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Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity
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We investigate the electron transport in a quasi-one-dimensional constriction with an attractive, finite-size
impurity, in the ballistic limit theoretically. Within the envelope function approximation we formulate the
scattering matrix exactly that determines the resonance structure of the electron transmission. Due to the
multiple impurity levels under the many-channel conditions, multiple Breit-Wigner resonances and Fano line
shapes appear in the same energy window. By varying the size of the impurity, we predict novel coherent
effects such as the collapse of the Fano resonance and antiresonance, resonance-level inversion, and the
appearance of discrete levels in the continu{i80163-18209)07439-1

[. INTRODUCTION the possible appearance of Fano resonances due to the re-
striction of the energy window considered. Third, we predict
The discovery of conductance quantization has motivategome novel coherent phenomena such as the collapse of
a great deal of research interests in the quantum transpdridno resonances, the inversion of resonance levels, and the
phenomena in semiconductor nanostructdrels particular, ~ creation of discrete levels embedded in the continuum. The
the effect of disorder on the electron transmission caused bigndamental parameters of an impurity might be extracted
elastic scattering with impurities in the narrow constrictionsffom the analysis of the resonant structure of conductance in
has been investigated intensively in recent years both thed€@l Systems. Also, the class of coherent resonant phenomena
retically and experimental§;X” The presence of impurities Predicted may emerge in experiments by tailoring the impu-
in such size-quantized systems quantum waveguides rity potential using the moqlern nanollthography techmqges.
opens up new possibilities of taming electronic states and !N the quantum waveguide, the transverse eigenfunctions,
provides a basis for further study of coherent quantum efSPecifying the energy subbands, play the role of an infinite
fects. It was shown that a single impurity changes the shap@Umber of independent channels for longitudinal electron
of the conductance quantization dramatically, giving rise to™otion. Depending on the incident electron enegysome
erosion of the ideal quantum plateau. In order to understang@nnels are opened and others are closed for electron propa-
the mechanisms of the conductance erosion, several mod@ftion through the waveguide. We analyze the transmission
potentials were proposed for the impurity: the point-impurityamp"tUdEStnn/(E) that characterize the electron scattering
model® the model potential having lateral extensfoand ~ from channeh’ to n as the electron goes through the quan-
the finite-size impurity modéf’ tum yvavegwde. The transmission an"_nplltudes_ as analytic
In this paper, we study the resonance structures of th&unctions of the energ¥ provide usef_ul information on _the
electron transmission in a quantum waveguide with a finiteSystem. The poles are connected with bound or quasibound
size scatterer for a wide range of the impurity parameters?tates and their lifetimes. Al_so, the two-probe conductance of
The quantum waveguide considered is a quasi-onel® System can be obaasl?ged from, (E) through the
dimensional(Q1D) constriction and a rectangular attractive Landauer-Bttiker formula:™™" We will present the results
square well is used to represent the impurity potential. Wdor the electron transmissiofi(E), calculated by summing
strictly limit our attention to the electron transport in the the transmission amplitudes over all tapenchannels,
ballistic limit other than the impurity scattering and to the
case of zero-magnetic field. Although we treat the popular T(E)=S ﬁ“ |2=2 T )
model, our work is distinguishable from the previous inves- o Ky nn’ _nn, nn’>
tigations in several aspects. First of all, we present the for-
mally exact expression for the transmission amplitude withinvherek,, is the electron wave vector of channel For the
the envelope function approximation. Secondly, we analyzdinite-size impurity model considered in this paper, multiple
the Fano asymmetric resonance structures that appear in adapurity levels appear. Consequently, the intriguing coherent
dition to the usual Breit-Wigner line shapes in our systemresonant effects are induced under the multichannel condi-
Although a similar feature of Fano structures for a finite-sizetion in the electron transmission. We obtain physically dif-
impurity model was treated in Ref. 6, we provide here muchferent Breit-Wigner resonances and Fano resonances in the
details. Also, the model study in Ref. 17 did not recognizesame energy window and analyze, in particular, the behavior
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¥ where, for instance, use can be made of a simple choice of an
infinite square well for the confinement potentidj(y) to

define the complete basis
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w 0 ' x wheren=1,2,....,whose corresponding eigenenergies are
E,=#2m?n?/(2m* W?). Substituting Eq(3) into Eq.(2) we
find the equation foky,(x) as
h? & -
— —— )+ 2 Vo () iy ()= (E—~Ep) ¢hn(x),
FIG. 1. Schematic diagram of the quantum waveguide for elec- 2m* dx n'=1
tron transmission containing an attractive rectangular impurity. The )

center of the impurity is chosen to be atYg), i.e., shifted fromthe |\ here the matrix elements are defined to be
center of the waveguide.

of the Fano structures in detail to study the effects of the Vnn’(X)EJ dyen(YIV(X,Y) en(Y). (6)
spatial extension of the impurity on the transmission. In ad- i )
dition, we predict the possibility of the electron confinementWe adopt the two.-d|r7nen'3|on'al rectangular well model for
in the space occupied by the finite-size impurity. It is shownth€ impurity potentiat” which is described by
that the predicted localized electron states are degenerate
with the spcattering states at the special energies am?the im- VXy)==VauF () Gy =Yo), @)
purity sizes. whereV,y, is the depth of the quantum well and the center of
The paper is organized as follows. In Sec. I, we defineimpurity is assumed to be locatedat0 andy=Y.. The
the finite-size impurity model and derive the formally exactfunctions F(x) and G(y) are defined to give unity when
expression for the scattering matrix for the electron transmistx| <L /2 and|y|<W,/2, respectively, otherwise zero. Then,
sion. As an illustration of the formula obtained in Sec. Il, thethe wave functions in Eq(3) are written in each region as
exact result for an effective 1D model system is given in Sec.
[ll. Section 1V is devoted to the detailed analysis of the effect
of the finite-size impurity on the electron transmission. In
Sec. V, the interesting electron confinement situation is dis-
cussed. Finally, we summarize our results in Sec. VI. The for x<—L,/2, (8)
extremely short-ranged impurity is considered in Appendix
A as a limiting case as well as the point-impurity model.

\I'(x,y) _ ; [Aneikn(x+ La/2)+ Bne—ikn(x+ La/2)]¢n(y),

~P<x,y>=§ [a,€'97+ e~ ]y (y),

Il. FORMULATION for — L /2<x<L,/2, 9)
We consider the electron transmission through a Q1D
quantum waveguide of widtkV, containing a finite-size at- W(x,y)=2, C,ekn*"Lay (y)  for x=L,/2,
tractive impurity, which is depicted in Fig. 1 schematically. n
It is assumed that the waveguide is infinitely long and is (10

placed along the direction. The confinement potential in the — 2m* (E—E.)/A2 = [2m* (E_ET)/H2

transverse direction is modeled by the potentig{y) and where k,= _2m_ (E—En)/A” and gy = y2m*(E—E;)/% .

the impurity potential is represented by the functiéfx. y) are the longitudinal components of the wave vectors outside
purity b b y oY) and inside of the impurity region, respectively. Ang,(y)

Within an effective mass approximation, the electron ir . .
wave function in the waveguide is determined by the S(:hroand En are the e|genfunct|pns and the energy levels of an
electron in the transverse field, (y),

dinger equation

s o Vir(y) == VauG(y—Ye) +Vcl(y). (11)
- f a_+(9_) W (X,y)+V(Y)T(X,Y) Two sets of eigenfunctiong, and y,, are connected by the
2m* \ 9x2  ay? unitary matrixU,
VXYV (xy)=E¥(xy), 2

Unn':f dyen(Y) xn (Y)- (12)
wherem* is the effective mass of the electron. We attempt
to find the electron wave function in the expansion form  Note that solutions with redt, andq, are the propagating
states, whereas for imaginaky=i|k,| or q,=i|q,|, evanes-
o cent modes are the corresponding solutions.
_ Next, by examining the continuity conditions of the wave
Yy ngl Ul en(y). @ functions and their derivatives &t + L ,/2, one can find the
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equations for the amplitudes,, B,,, a,, b,,, andC,,. Here, and the other for antisymmetric resonance states,
we present only the results in matrix form,
de{M,)=0. (20)
d ta+db=U(A+B),
q(d‘la—db)=Uk(A—B), Ill. AN EXACT RESULT
As an illustration of the utility of our formulation de-

da+d *b=UC, scribed in Sec. Il, we consider here a simple model defined
by settingW,=W that allows an exact solution to E(L5).
q(da—d~*b)=UkC, (13 Since, in this case, the transverse eigenfunctigiis identi-

cal to ¢, with only a shift of eigenenergygl =E,— V.,

h h defined
where we have define we haveU=1 from Eq.(12). Then, Eq.(16) becomes

(K)nn=Knbnn's (D nn =90 nn (d)nn’:ei 0n5nn’ -

(14 (M)nn,=% 1+% 1+ 50| g-2i0y
In the aboved,=q,L./2 is the phase of the electron wave n An
and the wave amplitudess b, A, B, andC are considered as dn Ko\ ..
infinite vectors. After eliminating the intermediate ampli- + 1_k_) 1_q—) e’ S - (21)
tudesa andb in Eq. (13), it is possible to find the scattering " "
matrix t that is defined through Accordingly, the scattering amplitudg,,, turns out to be
diagonal from Eq(15) and is obtained exactly as
C=tA.
. 4Kk,q,

The result is - n

MT PR DR DU

t= _lzde'(lf/l) , (150  This model corresponds physically to the situation of having

noninteracting channels. Thus, the problem is essentially re-
whereM . is the cofactor of the matrid, which is defined duced to a one-dimensional system without mixing among
to be different n’s. One can quickly notice that,,(E,)=0: the
transmission vanishes identically for the incident electron
wave ¢, at the subband minimufa=E,,. Poles that specify
symmetric and antisymmetric resonance states are deter-
mined by

1 . R
M= Zu-l[(1+ k™ lq)D (1+q k)

+(1-k? —-q 'k
( 9B=q 1L, (18 tand,= —ik,/q, and cot,=ik,/q,, (23
wherek=UkU ™%, D=d?, and1 is the unit matrix. Equation
(15) suggests that the analytic properties of the transmissio
amplitude as a function of energy are fully determined by th
structure of the matri®. The resonance states follow from
the poles of the matri, specified by

espectively. There exist two types of poles, depending on
e incident electron energy. For energies E,,, the poles

are placed in the complex energy plane and the resonance is

characterized by the Breit-Wigner line shape,

de(M)=0, (17) | ¥nj

thn(E)= EE 1o (24)
and the zero energies at which the transmission quenches are ~Enjt17nj
determined by where
[Mclpw=0, n,n'=1.2,.... (19 = vy m\2h?j? g 242 (B
The reflection symmetry of the impurity potential with re- memn AL, 2m¢ i R,
spect tox— —x allows us to carry out the factorizatioM iy =123 ... On theother hand, when the electron is

_ 71 . . .
=U "M MU, with definitions transmitted into the waveguide through the chanpelvith

1 an energ\kE limited by E,—V,4+<E<E,, the poles are lo-
Mszi[—(d—d*1)+(d+d*1)q*1|2] cated on the real energy axis. This means that the corre-
sponding resonance states are discrete levels, located below

and E,.

1 - ro_ - IV. FINITE-SIZE IMPURITY
Ma=5[~(d=d"H+kq X(d+dH].

It is well known that the asymmetric resonance structures
Hence, Eq(17) can be decoupled into two equations: one forappear in the transmission for the extremely short-ranged
symmetric resonance states, impurity model***2°Such a Fano line shape consists of a
paired, asymmetric resonance peak and nearby transmission
de({M¢) =0, (199  zero and can be represented[sge Appendix A
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FIG. 2. Transmission through the electron waveguide with the

finite-size impurity along the propagation direction as a function of 08 08
the incident energ¥ in the first energy windowk, ,E,) whereE
is in units of E;; we have used/,;=6.37E;, W,=0.1W, L, 0.6 06
=7.64W, andY,=—0.17W. = Lo=3.1901 W = Lo=3.25 W
0.4 0.4
{(E) ~ — 0 25
(E) E—-Eg+il’ 25 02 0.2
whereE, is the zero energyEg is the location of the asym- 00 00

metric peak, and specifies the half width of the quasibound 320 322 324 326 328 330 320 322 324 326 328 330
state?! This resonance is due to the interaction of the bound-
level raised in the continuum with the continuum states. The FIG. 3. Transmission as a function of enerBynear the first
relaxation of the short-range interaction limit, namely the usd-ano peak appearing in the energy windol (E;) for several
of a finite-size scatterer along the propagation directionimpurity sizes: (@ L,=3.06W, (b) L,=3.12W, (c) L,
would produce multiple impurity levels, that could change =3.1901W, and(d) L,=3.25W; where no curve is exhibited in
the transmission dramatically. It is expected that a nontriviafc) SinceT=1 over the energies shown, thus overlapping with the
interaction between such levels and the continuum under thi@P axis.[PreciseT=1 occurs only aE=E_.] The other param-
multichannel condition gives rise to a novel resonant struc€ters are the same as in Fig. 2.
ture in the transmission. For atomic systems this kind of
interaction was investigated to observe the effect of reso- W,=0.1 W, and Y.=—-0.17 W.
nance overlappiné’
To reduce the calculational efforts without losing the de- In the following, we report the full numerical results ob-
sired aspects, we impose the conditMi<L,, leading to tained by calculating the transmission matrix E#5) and
the short-ranged transverse potential thus by evaluating the transmissivity Ed.), while restrict-
ing our attention to the energy intervat{,E,).
In Fig. 2 we present a representative case where very
Vir(y)=— m* Sy = Ye) +Ve(y), (26) interesting transmission lines show up: the Lorentzian Breit-
) ] Wigner resonances appear in lower enerdigscE<EY
whereu=m*V,,W, /%7 The corresponding eigenvalue§  \hereas the multiple asymmetric Fano lines appear in the

2

are obtained by upper energieg; <E<E,. The Breit-Wigner peaks occur at
E=1.15, 1.96, and 2.9&, and the half width of each reso-

sin( kW) = ZESin(KYC)SiI'{K(W— Yol 27) nance specifies the lifetime of the corresponding quasibound

K state. The asymmetry Fano peaks are seen to occur at

E=3.22, 3.40, and 3.5&; and the Fano dips, in this case
the transmission zeros, are seen to occuE#t3.24, 3.37,
3.63, and 3.9(;. The Breit-Wigner resonances are associ-
ated with the interference of the electron waves with the
geometrical structure of the finite-size impurity. The multiple
Fano resonances are connected with the interaction of the
multiple quasidonor levels appearing above the lowest sub-
band edge and the continuum states, of which detailed analy-
We have also obtained the corresponding eigenfunctionsis will be given later. It is of interest to see that the Fano

xn(Y), not presented here. The common parameters used [§sonance dominates the resonance structure in the region
this section are where it overlaps with the Breit-Wigner line. We estimated

that the line widthy~0.79E, for the Breit-Wigner reso-
m*=0.067 m,, V,;=6.37 Eq, nance atE~2.91E; and the Fano width"~0.6x10"2 E;

wherex=/2m* E/#?, as derived from the transverse Schro
dinger equation. When the interaction is turned aff=0),
one recovers the eigenfunctions E4d). and eigenvaluek,, .

In the general casauf-0), we have solved Eq27) numeri-
cally and the first few eigenvalues are

Ef/=-0.60E,, E;=3.19FE,, andEy=8.99 E,.
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1.0 \/ TABLE I. Critical impurity sizes and energy levels for symmet-
ric states; wheré.. andE. are in units ofW andE4, respectively.

g 0.8 - - - -
5 j a(j) Lo(a())) Ec(a(]))
9]
é 0.6 1 0.9233 1.0982 3.4798
" La=3.1901 W 2 1.1743 2.1507 3.3104
S 04 9= 3 1.2825 3.1901 3.2551
= 4 1.3439 4.2246 3.2306

0. 5 1.3836 5.2563 3.2177

% 12 % ES/E
0.0 K 2/E1
1.0 15 20 25 30 35 40
E To this end, we present here the analytical manipulation for

FIG. 4. Transmission as a function Bfin the full first energy the resonance-amplitude. It suffices to consider the reso-

window (E; ,E,) whereL,=3.1901W has been used, correspond- Nantly coupled two channelsn¢1 and 3 in the energy

ing to Fig. 3c). The other parameters are the same as in Fig. 2. interval, EY <E<E,, in the weak-coupling limit. Note that
both channels are propagating modes in the redign
<L,/2 with the wave vectorg|; and q,, but outside the
impurity region,|x|>L,/2, only moden=1 is propagating
nwith k; while moden=2 being the evanescent wave with
k,=i|k,|. Accordingly, the transmission is specified by
t11(E), whose shape near a Fano structure is described by
Fq. (25). Our detailed analysis of Eq17) shows that the

les for the symmetric states are to be determined from

at E~3.215E; in Fig. 2. Accordingly, the ratid’/y~0.8

X 10" 2, meaning that the Breit-Wigner pole is placed far
away from the real energy axis to bring small influence o
the resonance structure.

Next, we vary the size of the impurityL{) in order to
investigate its effect on the transmission. In Fig. 3, we depic
the transmission near a Fano resonance-antiresonance o
various sizes of the impurity, ,=3.06, 3.12, 3.1901, and Ky
3.25W. We have chosen the energy region near the first (i sinf; — —00591)
Fano line in Fig. 2. The result shows two important new s
features. First, as the impurity length reaches a special value o Ky
L,=3.1901W=L_, the Fano structure disappears, giving :77(' sin 92_q—00592
rise to full transmission over the energy range considered 2
[Fig. 3(c)]. This collapse of Fano resonance and antireso- (28

nance is_seen more cI.earIy in Fig. 4Where we plot the transghere ﬂEUEJ(UnUzz) is the coupling parameter of two
mission in the entire first energy window: the energy regioNinierfering channels. In the decoupling limitl;,=0, Eq.
:':1roundE~3.25f5EleC admits the full transmission. Sec- (28) defines the bound-state levels=Eg) in the well
ondly, the location of the Fano pole is switched with the Z€M%hrough

energy ad , goes through the special distarice. Namely,
the resonance peak occurs before the transmission zero when [y
L.<L., Figs. 3a) and 3b), but it occurs after the transmis- tan@zza- (29)
sion zero wher.,>L ., Fig. 3d). The observeéhversionof o .
the resonance level seems quite a novel effect in the trandd the weak-coupling limit, we have obtained the pokgs
mission problem, of which physical interpretation is given =Er—iI to the first order iny as
below. . 1 It

It is intriguing to understand the numerically observed Er=Eg+7ER’ and I'= 4, (30
collapse of Fano structures and inversion of resonance peakshere

[kl
sinf,— q_00562
2

. kel
sing,— q—cosal
1

_ (Eg—E3)|Kol([k,|cos6,—qy5in 6;) (Kfcos6; + qy| k| sin 6;)

E(l)
(|ko|Lat+2)(a3+ |ko|2) (K2co2 6, + qsir? 6;)

R

and

(Eg—E3) K| ky(|ks|cosb; —q;sin6;)?
(IKalLa+2)(3+ |kl ?) (KicoS 6, + qIsir6,) |

r=4

Similarly, the zero energies from the symmetric states are estimated to the lowest ordas in

Eo=Eg+ 7E" (31)
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by solving

Ull

bt A1
Up

Ko

perturbatively, that is two-channel approximation of Etg). The correction to zero energ%l) is given by

sinf,+ 200562) =
|kz

cosf, |, (32

: kel :
sinf,— q—c0301 sin@,+

: |Kel
sin@,— q—cosaz
2 1

Un (Eg—E})|Ka|(|ko| /1080, —sin 61) (4 /[Ko| cOSO; + SiN 67)

EN=4
° Uz (Iko|Lat+2)(q3+Ksl?)

Equations(30) and (31) are the desired analytical expres-
sions for the resonance poles and zero energies that descriBgX,y) =AU,
the Fano structures, numerically seen in Figs. 2—4.

One can quickly notice that the width of resonance peak

kg
COg X+ Op) +i q—ism(ql><+ 01)})(1(3/)

Kk
may shrink to zero]'—0, for +A1U 15 cog X+ 0) +i ES""'(QZXJF 92)})(2()’)7
ke 9
tan01=a. 33 for —L2=x=L,/2, and
T (x,y)=Ae" 1 tP0,(y), (39)

Importantly, when this happerEY’ and E{") also vanish

identically: the complex poles and real zero energies in Edfor x=1 ,/2. The wave functions clearly manifest that the full
(25) approach to the common real energiBg, Eq—E: 10 transmission occurs without reflection at the critical energies,
give ty(Ec)=1. Thus, the very real energies at which theje T(E )=1: the incident current density comes fully out
collapse of Fano structures occur, for instan€&  of the impurity region.
=3.255E; in Fig. 3(c), are to be specified by solving Eqs.  The inversion of the resonance peak and transmission
(29) and (33) simultaneously[We have confirmed that, in zero observed in Fig. 3 can be accounted for as follows.
general, the critical states are defined by the simultaneous;om Egs.(30) and (31) we have estimated that the relative
solutions to Eqgs(17) and(18).] We solved thiswo spectral-  displacement between the adjacent Fano peak and zero en-
variable problemby choosing energ§ and distance., as  ergy, i.e., Egr—E,, behaves as ~(tané,
the relevant variables. The rest of the system parameters such| k,|/a1)g(E,L,; %) [the functiong is rather complicated,
as the impurity strength etc. are assumed to be given. BYccordingly whose explicit form is not given hér&Vhat is
manipulating Eqs(29) and(33) one can obtain the spectral rglevant is the fact that & andL, are tuned to the critical
variables as values,Eg— E, vanishes identically and it reverses its sign
before and after this takes places. Similar inversion of the
Ec(j)=Ej +(E,—Ej)coga(j), (34)  resonance levels was discussed, for instance by Tekman and
Bagwell in Ref. 13, however, the origin of the phenomenon
2 Walj) £ 12 is different. In Te_kman and Bagwell’'s work such a ph_enom_—
Le(j)=— k ( 1 tr) , (35) enon was predicted because they changed the impurity
m cosa(j) | E;—E; model potential from an attractive one to a repulsive one.
This caused the sign change in the interchannel transition-
wherej=1,2,... and thearametersy(j) are to be speci- matrix element, which in turn switched the role of the con-
fied by the transcendental equation structive and destructive interference between the involved
channels. It is important to note that in our case the inversion
of the resonance levels is the purely coherent effect origi-
Ve+ cosza) —sina=0, nated by the change of the spatial extension of the attractive
(36) impurity alon_g the _electron propagation dire_ction.
Next, we investigate the phase information of the trans-
missivity. Near a Fano resonance structure the phase shift
associated with the transmission amplitude is given by

(¢4

COoS«

f(a)=\/6+coszatar<

where e=(E,—E,)/(E,—EY). Its solution restricts that 0
<a(j)=<w/2. When the obtained(j) are substituted into
Egs. (34) and (35), the critical energies and impurity sizes
are determined. We report a few of the critical values in tand=
Table 1. The corresponding wave functions to the critical

scattering states are given as We depict this in Fig. 5 for the same parameters used in Fig.
_ 3. In Fig. 5a), the phase remains zero for most of the ener-
Y (x,y)=Ae b g, (y), (387)  gies below the resonance peak, but it increases rapidly to the
value of /2 as the energy approaches the zero energy. After
for x<—L,/2, the energy passes through the transmission zero, the phase

E—E- (40)
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20 20 electron waves. Equatiort29) and(33) define the real solu-
(© ®) tions to the Fabry-Perot resonance condition for two interfer-
o 0 ing waves in the resonator. The conditions are equivalent to
= < having solutions to the Schdmger equation Eq(2) for an
= = electron injected into the well region with the boundary con-
S o——JF— o 0’45 ditions, ¢.—0 asx— =, For the symmetric states consid-
ered, the solutions are
=10} Lo=3.08 “10f =32 w Wo(X,y)=c1c0801X) x1(Y) + €208 d2X) x2(Y), (41)
for [x|<L,/2 and
-20 -20
320 322 3.24E3.25 3.28 3.30 320 322 3.24E3.26 328 3.30 \I,C(X,y):Cle—\kzl(x—La/Z)(pz(y), (42)
for x>L,/2. Thus, the allowed critical states also correspond
20 20 . . . L
© @ to the discrete levels embedded in the continuum, describing
the localizedelectron states over the well region. These lo-
10 10 calized states are to be distinguished from the bound levels
@ o~ calculated from Eq(29) that defines the bound-state solu-
S ——" < . tions to a square-well potential with defa— E5 and width
+ - L,.?° The bound level&g are rather fictitious because they
are the ideal solutions obtained strictly in the decoupling
10} Locs 1001 W 10} Loes25 w limit among the participating channels. On the other hand,
the localized wave functions Eq§$4l) and (42) take into
account the physical channel mixing caused by the impurity
T T e T o R T T e T e scattering and are consequences of the coherent interaction
& E of two interfering channels in the finite space over the impu-

FIG. 5. Phase of the transmission amplitude near a Fano reséily- They are very special solutions to the Safirger equa-
nance as a function of the enerBywhere all the parameters used 0N via the Fabry-Perot mechanism under the multichannel

are the same as in Fig. 3. conditions. When the impurity size is off-tuned from the
critical values, Egs(29) and(33) or in general Eqs(17) and
(18) do not admit the simultaneous, real solutions. Then, the
gystem allows only the complex solutions specifying reso-
nances states and the electron-confinement is not possible.
One way to confirm the formation of the long-living electron
§;ates predicted in the quantum waveguide would be to use
canning tunneling microscopy. Since those electrons in-
jected with the critical energies will be trapped in the impu-
resonances collapse. After the resonance-level inversion '?r%/ g&i?;:fs%%rl:?dsEgns(ijénngalcertljtlC‘?rgglé(rasaigti(llﬁ :)r} :Eg ;)uencrt]flai;r
Fig. 3d), the similar behavior to Figs.(8 and 3b) is re- degeneracy of the scattering states, E§%)—(39), with the

covered in Fig. &) except for a dramatic rise to positive . : T
phase for energies larger than resonance energy, a conslgga“Z(ad states, Eq441)—(42), seems very interesting in

guence of the influence of other Fano resonances at highgla;(:;gjscgi’ d?sncdu;rs]gzeink{?]gsli; frgéj??g}tl;]rgusf t\f/z Lna\?(teomlc
energies. The distinctive nature of Figcbagain manifests y 9

the formation of a critical scattering state from the re:~:onanc<5.eportEd our analysis only on the symmetric states, we car-

states. The flatness of the phase in ened@E)/dE~0, is ried out a_5|m|lar analysis fo_r the antisymmetric states as
vr/ell. The similar electron confinement problem in nanostruc-

connected with no space-charge accumulation in the loc ) 27
electron density as studied in Ref. 23. This is evident in ouarthes has been reported under the time-dependent sitdation.

obtained electron wave functions, E¢37)—(39).

changes its sign abruptly to becomer/2. Then, it remains
negative and increases sharply to become zero. Similar b
havior is seen in Fig. (®) with the impurity size closer to the
critical value, where the phase chang®— — 7/2 near the
resonance becomes even more abrupt. When the impuri
sizel , is at the critical value in Fig. (8), the phase remains
nearly constant, corresponding to Figci3where the Fano

VI. CONCLUSION

V. ELECTRON CONEINEMENT We have investigated the electron tra}nsmisgic_)n through

the Q1D quantum waveguide that contains a finite-size at-

The critical states obtained deserve particular attentiortractive impurity. The analysis was performed using a for-
Very interestingly, we have found that the critical states aremally exact formulation for the scattering matrix as a func-
degenerated in energy. There exist two independent configtion of the electron energy while varying the impurity

rations, possessing the same energies: one is the scatteripgrameters. Consequently, we have obtained the various in-
configuration that we have discussed so far and the other teresting coherent resonance effects due to the multi-
the one related to the electron confinement. The electrorimpurity levels and the geometrical extension of the finite-
confinement configuration can be understood as follows. Theize attractive scatterer under the many-channel condition.
spatial region occupied by the finite-size impurity resembles Our calculation predicts very interesting new coherent ef-
the Fabry-Perot resonator in optiésyhere two edges of the fects in the electron transmission problem through narrow
attractive well play the role as electronmirrors, for the  constrictions. It was possible to generate two distinctive
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types of resonance structures, the Breit-Wigner resonances X
and the Fano line shapes in the same energy window consid-
ered. They interact in a complicated fashion as the system
parameters are changed and the Fano resonance domina\;vehc’ere|En—En,| is the energy spacing between two noniden-
when the two (_)verlap. We hav_e obs_erve_d that the Fano reSQcal subbands. This approximation has been motivated by
nance level is inverted as the impurity size is changed. Also,

the Fano resonance and antiresonance collapse at the criti%%ﬁlsfagm]hftnt,ﬁle Ar:;](?(t)rrlt)j(i:gl;leym?grtﬁz]in,(:f?(;(:e?]eg:]e;;??]ef;:o

energies and the critical impurity sizes, and the full transmis- ly & small number of subbands are involved in calculating

sion takes place at such a critical state. We have shown thg{]ectron transmission. validating use of firdte channel ap-
the collapse of the Fano resonances also corresponds to the ' 9 P

occurrence of very special localized electron states, i.e., th%;oxmaﬂon In other words, a perturbative analysis of Eq.

appearance of discrete levels in the continuum. The obtaineg |x2)e:2n912?12b1|‘§rl?nfnglri:ag?gr?rr}?aet?iglr;:gl]ecr)r?e% ttsh?ndgqgg)nglsma-
mechanism may be used to localize electrons in the region C%f] | t order treatment, we get from E&p)
interest in the quantum waveguide. € lowes »Weg i
Some of the coherent effects studied in this paper should
be observable in high-mobility nanostructures at low tem- tyy(E)= ———.
peratures, for instance in a typical Q1D nanochannel made of iKntVnn
GaAs/AlLGa _,As heterostructures. An artificial finite-size
impurity may be created in the quantum waveguide usin
recent nanotechnolody.

2
v <|En—Epnl, (A3)

m*

ik,

(A4)

The polest(® to Eq.(A4) are real and define the bound-state
Yevels as

2,,2
AV,

2m*
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The amplitudet1(E) possesses a pole at
APPENDIX A: SHORT-RANGE IMPURITY MODEL

In this Appendix, we present a limiting case of our finite- Ep=Er—iT, (A7)
size impurity model, namely an extremely short-ranged imyhere
purity along the propagation direction but having the lateral
extension. This model was treated in Ref. 13 using a two- B2V 1V gV 2 B2k V2
band model in the energy window defined by the bottom of ~ Ep=g(@4 —— =222 gpg 1272
the lowest and next subband. Recently, an additional analysis m* (k5 +v3y) m* (ki+v?)

was reported in an extended energy window with incorporat- . . . .

ing three subband® Such a thin impurity model can be Also, we found that the amplitude;(E) vanishes identically

achieved from our more general model by assuming that th8t Zero energy

longitudinal size of the impurityL, is much less than the _ (0)

characteristic wavelengths of the electron, Bo=£3" (A8)

We see that the pole and the zero energy are situated close to
La<q, '<k;*, (Al)  each other in the complex energy plane. Then, it is possible

to write the transmission amplitude in the neighborhood of a
but no restriction is given to the transverse extensdin®®  resonance in the form given in E@®5) in the text. Equation

By expanding Eq(16) in terms ofL,q,, one can find (A6) is identical to Eq.(3.2) in Ref. 13 withv,, =2V, .
But, by writing the transmission amplitudg,(E) in this
M=(ik) 1(ik+V), (A2) way, it becomes clear to understand that the evanescent

moden=2 plays a role as &irtual channel for electron
where v=3L,U 1q?U, whose matrix elements v),,  transmission.
=v,,, are given in Ref. 20. Note that forw,/W<1, the interchannel matrix elements
In addition to the restriction Eq(Al), we impose the v, . tend to
weak-coupling approximation for a simple analytical treat-
ment, Van = ¥en(Ye) enr(Ye), (A9)
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where y=(m*/#%)VayL,W,, which corresponds to the same zero energg® . This is the characteristic of the iso-
point-impurity model studied in Ref. 6. In this case, there istropic scattering center, that has been discussed in Refs. 4
an additional relation among the matrix elementsvas,,  and 6. Our calculation with the lateral extension shows that
=V 1V 15. Due to this relation one can confirm from E&6)  the effect of an anisotropic scatterer on the transmission is to
thatty,(E,) equals unity, i.e., the full transmission occurs atdisplace the location of the perfect transmission down to the
the subband minimunk, and the Fano dip remains at the bottom of subband®
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