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Contour dynamics, waves, and solitons in the quantum Hall effect

C. Wexler and Alan T. Dorsey
Department of Physics, University of Florida, Box 118440, Gainesville, Florida 32611-8440

~Received 5 May 1999!

We present a theoretical study of the excitations on the edge of a two-dimensional electron system in a
perpendicular magnetic field in terms of a contour dynamics formalism. In particular, we focus on edge
excitations in the quantum Hall effect. Beyond the usual linear approximation, a nonlinear analysis of the shape
deformations of an incompressible droplet yields soliton solutions which correspond to shapes that propagate
without distortion. A perturbative analysis is used and the results are compared to analogous systems, like
vortex patches in ideal hydrodynamics. Under a local induction approximation, we find that the contour
dynamics is described by a nonlinear partial differential equation for the curvature: the modified Korteweg–de
Vries equation.@S0163-1829~99!13339-3#
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I. INTRODUCTION

The theoretical description of many-body systems is of
best realized in terms of collective modes, i.e., the fami
sound waves in solids or plasmons in charged systems.
lective modes become especially important when their e
gies are lower than competing single-particle excitatio
Sometimes, however, both single-particle and collect
modes in the bulk of a system are gapped or scarce and t
systems are often referred to as ‘‘incompressible.’’ This
compressibility can be real or a convenient limit due to la
differences in relevant length or time scales, as in the cas
the macroscopic motion of a liquid. Under these conditio
one can usually focus attention on the motion of thebound-
aries of the system, which will generally have softer mode
with frequencies much lower than those in the bulk~e.g.,
surface waves in a liquid droplet travel at speeds consi
ably slower than sound waves!.

Concentrating on the motion of the boundary of the s
tem has a considerable advantage: the reduction in the
mensionality of the problem often permits simpler analyti
treatment, or a tremendous reduction in the effort neede
numerically solve or simulate the problem. Associated w
this incompressibility, however, one usually finds micr
scopic conservation laws that translate into global constra
on the whole system, even when the microscopic dynam
is completely local~e.g., the volume of a liquid droplet i
conserved!. These global constraints enter the edge dynam
through Lagrange multipliers associated with the conser
quantities.1 These conservation laws are often evident wh
the motion of the system is observed, and it is interesting
see how they are embedded in the dynamics of the bound
that is, how these essential aspects of the problem are re
to the laws of motion of the edges.

These shape deformations, and their dynamics, hav
played an important role in the understanding of numer
problems in diverse fields of physics. The incompressibi
is reflected in the existence of a field which is piecew
constant, so that there is a sharp boundary between tw
more distinct regions of space with different physical pro
erties. This field can be of classical origin like the density
a liquid or the charge density of a plasma, or it can origin
PRB 600163-1829/99/60~15!/10971~13!/$15.00
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in the quantum-mechanical properties of the system, like
magnetization of a type-II superconductor. There are vari
examples where these questions are relevant, such as w
on the surface of a liquid,2–4 the motion of non-neutra
plasmas,5 low-lying ‘‘rotation-vibration’’ modes of de-
formed nuclei,6 the evolution of atmospheric plasma clouds7

pattern formation in ferromagnetic fluids,8 vortex patches in
ideal fluids,9–12 and two-dimensional electron system
~2DES’s! in strong magnetic fields.13,14

The edges of a two-dimensional electron system, and
particular the edges of a quantum Hall~QH! liquid, present a
unique opportunity to study the dynamics of shape deform
tions in a clean and controlled environment. The 2DES in
QH state is incompressible, so that the electron densit
approximately piecewise constant, suggesting that a con
dynamics approach to studying the droplet excitations is
able. The lack of low-lying excitations eliminates dissipati
effects, further simplifying the treatment of the problem.
addition, the charged nature of the system facilitates the
citation and detection of deformations of the droplet.

In this paper we will formulate the study of the excitatio
of a droplet in a 2DES as a problem in contour dynamics
the usual treatment of the edge excitations,13 a linearization
of the equation of motion is done at early stages, thus lim
ing the applicability to small deformations of the edge of t
system from an unperturbed state. In this paper we cons
nonlinear terms which are present in the full contour dyna
ics treatment. We first present perturbative results for n
linear deformations of the 2DES shape. For the sake of c
parison, and as means of verification, we also apply
method to the vortex patch case, which has well-kno
exact9 and numerical11 solutions. We then show that the loc
induction approximation to the full contour dynamics gen
ates the modified Korteweg–de Vries~mKdV!15 equation for
the curvature dynamics; the mKdV equation also arises
studies of vortex patches12 and suspended liquid droplets4

The mKdV dynamics conserve an infinite number of quan
ties, including the area, center of mass, and angular mom
tum of the droplet,16 so that our local approximation to th
nonlocal dynamics preserves the important conserva
laws. The mKdV equation also possesses soliton solutio
including traveling wave solutions.
10 971 ©1999 The American Physical Society
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In Sec. II we present a brief review of the hydrodynam
of a two-dimensional electron system in a strong perpend
lar magnetic field and analyze the bulk and edge excitati
in the linear approximation. Sections III and IV and analy
in more detail the dynamics and kinematics of these e
modes, and ask what conditions must be satisfied so th
large edge deformation is able to travel without any disp
sion, that is, preserving its shape. The question is pose
terms of a nonlinear eigenvalue problem and is solved p
turbatively to fifth order in the deformation in Sec. V~for
completeness, we also solve the analogous problem of vo
patch deformations in Appendix B!. Some solutions and lim
iting cases are then presented in Sec. VI. An alternative
proach to find nondispersive or invariant deformations of
edge, namely, thelocal induction approximation, is devel-
oped in Sec. VII, where results are also compared with
perturbative approach of Secs. V and VI.

II. HYDRODYNAMICS OF A TWO-DIMENSIONAL
ELECTRON SYSTEM

Consider a 2DES in a perpendicular magnetic fie
Treated as a classical fluid, the system is characterized b
electron densityn(r ) and velocityv(r ). If we neglect dissi-
pative effects~which is essentially correct in the quantu
Hall regime!, the dynamics is determined by the Euler a
continuity equations:

v̇[
]v

]t
1~v–“!v

52vcez3v2
e2

mee
“E d2r 8

n~r 8!

ur2r 8u
1

e

me
Eext, ~1!

] tn1“•~nv!50, ~2!

where vc5eB/me is the cyclotron frequency ande is the
dielectric constant of the medium. The first term on the rig
hand side of Eq.~1! represents the Lorentz force, the seco
is the Coulomb interaction, andEext is the electric field due
to the background positive charge, gates, etc.

Consider first the possible bulk collective excitations in
uniform system. These are oscillations of the density aro
the equilibrium solutionv50, n5n̄. If we consider small
amplitudes and Fourier analyze Eqs.~1! and~2!, we find that

H v~r ,t !5v0eik–r2 ivt,

dn~r ,t !5
n̄

v
k–v0eik–r2 ivt,

~3!

v25vc
21

2pn̄e2

mee
k, ~4!

that is, bulk magnetoplasmons are gapped, and in the
regime can be neglected since\vc;17 meV;200 K at B
510 T ~in GaAs!, whereasT;1 K. We will disregard them
from now on and concentrate on the excitations at the e
which, as we shall see, have considerably lower energie

The theory of small deformations of the edge has b
extensively studied.17–20 The main conclusion is that fo
strong magnetic fields, when Landau-level quantization
comes important, the only low-lying modes are edge mo
s
u-
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which propagate in only one direction along the edge of
2DES. We further classify these modes into the ‘‘conve
tional’’ edge magnetoplasmon mode, with a singular disp
sion relation:17

v0~k!522 lnS e2g

2ukau D n̄e2

emevc
k, ~5!

wherek is the mode wave number,g'0.5772 is the Euler
constant, anda is a short-distance cutoff~the largest of the
transverse width of the 2DES, the magnetic length, or
width of the compressible edge channel!. In addition, for
wide compressible edges, ‘‘acoustic’’ modes can be foun

v j~k!52
2n̄e2

emevcj
k, j 51,2, . . . . ~6!

These results are approximately correct as long as ine
and confining terms are negligible. The first requires t
n̄e2/emea!vc

2 , which is usually true in quantum Hal
conditions.20 In addition, the effects of the confining poten
tial have been neglected. While the confining potential
essential for long-term stability and is usually not negligib
when compared to interactions, its effect is mainly reduc
in the simplest cases, to an additionalvextk term in the fre-
quencies, where the external velocity is given by

vext52
e

mevc
ez3Eext. ~7!

Recent time-of-flight measurements21 in 2DES confirm this
simple picture. The theoretical formulation above, howev
is restricted to small deformations of the boundary. In wh
follows we will consider a formulation that goes beyond th
limitation.

III. DYNAMICS OF THE EDGE MODES

Consider the case when the edge between bulk
vacuum is sharp. The electronic density has some cons
value n̄ inside the edge and vanishes outside~see Fig. 1!.
Since the edge is essentially one-dimensional only the e
magnetoplasmon is important~and even in more genera
cases this mode is the most readily observable17,21!. Follow-
ing the derivation of the edge magnetoplasmons17,20 we ne-

FIG. 1. A charged incompressible liquid in a magnetic field. W
assume a piecewise constant electron density (n5n̄ inside, while
n50 outside the droplet!. The parametrizationR(w,t), the tangent
t, and normaln unit vectors to the boundaryG are indicated;s is the
arc length andu the tangent angle.
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glect inertial terms in Eq.~1!, thus obtaining an equation fo
the electronvelocity:

v„r …52
e2

emevc
“3ezEA

d2r 8
n~r 8!

ur2r 8u
1vext, ~8!

whereA is the area of the droplet~see Fig. 1!.
Let us now concentrate on the ‘‘internal’’ velocity give

by the first term in Eq.~8!. We should note that the neglecte
external velocityvext derived from the confining field@Eq.
~7!# is important for long-term stability of the system, an
will modify the propagation velocity. In general, it could als
change the shape of the modes, yet one can devise situa
in which this effect is not important, i.e., a linear confinin
potential in a rectilinear infinite edge, or a parabolic poten
for a circular droplet.

For an incompressible 2DES with a piecewise const
density, the density can be taken outside the integral; t
using Stokes’ theorem, the area integral can be transfor
into a line integral over the boundaryG5]A of the electron
liquid:

v„r …5
n̄e2

emevc
R

G
ds8

t~s8!

ur2r ~s8!u
. ~9!

Here t(s8) is the unit tangent vector at arc lengths8:

t~s8!5]s8r ~s8![r s8 ,

n~s8![2ez3t~s8!, ~10!

and we defined the unit normal vectorn(s8) for later use.
The short distance singularity in the integrand is cut off a
length scaler 0 . Equation~9! forms the basis of our contou
dynamics treatment—it expresses the velocity of the edg
terms of a nonlocal self-interaction of the edge.

We see that~i! the dynamics is chiral, being determine
by the tangent vector; and~ii ! the fluid contained withinG is
incompressible, so that the area is conserved. It is interes
to note similar traits were found in the past for the dynam
of vortex patches;9–12 indeed, it is this analogy which in
spired the present work. A detailed description of the vor
patch case, and stressing the similarities and differences
the shape deformations of the 2DES are presented for c
pleteness in Appendix B.

IV. KINEMATICS OF UNIFORMLY PROPAGATING
DEFORMATIONS

Having determined the velocity of the electron liquid, w
now focus on the motion of the 2DES boundaryG. The ve-
locity of a point on the boundary can be written in terms
the normal and tangential components,

v5U~s!n1W~s!t. ~11!

The tangential velocityW(s) is largely irrelevant, as it solely
accounts for a reparametrization of the curve; the bound
motion is determined by the normal component of the vel
ity.

We now ask whether there are modes which propag
along the boundary with no change in shape. Previ
work17 has focused on small perturbations of a straight, in
ons

l

t
n

ed

a

in

ng
s

x
ith
m-

f

ry
-

te
s
-

nite edge. Here we consider deformations of a circular dr
let of incompressible electrons~the nonlinear deformation o
a straight infinite edge is discussed in Appendix F!. A uni-
formly propagating mode is, in this case, characterized b
boundary that moves like a rotating rigid body~see Fig. 2!,
namely, the radius of the boundary satisfies

R~w,t !5R~w2Vt !, ~12!

where w is the azimuthal angle, andV is the angular fre-
quency of the boundary rotation. This translates into a c
dition for thenormal velocity:

U[n~r !•v~r !urPG5Vn~r !•~ez3r !. ~13!

We seek surface shapesR(w) ~see Figs. 1 and 2! that
rotate uniformly, satisfying Eq.~13!. Consider the following
parametrization of the surface:

R~w!5R0S 11 (
l 52`

`

ble
il wD . ~14!

In this parametrization, we can write the unit tangent vec
explicitly as

t~w!5
t~w!

ut~w!u
, ~15!

where

t~w![
]r ~w!

]w
5erR8~w!1ewR~w!. ~16!

Likewise, the unit normal vector is given by

n~w!52ez3
t~w!

ut~w!u
. ~17!

Given the identityr sds5rwdw, the normal velocity of the
boundary, derived from Eq.~9!, can be written as

U~w!5
n̄e2

emevc
E

0

2p

dw8
n~w!•t~w8!

uR~w!2R~w8!u
, ~18!

while inserting Eqs.~16! and ~17! into Eq. ~13! yields

FIG. 2. A uniformly propagating edge deformation. The boun
ary satisfiesR(w,t)5R(w2Vt).
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U~w!5Vn~R!•~ez3R!52
iV

ut~w!u F(l
lb le

il w1(
l

(
p

l

2
bl 2pbpeil wG . ~19!

We seek frequenciesV and coefficientsbl that satisfy Eqs.~18! and~19!. The solutions to thisnonlinear eigenvalue problem
represent edge modes that propagate without any dispersion.

V. SOLVING THE NONLINEAR EIGENVALUE PROBLEM—PERTURBATIVE APPROACH

Unfortunately, it has not been possible to solve exactly the nonlinear eigenvalue problem forbl andV as written in Eqs.
~18! and ~19!. We therefore seek a perturbative solution by expanding the right-hand side of Eq.~18! in powers ofbl . This
allows us to to go beyond the linear approximations used in the past, and we have succeeded in calculating shape de
to O@bl

4# and angular frequencies toO@bl
5#. Expanding the nonlinear eigenvalue problem to fifth order, we find the cond

ṼS bl1
1

2 (
p

bl 2pbpD 5Qlbl1(
p

Rl 2p,pbl 2pbp1(
p,q

Sl 2p,p2q,qbl 2pbp2qbq1 (
p,q,r

Tl 2p,p2q,q2r ,rbl 2pbp2qbq2rbr

1 (
p,q,r ,s

Ul 2p,p2q,q2r ,r 2s,sbl 2pbp2qbq2rbr 2sbs1O@bl
6#, ~20!
sio

he

o
he

e-

nd

u-
e
to
where

Ṽ5
emevcR0

n̄e2 V, ~21!

and the ‘‘matrix elements’’Q, R, S, T, andU are obtained
from Eq. ~18! in Appendix A.

Since the equation to be solved results from an expan
in powers ofbl , it is sufficient to solve Eq.~20! perturba-
tively, by expanding in powers of the largest coefficientbL .
Let us assume that

bl5H O@d#, for l 56L,

O@d2#, for lÞ6L.
~22!

We then consider an expansion of the coefficientsbl and
eigenvalueṼ in powers ofd:

bl5H bL
(1) , for l 56L,

bl
(2)1bl

(3)1¯ , for lÞ6L
~23!

ṼL5ṼL
(0)1ṼL

(1)1ṼL
(2)1¯ , ~24!

where b(k) and Ṽ (k) are of orderO@dk#. By substituting
expressions~23! and ~24! into Eq. ~20!, and grouping terms
order by order, we find the following.

~1! The first-order term yields the dispersion relation in t
linear approximation:

Ṽ(0)@L#5QL . ~25!

~2! Second-order terms couple the fundamental and sec
harmonics of the deformation, with no correction to t
eigenvalue:

Ṽ(1)@L#50,

b62L
(2) 5

1

2

2RL,L2QL

QL2Q2L
@bL

(1)#2, ~26!

bl
(2)50, for lÞ62L.
n

nd

~3! Third-order terms give the first correction to the fr
quency and couple the first and third harmonics:

Ṽ(2)@L#53SL,L,2L@bL
(1)#21~2R2L,2L2QL!b2L

(2) ,

b63L
(3) 5

~2R2L,L2QL!b2L
(2)bL

(1)1SL,L,L@bL
(1)#3

QL2Q3L
, ~27!

bl
(3)50, for lÞ63L.

~4! Fourth-order terms provide coupling to both second a
fourth harmonics:

Ṽ(3)@L#50,

b62L
(4) 5

1

QL2Q2L
H ~2R3L,2L2QL!b3L

(3)bL
(1)2Ṽ (2)@L#

3S b2L
(2)1

@bL
(1)#2

2 D 16S2L,L,2Lb2L
(2)@bL

(1)#2

14TL,L,L,2L@bL
(1)#4J ,

b64L
(4) 5

1

QL2Q4L
H 1

2
~2R2L,2L2QL!@b2L

(2)#2

1~2R3L,L2QL!b3L
(3)bL

(1)13S2L,L,Lb2L
(2)@bL

(1)#2

1TL,L,L,L@bL
(1)#4J , ~28!

bl
(4)50, for lÞ64L.

~5! The fifth-order term follows the same pattern. The co
plings to higher harmonics is quite complex and w
chose not to pursue it. We show only the correction
the eigenvalue:

Ṽ(4)@L#5~2R2L,2L2QL!b2L
(4)1~2R3L,22L2QL!

b3L
(3)b2L

(2)

bL
(1)

2Ṽ(2)@L#b2L
(2)13S3L,2L,2Lb3L

(3)bL
(1)

16SL,2L,22L@b2L
(2)#21~12T2L,L,2L,2L

14T22L,L,L,L!b2L
(2)@bL

(1)#2
110UL,L,L,2L,2L@bL
(1)#4. ~29!
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TABLE I. Stationary deformations of a two-dimensional electron system. Angular frequencies and l
harmonics of the deformations forL52,3,4,5.

l Ṽ5(emevcR0 /n̄e2)V b2l b3l b4l

2 4

3
25.09048b2

2216.1333b2
4

29

24
b2

211.86911b2
4

0.911769b2
3 20.345388b2

4

3 32

5
216.8464b3

2139.6332b3
4

1.63473b3
218.36452b3

4 1.97442b3
3 20.540557b3

4

4 284

105
230.0989b4

22154.821b4
4

1.94074b4
2124.3045b4

4 2.56102b4
3 23.45272b4

4

5 9992

315
245.5507b5

22418.524b5
4

2.17945b5
2150.1748b5

4 2.74603b5
3 29.80691b5

4
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Note that the largest term in the perturbative expansion
responds to the lowest harmonic and that higher order
ments preserve the rotational symmetryCL ~rotations by
2p/L) of the initial term.

VI. SOLUTIONS FOR THE TWO-DIMENSIONAL
ELECTRON SYSTEM

We now show some invariant shapes for the 2DES~see
Secs. III and IV!. Coefficientsbl and frequenciesṼ are ob-
tained using the formulas of Sec. V and matrix elementsQ,
R, S, T, andU calculated in Appendix A.

Table I summarizes these results for states of rotatio
symmetry CL , with L52, 3, 4, and 5. Some particula
shapes obtained from these coefficients and Eq.~14! are
shown in Fig. 6~for a comparison with similar states fo
vortex patches see Figs. 8 and 9!.

For large deformations, the appearance of oscillations
dicate that higher order terms are needed, since the pertu
tive method corresponds to a truncation of the Fourier
composition@Eq. ~14!#. An alternative approach, based on
local induction approximation, provides a better descript
in those cases. This alternative formulation is presente
Sec. VII.

It is interesting to note that the linear result for the fr
quency is@see Eqs.~25! and ~A3!#

Ṽ (0)@ l #5Ql54(
k52

u l u
1

2k21
, ~30!

where the last sum can be related to the digamma functi22

c(u l u11/2). This linear result has been previously deriv
by several authors;18 corrections areO@bl

2#. For a direct
comparison with Eq.~5!, which corresponds to thelarge-l
limit, we substitute the asymptotic expansion for the sum
Eq. ~30!; multiplication byR0 yields the propagation veloc
ity:

vg522 lnS e2g

4e2u l u D n̄e2

emevc
, ~31!

which closely corresponds to the group velocityvg
[]v0(k)/]k obtained from Eq.~5! after the substitutionl
;ka. The dispersion for these linear edge excitations
been confirmed experimentally in both the frequency23 and
time21,24,25domains.
r-
e-

al

-
ba-
-

n
in

n

s

VII. LOCAL INDUCTION APPROXIMATION

As we have seen, the motion of the edge is determined
the velocity of the fluid at the surface. The nonlocal equat
for the velocity of the boundary, Eq.~9!, can be turned into a
differential equation for thecurvatureof the boundary if we
concentrate on the local contributions. Thislocal induction
approximation26 ~LIA ! was explored by Goldstein and Pe
rich in a series of papers dealing with the evolution of vort
patches.12,16 The situation is considerably more favorable
this problem, due to the more rapid decay of the interact
@1/r for charges vs ln(r) for vortices, see Eqs.~9! and~B3!#.
Figure 1 defines most terms used in this section.

The LIA corresponds to the introduction of a large d
tance cutoff L in the expression for the velocity of th
boundaryv@r (s)# @Eq. ~9!#:

R
G
$¯%ds8→E

s2L/2

s1L/2

$¯%ds8. ~32!

The line integral in Eq.~9! is then calculated by expandin
the integrand in powers ofD[(s82s). By using the Frenet-
Serret relations

r s5t,

ts52kn, ~33!

ns5kt,

wherek5us is the local curvature of the boundary, we o
tain

t~s8!.t~s!F12
D2

2
k22

D3

2
kks1¯G1n~s!F2Dk2

D2

2
ks

1
D3

6
~k32kss!1¯G , ~34!

r ~s8!2r ~s!.t~s!FD2
D3

6
k22

D4

8
kks1¯G1n~s!F2

D2

2
k

2
D3

6
ks1

D4

24
~k32kss!1¯G . ~35!

To lowest order the normal and tangential velocities th
are given by
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ULIA 52F n̄e2

emevc
G L2

8
ks ,

WLIA 5F n̄e2

emevc
G S ln

L2

2r 0
2

11L2

96
k2D . ~36!

It is worth noting that since the rate of change of the areaA
of the droplet isAt5rdsU(s) @see Eq.~D8!#, the LIA with
ULIA}ks ~or any exact differential! automatically conserve
area. This is not surprising since we started with an inco
pressible system, but shows that the local approxima
used has not introduced an obvious error. It is also inter
ing to realize that the perimeterL of the curve derived from
these velocities is conserved as well:Lt5rds(kU1Ws)
50 @see Eq.~D7!#.

The time evolution of a curve in two dimensions is giv
quite generally by the integrodifferential equation16,27 ~see
Appendix D!

k t52@k21]ss#U1ksW2ksE
0

s

@kU1Ws8#ds8. ~37!

We now introduce the results from Eq.~36!. A ‘‘gauge’’
change, realized by modifyingW so that the integrand of Eq
~37! vanishes, eliminates the remaining nonlocal dep
dences and yields

k t5F n̄e2

emevc
G L2

8 S 3

2
k2ks1ksssD . ~38!

After a simple time rescaling, the curvature satisfies
mKdV equation:15

k t5
3

2
k2ks1ksss. ~39!

The mKdV dynamics are integrable, with an infinite numb
of globally conserved geometric quantities,12 the most im-
portant of which are the center of mass, area, and ang
momentum of the droplet.

The mKdV equation possesses a variety of soliton so
tions, including traveling wave solutions and propagat
‘‘breather’’ solitons~see Appendix F!. Here we will focus on
the traveling wave solutions of Eq.~39! of the form

k~s,t !5k~z!, with z[s2ct, ~40!

which represents uniformly rotating deformed droplets~see
Fig. 3!. The ordinary differential equation fork(z) can be
integrated twice with the result

FIG. 3. A uniformly propagating edge deformation. The curv
ture satisfiesk(s,t)5k(z), with z5s2ct.
-
n
t-

-

e

r

lar

-
g

1

2
~k8!252

1

8
k41

1

2
ck21ak22b, ~41!

where a and b are constants of integration (a5b50 for
infinite systems, see Appendix F!. This ordinary differential
equation can be easily integrated:

z2z056E
k0

k dk8

A2V~k8!
, ~42!

V~k!5
k4

4
2ck222ak14b. ~43!

This problem is thus analogous to a particle moving in
quartic potential~Fig. 4!. The integrals involved can be ex
pressed in terms of elliptic integrals22 and depend crucially
on the nature and location of the zeros ofV(k). For curves
with finite perimeter and no self-crossings we find that it
necessary to have two real and two complex zeros:kmax,
kmin , and2(kmax1kmin)/26 i j ~see Appendix E!. Note that
kmax and kmin correspond to the maximum and minimu
curvatures of the boundary.

The periodic solutions of Eq.~42!, expressed in terms o
Jacobi elliptic functions,22 are given by~Appendix E!

k~z!5

~qkmax1pkmin!1~pkmin2qkmax! cnSApq
z

2 Ul D
~p1q!~p2q!cnSApq

z

2 Ul D ,

~44!

where

p5A~3kmax1kmin!
21j2,

q5A~kmax13kmin!
21j2, ~45!

l5A@~kmax2kmin!
22~p2q!2#/4pq.

The free parameterj is actually determined by theboundary
conditions. The period ofk is given by the elliptic integral

-

FIG. 4. Some possible potentialsV(k) and corresponding sche
matic solutions for the shape of the boundary. Potentials with
real zeros may have physical solutions:~a! Curvature is fixed, the
solution is a circle;~b! curvature is positive definite, the boundary
convex; ~c! positive and negative curvatures;~d! potentials with
four zeros have solutions with unphysical self-intersections.
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Lk5
8

Apq
K~l!. ~46!

We now require that the tangent angle increases by a fa
of 2p after an integer multiplel curvature periods, so that th
curve is closed and with no self-crossings~see Fig. 5!:

u~ lL k!5E
0

lL k
k~s!ds52p. ~47!

It is evident that the resulting curves are invariant under
tations by 2p/ l , that is the curves haveCl symmetry. The
curves thus generated can be characterized by (l ,kmax,kmin)
or more conveniently, although indirectly, by the symmet
the area and the perimeter of the curve.

The contour shape can be easily determined once the
gent angleu(s) is known as a function of arc length. Sinc
dz[dx1 idy5exp@iu(s)#ds, we have

z~s![x~s!1 iy~s!5E
0

s

eiu(s8)ds8. ~48!

The full lines in Fig. 6 show some uniformly rotating solito
shapes, calculated from Eqs.~44! and~48!. These are essen
tially identical with Goldstein and Petrich’s16 soliton solu-
tions for the vortex patch problem, but the more local nat
of the interaction in the 2DES case should guarantee a b
correspondence with the exact solutions including nonlo
terms. Indeed, the curves resulting from the perturba
method and the LIA are quite close, even for considera
deformations of the boundary. For larger deformations
perturbative results show artifacts due to the limited num
of Fourier components. The advantage of the LIA becom
evident in this case, since it is an expansion in powers of
curvatureand not thedeformation, and thus allows for rela-
tively large long-wavelength deformations. More signi
cantly, the LIA and the resulting integrable dynamics allo
one to uncover geometrical conservation laws which wo
be hidden in a perturbative calculation.28 This advantage
comes at a price: the detailed information on frequencie
obscured by the introduction of the long distance cutoffL
and by the gauge transformation of the tangential velo
W, while the frequency is easily obtained in the perturbat
calculation.

FIG. 5. Illustration of the boundary conditions implied by E
~47!. Top: after l periodsLk of the curvaturek(s), the tangent
angleu increases by precisely 2p. Bottom: the resulting deformed
boundary.
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VIII. CONCLUSIONS

A contour dynamics formulation of the excitations on t
edge of a two-dimensional electron system in a magn
field has allowed us to demonstrate the existence, beyond
usual linear regime, of shape deformations that propag
uniformly. A local approximation to the nonlocal dynamic
shows that the curvature of the edge of the droplet obeys
modified Korteweg–de Vries equation, which has integra
dynamics and soliton solutions. Earlier studies29 of edge
channels in QH samples have shown the presence of no
ear waves, but in Ref. 29 the nonlinearity originates in
variations of the strength of the confining field~the Eext of

FIG. 7. Soliton excitations travel without shape changes. I
circular QH system~Ref. 24! with noncontact probes it is possibl
to observe repeated signals. While a gradual decrease of the a
tude is always expected due to residual dissipation, dispersive
nondispersive modes may be distinguished by the preservatio
the general shape and width of the nondispersive modes.

FIG. 6. Uniformly rotating shapes of a 2DES. Solid lines: so
tions of the mKdV equation obtained from the local induction a
proximation. Dotted lines: solutions obtained using the perturba
expansion. The values of the coefficientbl , and the ratio of curva-
tures s[kmin /kmax are ~a! b250.073, s50.4; ~b! b250.19, s
50; ~c! b250.36, s520.2; ~d! b350.027, s50.4; ~e! b3

50.10, s520.2; ~f! b350.29, s520.45; ~g! b450.014, s
50.4; ~h! b450.089,s520.4; and~i! b450.24,s520.56.
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10 978 PRB 60C. WEXLER AND ALAN T. DORSEY
Sec. II!, whereas here we concentrate on nonlinear effe
originating in geometrical effects.

Since these solutions are dispersionless, it may be
sible to distinguish them from linear edge waves in time-
flight measurements of the type depicted in Fig. 7. In a
cular QH system24 a voltage pulse applied to a gate produc
an edge deformation. The deformation propagates along
edge of the system in one direction and is detected, i.e.
means of a capacitive probe. For this geometry, the p
comes back repeatedly and it is possible to observe it a
numerous passes. While a gradual decrease of the ampl
is always expected due to residual dissipation, dispersive
ts

s-
-
-
s
he
y
e

er
de

nd

nondispersive modes may be distinguished by the prese
tion of the general shape and width of the nondispers
modes.

On the theoretical side, it would be interesting to conn
our hydrodynamic treatment of these edge solitons w
field-theoretical treatments of edge excitations.18,19
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APPENDIX A: MATRIX ELEMENTS FOR THE NONLINEAR EIGENVALUE PROBLEM

In order to determine the matrix elementsQ, R, S, T, andU for the nonlinear eigenvalue problem@Eq. ~20!#, we need to
expand Eq.~18! in powers of the coefficientsbl of the parametrization@Eq. ~14!#. We initially realize that

n~w!–t~w1v!5
1

ut~w!u H 2sinv22(
l

ble
il wFcos

lv

2
sinv1 l cosv sin

lv

2 G
1(

l ,p
bl 2pbpeil wF ~ lp2p221!cos

~ l 22p!v

2
sinv2~ l 22p!cosv sin

~ l 22p!v

2 G J , ~A1!

uR~w1v!2R~w!u254 sin2
v

2 F 112(
l

ble
il v/2 cos

v

2

2(
l ,p

bl 2pbpeil v/2

sin
~ l 2p11!v

2
sin

~p21!v

2
1sin

~ l 2p21!v

2
sin

~p11!v

2

2 sin2
v

2

G . ~A2!

By expandingn(w)–t(w1v)/uR(w1v)2R(w)u in powers ofbl , and integrating overv @see Eq.~18!#, one obtains the
relevant matrix elementsQ, R, S, T, andU. All integrals converge without the need for short distance cutoffs. The t
lowest order terms can be written as follows:

Ql54(
k52

u l u
1

2k21
, ~A3!

Rl 2p,p5 (
k51

u l u
1

2k21
2 (

k51

u l 2pu
1

2k21
2 (

k51

upu
1

2k21
, ~A4!

Sl 2p,p2q,q52
5

l F l

124l 2 1
p

124p2 1
q

124q2 1
l 2p

124~ l 2p!2 1
l 2q

124~ l 2q!2 1
p2q

124~p2q!2 1
l 2p1q

124~ l 2p1q!2G
1

1

12F2~314l 2!(
k51

u l u
1

2k21
2~114p2!(

k51

upu
1

2k21
1~514q2!(

k51

uqu
1

2k21
1@514~ l 2p!2# (

k51

u l 2pu
1

2k21

2@114~ l 2q!2# (
k51

u l 2qu
1

2k21
1@514~p2q!2# (

k51

up2qu
1

2k21
2@114~ l 2p1q!2# (

k51

u l 2p1qu
1

2k21G . ~A5!

Higher order terms are long and uninspiring.
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APPENDIX B: COMPARISON WITH THE VORTEX
PATCH CASE

For the sake of comparison, we draw analogy to the c
of a vortex patch, a two-dimensional, bounded region of c
stant vorticityvp surrounded by an irrotational fluid.9 The
vorticity can either be distributed, as in a regular fluid,
concentrated in individual vortices, in the case of a sup
fluid ~in this case it is clear that the hydrodynamic treatm
will be valid only for length scales larger than the intervort
spacing!. Most important is that in ideal fluids the area of th
vortex patch is conserved due to Kelvin’s circulatio
theorem,26 and therefore the vortex patch is essentially
compressible. Figure 1 can be used to describe this cas
replacing the electron densityn by the vorticityvp .

The steady-state solution in this case is clearly a cir
and small deformations of the boundary travel along
boundary itself, as has been known for a long time.9 One can
also ask what happens when the deformations are large
there modes that do not change shape, i.e., solitons?
such solution has been known since Kirchhoff’s time:
ellipse with constant vorticity will rotate uniformly in an
ideal fluid. Numerical calculations by Deem an
Zabusky10,11 in the 70s obtained additional invariant shap

For inviscid incompressible fluids, the equations of m
tion for the fluid are simply given by

“•v50, ~B1!

“3v5v, ~B2!

wherev is the vorticity. Assuming that the velocity far from
the patch vanishes, the velocity of the fluid in the presenc
a region of finite vorticityvp can be expressed as

vv~r !52
vp

2p R
G
ds8t~s8!lnF ur2r ~s8!u

r 0
G . ~B3!

The arguments presented in Secs. III and IV are now
plied mutatis mutandisto this case. The only difference wit
the 2DES comes from the fact that the kernel in the inter
tion is now logarithmic, and Eq.~9! is then replaced by Eq
~B3!. We see that, as in the 2DES case~Secs. III and IV!, the
dynamics is chiral, being determined by the tangent vec
and since the fluid contained withinG is incompressible the
area is conserved. The normal velocity of the contour is t
given by

Uv~w!52
vp

2p E
0

2p

dw8n~w!•t~w8!lnF uR~w!2R~w8!u
r 0

G .
~B4!

As before, we seek solutions that satisfy Eqs.~13! @or
~19!# and ~B4!. First, we follow the procedure of Appendi
A to determine the matrix elementsQ, R, S, T, andU. The
first few of these are given by

Ql
V5

1

2
2

1

2u l u
, ~B5!

Rl ,p
V 52

1

4u l u
, ~B6!
se
-

r
r-
t

-
by

,
e

are
ne

.
-

of

p-

-

r;

n

Sl 2p,p2q,q
V 5

1

12
@12u l u2u l 2pu1u2l 2pu1u l 2qu2u2l 2qu

2up2qu1u l 1p2qu1d~2l 2p!1d~ l 2q!

1d~ l 1p2q!#. ~B7!

We then apply the results of Sec. V, to determine
amplitude of the lowest harmonics for the vortex-patch ca
using the appropriate matrix elements@Eqs. ~B5!–~B7!#.
These results are summarized in Table II, and some of
resulting invariant shapes are shown in Figs. 8 and 9.

It has long been known9 that an elliptical region of vor-
ticity in an otherwise irrotational fluid, namely the Kirchho
ellipse, rotates uniformly with angular frequencyV
5(vp/4)(12b2/a2), where (a1b) and (a2b) represent
the maximum and minimum radii, respectively~see Appen-
dix C!. A simple analysis shows that both frequency a
angular componentsbl shown in Table II exactly match a
series expansion of the ellipse. Figure 8 compares the pe
bative results with the exact solution. Even for relative
high deformations both results are in reasonable agreem

In the case of deformations with higher angular dep
dences there are no analytic solutions beyond the linear
proximation. In this case, the angular frequencies are giv9

to zeroth order in the deformation byV5(m21)/2m, which
coincides with the values forQl

V @see Eqs.~25! and ~B5!#.
Numerical solutions by Deem and Zabusky11 for l 53,4 also
compare favorably with the perturbative results, as can
seen in Fig. 9. In fact, the angular velocities determined fr
Table II coincide with those shown in Ref. 11 to all signifi
cant figures of that paper.

APPENDIX C: THE KIRCHHOFF ELLIPSE AS A
SOLUTION OF A CONTOUR

DYNAMICS PROBLEM

It is illustrative to show, starting from the contour dynam
ics, that an ellipse is indeed an invariant deformation fo

TABLE II. Stationary deformations of a vortex patch. Angul
frequencies and lowest harmonics of the deformation forL
52,3,4,5 ~the equivalent results for the 2DES are summarized
Table I!.

l Ṽ5V/vp
b2l b3l b4l

2 1

4
2b2

21b2
4

3

2
b2

22
1

2
b2

4
5

2
b2

3
35

8
b2

4

3 1

3
22b3

2220b3
4

5

2
b3

2116b3
4 8b3

3 231

8
b3

4

4 3

8
23b4

2257b4
4

7

2
b4

21
135

2
b4

4
33

2
b4

3
715

2
b4

4

5 2

3
24b5

22152b5
4

9

5
b5

21172b5
4 28b5

3 1615

8
b5

4

FIG. 8. The l 52 stationary deformations of a vortex patc
Dotted line: the Kirchhoff ellipse. Full line: perturbative solutio
~a! b250.2, ~b! b250.3.
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FIG. 9. Vortex-patch ‘‘eigenstates’’ withL
53 andL54. ~a!–~d! were obtained numerically
by Deem and Zabusky~figures are scanned from
Ref. 11!; ~e!–~h! were determined perturbatively
The lowest harmonicbL is taken in each case
from Table I of Ref. 11:b350.096, b350.11,
b450.048, andb450.070, respectively. The so
lutions are essentially identical and are too clo
to compare effectively in the same diagram.
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vortex patch. Additionally it can be shown that this is
inherent property of the logarithmic kernel@Eq. ~B3!# and
that an ellipse it isnot a solution for the 2DES.

Consider the following parametrization of an ellipse:

x5~a1b!cosh,

y5~a2b!sinh. ~C1!

It is evident that the radius is given by

r ~h!5Aa212ab cos 2h1b2, ~C2!

and that tangential and normal vectors are given by

t [
]r

]h
52~a1b!sinh ex1~a2b!cosh ey , ~C3!

n52
ez3t

ut u
5

~a2b!cosh ex1~a1b!sinh ey

ut u
,

where ut u5Aa222ab cos 2h1b2. The ‘‘rigid-body rota-
tion’’ condition @Eq. ~13!# can then be written as

U5
V

ut ~h!u
2ab sin 2h. ~C4!

In addition the distance between two points on the ellip
takes the simple form

R2[ur ~h!2r ~h8!u2

54~a21b2!sin2S h2h8

2 D
3F12

2ab

a21b2 cos~h1h8!G , ~C5!

and the dot product involved in Eqs.~18! and ~B4! is given
by

n~h!•t ~h8!5
1

ut ~h!u ~a22b2!sin~h2h8!. ~C6!

1. Vortex patches—exact solution

It is now simple to show that an ellipse is, indeed, a u
formly rotating shape for the vortex patch@Eqs. ~13! and
~B4!#, since the normal velocity is given by
e

-

Uv52
vp

4put ~h!u E0

2p

dh8 lnH F4~a21b2!sin2S h2h8

2 D G
3F12

2ab

a21b2 cos~h1h8!G J sin~h2h8! ~C7!

52
vp

4put ~h!u E0

2p

dx lnF12
2ab

a21b2 cosxG
3~sin 2h cosx2cos 2h sinx!, ~C8!

where in going from Eq.~C7! to ~C8! we eliminated the term
inside the first braces in the logarithm due to symmetry a
changed variables tox5h1h8. Finally, the term propor-
tional to cos 2h vanishes upon integration and we are le
with a simple integral, proportional to sin 2h. As long asa
.b ~for a5b the ellipse has collapsed into a line!, the inte-
gral exists in closed form:

Uv5vp

~a22b2!b

2aut ~h!u
sin 2h, ~C9!

which, by direct comparison with Eq.~C4!, yields the angu-
lar velocity

Vv5
vp

4 S 12
b2

a2D . ~C10!

Consider now the parametrization given by Eq.~14! with
bl given by the first row in Table II. The maximum an
minimum radii correspond toR(w) for w equal to 0 andp/2,
respectively,~for b2.0). It is easy to see thata;113b2

2

2b2
4 andb;2b215b2

3, thusV/vp.1/22b2
21b2

4, as shown
in Table II. A simple Fourier analysis of Eq.~C2! also results
in coefficientsbl which agree with the perturbative solution

2. Two-dimensional electron systems—no exact solution

It is also simple to see why an ellipse isnot a stationary
solution of the two-dimensional electron system. Instead
the logarithm, one has to deal with 1/AR2, and the elimina-
tion of the first term inside the braces is not possible. T
resulting integrands depend onh in a nontrivial way, and the
normal velocity isnot proportional tout (h)u21 sin 2h.
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APPENDIX D: GEOMETRY OF PLANAR CURVE MOTION

For completeness, it is worth considering some gen
features of the planar curve motion.27 Consider a curve de
scribed by some parametrizationr (a), wherea is a param-
eter defined on a fixed interval~see Fig. 10!. It is then pos-
sible to consider tangent and normal unit vectors defined

t[
t ~a!

ut ~a!u
, where t ~a!5ra5

]r ~a!

]a
,

n[2ez3t. ~D1!

The arc lengths(a) corresponds to the length of the curv
from some arbitrary point tor (a) and is defined byds
5Adx21dy25Agda, where the metricg is defined byg
[t–t. We then have the Frenet-Serret relations

r s5t,

ts52kn, ~D2!

ns5kt,

which define the curvaturek. It is also possible to define th
curve in terms of its tangent angleu(s), whereus5k.

The kinematics of the curve can be determined if the
locity of the curver t is determined. It is convenient to de
compose this velocity into its normal andtangentialveloci-
ties ~at fixeda!:

r t5Un1Wt. ~D3!

In general,U andW may be arbitrary functionals ofr (s) and
its derivatives. It is easy to show that

nt52~Us2kW!t,

tt5~Us2kW!n, ~D4!

~Ag! t5Wa1AgkU.

The lengthL and areaA of the curve are given by

L[ R ds5E Agda, ~D5!

FIG. 10. Parametrization of a closed curve by a parametea
defined on a fixed interval. The illustration shows the arc lengths,
the normal and tangential unit vectorsn andt, and the tangent angle
u.
al

y

-

A5
1

2 R ~r3t!•ezds5
1

2 E ~r3ra!•ezda, ~D6!

and it is evident from the expressions above that their ti
derivatives are equal to

Lt5 R ~kU1Ws!ds5 R kUds, ~D7!

At5 R U~s!ds, ~D8!

where in the rightmost part of Eq.~D7! we assumed thatW
was periodic.

Consider now the following identity

]

]t

]

]s
5

]

]t

1

Ag

]

]a
52

gt

2g3/2

]

]a
1

]

]s

]

]t
. ~D9!

Using Eq.~D4!, we obtain the commutator between the a
length and time derivatives

F ]

]s
,

]

]t G5~Ws1kU !
]

]s
. ~D10!

We are finally able to determine a kinematic equation
the curvaturek. While the procedure is completely genera
this becomes particularly important when the dynam
obeys a geometric law of motion, that is whenU andW are
functions of the curvature and its derivatives only. Usi
Eqs. ~D4! and ~D10! to calculate the time derivative of th
curvature at fixeda we find that

F]k

]t G
a

52@k21]ss#U1ksW. ~D11!

It is convenient, however, to write a differential equation in
parametrization-independent form, that is the time derivat
should be evaluated at fixed arc lengths. Since] tus5] tua
2ks*0

s@kU1Ws8#ds8, we have

F]k

]t G
s

52@k21]ss#U1ksW2ksE
0

s

@kU1Ws8#ds8,

~D12!

which is the form used in Eq.~37!.

APPENDIX E: ELLIPTIC INTEGRALS, ELLIPTIC
FUNCTIONS, AND BOUNDARY CONDITIONS

A quick inspection of Eq.~42! reveals the following pos-
sible alternative solutions, in terms of elliptic functions,22

which depend on the nature of the zeros ofV(k):

~1! Four real zerosa>k>b.g.d @Fig. 4~d!#:

z~k!5
4

A~a2g!~b2d!
FS sin21A~a2g!~k2b!

~a2b!~k2g!
,l4D ,

~E1!

l4
25~a2b!~g2d!/~a2g!~b2d!, ~E2!

which can be inverted to read
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k~z!5
b~ga!1g~a2b!sn2@c4z,l4#

~g2a!1~a2b!sn2@c4z,l4#
, ~E3!

with c4
25(a2g)(b2d)/16. The period ofk(z) is given

in terms of the complete elliptic integralL4

5(2/c4)K(l4).
~2! Two real and two complex conjugate zerosa>k>b,

m6 in @Fig. 4~a!, 4~b!, 4~c!#:

z~k!5
2

Apq
FS 2 tan21Aq~a2k!

p~k2b!
,l2D , ~E4!

p25~m2a!21n2,

q25~m2b!21n2, ~E5!

l2
25@~kmax2kmin!

22~p2q!2#/4pq,
which can be inverted to read

k~z!5
~bp1aq!1~bp2aq!cn@Apqz/2,l2#

~p1q!1~p2q!cn@Apqz/2,l2#
.

~E6!
The period of k(z) is given in this case byL2

5(8/Apq)K(l2).

Since there is no cubic term in the potentialV(k), the
sum of all roots must vanish. That leaves only one free
rameter in each case, once the minimum and maximum
vatures are fixed. As mentioned in Sec. VII, this free para
eter is determined by the boundary condition that the curv
closed and without self-crossings. For the case of four
zeros, it is not possible to find solutions that satisfy the
conditions. It is still possible to find beautiful closed curv
~Fig. 11!, but these do not correspond to physical solutio
for the problem under consideration. The case with two r
and two complex conjugate solutions does have physical
lutions and is discussed in detail in Sec. VII.

APPENDIX F: THE STRAIGHT INFINITE EDGE

In Sec. VII we discussed the invariant shapes of a clo
curve when the curvature satisfies a modified Korteweg
Vries equation~39!. Single soliton solutions where the cu
vature satisfiedk(s,t)5k(s2ct) were obtained by twice in-

FIG. 11. Examples of closed boundaries for the solutions co
sponding to four real zeros ofV(k). Note that all curves cross
themselves at least once and are not physical solutions for the p
lem of interest.
-
r-
-
is
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e

s
al
o-

d
e

tegrating Eq.~39!, thus resulting in Eq.~41!, which can then
be reduced to a simple problem in quadratures@Eq. ~42!# and
the solutions for the curvature in terms of Jacobi ellip
functions were discussed in that context~see also Appendix
E!.

In the case of an infinite curve, however,k and all its
arc-length derivatives should vanish ass→6`, and the con-
stants of integrationa5b50 in Eqs.~41! and ~43!, so that
V(k)5k4/42ck2. The traveling wave solutions can then b
found as

k~z!52A2c sech@A2c~s2ct!#, c,0. ~F1!

The tangent angle and the shape can then be obtained
simple integration:

u~z!5E k ds54 arctanH tanhFA2c

2
~s2ct!G J 1p,

~F2!

x1 iy5E
0

s

eiuds8

5~s2ct!2
4

A2c F 1

i 1tanhFA2c

2
~s2ct!G 2 i

p

4G .

~F3!

Unfortunately these curves represent a small loop trave
along the boundary, and self-crossing solutions are not p
sible for the boundary of a physical system.

It is, however, possible to have more complicated so
tions that have a traveling envelope with time-dependent
cillations within it. One such example is the ‘‘breather
solution,15 which loosely speaking, corresponds to a pair
bound solitons:

k~s,t !524
]

]s
arctanH l

k

sin@ks2k~k223l 2!t#

cosh@ ls2 l ~3k22 l 2!t#J , ~F4!

wherel andk are arbitrary. The value for the tangent ang
in this case is evident sinceus5k; however, the shape of th
curve requires numerical integration. Figure 12 shows a
quence corresponding to the motion of one example o
breather.

-

b-

FIG. 12. A breather soliton fork52 and l 51. In this time
sequenceDt50.125.
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