip-sample interaction were published previously: approacheBequency, etg. are measured experimentally. This means
based on continuum theory take into account attractivehat an integral over one period of vibration has to be con-
forces due to van-der-Waals interactionelectrostatic  sidered. Further, for a given position of the cantilever sup-
interaction® elasticity> and can be set together to contactport the tip moves through a large part of the tip-sample
models with both attractive and repulsive fordage, for  potential during each oscillation cycle, and as the potential is
example, the review by Kger et al*) Atomistic theories nonlinear the mathematical description is a nonlinear prob-
have also been applié®.All AFM techniques are sensitive lem.
to these forces, but only few of them are capable of deter- A force spectroscopy curve can be measured by varying
mining the forces as a function of the separation between the cantilever support distance from the sample while prob-
probing tip and a sample. Contact AFM force-distance meaing properties of the oscillation such as the frequency, am-
surements with soft cantilevers can record the forces of thelitude, or phase. These dynamic force spectroscopy curves
tip-sample interaction accurately. However, due to a meexhibit a strong material contra®t®indicating a sensitivity
chanical instability when approaching a surface, a jump-toto local mechanical properties, which has strong implications
contact of the probing tip occursvhen the force gradient for possible applications. How can the corresponding curves
becomes larger than the spring constant of the free cantilehen be related to forces? A large number of publications
ver. This prevents the determination of the full tip-sampleaddresses the problems under various circumstances. The
potential. On the other hand, for cantilevers stiff enough tachoice of the appropriate mathematical description depends
avoid this jump-to-contact there is a loss of sensitifity. on the different modes of operation. While for the amplitude-
In large amplitude dynamic AFM this jump-to-contact is modulation(AM) technique(also called intermittent contact
avoided by using stiff cantilevers. The cantilever is vibratedmode or slope detectipn numerical methods are
at amplitudes much larger than the interatomic spatiyyg- predominant, rather good analytical descripticisexist for
cally 1-100 nm. Here, the measurement of the correspondthe FM technique. In this report, however, a numerical
ing ac signals can be very sensitive. Due to the reduction ofmethod is used for the analysis of the FM technique, because
friction and lateral forces during the scanning process damef its applicability to any type of force. For example the
age to the tip or surface is minimized. All the advantagessimulation allows a reconstruction of the full force curve
have been impressively demonstrated in a large number @ven in the case of discontinuous curves, as can occur, for
recent publications showing atomically resolved images okxample, on reactive surfacEsEurthermore, the simulation
reactive®? inert!! as well as electrical insulatifsurfaces  turns out to be capable of also including energy dissipation
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effects, which were not considered in previously publishedow the amplitude to decrease slightly due to dissipation
methods. forces by choosing the values of the PI controller appropri-

A property of dynamic AFM often neglected is that not ately. In this case the situation would be more similar to the
only elastic (statig forces are probed but also dissipative constant excitation FM technigd@.The probability of tip
(velocity dependentforces may play a role. These forces canwear or damage may then be reduced. However, for dynamic
lead to strong material contrasts and are relevant to the irforce spectroscopy a strong decrease of the amplitude is un-
terpretation of phase imaging in tapping mode AEM®  desirable for two reasons: Firstly, regions of the potential of
Similarly, in FM-AFM material contrasts can be obtaifed relatively strong repulsion and dissipation may not be
and—as shown below—can be analyzed quantitatively. Thiseached by the tip at all, because further penetration of the tip
opens up a new field of surface analysis for the quantitativés avoided by a faster reduction of the amplitude. Secondly,
determination of material properties on the nanometer scaleéhe effects of conservative and dissipative forces on the DFS
However, some of the underlying mechanisms, such as vissurves are more difficult to seper&tdf the amplitude is
coelasticity are strongly frequency dependent—and in AM-allowed to decrease rapidly with distance. From the theory of
or FM-AFM the frequency varies only marginally around the a simple harmonic oscillator one would expect that in the
free resonant frequency of the AFM cantilever. Other scanFM techniquef responds to elastic forcd$orce gradients
ning probe methods such as scanning acoustic microétopywhile the excitation amplitudé\,,. responds to dissipative
may not be restricted to one specific frequency. forces. In the AM technique and in constant-excitation FM-

In the presence of both, conservative and dissipativédFM, however, this separation cannot be made so easily. In
forces, it is desirable to analyze underlying mechanisms anboth the constant-excitation FM technique and the AM tech-
distance dependencies in order to relate the results to otheique the excitation amplitud®,,is kept constant while the
applications in the field of scanning probe microscopy. vibration amplitudeA is allowed to decay as a result of the

forces acting between tip and sample. This implies that for
analytical purposesof the forces the(constant vibration-
Il. EXPERIMENT amplitude® FM technique is more straightforward, and for

All presented experimental data were obtained undefMagingthe constant excitation-amplitude techniqués/-
ultrahigh vacuum conditions using a commercial instrumenf\FM and constant-excitation-FM-AFMare favorable due to
(Omicron UHV AFM/STM), applying the FM-AFM the av0|d'anc_e' of tip wear. Still, the complex S|tu§1t|on must
technique™® Commercial silicon cantilevers with integrated Nt be simplified too much at this point, especially as all
tips (Nanosensolswere used(resonant frequency around Q|ffer_rentl('§e2(5:hn|ques have been proven equally powerful in
300 kHz, spring constant approximately 40 N/im the FM ~ 'Maging.™
technique the driving signal of the cantilever excitatiper-
formed by a small piezo plates generated through a feed-
back loop. The detector, sensing the cantilever movement,
produces an ac signal, which is amplified, phase shifted, and In order to interpret the experimental force spectroscopy
then used as an excitation signal. The amplification is adeurves a mathematical description of the measurement pro-
justed by a PI controller to keep the vibration amplitudecess has to be found which leads to an expression in terms of
constant. The frequendyof the vibrating lever then varies in conservative and dissipative tip-sample interaction forces. In
response to the tip-sample interaction forces. The force inthis section only conservative forces are considered. Energy
duced shift of the resonant frequenay in the self-excited dissipation will be included in Sec. IV.
loop is used as a control signal to keep the tip-sample dis- The vibration of the lever can be treated as a one dimen-
tance constant while scanning. sional movement. This assumptions holds for weak pertuba-

Dynamic force spectroscop§DFS) with the FM tech- tions of the cantilever movement by tip-sample interactfbn,
nique is the recording of the two distance-dependent variwhich is usually the case in dynamic AFM. In the case of
ablesAf and the gain factoR (proportional to the driving stronger tip/sample interaction as used in scanning acoustic
amplitude A.,) as a function of the displacement of the microscopy* higher flexural modes of the cantilever vibra-
cantilever support towards the sampmle Furthermore, for tion have to be taken into account. Further, the free lever
guantitative measurements the absolute value of the amplbehaves like a harmonic oscillator, i.e., the bending force of
tude A, the Q value of the cantilever far away from the sur- the lever follows Hook'’s law. Although, the theory of elas-
face and the spring constakit have to be determined. The ticity predicts a dependence of the force of the fourth-order
curves were recorded at preselected points of the surfacepatial derivative of the lever deflection, S&fithas shown
which can be explored by standard imaging. The reproducthat for very small deflections as present in AFM Hook’s law
ibility was checked by repeating the measurements. Plastican be restored. With these two assumptions the force based
deformations of the tip or the sample can be detected by aquation of motion yields:
persistent change in the spectroscopy curves.

In the example given below, the Pl controller kept the
amplitude constant to better than 99%. It is important to
check this point experimentally because even deviations of
only a few percent from the set amplitudg can have mea- wherez denotes the deflection of the cantilevetys its ef-
surable effects on the force spectroscopy curves. For eXective mass,3, the damping coefficient of the cantilever
ample, softer PI controller settings can be chosen to improvenotion, andk, the spring constant. The tip-sample interac-
the signal-to-noise ratio. It can even be advantageous to ation force is denoted by, as a function of the absolute

Ill. THEORETICAL TREATMENT

Mets Z(t) + B) 2(t) + K z(t) + Fi[ d+2(t) = F g, d1), (1)
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driving piezo Merr2(t) +ky 2(t) + Fi d+2(1)]=0 5
cantiiexer _* 21 S diz the problem can be treated as a weakly perturbed harmonic
Td oscillator. GiessiBf used a force of the form
I | w
~ Ch
FIG. 1. Scheme, explaining the meaning of the variaklébe F‘S(Z):nzl ~z_“ 6
deflection of the lever d (the lever support distangeand z=z
+d the absolute tip-sample separation. where theC,, are constants, and found for large vibration
amplitudes
tip-sample separatiog=d+z (see Fig. 1 Fey. describes .
the excitation through an actuator-piezo element. Corre- 1 f Cn 1(n)
- : Af(d)=— > — O
sponding to our experimental setkp, . can be expressed by 2n K A2 51 (d—Ag/2)" 2
a mathematical description of a PI controller and feedback 0
loo .
P 1T 1E[2|—3
wi n)= —.
Fexc(t):R'Z(t_tphase) (2 on-1i% i—1
. [t ) , This very useful equation was actually derived by perturba-
with R=Pp[A(t) = Ao] +i ft,:o[A(t )= Aoldt tion theory from a Hamiltonian-function, which is not strictly

equivalent to Eq.(5). The approximation(7) provides an
1 [t , , understanding of the relation aff to the different measure-
=r[ [A) = Ao+ T_mft,O[A(t )~ Ao]dt ] : ment parameter ,A,, andf, as well as the dependence on
different force characteristicss The exponent of the dis-
Here R denotes the loop-gain function. Experimentaly, tance dependence in E€f) is n—1/2 in strong contrast to
can be measured as a function deimultanously with n+1in Eq(4) This is because Ecq7) is an approximation
Af(d). The actual vibration amplitudegpeak-to-peak valye  for large amplitudes while Eq(4) is valid for small ampli-
is denoted byA(t), and A, is the corresponding set point tydes.
value,p andi (or r and 7,;) are the settings of the Pl con-  Alternatively, Eq.(5) can be solved numericaff§result-
troller, tpnaseiS the phase shift. The inverse QfaseiS USU-  ing in a handy andnumerically very fast method, which is
ally set to 3/4 of the actual frequendy=f,+Af, corre-  a convenient way even to simulate whole AFM images with
sponding to a shift ofr/2. similar or better accuracy as compared to & In contrast

For our analysis we solved Eqgd) and(2) numerically,  to the analytic solution given in Ed7), the time averaged
but in order to find an analytical or simpler numerical solu-deflection of the lever due to the mean force can be taken
tion of this mathematical problem simplifications of theseinto account by a numeric solution. In the following section
equations have been made in the literature. Three importanfy A) the solution given in Eq(7) will be compared with
cases of approximative fornj&gs. (3), (5), and(8)] of the  the numerical simulation using the full ansatz of Ed$.and
equation of motion will be discussed below. 2).

It is straightforward to assume that such a self-excited A further step lies in taking into account the excitation of
system always vibrates at its mechanical resonance on whighe cantilever. This can most easily be done by assuming a
the excitation has no influence except for the chosen vibraharmonic driving force
tion amplitude. The role of the feedback circuit then is purely

to compensate for energy losses, and hence both the excita- Moy 2(t) + By 2(t) + Kk, z(t) + F Jd+2(1)]
tion of the lever and the damping fact@r are neglected. If,
in addition, the interaction force is linearized over the range = AexcCOL wexd). (8)

of the tip movement we find Here, the excitation amplitudA.,. (in units of a force is

3) introduced,w,. is the driving frequency—an approximation
for Eq. (2). Again, both analytidSasakiet al,?° or Boisgard
oF (d) et al® derived with the Lagrange formaligrand numeri¢®
s solutions are possible. The vibration amplitude and phase lag
ad can be determined as a function of the driving amplitude and
In this case, a complete and simple analytic expression cafiiVing frequency. The complete resonance curves obtained
be found® for the frequency shift: hereby are relt_avant for the m_terpretatlo_n of both the AM and
the FM technique. For the interpretation Aff(d)-curves
0 obtained with the FM technique the resonance condition has
Af(d)= 5 kis(d) for Af<fo. (4)  to be found with the requirement that the vibration amplitude
! Ais equal to its set poim,. This makes the numerical effort
The validity, however, is restricted to the case of very smallquite similar to solving Egs(1l) and (2) directly. A simple
vibration amplitudes. solution similar to Eq(7) cannot be given for Eq8). The
By introducing a nonlinear but conservative tip-sampleresonance curves obtained by solving ER). exhibit strong
interaction force into the equation of motion distortions from the simple harmonic case when a strong

Metr 2(t) + (K +kes) 2(1) =0,

where kis=
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section input data output data  results / possibilities
3 .. . .
A > ~ « conservative interaction mechanism
2 F’s (Z ) imulati « point of first contact
§ > —>51mu ation Af ( d) . dependel}ce on parameters )
o parameters: + comparsion with analytic expressions
& :
(] f 0 k( ’ Av Q J
2
N
<
£ | B ) .
3 Af (d) imulati - comparison elastic
g — | simulation | g (7) | | vitmodels | material
53 parameters: constants
Jorkn AQ |
F (2) 3 TS . .
C —> & « dissipative interaction mechanism
1162 simulation Af (d) « influence of dissipation on spectros-
w > —_— > copy curves
= 8 parameters: R@)/P@@)|] * relationsllip R(d) with P(d) and
% 8 fovkpA’Q with 7(2)
g) [heet 7 « comparsion with analytic expressions
£g
I
E‘ 45 elastic
O 9 D Af (d) F (’Z") comparison material
@ ] . imulati s with models constants
£E| | L] | [ravr)| s e
parameters: 7(2’) Ez:f;;i
fO’ k[ ? A’Q constants

FIG. 2. Schematic overview of the cases involved in the different sections.

force interaction is involved. This is in agreement with ex-z(t) is obtained by simulation, it is possible to analyze an-
perimental observations. 33 Hysteresis effects can be seen harmonicity, contact time¢see also Tamayet al??), etc.
depending on the direction of the frequency sweep, the maxiFurthermore, the model assumptions can be reduced to a
mum of the amplitude curve becoming flat. Hence, bistabili-minimum.

ties appear in the resonance curves and, depending on how Therefore, we choose to solve Eq) directly including

this bistability is accounted for, results can Véiy theoreti-  the form of a PI controller as in E¢2). In our simulation the
cally calculated DFS curves. values of the PI controller have been selected to reproduce

In the experiment using the FM technique the self-excitedna pehavior of the experimental setup. They are atput
feedback loop guarantees that the lever always vibrates at its 104 N/m, i=0,06 N{ms), leading to a time constant of

mechanical resonance. The definition of resonance for aStar}'pi=1.GT3 ms. The differential equation was solved using
dard driven harmonic oscillator is the maximum of the reso-

. 4 . _
nance curve, which is equal to a phase lagréf. Under the the Verlet algorithn?* All input parameters can be deter

influence of nonlinear interaction forces, however, the reso[mned experimentallyAq, ki, B, fo, p, andi. Hence, the

nance condition is more complicated. The phase lag betweetP€Ctroscopy curved\f(d) and the corresponding force
excitation and vibration is fixed by the feedback loop andcurvesFs(z) can be related to each other with no further
determines the resonance condition. This becomes importagssumptions and no fit parameters.
when distorted resonance curves appear. Hence, the analysis
using Eq.(8) promises a deeper understanding of the com-
plicated situation. IV. RESULTS AND DISCUSSION

Regarding all the different examples listed above, we find ) ) . )
a whole range of theoretical approaches to choose from for In the four following sections, different cases are consid-
further analysis. Clearly, with increasing complexity of the €red, which are illustrated in Fig. 2. In Sec. IV Acanser-
equation of motion the corresponding solutions become les¢ative model forcas fed into the simulation. Based ax-
intuitive. The analytical approaches given in Eg.and(7)  perimentalAf(d) data a force vs distance curve is calculated
allow a clear insight into the dependence of the frequencyuantitatively with the help of the simulation in Sec. IV B. In
shift on different parameters. The apparent drawback oSec. IV C, again, anodel forceis used but this timenergy
clumsy simulation approaches is counterbalanced by theilissipationis included. Finally, in Sec. IV Bexperimentally
extreme flexibility. In fact, different types of forces can be determined energy dissipation rates are used for a quantita-
introduced easily, such as dissipative forces, discontinuousve determination of thelissipative forceslongside conser-
forces, or adhesion hysteresis. As the complete trajectoryative forces.
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-A/2 (nm)

FIG. 3. Computer simulation using Eqél) and (2) with the  portant to separate absolute forces and repulsive forces act-
parametersfy=300 kHz, A=20 nm (peak-to-peak Q=20000 ing on the asperity only’ This can be done by simulta-
andk; =40 N/m. The force stems from the MYD/BHW-model for neously plotting the contact radius which might be extracted
Ay=3X10""° J (Hamaker constapnt »=0.42 (Poisson ratid E  form the evaluation of the model force
— 1 : : — .
=1.74x10"! Pa (elastic modulus of tip and sampland Ry, =20 Our example shows that the transition from attractive to
nm in a _sphere-plate geometr@ CaICUIatedM(d)'curve.’ (b) repulsive total forces takes place on the branch of increasing
force acting between tip and sample at the reversal point of th?/alues of Af (with respect to approach of the tip to the
oscillation cycle for eachd, (c) contact radius at lower inflection sample 36 Wwhilst the transition to repulsive forces on the
point, (d) mean deflection of the levétime averaged Thed axis N e .

: o : . asperity of the tiglindicated by a contact radius greater than
was shifted byAy/2 giving the absolute tip-sample distance at the 0) glregdy takes%lace on theybranch of decreaging values of
inflection point approximately. ) ) - .

P PP y Af(d) [see Fig. &)]. It is thus not appropriate to assign an
A. Model calculations: Conservative forces operation in the regime of falling values aff(d) to pure

A result of the simulation with a conservative model force &ttractive forces. Our results are in agreement with calcula-
i 1,8 although their calculation was

is given in Fig. 3. The tip-sample interaction force curve istions by Hdscher et a . : .
taken from the Muller, Yushenko, Dergaguin/Burgess,based on a different tip-sample interaction force and integra-
Hughes, White(MYD/BHW) model®® This model is based tion method. Hence, we do not expect strong deviations of
on continuum theory considering long-range attractive andhis result when using other model forces for the tip-sample
repulsive contact forces. For the numeric evaluation of th&ontact(e.g., a force derived from atomistic theory with a
force curve the pressure distribution between tip and sampl¥dn-der-Waals background , .
was derived from a Lennard-Jones potential. The elastic re- !N @ddition to the force, the mean deflection of the canti-
sponse of tip and sample was also considered. The total fordgVer as obtained by averaging the oscillation signal in time,
is then calculated by integration of the pressure function ovefS Plotted in Fig. &d). For the chosen magnitude of force
the tip ared. ampll_tude an_d spring constant the absolute defle_cn_on _values
Typical experimental values were chosen as input parar€main marginal. FO( an analytical approgch this indicates
eters for the simulation of the spectroscopy curve. Solvinghat We need to consider the mean deflection as a small cor-
the equation of motioril) and (2) for these values leads us rection only. o ,
to a Af(d)-curve as depicted ifia). The general shape of The curves plottedin this case of pure elastic forgedo

known experimental curves can clearly be recognized. Th8°t depend on the chosen values of the PI controller once the
simulation, however, allows an extraction of much more in-Préset amplitude is reached and kept constant. We also
formation about the system. checked for the influence of the paramet&sA,, k,, and

At first, the force that acts between the tip and the sampléhe discretion of the time variablkt. We found that there is
at the reversal point of the oscillation cycle as a functiod of Virtually no dependence of the resulting curve@ror j,).

is plotted in Fig. 80). This allows us to assign set point The dependence oA, andk; maiches the predictions of
values of Af (chosen for scanning surfage® the forces Giessibf® within a few per cent for sufficiently large ampli-
acting. For the interpretation of the forces it is important totudes-At has to be chosen greater than 1/(&)01t ranges
know the contact radius in addition to the mere value of thd"™m 1/(100G,) to 1/(400G,) in our examples.

forces, because the force for a given separation of tip and Finally, we compare our results to the analytical formula
sample is given through integration of the pressure acting ofiVen in Eq.(7). The result is shown in Fig. 4. As a trial
different parts on the tip.The forces acting on the tigpex force we chose Fi(z)=C,z >+C3z % with C,=5

are most important for the imaging process while attractivex 1072 m?N and C3=4.8x10 % m®N, which is of the
contributions of the rest of the tip form a background. Forform of Eq. (6) and hence, Eq.7) can be applied. The dif-

the interpretation of the imaging process it is therefore im-ference in terms of absolute numbers seems to be rather large
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(some percent in the region far from the surface and some 100
ten percent near the surfacdut when looking at the two

curves in Fig. 4 we find a rather good qualitative agreement 0
between the numerical method using Ed$.and(2) and the .
analytical expression given by E(). In contrast to this, the z
solution (4) is far from giving a comparable result. 5

B. Determination of force distance curves -200 - -
from experimental frequency shift curves PR PR PR T T
- 2 3
d-A/2 (nm)
———

In the paragraphs above we only considered the case 15
where a conservative force curve is given from which a I
Af(d) curve was calculated. However, the experiment pro- 10
vides onlyAf(d) curves, while the determination of corre-

spondingFs(2) is desired. The calculation d%,(z) from

measured\ f (d)-curves—thanverseproblem—is the key to
the quantitative analysis of DFS. This is a further aspect of ]
the choice of an appropriate theoretical model which has not sl J
been mentioned abov@ Sec. Ill). Except for the analytical P R
solution in Eq.(4) there is no straightforward way to solve i
this inverse problem. One possibility is to use an expansion
into a power series with Eq6) and numerical fitting of the
Af(d)-curves using7). The numerical solution of Eq%1)

Fs (NN)

1 n 1 n 1 n
3 4 5 6
(nmy)

1
2
z

FIG. 5. The experimentaAf(d) curve is given in(a) and the

and (2) can also be used with an algorithm based on thé:alculatedFts(E) curve is given in(b). As the amplitudg is kept
constant the normalized axis- A,/2 for (a) corresponds ta in (b)

iteration of the variation (.)FtS(Z) until the simulateds f(d) denticaI with the force acting at the lower inflection point. The
curve matlches.the experimental one. We developed a SPECIYe asurement/simulation parameters dggr296 593 Hz,A,=32
algorithm?® which allows us to perform such a calculation nm (peak-to-peak Q=22815, andk,=40 N/m. The simulation
with our simulation method in a relatively time saving way g carried out with an accuracy of 0.05 Hz with regard to the

(only five to ten times the calculation time required for theexperimentaIAf(d) curve (smoothedl and a step widthAd=2.7
noninverse problem As in similar mathematical problems a w«1g-11 m.

numerical variation method is applied: a trial force curve o
F.(2) is chosen, a\f(d) curve calculated, from the devia- plate approximation of van-der-Waals forces. We used the

tion of the resultingA f(d) curve with respect to the experi- Well known equatiofi F,qu(z) = ARy, /(62°) and a tip ra-
mental one a new trial force curve is derived and so on. Ouflius Of Ry =20 nm (manufacturer information Fror_nlgms
algorithm is optimized by omitting the variation of whole W€ obtained a Hamaker constant &§=1.2x10""" J
force curves. Instead the independent variable divided ~(*50%) in agreement with our expectations for the two
into small steps\d. This discretion is undertaken anyhow in Kinds of material involved. Introducing the same tip radius
the experimental procedure, hence, no information is lost ifloW into the Dbest fit for the repulsive branch with
comparison with the experimental input dat&(d). Further-  Fpen(2) = (—2) ¥Ry, /K (Hertz model gives us a reduced
more, even discontinuousf(d) curves, which have already elastic modulusk =10 Nm~2(+100%, which is of the
been observed experimentafty*® can be used in the simu- expected order of magnitude. However, the applicability of
lation method. the Hertz model is limited in this case due to the fact that
The force curves are determined without any model asmica has no homogenous elasticity.
sumptions concerning the properties of the tip-sample inter- For both fits the choice of the origind&0) becomes
action force. All input parameters and the force spectroscopyelevant. The experiment and the simulation can give only
curveAf(d) can be readily determined from the experiment,relative measures of the tip-sample displacement, the abso-
and there are no fit parameters necessary to obtain a corlite tip-sample separation can only be estimated up to an
plete Fo(2) curve. For theinterpretation of the resulting ~accuracy of about 210 *°m in this case. The choice of the
force curves, however, in terms of Hamaker constants, elagrigin in the chosen example was made through analogy with
tic moduli, etc. contact models and tip shapes have to bgontact modefsand led to the best fits to the models.
taken into account. For example: the repulsive part of the With the example it becomes clear that the quantitative
calculated force curve can be fitted with a curve expecte@nalysis of DFS has a high-analytic potential. By determin-

from the Hertz-model. Examples of different experimental NG all properties of tip and sample, which are experimen-
curves of various surfaces are given in a previous p&per. tally accessiblgelastic constants, tip shape, contact potential

An example for the calculation is given in Fig. 5. We took difference, etg. it might even be possible to examine the
an experimentah f(d) curve[Fig. 5(a)], which was obtained contact mogels themselves, as the calculation method to de-
on a mica surface. The calculated force curve is shown iiermineFs(z) is independent of specific model assumptions.
Fig. 5b). It is a complete curve which exhibits the long-
range attractive part as well as the short-range repulsive part. ~ C- Model calculations including energy dissipation
We fitted the attractive region and found the best fit using @a et us now include dissipative tip-sample forces in our
distance dependence 2, which corresponds to a sphere- consideration. Although in dynamic AFM the tip usually
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moves at apparently “slow” velocitiegless than 1 mjs
dissipative forces leading to energy loss of the movement are
a very important factor in the tip-sample interaction.

In a first order approach one can regard our system as a
sinusodially driven simple harmonic oscillator. Then we ex-
pect for small damping effects that damping merely influ-
ences the amplitude of the vibration, or in the FM technique
the excitation amplitude necessary to keep the vibration am-
plitude constant. In this model the frequency shift is only
influenced by conservative forces. This separation of elastic
and dissipative forces is to be verfied in this section.

The mathematical expression for energy dissipation or
dissipation forces depends on the underlying mechanism. For
small velocities we chose a simple form

n [,
o

o

O W oo =
(81940 / A®)

o

———r———
excitation amplitude -

Fas(z,2)=v(2)2, 9) T

) ) . 05 00 05 10 15 20
where the force is a function of the absolute position be- d - A/2 (nm)

tween tip and sample and proportional to the cantilever ve-

locity. This ansatz is justified for many different dissipation ~ FIG. 6. Computer simulation using Eqél) and (2) with the
mechanisms such as electronic dissipéﬁoor simplified ~ same parameters and the same force as in Fig. 3 but with an addi-
models of viscoelasticity of the sampfebut becomes more tional dissipative force(given in the text (a) Af(d) curve, (b)
complex if adhesion hysteresis, capillary hysterésisy ~ A(d)-curve,(c) energy dissipatiorirate) curve P(d), and(d) exci-
more complicated descriptions of viscoelastitityare in-  tation amplitude curvéie,(d).

cluded.
In a model calculation we simulatedAs (d) curve, as we Pld)= mk f(d) A%(d) [R(d)  f(d) 11
did in the pure elastic case, with the same conservative B 4Q Ry fo |’

model force, but now assumed an additional dissipative force . . .
of the form of Eq.(9) with whereR, is the gain factor for the cantilever far away from

the surface. In this equation, we use the gain faR(@) [see
_ Eq. (2)] rather than the excitation amplitude. This is because
Y= YoexpEXA — 2/2p), (100 with regard to the signal-to-noise ratio in the experiment it is
easier to calculate the excitation amplitude by multiplying
Yoexps @ndzy being constants. This ansatz of the dampingthe gain factor with the vibration amplitude of the lever than
coefficient for the experimental situation describes the decato measure it directly. The formula can be easily checked by
of the dissipative force with distance when tip and sampleapplying it to the simulation data in Fig. 6. In the simulation
are out of contact, and at the same time reflects the rise dhe actual dissipation power
damping effects with increasing repulsive contact. The result _ . _
of the simulation is depicted in Fig. 6 wheref(d), A(d), P(t)=F3s] z(t),z(t),d]- z(1), (12
the time averaged dissipation pow(d) and A.,{d) are
plotted. The corresponding curves for the case without en
ergy dissipation were given in Fig. 3. By comparing Fitg)3
and Fig. &a) we find that there is only little influence of the
energy dissipation on th&f(d)-curves. The small influence
can be accounted mainly to the small decrease of amplitud
(up to 0.2% through energy dissipation and can be neglecte
in this case. However, for cases of larger dissipation rate
and cases where the settings of the Pl controller allow
stronger decrease of the amplitude, the influence of ener

dissipation on the frequency shift has to be ConSIOIereOI_adhesion hysteresis is generated for the first time within a

topic of further investigation. The dissipation rate shownd namic force spectroscopy curve. a discontinuity in the
here is of the order of experimental data obtained with theya P Py ' y

AM technique on silicor?® However, we expect a larger dis- P (d) curve should occur. At the same time thé(d) curve,

sipation rate on polymer sampl&gspecially when using the whic_h would show an averaged effect of approach .and re-
FM technique. traction force curve, should not be mathematically differen-

In order to determine the dissipation power from experi-tiable- Careful experiments are needed to adress the analysis

mental data it is possible to use some fundamental equatiorf @dhesion hysteresis in more detail. N _

as used also for intermittent contact mode AFM by Cleve- N the example(Fig. €) the damping coefficient function
land et al>® and Anczykowskiet al!® modified for the FM  ¥(2) is related to the dissipation functid?(d) by means of
technique. We find for the power dissipated by the tip-the computer simulation. An expression ffd) can also be
sample interaction averaged over one period of vibration derived analytically with appropriate approximations. The

is to be averaged over one period of the oscillation. The
deviation of the curve determined with E(L1) from the
curve determined directly in the simulatipRig. 6(c)] is less
than 0.05%. This indicates that Ed.1) can also be applied
experimental data. In simulations not shown here we
ound that Eq(11) can even be used to calculate the energy
osses due to adhesion hysteresis effects. In the case of ad-
esion hysteresis effects being present we would expect a
ifferent qualitative behavior in the experimental curves
om the ones shown in this report. At the point where the
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actual dissipation powdiEqg. (12)] has to be averaged over 40— T T T T3
one period of the oscillation. Assuming a harmonic move- 0 a) experimental data 1
ment, this calculation can be carried out analytically for a g fgg 3 ,%f 105
dissipative force as given in Eq&) and (10), and we find S b ] 0_02
(see Appendix A < ok 1~
AT A T T T S TR o)
A d 200 57— P (ﬁm) 3 5 6
=1.| P 2 _ — — - 0.8
P(d) |1< Z ApZOw 706xpexﬁ{ Zo) ’ (13) 1;15 - b) energy dissipation in J
) . ) ) %10 [ experiment and simulation o's_ul
wherel is the modified Bessel function of first order. The 5 | c 0 Joag
approximation given in Eq(13) was compared quantita- % 5 Ell.’) 1023
tively with the simulation[Fig. 6(c)] and an agreement of o ol 1
PR BT EE BRI e aernes warm dat v nes wa v BLUAY
better than 98% was found. o5 o5 05 70 5
d {nm)
[ T v v 1 v 1 v 1 v 1
D. Determination of conservative and dissipative forces 5| C) reconstructed forces Jos
from experimental data = . L ] 2
[ —Fe £
Finally, we consider the case where DFS curves are given fw oF 005
experimentally while conservative and dissipative forces are [ ] 3
to be determined. As the effects of conservative and dissipa- S (') — é — ; 5 08
tive forces are only weakly couplgdee Sec. IV ¢ a varia- % (nm)

tion method similar to the one described above for the pure
elastic calculatior(see Sec. IV Bcan be applied.
As an example we consider again the measurement on

FIG. 7. Calculation based on the experimental data as used in
Eig. 5 for a mica surface. The experimenii(d) curve is given in

: : : . (a) together with the experimental energy dissipation rate curve
mica samplelFig. 5). The experiment provided a curve for P(d) [calculated using Eq11)]. In (b) P(d) curves are given for

R(d), which was recorded.SImUItar].e?us'y Wm_f (9)’, and the experimental casé) (smootheg, the trial function obtained by
from these curves a damping coefficient functigfz) is to  he algorithm in Appendix Bii), and the curve after variatiii ).

be determined. As a first step, tR¢d) curve can be trans- |n (c) the calculated force curves are plotted which were derived
lated into a curve of the dissipation powey;s(d) using Eq.  from the experimental data with the simulation method. The con-

(11). Then, thisP4;s{(d) curve can be related to a dissipation servative force as well as the damping coefficient cuy(®) [cor-
coefficienty(z) in a similar way as described above for the responding tdiii) in (b)] are shown.

calculation of the conservativé,i(z) from Af(d) (Sec.

IV B). As the corresponding algorithm may become numeriwhen compared to the one in the purely elastic calculation.
cally unstable it is desirable to have an approximate trialThis is in accordance with the above results with weak en-
function y(z) determined by an analytical method or an in- €rgy dissipatior(Sec. IV Q, but might differ in other experi-

dependent numerical algorithm. mental situations.
Assuming a harmonic movement of the cantilever and a The results of the calculation are shown in Fig. 7. In Fig.

dissipative force of the form of Eq9) the problem can be 7(a) the experimental data is shoa f(d) and P(d)]. In
solved analytically, ify is of the form of Eq.(10) or of the  Fig. 7 (b) the experimentaP(d) curve is shown together
form: . : . . : ~
with a simulated one using a trial function foi(z) from
Appendix B and an optimizeg(z) curve. In Fig. Tc) the

FUs8Z,2)= yn(2) - 2 calculated tip-sample interaction forces are shown, the con-
servative parf(z) as well as the damping coefficient func-
Yon tion y(2), after variation. It is hereby shown that a quantita-

with y,(2)= =, n=0,1,2... . : ; . R
n(2) (z)" 2 tive calculation of conservative and dissipative forces from

) ) ) o B experimental data is possible. As can be seen from the cal-

The results are given in Appendix A providing explicit for- ¢ated curves the damping coefficient rises rapidly when the
mulas for the corresponding functioRs(d), n=0,1,2... .  gyrface is elastically deformed. Besides this strong damping
Howevgr, these funct|0ns_ are difficult _to handle for a seriegy, the contact regime a significant amount of damping takes
expansion. Therefore, a simple numeric approach outlined if|5c¢ in the attractive region. This could originate in the
Appendix ? was chosihere to determine the desired tri reation of image charges in the tip induced by thermally
function y(z) from the P(d) curve. The corresponding dis- fiyctuating charges or residual static charges on the mica
sipative force was inserted into our simulation and the calsyrface. Similarily to the conservative forces we expect the
culation ofF.¢(z) from Af(d) was done as described above, damping coefficienty(z) to be a superposition of several
but this time thia energy dissipation was calculated simultazntributions originating from different mechanisms.
neously. They(z) function was varied until the simulation  Although better experimental data is needed for a more
reproduced the experiment(d) curve satisfactorily. detailed analysis, the proposed technique opens the perspec-

As the energy dissipation is comparatively small there isive of a quantitative analysis of dissipative forces and the
only a negligible difference of the determin&g(z) curve  underlying mechanisms.
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V. SUMMARY elastic moduli and others, alongside with imaging surfaces at

. ultimate resolutions.
In summary, dynamic force spectroscoFS) based on

the FM technique can be used for the quantitative analysis of
the tip-sample interaction forces, which is a step towards the
absolute evaluation of material properties and the verification |t is a pleasure to thank D. Kger, D. Pohl, U. D.
of tip-sample interaction models. Computer simulations ofSchwarz, H. Hischer, and U. Freking for fruitful discus-
the cantilever movement enable us to relate interaction forcesions and encouragement.
to frequency shifts and, in addition, energy dissipation rates.

With the use of model calculatioriSec. IV A) the point APPENDIX A: ANALYTIC WAY TO OBTAIN  y(Z)
of first contact on approaching the oscillating probe to the
surface was determined to be close to the minimum of the The energy dissipation rate as a function of the DFS pa-
Af(d) curve. This is in strong contrast to predictions based@meters is calculated for simple forms of damping coeffi-
on simplified models stating thatf (d) is proportional to the ~ cient curvesy(z).

ACKNOWLEDGMENTS

force gradient. An analytic formula given by GiesdMeads For a dissipative force of the form
to a good agreement with the simulation. dise~ - .
With the reconstruction metho@Sec. IV B complete Fo*(z,2)=yn(2) -2

conservative force-distance curves were determined without
fit parameters. Possible applications lie in the verification of ~ Yon
contact models or the quantitative determination of material ¥n(z,d)= " n=0172...
constants such as the elastic modulus or the Hamaker con-
stant. The latter carries information specific for the materialwe find for the energy dissipation rate
An example is given for a mica sample. _ . _
The energy dissipation can easily be calculated from the P(t)= Fﬂ'ss[z(t),z(t),d]-z(t).
experimental data with a simple analytic formula Efl),
which was verified by the simulatiofBec. IV Q. The dissi-
pation rate is of interest for the experimentalist to estimate
the influence of the tip on the sample and vice versa. Energy
dissipation is introduced into the simulation using model
data (Sec. IV Q and experimental datéSec. IV D. It is
shown that the entanglement of conservative and dissipatiige can now calculate the mean dissipation power by solving
forces in terms of their mutual effect on frequency shifts andhe integral
loop gain factors is small in the examples given. However,
generalization for cases of much larger dissipation rates re-—— o (27 (7 7’0n(—w/°~p)25in2wt
quire further investigation. P(d)_ﬂjo |P(t)|dt_;f0 (d+A,coswt)"
To relate the experimental energy dissipation rates to po-

Assuming a harmonic cantilever movement

z(t)=A, coswt

z(t)=— oA, sinwt

sition dependent damping coefficient functiop&) differ- :w_zAz,n f 7 sirfx o

ent methods can be applied. For some general forms of the 7 e Yo d e
~ . . . L — +COoSX

y(z)-function analytic expressions of the dissipation rate are Ap

derived(Appendix A). An approximatey(z) function can be
calculated using a simple numeric algoritiigppendix B).
This algorithm can be applied to more complicated forms of (—2)n-t an—2 n-2 (n—l)

This integral can be solved analytically, for-1 we find®

y(z)-functions. Finally, using the computer simulation a P(d)=w?A>"" yo,
guantitative determination of this damping coefficient func-

1-n (@-1)7% VZO v

tion is possible by a reconstruction meth@ec. IV D) simi- 2n—4—uv
lar to the one used for conservative forces. o I (a®-1)",

As an example, a/(~z) function was determined from ex-
perimental data obtained on a mica sam@ec. IV D. The  where we introducea:
example shows that a quantitative analysis of energy dissi-
pation is possible even in the regime of purely attractive d d?
forces. From this a comparison with theoretical models is a= -+ Kz_l-
possible, allowing us to evaluate corresponding material con- P P
stants. Forn=0, we have explicitly

To conclude, DFS can now be used for the quantitative
evaluation of material properties and the interpretation of E— w27’ooA,23
AFM images. Thus DFS may establish a method for the Pd)=—7—.

determination material constants such as Hamaker constants,
electronic conductancdthrough electrostatic forces and which is equivalent to the intrinsic damping of the cantilever
through electronic energy dissipatjomiscoelastic constants, [compare with Eq(11)], and
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— L, A, Ap fi=fo+Af(d)
P(d)=0yp—=o Yor 5 for n=1,
a d . d . with d=dy—i-Ad, i=0,...m.
Ap A;‘; The entire movement of the tip can be regarded seperately on

the intervals

(do—A2—jAd)<z<[dg—A2—(j—1)Ad], j=1,2,..m.

ﬁ‘ma

P(d)=w?ye, —1| for n=2. A denotes the peak-to-peak value of the oscillation ampli-
R tude. If the functiony(z) is defined as constant on these
A small intervals
The solution of simple power laws of the form v(z)= Y
dissS oy _ SN ~
Fr*%z2)=von'(2)"2, n=0,12... for (dg— A/l2—jAd)<z<[dy— Al2—(j—1)Ad],

can be obtained accordingfalso resulting in a closed ex-

pression, but it is more useful to look at a dissipative force of j=12,..m (Bl

the form then the dissipation power on this interval can be approxi-
- mated by
P Z .
Fg;(sps(zazad) = Yoexp’ EX[{ - Z_O) - Z, Pij _ Yi Adz, (B2)
wherez, is the decay length. Here we find a mean dissipa- (At)
tion power of 1 [AR-(G-j)Ad].
where tijZRaFCSI{T}IZJBO

— (A d
P(d)=I 1(2_:) ApzowaOexpexp( - Z—O>. (A1)

I, is the modified Bessel function of first order.

and Atij:ti(j+l)_tij .
For the time averaged dissipation power we find:
i—-1 i—-1 (Ad)2

_ _ o _ P(di)=2f; >, PyAt;=2f; >, Vi AL
In this appendix the energy dissipation rate as a function =0 =0 |
of the DFS parameters is calculated numerically for any formyhich can be solved foy, successively for=1,2,...m.

APPENDIX B: NUMERIC WAY TO OBTAIN ‘y(E)

of damping coefficient curves(z). This method produces a trial functidA(d) only. The
The experimental force spectroscopy curve is given inapproximation in Egqs(B1) and (B2) are not used in the

stepsi. We can then define simulation described in Secs. IV C and IV D.
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