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Resonant hole states in a quantum well with semimagnetic barriers
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Theoretical calculations of the valence-band electron states in a two-dimensional quantum well~QW! with
diluted magnetic semiconductor barriers are performed in the case of in-plane external magnetic fieldB. Cases
of relatively weak and strong magnetic fields should be discriminated. In the first case the barrier continuum
spectrum is separated from localized heavy- and light-hole states in a QW. In the case of a strong enough
magnetic field, the superimposition of a barrier continuum spectrum on light-hole QW levels can take place
due to the giant spin splitting of semimagmetic semiconductor band states. Moreover, the strong mixing
between quantum-confined and barrier states takes place due to the nonconservation of angular momentum in
an inclined magnetic field. This results in the transformation of light-hole-localized states in a QW to resonant
~virtual! ones. We use a Luttinger model with a symmetric rectangular potential to recapture the transition from
localized to resonant states with an increasing external magnetic fieldB. Calculations of electron-hole optical
transitions show a broadening of optical lines and a shift of their maxima. The considered situation is shown
to be easily realized in the structures Cd12xMnxTe/CdTe/Cd12xMnxTe. @S0163-1829~99!15231-7#
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INTRODUCTION

Use of diluted magnetic semiconductors~DMS’s! in two-
dimensional~2D! quantum structures is very attractive b
cause it is possible to control the energy parameters of s
structures easily by an external magnetic fieldB. This stems
from the carrier-magnetic ion-exchange interaction that le
to the effect of giant spin splitting~GSS! of energy bands in
DMS’s ~see Ref. 1!.

Typical structures that are investigated in the majority
works look like Cd12xMnxTe/CdTe/Cd12xMnxTe, where
single ~or multiple! CdTe quantum well~s! ~QW’s! are em-
bedded in DMS barriers. In the case of a zero magnetic fi
the electron~hole! band-offset potentialUe(h) has to be
added to the conduction-~valence-! band Hamiltonian, simi-
lar to the case of nonmagnetic 2D semiconductor quan
structures. The magnetic fieldB induces the DMS magneti
zationM which gives rise to the exchange fieldGe(h) acting
on the electron~e! and hole~h! spins proportionally to the
exchange integralsa~b! andM . If Ge(h) is directed along the
growth axisC of a quantum structure, it increases the barr
energy for carriers with a certain spin orientation and
creases it for carriers with an opposite orientation. The v
ues of the spin-dependent barrier energy shifts are com
rable with band-offset energy shiftsUe andUh . That is why
DMS quantum structures reveal a lot of interesting phys
phenomena~see Refs. 2–5!.

Due to the degeneracy of the states on the top of
valence band, the hole energy spectrum in such QW st
tures reveals some peculiarities. Namely due to the confi
ment effect the valence-band spectrum splits into light-h
~LH! and heavy-hole~HH! subbands. The angular mome
tum projection on theC axis is M56 1

2 for a LH, andM
56 3

2 for a HH. The magnetic splitting of the barrier states
proportional to the effective spin projectionM and equal to
7Gh/2 for the HH states (M56 3

2 ), and 7Gh/6 for LH
PRB 600163-1829/99/60~15!/10941~8!/$15.00
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states (M56 1
2 ). Among others, the difference between sp

splittings of LH and HH states in the barrier can lead to
reversal of a single QW to a single-barrier structure for HH
if the 63

2 spin shiftGh/2 exceeds the height of the potenti
stepUh , while LH states are still localized in QW’s with a
depthUh2Gh/6.

This paper draws attention to a qualitatively different si
ation that appears in the case of an arbitrary orientation
magnetic fieldB. The exchange interaction is represented
a Zeeman-like termGhJ, whereGh(GhiB) is not a scalar
potential but an exchangefield which acts on spin moment
In the case ofBiC, the system has an axial symmetry, a
the projection of the angular momentum onC axis is a good
quantum number for valence electrons with zero in-pla
wave vector. When the vectorsB andC are not collinear, the
system loses axial symmetry andM56 3

2 ,6 1
2 ~the projec-

tion of the angular moment onB! is no longer good quantum
number. In this case the eigenvectors of LH and HH loc
ized states should be represented by a linear combination
the vectorsuM&. This modification leads to a drastic revisio
of the traditional classification of the confinement leve
once the barrier states reach and then cross some of th
calized QW levels~see Fig. 1!. In this case QW discrete
states turn out to be inside the barrier continuous spectr
and acquire their features due to spin mixing by an inclin
field Gh . In other words, the localized states in a single Q
transform to resonant ones. It should be emphasized tha
total angular momentum conservation law forbids such kin
of resonant states in the case ofBiC.

Contrary to the situation of narrow-gap semiconduc
quantum structures, where electron resonant states ap
due tokp coupling to the bulk valence-band continuum,6–8

the LH-HH resonant mixing is realized in a strong enou
inclined external magnetic field even in the case of a z
in-plane wave vector. Thus we have a good chance to re
ture the transition from localized to resonant~or virtual!
10 941 ©1999 The American Physical Society
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states in a QW with semimagnetic barriers by changing
magnetic fieldB.

In the following section we develop the theory of loca
ized hole states in a QW with DMS barriers. For simplic
we limit ourselves to the case ofB'C. Then we extend this
approach to the case of resonant LH states, and demons
how the resonant energy-level position and level width c
be defined. Finally we discuss the influence of the transit
from localized to resonant states on the electron-LH opt
transitions and other phenomena.

BASIC EQUATIONS

We analyze the resonant hole states in a single QW w
DMS barriers using the following simplest model, which a
low us to find an exact solution of Luttinger equation.

~i! A hole under consideration is localized in a nonma
netic QW with symmetric rectangular DMS barriers wi
sharp interfaces. For definiteness, the growth axis is dire
along Ci@100#. We do not consider the interface effec
here, which, however, are important for a DMS QW und
these conditions~Refs. 9–11!. Thus, the potential and ex
change field profiles along the growth axis~x axis! have the
forms

Uh~x!5 H 0,
Uh ,

uxu,LW/2
uxu.LW/2, Gh~x!5 H 0,

Gh ,
uxu,LW/2
uxu.LW/2,

~1!

where zero energy corresponds to the QW bottom.
~ii ! The magnetic field does not affect the hole kine

energy. The influence of the magnetic fieldB reduces to the
induction of the exchange fieldGh only.

~iii ! The strain effect as well as any excitonic effects
beyond the framework of consideration. Thus, it is assum

FIG. 1. 20-Å-wide Cd0.88Mn0.12Te/CdTe/Cd0.88Mn0.12Te QW
profile with LH and HH energy positions and their spin splitting
the case ofG'C ~curves 5–8!. Evolutions of the barrier hole state
with JZ52

3
2 , 2

1
2, 1

1
2, and1

3
2 far from the QW region correspon

to the lines 1–4, respectively. Solid lines represent energy of st
which are mixture ofu2 3

2& andu1 1
2& states. Dashed lines correspon

to that of u1 3
2& and u2 1

2& states. Squares represent the energies
states of continuous spectrum with maximum values of probab
to find a hole in the QW region~see Fig. 2!, bars represent the
FWHM ~full width at half maximum! of the curves similar to those
in Fig. 2. The exchange fieldsGc1 and Gc2 mark the crossing of
barrier and LH energy branches with non-orthogonal states.
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that the localization of a hole is provided due to the ban
offset potential and exchange interaction only.

~iv! The influence of the spin-orbit-split subbandG7 is
negligible. So we use the Luttinger equation~LE! to describe
the hole states.

~v! We consider HH and LH ground states with zero i
plane wave vectors only.

The aforementioned assumptions permit us to write
Hamiltonian in terms of angular momentumJ. It is also con-
venient to rewrite the LE in dimensionless variables int
ducing the length unitLW and the energy unitE0

5\2/2m0LW
2 , whereLW is the QW width andm0 the free-

electron mass. We direct theB'C and put theOX and OZ
axes alongC and B directions, respectively. In these uni
the Hamiltonian assumes the form

ĤL5~g11 5
2 g2!kX

222g2JX
2kX

22 1
3 gh~j!JZ1u~j!, ~2!

where u(j)5Uh /E0 , g(j)5Gh /E0 , j5x/LW , and kX5
2 i ]/]j, andg1 and g2 are Luttinger parameters. Here w
took into account the negative~antiferromagnetic! sign of
hole exchange constantb that leads to the negativ
Z-projection of the exchange fieldGh : GhZ52Gh , where
Gh5uGhu.

The 434 matrix of the Luttinger Hamiltonian in the
space of eigenvectors of theJZ operator breaks up into two
232 submatrices for~63

2, 71
2! subspaces~Ref. 11!. For the

~13
2, 21

2! subspace the matrices of Hamiltonian for the b
rier ~B! and well ~W! regions have the forms

ĤB

5S 2~g11g2!
]2

]j22
g

2
1u )g2

]2

]j2

)g2

]2

]j2 2~g12g2!
]2

]j2 1
g

6
1u
D ,

~3!

ĤW5S 2~g11g2!
]2

]j2 )g2

]2

]j2

)g2

]2

]j2 2~g12g2!
]2

]j2

D . ~4!

Matrices of the Hamiltonian for the~23
2, 11

2! subspace are
obtained from Eqs.~3! and ~4! by replacingg with 2g.

Corresponding wave functions for each subsyst
have the form C(x)5u(LW/22uxu)CW(x)1u(uxu
2LW/2)CB(x), where u(x) is Heaviside~unit step! func-
tion. CW(x) and CB(x) are the two-component eigenfunc
tions of Hamiltonians~4! and ~3!, respectively,

CW5S Ch
W

C l
WD , CB5S Ch

B

C l
BD , ~5!

whereh56 3
2 and l 57 1

2 .
The solutions of the LE with HamiltonianĤ5u(uxu

2LW/2)ĤB1u(LW/22uxu)ĤW are exponential functions
CW(x)5AW exp(ikx) and CB(x)5AB exp(lx), where AW

andAB are the two-component numerical vectors. Genera

es
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there are fourkj and l j satisfying LE’s with Hamiltonians
~3! and ~4!, respectively. So we can write

CW5 (
j 51,2,3,4

Aj
W exp~ ik jj!, CB5 (

j 51,2,3,4
Aj

B exp~l jj!,

~6!

with

k1,356S «

g112g2
D 1/2

, k2,456S «

g122g2
D 1/2

, ~7!

l1,356S g1d1g2

g

3
1r

g1
224g2

2
D 1/2

,

l2,456S g1d1g2

g

3
2r

g1
224g2

2
D 1/2

, ~8!

where

r5S ~2g2d!21~g1
223g2

2!
g2

9
12g1g2d

g

3D 1/2

,

d5u2«2g/6. ~9!

ParametersAj
W(B) and energy« should be found from the

LE, boundary conditions, and normalization condition for t
C function. All coefficientskj @Eq. ~7!# as well as square
root r @Eq. ~9!# are real becauseg1.2g2 , while l j can be
both real and imaginary. The conditions forl j to be real
follow from Eqs. ~8!, and have the formu2«.g/2 for the
basis of~13

2, 21
2! andu2«.g/6 for the basis of~23

2, 11
2!.

One can see~Fig. 1! that just these inequalities satisfy th
requirement for energy to be separated from the continu
barrier spectrum. We emphasize that the appearance of
inequalities is the result of reduction of the 434 Hamil-
tonian matrix into two 232 matrices in the case ofB'C.
Generally speaking, the first condition provides alll j to be
real.

Subsequent calculations essentially depend on the bo
ary conditions far from the interface. So the localized~all l j
are real! and extended~some ofl j are imaginary! solutions
of the LE will be considered separately. For numerical c
culations throughout this paper we used the parameters
responding to Cd0.88Mn0.12Te/CdTe/Cd0.88Mn0.12Te 20-Å-
wide QW with a valence-band offset ofQ50.4.12,13 This
gives the barrier height for holesuh57.87 ~in E0 units!.
Luttinger parameters are chosen to be equal tog155.3 and
g251.62.

DISCRETE SPECTRUM

Let us consider the energy range corresponding to the
values ofl j @Eq. ~8!#, i.e.,

D2.~G/3!2, ~10!

where D5E0d. Inequality ~10! results in the conditionE
,U2G/2 for the~13

2,2
1
2! subsystem orE,U2G/6 for the

~23
2,1

1
2! subsystem. These inequalities have a clear phys
us
wo

d-

l-
or-

al

al

meaning: the eigenenergies of localized states in the
should be lower than the continuous barrier states far fr
the QW region with effective spin projections13

2 and 11
2,

respectively.
Thus the parameterskj @Eq. ~7!# andl j @Eq. ~8!# are real

and positive. So the spinor components of the wave func
have cosine or sine behaviors inside the well, and de
exponentially in the barrier. Since we consider only t
ground state, corresponding wave functions for the sy
metrical potential should be even. In this case Eqs.~5! and
~6! can be rewritten in the following form:

CW~j!5S Ch
W

C l
WD 5S Wh1

Wl1
D cos~k1j!1S Wh2

Wl2
D cos~k2j!,

~11!

CB~j!5S Ch
B

C l
BD 5S Bh1

Bl1
Dexp~2l1uju!1S Bh2

Bl2
Dexp~2l2uju!,

where the boundary conditionsuCu2 ——→
x→6`

0 are taken into
account.

The relations between HH and LH components ofC
functions~11! are obtained from LE’s with Hamiltonians~3!
and ~4!:

Wli 5CWiWhi ,
~12!

Bli 5CBiBhi , i 51,2,

with coefficients

CWi5
~g11g2!ki

22«

)g2ki
2

,

CBi52

2~g11g2!l i
21

g

2
1u2«

)g2l i
2

. ~13!

The remaining four unknown componentsWh1 , Wh2 ,
Bh1 , andBh2 are found from the set of four linear homog
neous equations, which stem from the continuity conditio
on the interface:

lim
z→1/220

cW5 lim
z→1/210

cB ,

~14!
lim

j→1/220
V̂CW5 lim

j→1/210
V̂CB ,

where

V̂5S 2~g11g2!
]

]j
)g2

]

]j

)g2

]

]j
2~g12g2!

]

]j

D . ~15!

The equating of corresponding determinant to zero le
to a transcendental equation for the energies« i . The explicit
form of the initial system is presented in Appendix A@Eqs.
A1#.

A numerical solution of the transcendental equation
each of the two subsystems gives at least two roots for e
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10 944 PRB 60F. V. KYRYCHENKO AND YU. G. SEMENOV
value of the exchange fieldG satisfying condition~10!. One
of them corresponds to the HH state, while the other co
sponds to the LH state. The example of the magnetic-fi
dependence of HH and LH energies is shown in Fig. 1@solid
lines correspond to the~23

2,1
1
2! subsystem and dashed line

to the~13
2,2

1
2! system#. One can see that LH branches bre

at exchange field values violating conditions~10!.

CONTINUOUS SPECTRUM

At large enough values ofG condition ~10! is no longer
satisfied, so thatl2,4 in Eq. ~8! become imaginary. This cor
responds to the appearance of the nonvanishing periodic
in the barrier functionCB(x) in Eq. ~6!. In this case the
boundary conditionuCu2 ——→

x→6`
0 is no longer valid, which

means that coefficientsA2
B andA4

B in Eq. ~6! are not zero. So
one can write the following expression for the wave functi
in the barrier instead of Eq.~11!:

CB~j!5S Ch
B

C l
BD 5S Bh1

Bl1
Dexp~2l1uju!1S Bh2

Bl2
D cos~quju1w!.

~16!

Here we introduce the wave vector in the barrierq5
2 il2 and phasew. Contrary to the case of localized state
we do not need to determine the eigenenergy. Rather,
shall find phasew and other parameters of theC function at
a given energy value.

We still limit consideration to even solutions of the L
only. The reason for this is that only even hole states c
tribute to optical transitions between the hole states and
electron ground state which are under consideration.

Equation~16! clearly shows peculiarities of the hole stat
in a single QW with semimagnetic barriers. That is, the h
state is now defined as a superposition of localized~first
term! and delocalized~second term! hole states. The relative
values of the corresponding coefficients represent their
tial contributions to eigenstate.

The following calculations are very similar to those f
the discrete spectrum. The analog of Eq.~13!, however, is
different:

CB252

~g11g2!q21
g

2
1u2«

)g2q2
. ~17!

The continuity conditions~14! on the interface lead to a
set of four homogeneous algebraic equations@see Appendix
A, Eqs. ~A2!#. Equating the corresponding determinant
zero now gives the transcendental equation for phasew as a
function of energy« and exchange fieldg.

To complete the determination of the wave functions,
need to normalize them. The most convenient and pro
way is to introduce the crystal size in thex directionL@1 ~in
LW units! and normalize the integral of the wave functio
density:

E
2L/2

L/2

uCu2dj51. ~18!
-
ld

art

,
e

-
e

e

r-

e
er

Simple calculations reduce the normalization conditi
~18! to the equation

E
2L/2

L/2

uCu2dj5E
21/2

1/2

uCWu2dj12E
1/2

L/2

uCBu2dj

52~Bh2
2 1Bl2

2 !E
0

L/2

cos2~qj1w!dj1OS 1

L D
5

L

2
Bh2

2 ~11CB2
2 !1OS 1

L D51,

that gives, in the limitL@1,

Bh2
2 5

2

L

1

11CB2
2 . ~19!

To determine parameters of the wave function, one
obtain the system of three linear algebraic equations fr
Eqs.~19! and ~14! ~Appendix B!. We plot the results of the
wave-function calculations in Figs. 2 and 3. The probabil
to find hole in the well region*

21/2
11/2 uCu2dj as a function of

hole energy« demonstrates a nonmonotonic behavior w
the maximum at some energy«0 and widthG ~see Fig. 2!.
This can be associated with the energy«0 and lifetime\/G of
the resonant~virtual! level. Figure 3 shows the explicit form
of the hole wave function at«,«0 ~a! and«.«0 ~c!, and at
a resonant value«0 ~b!.

The resonant energies«0 as a function of exchange fieldg
are plotted in Fig. 1~symbols!. The bars correspond to th
full width at half maximum of the curves in Fig. 2. WidthG
for the LH virtual level from subsystem~23

2,1
1
2! is larger

than that for the LH virtual level from the~13
2,2

1
2! sub-

system. This is not surprising because LH states in the Q
and in the barrier are characterized by stronger interac
than LH-HH ones. WidthG is increased with distance from
the point of the localized-resonant transition, i.e., the wid
G(g58).G(g56) ~see Fig. 1!. Note also that energies«0
provide a continuous transition between localized and re
nant ‘‘phases’’ in terms of the energy-level position.

FIG. 2. Density of probability to find a hole in the QW region a
a function of the hole energy, calculated for the~1 3

2,2
1
2! subsystem

in a 20-Å-wide Cd0.88Mn0.12Te/CdTe/Cd0.88Mn0.12Te QW for the
value of the exchange fieldG510 ~compare with Fig. 1!. The sense
of the vertical lines is disclosed in Fig. 3.
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OPTICAL TRANSITIONS

Among the different manifestations of the considered h
transformation, we choose the interband optical transition
a phenomenon sensitive to the transition from confinemen
resonant hole states. In addition there are experimental
~see Refs. 9 and 13! on GSS, which should be treated
regard to the possibility of resonant dissociation of excito
to a bound electron and a free hole due to LH-HH mixing
a strong enough magnetic field directed in the plane of
QW. For the sake of simplicity, we now consider optic
transitions without any excitonic effects to retrace the tr
sition through a critical valueGc in terms of the theory de
veloped above.

Let us consider the probabilities of electron-hole opti
transitions between the considered hole states and the gr
state of the conduction electron in a QW. The shape
width of the corresponding optical line in the energy range
the continuous hole spectrum reflect the probability of fin
ing a hole in the QW region, and are similar to the shape
width of the curve in Fig. 2. In the energy range of t
discrete hole spectrum, the optical transition probabilities
described byd functions. At the same time, the integral in
tensity can be calculated and compared for both discrete
continuous spectra.

So we consider the probability of optical transitions b
tween localized electron and LH states:

P~E!5(
f

2p

\
uM f i u2d~Ef2Ei2E!. ~20!

FIG. 3. Two-component wave functions calculated at«,«0 ~a!,
«.«0 ~c! and at resonant energy («5«0) ~b! for parameters similar
to those in Fig. 2. Solid lines correspond to the HH componen
the wave function, while dotted lines correspond to the LH com
nent. The energies correspond to the positions of vertical line
Fig. 2.
e
s

to
ta

s

e
l
-

l
nd
d
f
-
d
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nd
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HereEi is the electron ground-state energy in a QW, a
Ef is the LH energy depending on space~q! and spin~s!
quantum numbers.M f i is proportional to«pf i where« and
pf i are the polarization vector of light and momentum mat
element. The detailed calculation of the matrix elementpf i is
performed in Appendix C. The expression

I 5E
Emin

Emax
P~E!dE ~21!

can be applied to a calculation of the integral intensities
are interested in. In the case of the continuous hole spect
the lower and upper limits of integration in Eq.~21! should
be chosen far enough from the intensity maximum.

In the case of the discrete hole spectrum, the calculati
give the following values of integral intensities forp ands
polarizations:

I p5
2p

\

4

6
z^SuppuZ& z2z^CeuC l

W& z2,

I s5
2p

\
z^SupsuY& z2U 1

&
^CeuCh

W&1
1

A6
^CeuC l

W&U2

.

~22!

HereCe is a confinement electron wave function.
The case of the continuous spectrum is considered in

usual fashion by integration~instead of summation! with a
one-dimensional density of statesr(q)5L/2p:

I ~E!5(
s

L

\ E
Emin

Emax
upf i u2d~Ef2Ei2E!

]q

]Ef
dEf . ~23!

The derivative]q/]Ef can be obtained by direct differen
tiation of Eq.~8! with respect to the relationq52 il2 . The
integration limit Emin is also determined by the conditio
opposite to inequality~10!. Thus one can obtain

I ~«!5(
s

L

\

]q~Ei5«!

]Ei
upf i~Ei5«!u2, ~24!

where«5Ei2E, and the energy of optical perturbationE
5\v. Therefore, the integral intensities of the optical tra
sitions in the case of continuous hole spectrum have
forms

I p5
4

3\
z^SupZuZ& z2

3E
«min

«max]q~«!

]Ei
z^CeuC l

W~«!& z2
1

11Cb2
2 ~«!

d«,

I s5
2

\
z^SupYuY& z2E

«min

«max]q~«!

]Ei

3U 1

&
^CeuCh

W~«!&1
1

A6
^CeuC l

W~«!&U2

3
1

11Cb2
2 ~«!

d«. ~25!

f
-
in
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Figure 4 shows the dependence of the integral intens
of the electron-LH optical transitions on the exchange fi
G. Symbols correspond to transitions involving the contin
ous hole spectrum in the range ofG.Gc @Eqs. ~25!#. Inte-
gral intensities in the case ofG,Gc are presented in Fig. 4
by lines. Note, that the significant redistribution of the osc
lator strength between transitions from discrete and cont
ous hole spectra takes place in the vicinity of the criti
exchange fieldGc . On the other hand, both discrete@Eqs.
~22!# and continuous@Eqs.~25!# spectra should contribute t
the optical line if the energy distance between them is ab
the same as or smaller than the linewidth. Thus our calc
tions of the integral intensity presented in Fig. 4 involve bo
types of transitions. One can see that the integral intens
demonstrate a smooth continuation from the region of loc
ized (G,Gc) states to the region of resonant (G.Gc)
states. Therefore, the optical linewidths should reveal a
tional homogeneous broadening in the region ofG.Gc
without a significant change of integral intensity.

CONCLUSION

This work shows that along with localized and deloc
ized hole states, single quantum well can also posses
intermediate state consisting of their superposition if the b
riers are semimagnetic and the external magnetic field
strong enough and inclined toward the growth axisC. In Fig.
5 we plot the values of critical magnetic fieldsBc1 andBc2
for Cd12xMnxTe/CdTe/Cd12xMnxTe QW structures as func
tions of molar concentration of the Mn-ions in the barrie
for different values of well widths. One can see that, for t
majority of commonly used structures, these critical fie
can be easily reached experimentally.

The considered model allows us to solve the probl
without any small parameter in the spirit of calculations
the discrete spectrum with rectangular potential. The pr
ability of finding a hole in the QW region has a resonantli
distribution with a clear maximum. Positions of the maxim
are smooth extensions of the localized LH branches to

FIG. 4. Integral intensities of the optical transitions between
states and ground electron state in the 20-Å-w
Cd0.88Mn0.12Te/CdTe/Cd0.88Mn0.12Te QW as functions of the ex
change field G'C. Negative values ofG correspond to the
~2 3

2,1
1
2! subsystem, while positiveG corresponds to the~1 3

2,2
1
2!

subsystem. The solid line and square symbols correspond top po-
larizations, in the regionsG,Gc and G.Gc , respectively. The
dashed line and open circles correspond tos polarization.
s
d
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-
u-
l

ut
a-

es
l-

i-

-
an
r-
is

s

f
-

e

region whereG.Gc . The width of this distribution can be
associated with the probability for the hole to drain to infi
ity. Thus we expect that the measurements of the giant s
splitting of LH energies in the Voight configuration will hav
a smooth continuation from discrete to resonant states.
intensities of the optical transitions are also expected to d
onstrate a smooth continuation. In the case of relativ
small fluctuations, the widths of resonant levels can be as
ciated with a homogeneous broadening of the optical line
the region of the transition from a localized states regime
a resonant state regime.

Another manifestation of resonant states is expected to
the kinetics of luminescence in QW’s when the hole tunn
ing to infinity ~far from the QW! can play the role of an
additional channel for subsequent relaxation. In a sim
manner, we expect the appearance of peculiarities in
transport properties of such structures. These proble
along with a detailed comparison with experiment~see, for
instance, Refs. 13 and 14!, will be published elsewhere.
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APPENDIX A

The system of equations for the coefficientsWh1 , Wh2 ,
Bh1 , and Bh2 , stemming from Eqs.~14! and ~15! assumes
the forms

FIG. 5. Critical magnetic fieldsBc1 ~a! for the ~2 3
2,1

1
2! sub-

system andBc2 ~b! for the ~1 3
2,2

1
2! subsystem as functions of mo

lar concentration of the Mn ions in the barriers fo
Cd12xMnxTe/CdTe/Cd12xMnxTe QW structures atT51.8 K.
Curves correspond to the different values of the well width: 5, 7
11, 13, 15, 17, 21, 25, 29, 35, 39, and 49 Å. The valence-ba
offset parameter is taken to be equal to 0.4.
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Bh1 expS 2
l1

2 D1Bh2 expS 2
l2

2 D2Wh1 cosS k1

2 D2Wh2 cosS k2

2 D50,

Bh1CB1 expS 2
l1

2 D1Bh2CB2 expS 2
l2

2 D2Wh1CW1 cosS k1

2 D2Wh2CW2 cosS k2

2 D50,

Bh1@~g11g2!2CB1)g2#l1 expS 2
l1

2 D1Bh2@~g11g2!2CB2)g2#l2expS 2
l2

2 D
2Wh1@~g11g2!2CW1)g2#k1 sinS k1

2 D2Wh2@~g11g2!2CW2)g2#k2 sinS k2

2 D50, ~A1!

Bh1@2)g21CB1~g12g2!#l1 expS 2
l1

2 D1Bh2@2)g21CB2~g12g2!#l2 expS 2
l2

2 D
1Wh1@)g22CB3~g12g2!#k1 sinS k1

2 D1Wh2@)g22CB4~g12g2!#k2 sinS k2

2 D50.

The transcendental equation with respect to the eigenenergy« is found by equating the determinant of system~A1! to zero.
Numerical solution of this equation with respect to« gives at least two roots associated with HH and LH states. To find
components of corresponding wave functions, the normalization conditions should also be taken into account.

The system of four linear homogenous algebraic equations used for the determination of phasew as a function of energy«
in the case of continuous spectrum has the forms

Bh1 expS 2
l1

2 D1Bh2 cosS q

2
1w D2Wh1 cosS k1

2 D2Wh2 cosS k2

2 D50,

Bh1CB1 expS 2
l1

2 D1Bh2CB2 cosS q

2
1w D2Wh1CW1 cosS k1

2 D2Wh2CW2 cosS k2

2 D50,

Bh1@~g11g2!2CB1)g2#l1 expS 2
l1

2 D1Bh2@~g11g2!2CB2)g2#q sinS q

2
1w D

2Wh1@~g11g2! 2CW1)g2#k1 sinS k1

2 D2Wh2@~g11g2!2CW2)g2#k2 sinS k2

2 D50, ~A2!

Bh1@2)g21CB1~g12g2!#l1 expS 2
l1

2 D1Bh2@2)g21CB2~g12g2!#q sinS q

2
1w D

1Wh1@)g22CB3~g12g2!#k1 sinS k1

2 D1Wh2@)g22CB4~g12g2!#k2 sinS k2

2 D50.

APPENDIX B

The system of equations for the coefficientsBh1 , Wh1, andWh2 takes the form

S expS 2
l1

2 D 2cosS k1

2 D cosS k2

2 D
CB1 expS 2

l1

2 D 2CW1 cosS k1

2 D 2CW2 cosS k2

2 D
@g122CB1)g2#l1 expS 2

l1

2 D 2@g122CW1)g2#k1 sinS k1

2 D 2@g122CW2)g2#k2 sinS k2

2 D D S Bh1

Wh1

Wh2

D

5S 2S 2

L

1

11CB2
2 D 1/2

cosS q

2
1w D

2S 2

L

1

11CB2
2 D 1/2

CB2 cosS q

2
1w D

2S 2

L

1

11CB2
2 D 1/2

@g122CB2)g2#q sinS q

2
1w D D . ~B1!
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APPENDIX C

For simplicity, the electron envelope function is chosen to be localized in the well region

Cc5& cos~px!. ~C1!

Basis hole wave functions are determined by the transformation properties of the angular momentum3
2 ~Ref. 15!:

U23 ,1
3

2L 5
1

&
~X1 iY!↑,

U32 ,1
1

2L 5
1

A6
@~X1 iY!↓22Z↑#,

U32 ,2
1

2L 5
1

A6
@2~X2 iY!↑22Z↓#,

U32 ,2
3

2L 52
1

&
~X2 iY!↓. ~C2!

So the calculations of the momentum matrix elements in the basis (1 3
2 ,2 1

2 ) give, for thep-(eiOZ) and s-(eiOY)
polarizations,

upp
f i u25H 4

6
u^SupZuZ&u2z^CeuC l

W& z2, se52
1

2

0, se51
1

2
,

ups
f i u255 U

1

&
^CeuCh

W&1
1

A6
^CeuC l

W&U2

z^SupYuY& z2, se51
1

2

0, se52
1

2
.

~C3!

Calculations in the basis~23
2,1

1
2! result in formula~C3!, with an inverse electron-spin projectionse→2se .
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