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Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity
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We investigate the electron transport in a quasi-one-dimensional constriction with an attractive, finite-size
impurity, in the ballistic limit theoretically. Within the envelope function approximation we formulate the
scattering matrix exactly that determines the resonance structure of the electron transmission. Due to the
multiple impurity levels under the many-channel conditions, multiple Breit-Wigner resonances and Fano line
shapes appear in the same energy window. By varying the size of the impurity, we predict novel coherent
effects such as the collapse of the Fano resonance and antiresonance, resonance-level inversion, and the
appearance of discrete levels in the continuum.@S0163-1829~99!07439-1#
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I. INTRODUCTION

The discovery of conductance quantization has motiva
a great deal of research interests in the quantum trans
phenomena in semiconductor nanostructures.1,2 In particular,
the effect of disorder on the electron transmission caused
elastic scattering with impurities in the narrow constrictio
has been investigated intensively in recent years both th
retically and experimentally.3–17 The presence of impuritie
in such size-quantized systems orquantum waveguide
opens up new possibilities of taming electronic states
provides a basis for further study of coherent quantum
fects. It was shown that a single impurity changes the sh
of the conductance quantization dramatically, giving rise
erosion of the ideal quantum plateau. In order to underst
the mechanisms of the conductance erosion, several m
potentials were proposed for the impurity: the point-impur
model,6 the model potential having lateral extension,8 and
the finite-size impurity model.17

In this paper, we study the resonance structures of
electron transmission in a quantum waveguide with a fin
size scatterer for a wide range of the impurity paramet
The quantum waveguide considered is a quasi-o
dimensional~Q1D! constriction and a rectangular attractiv
square well is used to represent the impurity potential.
strictly limit our attention to the electron transport in th
ballistic limit other than the impurity scattering and to th
case of zero-magnetic field. Although we treat the popu
model, our work is distinguishable from the previous inve
tigations in several aspects. First of all, we present the
mally exact expression for the transmission amplitude wit
the envelope function approximation. Secondly, we anal
the Fano asymmetric resonance structures that appear i
dition to the usual Breit-Wigner line shapes in our syste
Although a similar feature of Fano structures for a finite-s
impurity model was treated in Ref. 6, we provide here mu
details. Also, the model study in Ref. 17 did not recogn
PRB 600163-1829/99/60~15!/10962~9!/$15.00
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the possible appearance of Fano resonances due to th
striction of the energy window considered. Third, we pred
some novel coherent phenomena such as the collaps
Fano resonances, the inversion of resonance levels, and
creation of discrete levels embedded in the continuum. T
fundamental parameters of an impurity might be extrac
from the analysis of the resonant structure of conductanc
real systems. Also, the class of coherent resonant phenom
predicted may emerge in experiments by tailoring the im
rity potential using the modern nanolithography techniqu

In the quantum waveguide, the transverse eigenfunctio
specifying the energy subbands, play the role of an infin
number of independent channels for longitudinal elect
motion. Depending on the incident electron energyE, some
channels are opened and others are closed for electron p
gation through the waveguide. We analyze the transmiss
amplitudestnn8(E) that characterize the electron scatteri
from channeln8 to n as the electron goes through the qua
tum waveguide. The transmission amplitudes as anal
functions of the energyE provide useful information on the
system. The poles are connected with bound or quasibo
states and their lifetimes. Also, the two-probe conductanc
the system can be obtained fromtnn8(E) through the
Landauer-Bu¨ttiker formula.18,19 We will present the results
for the electron transmissionT(E), calculated by summing
the transmission amplitudes over all theopenchannels,

T~E!5(
nn8

kn

kn8

utnn8u
2[(

nn8
Tnn8 , ~1!

wherekn is the electron wave vector of channeln. For the
finite-size impurity model considered in this paper, multip
impurity levels appear. Consequently, the intriguing coher
resonant effects are induced under the multichannel co
tion in the electron transmission. We obtain physically d
ferent Breit-Wigner resonances and Fano resonances in
same energy window and analyze, in particular, the beha
10 962 ©1999 The American Physical Society
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PRB 60 10 963RESONANT TUNNELING IN A QUANTUM WAVEGUIDE: . . .
of the Fano structures in detail to study the effects of
spatial extension of the impurity on the transmission. In
dition, we predict the possibility of the electron confineme
in the space occupied by the finite-size impurity. It is sho
that the predicted localized electron states are degene
with the scattering states at the special energies and the
purity sizes.

The paper is organized as follows. In Sec. II, we defi
the finite-size impurity model and derive the formally exa
expression for the scattering matrix for the electron transm
sion. As an illustration of the formula obtained in Sec. II, t
exact result for an effective 1D model system is given in S
III. Section IV is devoted to the detailed analysis of the effe
of the finite-size impurity on the electron transmission.
Sec. V, the interesting electron confinement situation is
cussed. Finally, we summarize our results in Sec. VI. T
extremely short-ranged impurity is considered in Appen
A as a limiting case as well as the point-impurity model.

II. FORMULATION

We consider the electron transmission through a Q
quantum waveguide of widthW, containing a finite-size at
tractive impurity, which is depicted in Fig. 1 schematical
It is assumed that the waveguide is infinitely long and
placed along thex direction. The confinement potential in th
transverse direction is modeled by the potentialVc(y) and
the impurity potential is represented by the functionV(x,y).

Within an effective mass approximation, the electr
wave function in the waveguide is determined by the Sch¨-
dinger equation

2
\2

2m*
S ]2

]x2
1

]2

]y2D C~x,y!1Vc~y!C~x,y!

1V~x,y!C~x,y!5EC~x,y!, ~2!

wherem* is the effective mass of the electron. We attem
to find the electron wave function in the expansion form

C~x,y!5 (
n51

`

cn~x!wn~y!, ~3!

FIG. 1. Schematic diagram of the quantum waveguide for e
tron transmission containing an attractive rectangular impurity. T
center of the impurity is chosen to be at (0,Yc), i.e., shifted from the
center of the waveguide.
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where, for instance, use can be made of a simple choice o
infinite square well for the confinement potentialVc(y) to
define the complete basis

wn~y!5A 2

W
sinFnp

W S y1
W

2 D G , ~4!

wheren51,2, . . . .,whose corresponding eigenenergies a
En5\2p2n2/(2m* W2). Substituting Eq.~3! into Eq. ~2! we
find the equation forcn(x) as

2
\2

2m*

]2

]x2
cn~x!1 (

n851

`

Vnn8~x!cn8~x!5~E2En!cn~x!,

~5!

where the matrix elements are defined to be

Vnn8~x![E dywn~y!V~x,y!wn8~y!. ~6!

We adopt the two-dimensional rectangular well model
the impurity potential,17 which is described by

V~x,y!52VattF~x!G~y2Yc!, ~7!

whereVatt is the depth of the quantum well and the center
impurity is assumed to be located atx50 andy5Yc . The
functions F(x) and G(y) are defined to give unity when
uxu<La/2 anduyu<Wa/2, respectively, otherwise zero. The
the wave functions in Eq.~3! are written in each region as

C~x,y!5(
n

@Aneikn(x1La/2)1Bne2 ikn(x1La/2)#wn~y!,

for x<2La/2, ~8!

C~x,y!5(
n

@aneiqnx1bne2 iqnx#xn~y!,

for 2La/2<x<La/2, ~9!

C~x,y!5(
n

Cneikn(x2La/2)wn~y!, for x>La/2,

~10!

where kn5A2m* (E2En)/\2 and qn5A2m* (E2En
tr)/\2

are the longitudinal components of the wave vectors outs
and inside of the impurity region, respectively. And,xn(y)
and En

tr are the eigenfunctions and the energy levels of
electron in the transverse fieldVtr(y),

Vtr~y!52VattG~y2Yc!1Vc~y!. ~11!

Two sets of eigenfunctionswn andxn are connected by the
unitary matrixU,

Unn85E dywn~y!xn8~y!. ~12!

Note that solutions with realkn and qn are the propagating
states, whereas for imaginarykn5 i uknu or qn5 i uqnu, evanes-
cent modes are the corresponding solutions.

Next, by examining the continuity conditions of the wav
functions and their derivatives atx56La/2, one can find the

-
e
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10 964 PRB 60KIM, SATANIN, JOE, AND COSBY
equations for the amplitudesAn , Bn , an , bn , andCn . Here,
we present only the results in matrix form,

d21a1db5U~A1B!,

q~d21a2db!5Uk~A2B!,

da1d21b5UC,

q~da2d21b!5UkC, ~13!

where we have defined

~k!nn85kndnn8 , ~q!nn85qndnn8 , ~d!nn85eiundnn8 .
~14!

In the aboveun[qnLa/2 is the phase of the electron wav
and the wave amplitudesa, b, A, B, andC are considered a
infinite vectors. After eliminating the intermediate amp
tudesa andb in Eq. ~13!, it is possible to find the scatterin
matrix t that is defined through

C5tA .

The result is

t5M215
MC

T

det~M !
, ~15!

whereMC is the cofactor of the matrixM , which is defined
to be

M5
1

4
U21@~11 k̂21q!D21~11q21k̂…

1~12 k̂21q!D~12q21k̂!#U, ~16!

wherek̂5UkU21, D5d2, and1 is the unit matrix. Equation
~15! suggests that the analytic properties of the transmis
amplitude as a function of energy are fully determined by
structure of the matrixM . The resonance states follow from
the poles of the matrixM , specified by

det~M !50, ~17!

and the zero energies at which the transmission quenche
determined by

@MC#nn850, n,n851,2, . . . . ~18!

The reflection symmetry of the impurity potential with r
spect tox→2x allows us to carry out the factorization,M
5U21MaM sU, with definitions

M s5
1

2
@2~d2d21!1~d1d21!q21k̂#

and

Ma5
1

2
@2~d2d21!1 k̂q21~d1d21!#.

Hence, Eq.~17! can be decoupled into two equations: one
symmetric resonance states,

det~Ms!50, ~19!
n
e

are

r

and the other for antisymmetric resonance states,

det~Ma!50. ~20!

III. AN EXACT RESULT

As an illustration of the utility of our formulation de
scribed in Sec. II, we consider here a simple model defi
by settingWa[W that allows an exact solution to Eq.~15!.
Since, in this case, the transverse eigenfunctionxn is identi-
cal to wn with only a shift of eigenenergy,En

tr5En2Vatt ,
we haveU51 from Eq. ~12!. Then, Eq.~16! becomes

~M !nn85
1

4 F S 11
qn

kn
D S 11

kn

qn
De22iun

1S 12
qn

kn
D S 12

kn

qn
De2iunGdnn8 . ~21!

Accordingly, the scattering amplitudetnn8 turns out to be
diagonal from Eq.~15! and is obtained exactly as

tnn~E!5
4knqn

~qn1kn!2e22iun2~qn2kn!2e2iun
. ~22!

This model corresponds physically to the situation of hav
noninteracting channels. Thus, the problem is essentially
duced to a one-dimensional system without mixing amo
different n’s. One can quickly notice thattnn(En)50: the
transmission vanishes identically for the incident electr
wavewn at the subband minimumE5En . Poles that specify
symmetric and antisymmetric resonance states are d
mined by

tanun52 ikn /qn and cotun5 ikn /qn , ~23!

respectively. There exist two types of poles, depending
the incident electron energy. For energiesE.En , the poles
are placed in the complex energy plane and the resonan
characterized by the Breit-Wigner line shape,

tnn~E!5
ign j

E2Ẽn j1 ign j

, ~24!

where

Ẽn j5En2Vatt1S p

La
D 2 \2 j 2

2m*
and gn j5

2\2

m* La
kn~Ẽn j!

with j 51,2,3, . . . . On theother hand, when the electron
transmitted into the waveguide through the channelwn with
an energyE limited by En2Vatt,E,En , the poles are lo-
cated on the real energy axis. This means that the co
sponding resonance states are discrete levels, located b
En .

IV. FINITE-SIZE IMPURITY

It is well known that the asymmetric resonance structu
appear in the transmission for the extremely short-ran
impurity model.13,15,20Such a Fano line shape consists of
paired, asymmetric resonance peak and nearby transmis
zero and can be represented by@see Appendix A#
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PRB 60 10 965RESONANT TUNNELING IN A QUANTUM WAVEGUIDE: . . .
t~E!;
E2E0

E2ER1 iG
, ~25!

whereE0 is the zero energy,ER is the location of the asym
metric peak, andG specifies the half width of the quasiboun
state.21 This resonance is due to the interaction of the bou
level raised in the continuum with the continuum states. T
relaxation of the short-range interaction limit, namely the u
of a finite-size scatterer along the propagation directi
would produce multiple impurity levels, that could chan
the transmission dramatically. It is expected that a nontriv
interaction between such levels and the continuum under
multichannel condition gives rise to a novel resonant str
ture in the transmission. For atomic systems this kind
interaction was investigated to observe the effect of re
nance overlapping.22

To reduce the calculational efforts without losing the d
sired aspects, we impose the conditionWa!La , leading to
the short-ranged transverse potential

Vtr~y!52
\2u

m*
d~y2Yc!1Vc~y!, ~26!

whereu[m* VattWa /\2. The corresponding eigenvaluesEn
tr

are obtained by

sin~kW!52
u

k
sin~kYc!sin@k~W2Yc!#, ~27!

wherek[A2m* E/\2, as derived from the transverse Schr¨-
dinger equation. When the interaction is turned off (u50),
one recovers the eigenfunctions Eq.~4! and eigenvaluesEn .
In the general case (uÞ0), we have solved Eq.~27! numeri-
cally and the first few eigenvalues are

E1
tr520.60 E1 , E2

tr53.19 E1 , and E3
tr58.99 E1 .

We have also obtained the corresponding eigenfunct
xn(y), not presented here. The common parameters use
this section are

m* 50.067 me , Vatt56.37 E1 ,

FIG. 2. Transmission through the electron waveguide with
finite-size impurity along the propagation direction as a function
the incident energyE in the first energy window (E1 ,E2) whereE
is in units of E1; we have usedVatt56.37E1 , Wa50.1 W, La

57.64W, andYc520.17W.
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Wa50.1 W, and Yc520.17 W.

In the following, we report the full numerical results ob
tained by calculating the transmission matrix Eq.~15! and
thus by evaluating the transmissivity Eq.~1!, while restrict-
ing our attention to the energy interval (E1 ,E2).

In Fig. 2 we present a representative case where v
interesting transmission lines show up: the Lorentzian Br
Wigner resonances appear in lower energiesE1,E,E2

tr ,
whereas the multiple asymmetric Fano lines appear in
upper energiesE2

tr,E,E2. The Breit-Wigner peaks occur a
E81.15, 1.96, and 2.90E1 and the half width of each reso
nance specifies the lifetime of the corresponding quasibo
state. The asymmetry Fano peaks are seen to occu
E83.22, 3.40, and 3.58E1 and the Fano dips, in this cas
the transmission zeros, are seen to occur atE83.24, 3.37,
3.63, and 3.90E1. The Breit-Wigner resonances are asso
ated with the interference of the electron waves with
geometrical structure of the finite-size impurity. The multip
Fano resonances are connected with the interaction of
multiple quasidonor levels appearing above the lowest s
band edge and the continuum states, of which detailed an
sis will be given later. It is of interest to see that the Fa
resonance dominates the resonance structure in the re
where it overlaps with the Breit-Wigner line. We estimat
that the line widthg;0.79E1 for the Breit-Wigner reso-
nance atE;2.91E1 and the Fano widthG;0.631022 E1

e
f

FIG. 3. Transmission as a function of energyE near the first
Fano peak appearing in the energy window (E1 ,E2) for several
impurity sizes: ~a! La53.06W, ~b! La53.12W, ~c! La

53.1901W, and ~d! La53.25W; where no curve is exhibited in
~c! sinceT51 over the energies shown, thus overlapping with t
top axis.@PreciseT51 occurs only atE5Ec .# The other param-
eters are the same as in Fig. 2.
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10 966 PRB 60KIM, SATANIN, JOE, AND COSBY
at E;3.215E1 in Fig. 2. Accordingly, the ratioG/g;0.8
31022, meaning that the Breit-Wigner pole is placed f
away from the real energy axis to bring small influence
the resonance structure.

Next, we vary the size of the impurity (La) in order to
investigate its effect on the transmission. In Fig. 3, we dep
the transmission near a Fano resonance-antiresonanc
various sizes of the impurity,La53.06, 3.12, 3.1901, and
3.25W. We have chosen the energy region near the fi
Fano line in Fig. 2. The result shows two important ne
features. First, as the impurity length reaches a special v
La53.1901W[Lc , the Fano structure disappears, givi
rise to full transmission over the energy range conside
@Fig. 3~c!#. This collapse of Fano resonance and antire
nance is seen more clearly in Fig. 4 where we plot the tra
mission in the entire first energy window: the energy reg
aroundE;3.255E1[Ec admits the full transmission. Sec
ondly, the location of the Fano pole is switched with the ze
energy asLa goes through the special distanceLc . Namely,
the resonance peak occurs before the transmission zero
La,Lc , Figs. 3~a! and 3~b!, but it occurs after the transmis
sion zero whenLa.Lc , Fig. 3~d!. The observedinversionof
the resonance level seems quite a novel effect in the tr
mission problem, of which physical interpretation is giv
below.

It is intriguing to understand the numerically observ
collapse of Fano structures and inversion of resonance pe

FIG. 4. Transmission as a function ofE in the full first energy
window (E1 ,E2) whereLa53.1901W has been used, correspon
ing to Fig. 3~c!. The other parameters are the same as in Fig. 2
n
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To this end, we present here the analytical manipulation
the resonance-amplitude. It suffices to consider the re
nantly coupled two channels (n51 and 2! in the energy
interval, E2

tr,E,E2, in the weak-coupling limit. Note tha
both channels are propagating modes in the regionuxu
,La/2 with the wave vectorsq1 and q2, but outside the
impurity region,uxu.La/2, only moden51 is propagating
with k1 while moden52 being the evanescent wave wi
k25 i uk2u. Accordingly, the transmission is specified b
t11(E), whose shape near a Fano structure is described
Eq. ~25!. Our detailed analysis of Eq.~17! shows that the
poles for the symmetric states are to be determined from

S i sinu12
k1

q1
cosu1D S sinu22

uk2u
q2

cosu2D
5hS i sinu22

k1

q2
cosu2D S sinu12

uk2u
q1

cosu1D ,

~28!

where h[U12
2 /(U11U22) is the coupling parameter of two

interfering channels. In the decoupling limit,U1250, Eq.
~28! defines the bound-state levels ([EB) in the well
through

tanu25
uk2u
q2

. ~29!

In the weak-coupling limit, we have obtained the polesEp
5ER2 iG to the first order inh as

ER5EB1hER
(1) and G5hG (1), ~30!

where

TABLE I. Critical impurity sizes and energy levels for symme
ric states; whereLc andEc are in units ofW andE1, respectively.

j a( j ) Lc(a( j )) Ec(a( j ))

1 0.9233 1.0982 3.4798
2 1.1743 2.1507 3.3104
3 1.2825 3.1901 3.2551
4 1.3439 4.2246 3.2306
5 1.3836 5.2563 3.2177
A A A A
` p/2 ` E2

tr /E1
ER
(1)54

~EB2E2
tr !uk2u~ uk2ucosu12q1sinu1!~k1

2cosu11q1uk2usinu1!

~ uk2uLa12!~q2
21uk2u2!~k1

2cos2u11q1
2sin2u1!

and

G (1)54
~EB2E2

tr !uk2uk1~ uk2ucosu12q1sinu1!2

~ uk2uLa12!~q2
21uk2u2!~k1

2cos2u11q1
2sin2u1!

.

Similarly, the zero energies from the symmetric states are estimated to the lowest order inh as

E05EB1hE0
(1) ~31!
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by solving

S sinu22
uk2u
q2

cosu2D S sinu21
q2

uk2u
cosu2D5

U11

U22
hS sinu12

uk2u
q1

cosu1D S sinu11
q1

uk2u
cosu1D , ~32!

perturbatively, that is two-channel approximation of Eq.~18!. The correction to zero energyE0
(1) is given by

E0
(1)54

U11

U22

~EB2E2
tr !uk2u2~ uk2u/q1cosu12sinu1!~q1 /uk2ucosu11sinu1!

~ uk2uLa12!~q2
21uk2u2!

.
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Equations~30! and ~31! are the desired analytical expre
sions for the resonance poles and zero energies that des
the Fano structures, numerically seen in Figs. 2–4.

One can quickly notice that the width of resonance pe
may shrink to zero,G→0, for

tanu15
uk2u
q1

. ~33!

Importantly, when this happensER
(1) and E0

(1) also vanish
identically: the complex poles and real zero energies in
~25! approach to the common real energies,Ep ,E0→Ec to
give t11(Ec)51. Thus, the very real energies at which t
collapse of Fano structures occur, for instanceEc
53.255E1 in Fig. 3~c!, are to be specified by solving Eq
~29! and ~33! simultaneously.@We have confirmed that, in
general, the critical states are defined by the simultane
solutions to Eqs.~17! and~18!.# We solved thistwo spectral-
variable problemby choosing energyE and distanceLa as
the relevant variables. The rest of the system parameters
as the impurity strength etc. are assumed to be given.
manipulating Eqs.~29! and ~33! one can obtain the spectra
variables as

Ec~ j !5E2
tr1~E22E2

tr !cos2a~ j !, ~34!

Lc~ j !5
2

p

Wa~ j !

cosa~ j ! S E1

E22E2
tr D 1/2

, ~35!

where j 51,2, . . . and theparametersa( j ) are to be speci-
fied by the transcendental equation

f ~a!5Ae1cos2a tanS a

cosa
Ae1cos2a D2sina50,

~36!

where e[(E22E1)/(E22E2
tr). Its solution restricts that 0

,a( j )<p/2. When the obtaineda( j ) are substituted into
Eqs. ~34! and ~35!, the critical energies and impurity size
are determined. We report a few of the critical values
Table I. The corresponding wave functions to the critic
scattering states are given as

C~x,y!5A1eik1(x1La/2)w1~y!, ~37!

for x<2La/2,
ribe

k

q.

us

ch
y

l

C~x,y!5A1U11Fcos~q1x1u1!1 i
k1

q1
sin~q1x1u1!Gx1~y!

1A1U12Fcos~q2x1u2!1 i
k1

q2
sin~q2x1u2!Gx2~y!,

~38!

for 2La/2<x<La/2, and

C~x,y!5A1eik1(x2La/2)w1~y!, ~39!

for x>La/2. The wave functions clearly manifest that the fu
transmission occurs without reflection at the critical energ
i.e., T(Ec)51: the incident current density comes fully o
of the impurity region.

The inversion of the resonance peak and transmiss
zero observed in Fig. 3 can be accounted for as follo
From Eqs.~30! and ~31! we have estimated that the relativ
displacement between the adjacent Fano peak and zero
ergy, i.e., ER2E0, behaves as ;(tanu1
2uk2u/q1)g(E,La ;h) @the functiong is rather complicated,
accordingly whose explicit form is not given here#. What is
relevant is the fact that asE andLa are tuned to the critica
values,ER2E0 vanishes identically and it reverses its sig
before and after this takes places. Similar inversion of
resonance levels was discussed, for instance by Tekman
Bagwell in Ref. 13, however, the origin of the phenomen
is different. In Tekman and Bagwell’s work such a pheno
enon was predicted because they changed the impu
model potential from an attractive one to a repulsive o
This caused the sign change in the interchannel transit
matrix element, which in turn switched the role of the co
structive and destructive interference between the invol
channels. It is important to note that in our case the invers
of the resonance levels is the purely coherent effect or
nated by the change of the spatial extension of the attrac
impurity along the electron propagation direction.

Next, we investigate the phase information of the tra
missivity. Near a Fano resonance structure the phase
associated with the transmission amplitude is given by

tand5
G

ER2E
. ~40!

We depict this in Fig. 5 for the same parameters used in
3. In Fig. 5~a!, the phase remains zero for most of the en
gies below the resonance peak, but it increases rapidly to
value ofp/2 as the energy approaches the zero energy. A
the energy passes through the transmission zero, the p
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changes its sign abruptly to become2p/2. Then, it remains
negative and increases sharply to become zero. Similar
havior is seen in Fig. 5~b! with the impurity size closer to the
critical value, where the phase changep/2→2p/2 near the
resonance becomes even more abrupt. When the imp
sizeLa is at the critical value in Fig. 5~c!, the phase remain
nearly constant, corresponding to Fig. 3~c! where the Fano
resonances collapse. After the resonance-level inversio
Fig. 3~d!, the similar behavior to Figs. 5~a! and 5~b! is re-
covered in Fig. 5~d! except for a dramatic rise to positiv
phase for energies larger than resonance energy, a co
quence of the influence of other Fano resonances at hi
energies. The distinctive nature of Fig. 5~c! again manifests
the formation of a critical scattering state from the resona
states. The flatness of the phase in energy,dd(E)/dE;0, is
connected with no space-charge accumulation in the lo
electron density as studied in Ref. 23. This is evident in
obtained electron wave functions, Eqs.~37!–~39!.

V. ELECTRON CONFINEMENT

The critical states obtained deserve particular attent
Very interestingly, we have found that the critical states
degenerated in energy. There exist two independent con
rations, possessing the same energies: one is the scatt
configuration that we have discussed so far and the oth
the one related to the electron confinement. The elect
confinement configuration can be understood as follows.
spatial region occupied by the finite-size impurity resemb
the Fabry-Perot resonator in optics,24 where two edges of the
attractive well play the role as electronicmirrors, for the

FIG. 5. Phase of the transmission amplitude near a Fano r
nance as a function of the energyE, where all the parameters use
are the same as in Fig. 3.
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electron waves. Equations~29! and~33! define the real solu-
tions to the Fabry-Perot resonance condition for two interf
ing waves in the resonator. The conditions are equivalen
having solutions to the Schro¨dinger equation Eq.~2! for an
electron injected into the well region with the boundary co
ditions,cc→0 asx→6`. For the symmetric states consid
ered, the solutions are

Cc~x,y!5c1cos~q1x!x1~y!1c2cos~q2x!x2~y!, ~41!

for uxu,La/2 and

Cc~x,y!5C1e2uk2u(x2La/2)w2~y!, ~42!

for x.La/2. Thus, the allowed critical states also correspo
to the discrete levels embedded in the continuum, describ
the localizedelectron states over the well region. These
calized states are to be distinguished from the bound le
calculated from Eq.~29! that defines the bound-state sol
tions to a square-well potential with depthE22E2

tr and width
La .25 The bound levelsEB are rather fictitious because the
are the ideal solutions obtained strictly in the decoupl
limit among the participating channels. On the other ha
the localized wave functions Eqs.~41! and ~42! take into
account the physical channel mixing caused by the impu
scattering and are consequences of the coherent intera
of two interfering channels in the finite space over the imp
rity. They are very special solutions to the Schro¨dinger equa-
tion via the Fabry-Perot mechanism under the multichan
conditions. When the impurity size is off-tuned from th
critical values, Eqs.~29! and~33! or in general Eqs.~17! and
~18! do not admit the simultaneous, real solutions. Then,
system allows only the complex solutions specifying re
nances states and the electron-confinement is not poss
One way to confirm the formation of the long-living electro
states predicted in the quantum waveguide would be to
scanning tunneling microscopy. Since those electrons
jected with the critical energies will be trapped in the imp
rity with the corresponding critical sizes, a dip in the tunn
ing current should be signaled. The prediction of the pecu
degeneracy of the scattering states, Eqs.~37!–~39!, with the
localized states, Eqs.~41!–~42!, seems very interesting in
nanostructure, and these kinds of quantum states in ato
systems were discussed in the literature.26 Although we have
reported our analysis only on the symmetric states, we
ried out a similar analysis for the antisymmetric states
well. The similar electron confinement problem in nanostru
tures has been reported under the time-dependent situati27

VI. CONCLUSION

We have investigated the electron transmission thro
the Q1D quantum waveguide that contains a finite-size
tractive impurity. The analysis was performed using a f
mally exact formulation for the scattering matrix as a fun
tion of the electron energy while varying the impuri
parameters. Consequently, we have obtained the variou
teresting coherent resonance effects due to the m
impurity levels and the geometrical extension of the fini
size attractive scatterer under the many-channel conditio

Our calculation predicts very interesting new coherent
fects in the electron transmission problem through narr
constrictions. It was possible to generate two distinct

o-
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types of resonance structures, the Breit-Wigner resona
and the Fano line shapes in the same energy window con
ered. They interact in a complicated fashion as the sys
parameters are changed and the Fano resonance dom
when the two overlap. We have observed that the Fano r
nance level is inverted as the impurity size is changed. A
the Fano resonance and antiresonance collapse at the c
energies and the critical impurity sizes, and the full transm
sion takes place at such a critical state. We have shown
the collapse of the Fano resonances also corresponds t
occurrence of very special localized electron states, i.e.,
appearance of discrete levels in the continuum. The obta
mechanism may be used to localize electrons in the regio
interest in the quantum waveguide.

Some of the coherent effects studied in this paper sho
be observable in high-mobility nanostructures at low te
peratures, for instance in a typical Q1D nanochannel mad
GaAs/AlxGa12xAs heterostructures. An artificial finite-siz
impurity may be created in the quantum waveguide us
recent nanotechnology.28
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APPENDIX A: SHORT-RANGE IMPURITY MODEL

In this Appendix, we present a limiting case of our finit
size impurity model, namely an extremely short-ranged
purity along the propagation direction but having the late
extension. This model was treated in Ref. 13 using a tw
band model in the energy window defined by the bottom
the lowest and next subband. Recently, an additional ana
was reported in an extended energy window with incorpo
ing three subbands.20 Such a thin impurity model can b
achieved from our more general model by assuming that
longitudinal size of the impurityLa is much less than the
characteristic wavelengths of the electron,

La!qn
21!kn

21 , ~A1!

but no restriction is given to the transverse extensionWa .29

By expanding Eq.~16! in terms ofLaqn , one can find

M5~ ik!21~ ik1v!, ~A2!

where v[ 1
2 LaU21q2U, whose matrix elements (v)nn8

[vnn8 are given in Ref. 20.
In addition to the restriction Eq.~A1!, we impose the

weak-coupling approximation for a simple analytical tre
ment,
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2m*
vnn8

2
!uEn2En8u, ~A3!

whereuEn2En8u is the energy spacing between two nonide
tical subbands. This approximation has been motivated
the fact that the matrix elementsvnn8 are decreasing func
tions of un2n8u. Accordingly, for a chosen energy nearEn
only a small number of subbands are involved in calculat
electron transmission, validating use of thefinite channel ap-
proximation. In other words, a perturbative analysis of E
~A2! is possible in this case. Keeping only the diagonal m
trix elements for interaction matrix elements in Eq.~A2! as
the lowest order treatment, we get from Eq.~15!

tnn~E!5
ikn

ikn1vnn
. ~A4!

The polesE (0) to Eq.~A4! are real and define the bound-sta
levels as

E n
(0)5En2

\2vnn
2

2m*
. ~A5!

Corrections to these levels come for the mixing of the ch
nels. For an incident energyE nearE 2

(0) in the energywin-
dow (E1 ,E2), it suffices to consider only a two-channel a
proximation in the weak-coupling limit. In this case, th
transmission is solely determined by the amplitudet11(E)
because onlyn51 is the propagating channel. The result h
been obtained by Eqs.~15! and ~A2! as

t11~E!5
ik1

ik11v112v12@1/~ ik21v22!#v21
. ~A6!

The amplitudet11(E) possesses a pole at

Ep5ER2 iG, ~A7!

where

ER.E 2
(0)1

\2v11v22v12
2

m* ~k1
21v11

2 !
and G.

\2k1v12
2 v22

m* ~k1
21v11

2 !
.

Also, we found that the amplitudet11(E) vanishes identically
at zero energy

E05E 2
(0) . ~A8!

We see that the pole and the zero energy are situated clo
each other in the complex energy plane. Then, it is poss
to write the transmission amplitude in the neighborhood o
resonance in the form given in Eq.~25! in the text. Equation
~A6! is identical to Eq.~3.2! in Ref. 13 withvnn852Vnn8 .
But, by writing the transmission amplitudet11(E) in this
way, it becomes clear to understand that the evanes
moden52 plays a role as av irtual channel for electron
transmission.

Note that forWa /W!1, the interchannel matrix elemen
vnn8 tend to

vnn85gwn~Yc!wn8~Yc!, ~A9!
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where g[(m* /\2)VattLaWa , which corresponds to the
point-impurity model studied in Ref. 6. In this case, there
an additional relation among the matrix elements asv11v22
5v12v12. Due to this relation one can confirm from Eq.~A6!
that t11(E2) equals unity, i.e., the full transmission occurs
the subband minimumE2 and the Fano dip remains at th
m
on

d
n

ck

.

.C
n-

s

B

s

t

same zero energyE 2
(0) . This is the characteristic of the iso

tropic scattering center, that has been discussed in Re
and 6. Our calculation with the lateral extension shows t
the effect of an anisotropic scatterer on the transmission i
displace the location of the perfect transmission down to
bottom of subbands.20
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