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Contour dynamics, waves, and solitons in the quantum Hall effect
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We present a theoretical study of the excitations on the edge of a two-dimensional electron system in a
perpendicular magnetic field in terms of a contour dynamics formalism. In particular, we focus on edge
excitations in the quantum Hall effect. Beyond the usual linear approximation, a nonlinear analysis of the shape
deformations of an incompressible droplet yields soliton solutions which correspond to shapes that propagate
without distortion. A perturbative analysis is used and the results are compared to analogous systems, like
vortex patches in ideal hydrodynamics. Under a local induction approximation, we find that the contour
dynamics is described by a nonlinear partial differential equation for the curvature: the modified Korteweg—de
Vries equation[S0163-18209)13339-3

[. INTRODUCTION in the quantum-mechanical properties of the system, like the
magnetization of a type-1l superconductor. There are various
The theoretical description of many-body systems is ofterexamples where these questions are relevant, such as waves
best realized in terms of collective modes, i.e., the familiaron the surface of a liquif;* the motion of non-neutral
sound waves in solids or plasmons in charged systems. Coplasmas, low-lying ‘“rotation-vibration” modes of de-
lective modes become especially important when their eneformed nuclef the evolution of atmospheric plasma clodds,
gies are lower than competing single-particle excitationspattern formation in ferromagnetic fluilsjortex patches in
Sometimes, however, both single-particle and collectivadeal fluids®™*? and two-dimensional electron systems
modes in the bulk of a system are gapped or scarce and the€2DES’S in strong magnetic fields>
systems are often referred to as “incompressible.” This in- The edges of a two-dimensional electron system, and in
compressibility can be real or a convenient limit due to largeparticular the edges of a quantum H&H) liquid, present a
differences in relevant length or time scales, as in the case afique opportunity to study the dynamics of shape deforma-
the macroscopic motion of a liquid. Under these conditionstions in a clean and controlled environment. The 2DES in the
one can usually focus attention on the motion of bloeind-  QH state is incompressible, so that the electron density is
aries of the system, which will generally have softer modes,approximately piecewise constant, suggesting that a contour
with frequencies much lower than those in the bl#kg., dynamics approach to studying the droplet excitations is vi-
surface waves in a liquid droplet travel at speeds considerable. The lack of low-lying excitations eliminates dissipative
ably slower than sound waves effects, further simplifying the treatment of the problem. In
Concentrating on the motion of the boundary of the sys-addition, the charged nature of the system facilitates the ex-
tem has a considerable advantage: the reduction in the dcitation and detection of deformations of the droplet.
mensionality of the problem often permits simpler analytical In this paper we will formulate the study of the excitations
treatment, or a tremendous reduction in the effort needed tof a droplet in a 2DES as a problem in contour dynamics. In
numerically solve or simulate the problem. Associated withthe usual treatment of the edge excitatidhs, linearization
this incompressibility, however, one usually finds micro- of the equation of motion is done at early stages, thus limit-
scopic conservation laws that translate into global constraintsg the applicability to small deformations of the edge of the
on the whole system, even when the microscopic dynamicsystem from an unperturbed state. In this paper we consider
is completely local(e.g., the volume of a liquid droplet is nonlinear terms which are present in the full contour dynam-
conservell These global constraints enter the edge dynamicgs treatment. We first present perturbative results for non-
through Lagrange multipliers associated with the conservetinear deformations of the 2DES shape. For the sake of com-
quantities: These conservation laws are often evident wherparison, and as means of verification, we also apply this
the motion of the system is observed, and it is interesting tanethod to the vortex patch case, which has well-known
see how they are embedded in the dynamics of the boundargxac? and numericaf solutions. We then show that the local
that is, how these essential aspects of the problem are relatétuction approximation to the full contour dynamics gener-
to the laws of motion of the edges. ates the modified Korteweg—de VrigaKdV)*® equation for
These shape deformationsand their dynamics, have the curvature dynamics; the mKdV equation also arises in
played an important role in the understanding of numeroustudies of vortex patch&and suspended liquid dropléts.
problems in diverse fields of physics. The incompressibilityThe mKdV dynamics conserve an infinite number of quanti-
is reflected in the existence of a field which is piecewiseties, including the area, center of mass, and angular momen-
constant, so that there is a sharp boundary between two oum of the droplet® so that our local approximation to the
more distinct regions of space with different physical prop-nonlocal dynamics preserves the important conservation
erties. This field can be of classical origin like the density oflaws. The mKdV equation also possesses soliton solutions,
a liquid or the charge density of a plasma, or it can originatencluding traveling wave solutions.
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In Sec. Il we present a brief review of the hydrodynamics o t
ofa two—dimerjsional electron system in a strong perpc_andjcu- equﬂlbﬂuf{lfhape /// N\ 1
lar magnetic field and analyze the bulk and edge excitations
in the linear approximation. Sections Ill and IV and analyze deformed shape

in more detail the dynamics and kinematics of these edge
modes, and ask what conditions must be satisfied so that a
large edge deformation is able to travel without any disper-
sion, that is, preserving its shape. The question is posed in
terms of a nonlinear eigenvalue problem and is solved per-
turbatively to fifth order in the deformation in Sec. (for
completeness, we also solve the analogous problem of vortex
patch deformations in Appendix)BSome solutions and lim-
iting cases are then presented in Sec. VI. An alternative ap- FIG. 1. A charged incompressible liquid in a magnetic field. We
proach to find nondispersive or invariant deformations of the2Ssume a piecewise constant electron density f{ inside, while
edge, namely, théocal induction approximatiopis devel- n=0 outside the _droplaatThe parametrlzatloR(ﬁo,t), the tgngent
oped in Sec. VI, where results are also compared with th& and normah unit vectors to the boundaiy are indicateds is the
perturbative approach of Secs. V and VI. arc length andy the tangent angle.

which propagate in only one direction along the edge of the
2DES. We further classify these modes into the “conven-
tional” edge magnetoplasmon mode, with a singular disper-

Consider a 2DES in a perpendicular magnetic field.sion relation’
Treated as a classical fluid, the system is characterized by the
electron densityn(r) and velocityv(r). If we neglect dissi- wo(K)=—21n
pative effects(which is essentially correct in the quantum
Hall regime, the dynamics is determined by the Euler and
continuity equations:

Il. HYDRODYNAMICS OF A TWO-DIMENSIONAL
ELECTRON SYSTEM

e 7\ ne?

2|ka|

wherek is the mode wave numbet;~0.5772 is the Euler
constant, and is a short-distance cutofthe largest of the

K, ®)

€M,

v transverse width of the 2DES, the magnetic length, or the
v=—+(v-V)v width of the compressible edge channdh addition, for
at
wide compressible edges, “acoustic” modes can be found:
e’ nr'y e __,
= —w&XV— Vf d?r' ——r+ —Eeq, (D) P 2ne o
M€ [r=r']  me wj(k)= Moo k, j=1,2,.... (6)
dn+V-(nv)=0, (2)  These results are approximately correct as long as inertial

where w.=eB/m, is the cyclotron frequency and is the and confining terms are negligible. The first requires that

dielectric constant of the medium. The first term on the right-”ezlf_mea<wg’ which is usually true in quantum Hall
hand side of Eq(1) represents the Lorentz force, the secondconditions” In addition, the effects of the confining poten-
is the Coulomb interaction, arf,,, is the electric field due tial have been neglected. While the confining potential is
to the background positive charge, gates, etc. essential for long-term stability and is usually not negligible

Consider first the possible bulk collective excitations in awhen compared to interactions, its effect is mainly reduced,
uniform system. These are oscillations of the density arouné the simplest cases, to an additiong):k term in the fre-
the equilibrium solutionv=0, n=n. If we consider small guencies, where the external velocity is given by
amplitudes and Fourier analyze E¢f). and(2), we find that

€, X Eext- )

v(r ) =veelkriet, Vext= — Mew,

n (3 Recent time-of-flight measuremefitsn 2DES confirm this
simple picture. The theoretical formulation above, however,
is restricted to small deformations of the boundary. In what

_n iker—iwt
on(r,t)= wk-voe ,

27ne? follows we will consider a formulation that goes beyond this
0= w’+ k (4) ot
< e limitation.
e
that is, bulk magnetoplasmons are gapped, and in the QH Il DYNAMICS OF THE EDGE MODES

regime can be neglected sindev.~17 meV~200K atB
=10T (in GaAs, whereasT ~1 K. We will disregard them Consider the case when the edge between bulk and
from now on and concentrate on the excitations at the edgeacuum is sharp. The electronic density has some constant
which, as we shall see, have considerably lower energies. value n inside the edge and vanishes outsidee Fig. 1

The theory of small deformations of the edge has beersince the edge is essentially one-dimensional only the edge
extensively studied”"?° The main conclusion is that for magnetoplasmon is importarfand even in more general
strong magnetic fields, when Landau-level quantization beeases this mode is the most readily observdBie. Follow-
comes important, the only low-lying modes are edge modeing the derivation of the edge magnetoplasntéfSwe ne-
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glect inertial terms in Eq(1), thus obtaining an equation for
the electronvelocity.

’ n(r’)

[r=r']

v(r)=—

Vxezf d?r’ + Vet (8)
A

€M,

where A is the area of the droplésee Fig. 1

Let us now concentrate on the “internal” velocity given
by the first term in Eq(8). We should note that the neglected  FIG. 2. A uniformly propagating edge deformation. The bound-
external velocityv,,, derived from the confining fieldEq.  ary satisfieR(¢,t) =R(¢—Qt).
(7)] is important for long-term stability of the system, and
will modify the propagation velocity. In general, it could also nite edge. Here we consider deformations of a circular drop-
change the shape of the modes, yet one can devise situatioles of incompressible electrorithe nonlinear deformation of
in which this effect is not important, i.e., a linear confining a straight infinite edge is discussed in Appendjx & uni-
potential in a rectilinear infinite edge, or a parabolic potentialformly propagating mode is, in this case, characterized by a
for a circular droplet. boundary that moves like a rotating rigid botsee Fig. 2,

For an incompressible 2DES with a piecewise constanhamely, the radius of the boundary satisfies
density, the density can be taken outside the integral; then

>0

using Stokes’ theorem, the area integral can be transformed R “R(o—0 12
into a line integral over the boundaFy= 9.4 of the electron (¢,1)=R(e—Ot), (12)
liquid: where ¢ is the azimuthal angle, an@ is the angular fre-
Te? t(s') quency of the boundary rotation. This translates into a con-
v(r)= —— 3€ ds'———. (9 dition for the normal velocity:
emew. Jr  |[r—r(s)|
Heret(s') is the unit tangent vector at arc length U=n(r)-v(r)|,cr=Qn(r)-(e,xr). (13

(s")=dgr(s)=rsr, We seek surface shap®{¢) (see Figs. 1 and)2that

n(s')=—ext(s') (10) rotate uniforr_nly, satisfying Eq13). Consider the following
' parametrization of the surface:
and we defined the unit normal vecto¢s’) for later use.
The short distance singularity in the integrand is cut off at a
length scale . Equation(9) forms the basis of our contour R(¢)=R,
dynamics treatment—it expresses the velocity of the edge in
terms of a nonlocal self-interaction of the edge.
We see thati) the dynamics is chiral, being determined In this parametrization, we can write the unit tangent vector
by the tangent vector; an@) the fluid contained withid"is  explicitly as
incompressible, so that the area is conserved. It is interesting

1+|Z b|ei|¢). (14)

to note similar traits were found in the past for the dynamics (o)
of vortex patchesr*? indeed, it is this analogy which in- t(@)=r—1, (15)
spired the present work. A detailed description of the vortex ()]

patch case, and stressing the similarities and differences with
the shape deformations of the 2DES are presented for cor§there
pleteness in Appendix B.
_Jr(e) ,
IV. KINEMATICS OF UNIFORMLY PROPAGATING n)=—~ =&R () TeR(e). (16
DEFORMATIONS

Having determined the velocity of the electron liquid, we Likewise, the unit normal vector is given by
now focus on the motion of the 2DES boundatyThe ve-

locity of a point on the boundary can be written in terms of 7o)
the normal and tangential components, n(e)= —ez><|7(¢)| . (17)
v=U(s)n+W(s)t. (11

Given the identityrds=r d¢, the normal velocity of the
The tangential velocityV(s) is largely irrelevant, as it solely boundary, derived from Ed9), can be written as
accounts for a reparametrization of the curve; the boundary
irtr;/otlon is determined by the normal component of the veloc- Do) Te? fzw o n(e)-7e")
We now ask whether there are modes which propagate €Mewc Jo IR(¢)=R(¢")]"
along the boundary with no change in shape. Previous
work!” has focused on small perturbations of a straight, infi-while inserting Eqs(16) and(17) into Eq. (13) yields

(18
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U(e)=0n(R)-(gxR)= M 7| 2 et 2 b. pbpe’¢|. (19
We seek frequencieQ and coefficientd, that satisfy Eqs(18) and(19). The solutions to thimonlinear eigenvalue problem
represent edge modes that propagate without any dispersion.

V. SOLVING THE NONLINEAR EIGENVALUE PROBLEM—PERTURBATIVE APPROACH

Unfortunately, it has not been possible to solve exactly the nonlinear eigenvalue problbpafai() as written in Egs.
(18) and (19). We therefore seek a perturbative solution by expanding the right-hand side (f8tin powers ofb,. This
allows us to to go beyond the linear approximations used in the past, and we have succeeded in calculating shape deformations
to O[bf‘] and angular frequencies G)[bf’]. Expanding the nonlinear eigenvalue problem to fifth order, we find the condition

1
+§§p: blpbp>:lel+§p: lep,pblfpprrpz;1 Slﬂ),pw,qblfpbpﬂqqurpz(;fr Ti—p.p-a.q-r.rPi-pPp-gPq-rbr

+p; s UI7p,pfq,qfr,rfs,sbl7pbpfqbqfrbrfsbs+ O[ble]- (20)
|
where (3) Third-order terms give the first correction to the fre-
quency and couple the first and third harmonics:
0= Eme—cho Q, (22) O@[L)=3s | _[bP+ (2R, —QUBY,

ne’ b®) (2R~ QUBSM+S | ([b(]? 27
and the “matrix elements’Q, R, S, T, andU are obtained =3t QL—Qa '
from Eg. (18) in Appendix A. b®=0, for 1#=3L.

Since the equation to be solved results from an expansio
in powers ofb;, it is sufficient to solve Eq(20) perturba-
tively, by expanding in powers of the largest coefficibnt

(h) Fourth-order terms provide coupling to both second and
fourth harmonics:

Let us assume that 0®[L]=0,
1 ~
o[s], for I==*L, b&“%fW{(zR&,L—QL>b‘33Bb£”—Q<2>[L]
= (22) L 2L
"l o[6?], for I#=+L. . LRIG b
2 2 1)72
We then consider an expansion of the coefficidntsaand x| bar+ 2 +6S,1 (- bz b ]

eigenvalue) in powers of&:
+AT o [b{M)?

b {b(l), for ==L, 23
T bP+bB) 4+ for 1# =L 1 ]2
’ b)) = { —(2Ry o — b{2)2
+4L QL_Q4L 2( 2L,2L QL)[ 2L]
0 =0P+00+0F+- -, (24 +(2Rs — QB+ 38, bP[b(D]2

where b® and Q® are of orderO[ 5¢]. By substituting (114
expression$23) and(24) into Eq. (20), and grouping terms T b1 (28)
order by order, we find the following. b|(4)=0, for 1+-+4L.

(1) The first-order term yields the dispersion relation in the(s) The fifth-order term follows the same pattern. The cou-
linear approximation: plings to higher harmonics is quite complex and we
QOL1=Q, . (25) chose not to pursue it. We show only the correction to

(2) Second-order terms couple the fundamental and second the eigenvalue:

harmonics of the deformation, with no correction to the
eigenvalue:

_ b(3)b(2)
OWIL]=(2Ry | — Qb5+ (2R 21 QoT

0@ 1= ~
1(21R[L] g — 0[P +33, b
2) _ L,L L 1
b®), = 2 QL—Qu -0, b (26) +63_,2L,72L[b(2?_)]2+(12T2L,L,7L,7L
b?=0, for I#=2L. +4T oL L0 [bM]?

+1wL,L,L,—L,—L[b(Ll)]4- (29
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TABLE I. Stationary deformations of a two-dimensional electron system. Angular frequencies and lowest
harmonics of the deformations far=2,3,4,5.

I Q= (em.w:Ry/Me?)Q by b, D4
? i"—5 09043 16.13333 2 b3+ 1.8691b5
3 7 2 2 24727~ 2 0.91176%3  —0.34538%%

3 32 2 4

5~ 1684643+ 39.6330; 1.6347332+8.3645b% 1.9744D3  —0.54055D%
‘ 21 30.098%3— 154.82D;

105 4 et 1.940743+ 24.304%); 2.5610D3 —3.4527D)
° 9992 45,5502 — 418.5247

315 5 s 2.1794%32+50.174&2 2.7460%3 —9.8069b7

Note that the largest term in the perturbative expansion cor- VII. LOCAL INDUCTION APPROXIMATION

responds to the lowest harmonic and that higher order ele-
ments preserve the rotational symmetty (rotations by
27/L) of the initial term.

As we have seen, the motion of the edge is determined by
the velocity of the fluid at the surface. The nonlocal equation
for the velocity of the boundary, EQ), can be turned into a
differential equation for theurvatureof the boundary if we
V1. SOLUTIONS FOR THE TWO-DIMENSIONAL concentrate on the local contributions. Tlagal induction
ELECTRON SYSTEM approximatior® (LIA) was explored by Goldstein and Pet-

We now show some invariant shapes for the 2DE&  fichina Zs%ries of papers dealing with the evolution of vortex
Secs. Ill and IV. Coefficientsb, and frequencie§) are ob- pha}tcheébl* Thj S|tuat|hon 'S cons@grgbly mo;er:a\{orable n
tained using the formulas of Sec. V and matrix elemepts this problem, due to the more rapid decay of the Interaction

R, S, T, andU calculated in Appendix A [1/r for charges vs In for vortices, see Eqg9) and(B3)].

Table | summarizes these results for states of rotationa'I:Igure 1 defines most terms “S‘?d n th|s_ section. .
The LIA corresponds to the introduction of a large dis-

symmetry C,, with L=2, 3, 4, and 5. Some particular . . ;

shapes obtained from these coefficients and @d) are Lanced cutoff A in Ethe 9ex.pres:smn for the velocity of the

shown in Fig. 6(for a comparison with similar states for oundaryv{r(s)] [Eq. (9):

vortex patches see Figs. 8 and 9 st A/2
For large deformations, the appearance of oscillations in- 3§ {~~}ds’—>f {---}ds’. (32

dicate that higher order terms are needed, since the perturba- r s=AL2

tive met_h_od corresponds to a tru_ncation of the Fourier deThe |ine integral in Eq(9) is then calculated by expanding
composition[Eq. (14)]. An alternative approach, based on ape integrand in powers af=(s’ —s). By using the Frenet-
local induction approximation, provides a better descriptiongerret relations

in those cases. This alternative formulation is presented in

Sec. VII. rs=t,
It is interesting to note that the linear result for the fre-
quency is[see Eqs(25) and(A3)] ts=— kN, (33
i ng= kt
00r|II=0, = - s )
QON=Q=42, S =, (30

where k= 6 is the local curvature of the boundary, we ob-

where the last sum can be related to the digamma furfétion t&in
(|14 1/2). This linear result has been previously derived

2 3 2
by several author® corrections areO[b?]. For a direct t(s')=t(s) 1_A_K2_A_KKS+... +n(s) _AK_A—KS
comparison with Eq(5), which corresponds to thiarge-| 2 2 2
limit, we substitute the asymptotic expansion for the sum in A3
Eg. (30); multiplication by R, yields the propagation veloc- + F(K3— Ksgd) T, (34)
ity:

) e ) -r(9=ts] A= 2= 2 gt i) - &
=_ - r(s’)—r(s)=t(s)|A— —«k“— o kkgt | +n(S)| — 5«
Vg 21n Fm) emewc, (31) 6 8 S 2
which closely corresponds to the group velocity, A3 A* 3
= i . — —Kst 57 (K —Kgg)+- . (35
=dwy(k)/ok obtained from Eq(5) after the substitutior 6 s’ 24 s
~ka. The dispersion for these linear edge excitations has
been confirmed experimentally in both the frequéA@nd To lowest order the normal and tangential velocities then

time?>2*#?domains. are given by
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(a) 14 O (b) |74 O
u_\]gm‘n](max
\ \/K
S
t=0 >0

© 1% (d) 4
FIG. 3. A uniformly propagating edge deformation. The curva- @
ture satisfiesc(s,t) = «(z), with z=s—ct.
Kmin K N ‘
\L/ K

o

K
A2 \/

—K
8 !

ne?

Ua=

€Mew¢

Te? A2 11A2 matic solutions for the shape of the boundary. Potentials with two
Wa=|— <|n2_ — W,(2) (36 real zeros may have physical solutiorig: Curvature is fixed, the
EMewc lo solution is a circle(b) curvature is positive definite, the boundary is

convex; (c) positive and negative curvatureg) potentials with

It is worth noting that since the rate of change of the adea four zeros have solutions with unphysical self-intersections.

of the droplet is4;=¢dsU(s) [see Eq(D8)], the LIA with
U a ks (Or any exact differentialautomatically conserves
area. This is not surprising since we started with an incom- 1 K')2=— 1K4+ ECKZ'FaK—Zb (41)
pressible system, but shows that the local approximation 2 8 2 '
used has not introduced an obvious error. It is also interes
ing to realize that the perimetér of the curve derived from
these velocities is conserved as well;=¢ds(«U + W)
=0 [see Eq.(D7)].

The time evolution of a curve in two dimensions is given

Evherea and b are constants of integratiorm€b=0 for
infinite systems, see Appendix.FThis ordinary differential
equation can be easily integrated:

) . . . v «  dk’
quite generally by the integrodifferential equatibff’ (see 7—7 :if S (42)
Appendix D ° ko = V(k")
s K4
KtZ—[K2+(9SS]U+KSW—KSJ’ [kU+W, ]ds". (37) V(K)ZZ—CK2—23K+4b. (43
0
We now introduce the results from E¢(B6). A “gauge” This problem is thus analogous to a particle moving in a

change, realized by modifyiri¢y so that the integrand of Eq. quartic potentialFig. 4). The integrals involved can be ex-
(37) vanishes, eliminates the remaining nonlocal depenpressed in terms of elliptic integrdfsand depend crucially
dences and yields on the nature and location of the zeros\f«x). For curves
with finite perimeter and no self-crossings we find that it is
3, necessary to have two real and two complex zergs;,,
oK KsF Ksss| - (39 Kmin» and — (Kmaxt+ Kmin)/2£1 & (see Appendix E Note that
Kmax @nd ki, correspond to the maximum and minimum
After a simple time rescaling, the curvature satisfies thecurvatures of the boundary.
mKdV equation®® The periodic solutions of Eq42), expressed in terms of
Jacobi elliptic functiong? are given by(Appendix B
g

AZ

8

ne?

€M,

3
KtZEKZKS‘i‘ Ksss- (39

V4
(A& maxt PEmin) T (PKmin— AKmax) Cﬂ( \/ﬁz

The mKdV dynamics are integrable, with an infinite number Kk(2)= 7
of globally conserved geometric quantitiésthe most im- (p+ q)(p—q)cn( \/p_qE)\)
portant of which are the center of mass, area, and angular

momentum of the droplet. (44)
The mKdV equation possesses a variety of soliton soluwhere
tions, including traveling wave solutions and propagating
“breather” solitons(see Appendix = Here we will focus on P=V(3Kmaxt Kmin) >+ &,
the traveling wave solutions of E¢39) of the form
q= \/(Kmax+3Kmin)2+§21 (45)

k(s,t)=«(z), with z=s—ct, (40

A= — Kmin)>— (P—Q)?]/4pa.
which represents uniformly rotating deformed dropletse VLK semin)® = (P~ ) *J/4pq
Fig. 3). The ordinary differential equation fae(z) can be The free parametef is actually determined by theoundary
integrated twice with the result conditions The period ofx is given by the elliptic integral
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@w
((DQ (e)
® (

©

h)

FIG. 5. lllustration of the boundary conditions implied by Eq.
(47). Top: afterl periodsL, of the curvaturex(s), the tangent
angle @ increases by precisely72 Bottom: the resulting deformed
boundary.

8
L =—=K(). (46) : . .
VpQq FIG. 6. Uniformly rotating shapes of a 2DES. Solid lines: solu-

. ) tions of the mKdV equation obtained from the local induction ap-
We now require that the tangent angle increases by a factQjioximation. Dotted lines: solutions obtained using the perturbative

of 27 after an integer multiplé curvature periods, so that the expansion. The values of the coefficiént and the ratio of curva-

curve is closed and with no self-crossingee Fig. & tUres o= ki /kmax are (@ b,=0.073, =0.4; (b) b,=0.19, o
" =0; (¢) b,=0.36, 0=-0.2; (d) b;=0.027, c=0.4; (&) b,
6’(|LK)=f “x(s)ds=21. 47y =010, 0=-02; (f) b3=0.29, s=—-0.45; (9) bs=0.014, &

0 =0.4; (h) b,=0.089,0=—0.4; and(i) b,=0.24,0=—0.56.

It is evident that the resulting curves are invariant under ro-

: ) VIIl. CONCLUSIONS
tations by 27/1, that is the curves hav€, symmetry. The

curves thus generated can be characterized By, Kmin) A contour dynamics formulation of the excitations on the
or more conveniently, although indirectly, by the symmetry,edge of a two-dimensional electron system in a magnetic
the area and the perimeter of the curve. field has allowed us to demonstrate the existence, beyond the

The contour shape can be easily determined once the tansual linear regime, of shape deformations that propagate
gent angled(s) is known as a function of arc length. Since uniformly. A local approximation to the nonlocal dynamics

dz=dx+idy=exdié(s)]ds we have shows that the curvature of the edge of the droplet obeys the
modified Korteweg—de Vries equation, Whicha?)as integrable
. S als! dynamics and soliton solutions. Earlier studiesf edge
= _ 16(s") Y g
2s)=x(s)+iy(s) foe ds’. (48 channels in QH samples have shown the presence of nonlin-

] o ) ) ] ear waves, but in Ref. 29 the nonlinearity originates in the
The full lines in Fig. 6 show some uniformly rotating soliton \5riations of the strength of the confining fielthe E,,, of
shapes, calculated from Eq44) and(48). These are essen-

tially identical with Goldstein and Petrictt$soliton solu- Ve

tions for the vortex patch problem, but the more local nature Vin - Vout
of the interaction in the 2DES case should guarantee a better J_—\@ @/"
correspondence with the exact solutions including nonlocal

terms. Indeed, the curves resulting from the perturbative

method and the LIA are quite close, even for considerable

deformations of the boundary. For larger deformations the

perturbative results show artifacts due to the limited number Vout dispersive

of Fourier components. The advantage of the LIA becomes

evident in this case, since it is an expansion in powers of the A S <\
curvatureand not thedeformation and thus allows for rela- Vout non-dispersive

tively large long-wavelength deformations. More signifi-

cantly, the LIA and the resulting integrable dynamics allow i /\V /\L,

one to uncover geometrical conservation laws which would t

be hidden in a perturbative c_alculati%.This advantage  pig, 7. Soliton excitations travel without shape changes. In a
comes at a price: the detailed information on frequencies igjrcular QH systen{Ref. 24 with noncontact probes it is possible
obscured by the introduction of the long distance cutdff to observe repeated signals. While a gradual decrease of the ampli-
and by the gauge transformation of the tangential velocitytude is always expected due to residual dissipation, dispersive and
W, while the frequency is easily obtained in the perturbativenondispersive modes may be distinguished by the preservation of
calculation. the general shape and width of the nondispersive modes.
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Sec. ), whereas here we concentrate on nonlinear effectaondispersive modes may be distinguished by the preserva-

originating in geometrical effects. tion of the general shape and width of the nondispersive
Since these solutions are dispersionless, it may be posnodes.

sible to distinguish them from linear edge waves in time-of-  On the theoretical side, it would be interesting to connect

flight measurements of the type depicted in Fig. 7. In a cir-our hydrodynamic treatment of these edge solitons with

cular QH systerff a voltage pulse applied to a gate producesfield-theoretical treatments of edge excitatiohs’

an edge deformation. The deformation propagates along the

edge of the system in one direction qnd is detected, i.e., by ACKNOWLEDGMENTS

means of a capacitive probe. For this geometry, the pulse

comes back repeatedly and it is possible to observe it after We would like to thank Raymond Goldstein for useful

numerous passes. While a gradual decrease of the amplitudéscussions. This work was supported by NSF Grant No.

is always expected due to residual dissipation, dispersive andMR-9628926.

APPENDIX A: MATRIX ELEMENTS FOR THE NONLINEAR EIGENVALUE PROBLEM

In order to determine the matrix elemei@s R, S, T, andU for the nonlinear eigenvalue probldiag. (20)], we need to
expand Eq(18) in powers of the coefficients, of the parametrizatiohEq. (14)]. We initially realize that

lw

lw
CcoS—Sinw+1 cosw sin—

n(e) - me+ow)= 5 5

[ sinw— 22 be'¢

1
E®]

(I-2p)w (I-2p)w

+ > by_pbye¢| (Ip— p2—1)cosTpsinw—(l —2p)cosw sin—
I,p

] : (A1)

w . w
IR(p+w)—R(¢)|2=4 sinZE 1+ 22| b,e"‘”’zcosg

(I=p+Do  (p~leo  (I-p~lwo (p+lo
Sin 2 Sin 2 +sin 2 Sin 2
_E b b il w/2
1—-pPp€ . (AZ)
I,p L, W
ZSIan

By expandingn(¢) - ¢+ w)/|R(¢+ w)—R(¢)| in powers ofb,, and integrating ovew [see Eq.(18)], one obtains the
relevant matrix element®, R, S, T, andU. All integrals converge without the need for short distance cutoffs. The three
lowest order terms can be written as follows:

=42 ST A3
M 1 ‘pr‘ 1 |p‘ 1
Riopp= 2 oK1~ & 2k=1 &4 2k—1" A4
5] p q I—p I—q p—q I—p+q
SppaaT T{1—4|2 1A 1A T 1ma-p)? T 1-40-92 T 1-4(p-q)?  1-4(1-p+q)?
I B a 1l

—(3+411) X 57~ (14+4p) X 5= +(5+40) 2 5 —7 +[5+4(1-p)%] X 51—

(A5)

I1—al lp—al [I=p+q
“[140-)%) 2, 57 F5 AP0 2 g -[1Had—pra)t] 2, m}

Higher order terms are long and uninspiring.
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APPENDIX B: COMPARISON WITH THE VORTEX a
PATCH CASE

For the sake of comparison, we draw analogy to the case
of a vortex patch, a two-dimensional, bounded region of con-
Stan.t .VortICIty“.’P surroun_deq by an |rr9tat|onal qu?dThe Dotted line: the Kirchhoff ellipse. Full line: perturbative solution.
vorticity can either be distributed, as in a regular fluid, or _ ~

T DS ; . (@ b,=0.2, (b) b,=0.3.
concentrated in individual vortices, in the case of a super-

FIG. 8. Thel=2 stationary deformations of a vortex patch.

fluid (in this case it is clear that the hydrodynamic treatment 1

will be valid only for length scales larger than the intervortex Slv_p,p_q,q=1—2[1—|||—|| —pl+[2l=p|+[I—g[=|2I = q|
spacing. Most important is that in ideal fluids the area of the

vortex patch is conserved due to Kelvin's circulation —|p—q|+|l+p—al+d2l—p)+(—-q)
theorent® and therefore the vortex patch is essentially in-

compressible. Figure 1 can be used to describe this case by +o(l+p-a)l. (B7)
replacing the electron density by the vorticity w,. We then apply the results of Sec. V, to determine the

The steady-state solution in this case is clearly a circlegmplitude of the lowest harmonics for the vortex-patch case,
and small deformations of the boundary travel along theysing the appropriate matrix elemerit&qgs. (B5)—(B7)].
boundary itself, as has been known for a long th@ne can  These results are summarized in Table II, and some of the
also ask what happens when the deformations are large: aresulting invariant shapes are shown in Figs. 8 and 9.
there modes that do not change shape, i.e., solitons? One It has long been knowhthat an elliptical region of vor-
such solution has been known since Kirchhoff's time: anticity in an otherwise irrotational fluid, namely the Kirchhoff
ellipse with constant vorticity will rotate uniformly in an ellipse, rotates uniformly with angular frequenc{}
ideal fluid. Numerical calculations by Deem and =(wp/4)(1- b%/a®), where @+b) and @—b) represent
Zabusky%!tin the 70s obtained additional invariant shapes.the maximum and minimum radii, respectivelsee Appen-

For inviscid incompressible fluids, the equations of mo-dix C). A simple analysis shows that both frequency and

tion for the fluid are simply given by angular componentb, shown in Table Il exactly match a
series expansion of the ellipse. Figure 8 compares the pertur-
V.v=0, (B1) bative results with the exact solution. Even for relatively
high deformations both results are in reasonable agreement.
VXV=0w, (B2) In the case of deformations with higher angular depen-

dences there are no analytic solutions beyond the linear ap-
wherew is the vorticity. Assuming that the velocity far from proximation. In this case, the angular frequencies are given
the patch vanishes, the velocity of the fluid in the presence ofp zeroth order in the deformation Y= (m—1)/2m, which
a region of finite vorticityw, can be expressed as coincides with the values fa®)’ [see Egs(25) and (B5)].
Numerical solutions by Deem and Zabu$kfor | = 3,4 also
compare favorably with the perturbative results, as can be
seen in Fig. 9. In fact, the angular velocities determined from
Table Il coincide with those shown in Ref. 11 to all signifi-

The arguments presented in Secs. Ill and IV are now apcant figures of that paper.

plied mutatis mutandiso this case. The only difference with
the 2DES comes from the fact that the kernel in the interac-
tion is now logarithmic, and Eq9) is then replaced by Eq.
(B3). We see that, as in the 2DES cdSecs. Il and 1V, the
dynamics is chiral, being determined by the tangent vector; |t is illustrative to show, starting from the contour dynam-
and since the fluid contained withinis incompressible the cs, that an ellipse is indeed an invariant deformation for a
area is conserved. The normal velocity of the contour is then

(B3)

vv(r):—;)—; ids’t(s’)ln —|r—:(()s )I}.

APPENDIX C: THE KIRCHHOFF ELLIPSE AS A
SOLUTION OF A CONTOUR
DYNAMICS PROBLEM

TABLE Il. Stationary deformations of a vortex patch. Angular

iven b
g y frequencies and lowest harmonics of the deformation [or
w. (27 IR(¢)—R(¢")| =2,3,4,5(the equivalent results for the 2DES are summarized in
Uv(¢)=—2—pf de'n(e)-m¢’)In } Table ).
7 Jo o
(B4) 0=0w, b2 b, by
As before, we seek solutions that satisfy E(E3) [or_ 2 1, 3,1, 5, 35,
(19)] and (B4). First, we follow the procedure of Appendix Z—szrb2 §b2—§b2 §b2 gbz
A to determine the matrix element}, R, S, T, andU. The 3 L . 931
first few of these are given by 3 2b2—20b% Eb§+ 160% 8b3 ?bg
1 4 3 7 . 135 33 715
\
- B P an2_ 4 T h2 04 =03 T4
Q=5 2N (BS) g 3bi-5m;  Sbi+ —-bj 5 b 5 bi
5 2 9 1615
N 2_ 4 K2 4 2&)3 U4
RV _ 1 (86) 3 4bi-1525  cbi+172g 5 5 b5
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r——ﬁ
FIG. 9. Vortex-patch “eigenstates” with.
. =3 andL =4. (a)—(d) were obtained numerically
by Deem and Zabusk{figures are scanned from
Ref. 11); (e)—(h) were determined perturbatively.

The lowest harmonidy, is taken in each case

from Table | of Ref. 11:b3=0.096, b;=0.11,

( b,=0.048, andb,=0.070, respectively. The so-
lutions are essentially identical and are too close
to compare effectively in the same diagram.

|

vortex patch. Additionally it can be shown that this is an o 27

inherent property of the logarithmic kerngq. (B3)] and Uy=- mj doy’ In{

that an ellipse it is1ot a solution for the 2DES. Wl Jo
Consider the following parametrization of an ellipse:

4(a2+b2)sin2( 77_277’”

2ab , ) ,
X 1—m005{77+77) sin(n—mn") (C7)

x=(a+b)cosy,

=(a—b)siny. (C) szd I 2a
== xIn| 1— ———cosx
It is evident that the radius is given by 4mlr(n)| Jo a“+b
r(7)=a’+ 2abcos 27+ b>, (C2) X (sin 277 cOsSX— COS 27 SinXx), (C8
and that tangential and normal vectors are given by where in going from Eq(C7) to (C8) we eliminated the term
5 inside the first braces in the logarithm due to symmetry and
r ; _ P
=2 — _(a+b)si +(a—b . (c3 changed variables ta= 5+ »'. Finally, the term propor-
4 an (atb)sinne+(a-bjcosye, €3 tional to cos 2z vanishes upon integration and we are left
. with a simple integral, proportional to sim2As long asa
_ eX7 (a—b)cosye+(atb)singe >b (for a=b the ellipse has collapsed into a linghe inte-
n=- 7| |7| ' gral exists in closed form:
where |7|=+a?—2abcos 2)+b% The “rigid-body rota- (a2—b%)b
tion” condition [Eq. (13)] can then be written as Uy= 0, ————sin2y (C9)
v 2alr(n)| ’
Q
U= 7 )|2absm 2. (€4 \which, by direct comparison with EGC4), yields the angu-
lar velocity
In addition the distance between two points on the ellipse
takes the simple form b2
0,--2[1- > (€10
RZ=[r()—r(n")|? 4 a

—4(a2+ bZ)sinZ( 7’_27’

Consider now the parametrization given by Etd) with
b, given by the first row in Table Il. The maximum and
2ab minimum radii correspond tR(¢) for ¢ equal to 0 andr/2,
X|1— aszzcos{ n+ 77’)}, (C5  respectively,(for b,>0). It is easy to see that~ 1+ 3b3
— b3 andb~2b,+5b3, thusQ/w,=1/2— b3+ b3, as shown
and the dot product involved in Eg&l8) and (B4) is given  in Table Il. A simple Fourier analysis of E¢C2) also results
by in coefficientsb; which agree with the perturbative solution.

1
n(n) 7(n')= ﬁ(aZ_ b2)sin( n—7n'). (Co) 2. Two-dimensional electron systems—no exact solution

It is also simple to see why an ellipsenst a stationary
solution of the two-dimensional electron system. Instead of
the logarithm, one has to deal withyBR2, and the elimina-

It is now simple to show that an ellipse is, indeed, a uni-tion of the first term inside the braces is not possible. The
formly rotating shape for the vortex pat¢kgs. (13) and resulting integrands depend @pin a nontrivial way, and the
(B4)], since the normal velocity is given by normal velocity isnot proportional to| 7( z)| 1 sin 27.

1. Vortex patches—exact solution
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1 1
.A=§ fﬁ(rxt)ezds:Ef (rxr,)-eda, (D6)

and it is evident from the expressions above that their time
derivatives are equal to

L= %(KU-’-WS)dS: % xUds, (D7)

A= § U(s)ds, (D8)

where in the rightmost part of EqD7) we assumed tha/

FIG. 10. Parametrization of a closed curve by a parameter Was periodic. o _
defined on a fixed interval. The illustration shows the arc lemsgth Consider now the following identity
the normal and tangential unit vecterandt, and the tangent angle
0. a9 a1 9 g J 99 oo
——=—=—=—ap—+——.
gt s ot \Jg da 20%2 9a  9s ot 09
APPENDIX D: GEOMETRY OF PLANAR CURVE MOTION
For completeness, it is worth considering some generafSing Ed.(D4), we obtain the commutator between the arc-
features of the planar curve motidhConsider a curve de- €ngth and time derivatives
scribed by some parametrizatiofw), wherea is a param-

eter defined on a fixed intervédee Fig. 10 It is then pos- ii = (Wt KU)i. (D10)
sible to consider tangent and normal unit vectors defined by Js ot Js
7(a) ar(a) We are finally able to determine a kinematic equation for
t= ()]’ where 7(a)=r,=—_—, the curvaturex. While the procedure is completely general,
this becomes particularly important when the dynamics
=—g,Xt. (D1) obeys a geometric law of motion, that is whenandW are

functions of the curvature and its derivatives only. Using
The arc lengtts(«) corresponds to the length of the curve gqq (D4 and (D10) to calculate the time derivative of the
from some arbitrary point to(a) and is defined byds . vature at fixedr we find that

= Jdx?+dy?= \Jgda, where the metrigy is defined byg
=7-7. We then have the Frenet-Serret relations

Jk )
—| ==K+ dsg]U+ kW. (D11)
rs=t ot
S 1 2%
t.=—xn (D2) It is convenient, however, to write a differential equation in a
s ' parametrization-independent form, that is the time derivative
ne= «t should be evaluated at fixed arc lengthSince d;|s= |,

_ _ _ _ _ —ksJ gl kU +Wq ]ds’, we have
which define the curvature. It is also possible to define the

curve in terms of its tangent angis), where 6;= k. Ik

The kinematics of the curve can be determined if the ve- [E
locity of the curver, is determined. It is convenient to de-
compose this velocity into its normal ana@ngentialveloci-

ties (at fixed ): which is the form used in Eq37).
re=uUn+Wt. (D3)

S

= —[ K%+ dgd U+ kW— KSJ [kU+W, ]ds',
0

S

(D12)

APPENDIX E: ELLIPTIC INTEGRALS, ELLIPTIC

In generalU andW may be arbitrary functionals af{s) and FUNCTIONS, AND BOUNDARY CONDITIONS
its derivatives. It is easy to show that o . .
A quick inspection of Eq(42) reveals the following pos-

n=—(Usg— kW)t, sible alternative solutions, in terms of elliptic functicits,
which depend on the nature of the zerosvg):

t=(UsmWin, (B4 (1) Four real zerosy=«k= B> y> 4 [Fig. 4d)]:

(VG)i=W,+\gxU. 2= 4 F<Sm_1 [(a=y)(x=B) )\)
V(a=)(B=9) (@a=p)(k—y)" ")

The lengthL and aread of the curve are given by (ED)
Na=(a=PB)(y—l(a—)(B—9), E2
e Sgdsszgda, i=(a=B)y=dl(a=)(B=9) (E2

(DS) which can be inverted to read
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1
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. . FIG. 12. A breather soliton fok=2 and|=1. In this time
FIG. 11. Examples of closed boundaries for the solutions corre- -~
. sequence\t=0.125.
sponding to four real zeros of(«). Note that all curves cross
themselves at least once and are not physical solutions for the pro
lem of interest.

?égrating Eq(39), thus resulting in Eq(41), which can then
be reduced to a simple problem in quadratles. (42)] and
the solutions for the curvature in terms of Jacobi elliptic
functions were discussed in that contésée also Appendix

_ B(ya)+Aa— PS4z, \4]

z , E3
D= =T (a= B)sPicaz ] B g
with c§=(a— ¥)(B— 8)/16. The period of(z) is given In the case of an infinite curve, however,and all its
in terms of the Comp|ete e|||pt|c integra||_4 arC-length derivatives should vanishsas =+ 00, and the con-
=(2/c)K(\y). stants of integratiom=b=0 in Egs.(41) and(43), so that
(2) Two real and two complex conjugate zeras x= g3, V(k)= k*l4—ck?. The traveling wave solutions can then be
m=in [Fig. 4a), 4b), 4(0)]: found as
Z(K):il: 2 tar [d(a— k) . E k(z)=2+—csechiy—c(s—ct)], ¢<O0. (F1)
\/ﬁ p(k=B) The tangent angle and the shape can then be obtained by a
p?=(m—a)*+n?, simple integration:
oP=(m—pB)>+n?, (E5) -
K%Z[(Kmax—Kmin)z—(p—Q)z]Mpq, 0(z)=f kds=4 arctar{ tan?‘{—2 (s—ct) ]+7T,
which can be inverted to read (F2)
_ (Bp+aq)+(Bp-ag)en Vpaz2),] .
(pray+(p-aerlipazza wriy= | oo
E6
Th%/fﬂios of k(z) is given in this case byL, ( . 4 1 o
= No). =(s—ct)— —i—
i +tan T(s—ct)

Since there is no cubic term in the potentifx), the
sum of all roots must vanish. That leaves only one free pa- (F3)

rameter in egch case, once the minimum and.maX|mum CL"‘L'Jnfortunately these curves represent a small loop traveling
vatures are fixed. As mentioned in Sec. VII, this free param

. ) . -along the boundary, and self-crossing solutions are not pos-
eter is determined by the boundary condition that the curve "?Tible for the boundary of a physical system.

closed and without self-crossings. For the case of four real ", is, however, possible to have more complicated solu-

zer%s_t,_ It is Irt](')t pt(.)lTS'ble tbol f|tndf_5(()jlut;uonst_]:chlatlsatlsfy theS(?ions that have a traveling envelope with time-dependent os-
conditions. 1t 1S Stll possible to Tind béautitul CIoSed CUIVES . 04 \yithin it. One such example is the “breather”

(Fig. 11), but these do not porres_pond to phyS|ca_1I solutions olution’® which loosely speaking, corresponds to a pair of
for the problem under consideration. The case with two re ound solitons:
and two complex conjugate solutions does have physical so- '

lutions and is discussed in detail in Sec. VII. | sinks— k(k2—3I2)t]

k coshils—I(3k*—12)t]|’

wherel andk are arbitrary. The value for the tangent angle
In Sec. VII we discussed the invariant shapes of a closeth this case is evident sinag= «; however, the shape of the
curve when the curvature satisfies a modified Korteweg—deurve requires numerical integration. Figure 12 shows a se-
Vries equation(39). Single soliton solutions where the cur- quence corresponding to the motion of one example of a
vature satisfied(s,t) = k(s—ct) were obtained by twice in- breather.

Jd
k(s,t)= —4£arctar{ (F4)

APPENDIX F: THE STRAIGHT INFINITE EDGE
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