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Resonant hole states in a quantum well with semimagnetic barriers
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Theoretical calculations of the valence-band electron states in a two-dimensional quantuy@Welvith
diluted magnetic semiconductor barriers are performed in the case of in-plane external magn@&icGedes
of relatively weak and strong magnetic fields should be discriminated. In the first case the barrier continuum
spectrum is separated from localized heavy- and light-hole states in a QW. In the case of a strong enough
magnetic field, the superimposition of a barrier continuum spectrum on light-hole QW levels can take place
due to the giant spin splitting of semimagmetic semiconductor band states. Moreover, the strong mixing
between quantum-confined and barrier states takes place due to the nonconservation of angular momentum in
an inclined magnetic field. This results in the transformation of light-hole-localized states in a QW to resonant
(virtual) ones. We use a Luttinger model with a symmetric rectangular potential to recapture the transition from
localized to resonant states with an increasing external magnetidfieldlculations of electron-hole optical
transitions show a broadening of optical lines and a shift of their maxima. The considered situation is shown
to be easily realized in the structures,CgVin, Te/CdTe/Cd_,Mn,Te. [S0163-182609)15231-1

INTRODUCTION states M = = 3). Among others, the difference between spin
splittings of LH and HH states in the barrier can lead to a
Use of diluted magnetic semiconductd®MS’s) in two-  reversal of a single QW to a single-barrier structure for HH's
dimensional(2D) quantum structures is very attractive be- if the +3 spin shiftG/2 exceeds the height of the potential
cause it is possible to control the energy parameters of suctepU,,, while LH states are still localized in QW’s with a
structures easily by an external magnetic fiBldThis stems  depthU,,—G/6.
from the carrier-magnetic ion-exchange interaction that leads This paper draws attention to a qualitatively different situ-
to the effect of giant spin splittingGSS of energy bands in  ation that appears in the case of an arbitrary orientation of a
DMS'’s (see Ref. 1 magnetic fieldB. The exchange interaction is represented by
Typical structures that are investigated in the majority ofa Zeeman-like ternG,J, where G,(GlIB) is not a scalar
works look like Cd_,Mn,Te/CdTe/Cd_,Mn,Te, where potential but an exchandeeld which acts on spin moment.
single (or multiple) CdTe quantum wel) (QW'’s) are em-  In the case oBIIC, the system has an axial symmetry, and
bedded in DMS barriers. In the case of a zero magnetic fieldthe projection of the angular momentum Graxis is a good
the electron(hole) band-offset potentialUep,) has to be quantum number for valence electrons with zero in-plane
added to the conductiortvalence} band Hamiltonian, simi- wave vector. When the vectoBsandC are not collinear, the
lar to the case of nonmagnetic 2D semiconductor quanturgystem loses axial symmetry amhd==3,+3 (the projec-
structures. The magnetic fiell induces the DMS magneti- tion of the angular moment oB) is no longer good quantum
zationM which gives rise to the exchange fieBl,) acting  number. In this case the eigenvectors of LH and HH local-
on the electror(e) and hole(h) spins proportionally to the ized states should be represented by a linear combinations of
exchange integrals(B) andM. If Gy, is directed along the  the vectorgM). This modification leads to a drastic revision
growth axisC of a quantum structure, it increases the barrierof the traditional classification of the confinement levels
energy for carriers with a certain spin orientation and de-once the barrier states reach and then cross some of the lo-
creases it for carriers with an opposite orientation. The valealized QW levels(see Fig. 1 In this case QW discrete
ues of the spin-dependent barrier energy shifts are compatates turn out to be inside the barrier continuous spectrum,
rable with band-offset energy shifts, andU,,. That is why  and acquire their features due to spin mixing by an inclined
DMS quantum structures reveal a lot of interesting physicafield G;,. In other words, the localized states in a single QW
phenomendsee Refs. 25 transform to resonant ones. It should be emphasized that the
Due to the degeneracy of the states on the top of théotal angular momentum conservation law forbids such kinds
valence band, the hole energy spectrum in such QW stru®f resonant states in the caseRifC.
tures reveals some peculiarities. Namely due to the confine- Contrary to the situation of narrow-gap semiconductor
ment effect the valence-band spectrum splits into light-holequantum structures, where electron resonant states appear
(LH) and heavy-holéHH) subbands. The angular momen- due tokp coupling to the bulk valence-band continuimf,
tum projection on theC axis isM==*3 for a LH, andM the LH-HH resonant mixing is realized in a strong enough
=+ 3 for a HH. The magnetic splitting of the barrier states isinclined external magnetic field even in the case of a zero
proportional to the effective spin projectiovi and equal to  in-plane wave vector. Thus we have a good chance to recap-
FGy/2 for the HH states I=+3), and *G./6 for LH ture the transition from localized to resonafr virtual)
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10 . that the localization of a hole is provided due to the band-
21 e SR ]T J ] offset potential and exchange interaction only.
81 — — H 1 (iv) The influence of the spin-orbit-split subbahg is
71 i 1 negligible. So we use the Luttinger equatidk) to describe
64 LH T ] the hole states.
W 57 " iiiﬁﬂ { % 1 (v) We consider HH and LH ground states with zero in-
w49 py 1 plane wave vectors only.
31 T The aforementioned assumptions permit us to write the
21 T Hamiltonian in terms of angular momentumlt is also con-
1 1 venient to rewrite the LE in dimensionless variables intro-
0 G G ] ducing the length unitL,, and the energy unitE,
o 2 a4 & 8 10 =#h?/2mgL3, whereL,y is the QW width andm, the free-
G/E, electron mass. We direct tH&L C and put theOX and OZ

FIG. 1. 20-A-wide CggMng;Te/CATe/CgeMnosTe QW 8XES alongC and B directions, respectively. In these units
profile with LH and HH energy positions and their spin splitting in the Hamiltonian assumes the form
the case of5.C (curves 5—8 Evolutions of the barrier hole states ~ 5 2 2,2 1
with J,=—2, —1 +1 and+2 far from the QW region correspond HL=(y1+ 3 ¥2) K= 27235k —30n(£)Iz+u(é), (2
to the lines 1-4, respectively. Solid lines represent energy of stateghere u(¢) =U,/Ey, 9(€)=G,/Eq, £=x/Ly, and ky=
which are mixture of—%} and|+%> states. Dashed lines correspond —igloé, andy, and y, are Luttinger parameters. Here we
to that of |+3) and|—3) states. Squares represent the energies ofook into account the negativ@ntiferromagnetic sign of

states of continuous spectrum with maximum values of probabilityyg|e exchange constanB that leads to the negative
to find a hole in the QW regioitsee Fig. 2, bars represent the Z-projection of the exchange fiel8;,: G,,=—G;,, where
FWHM (full width at half maximum of the curves similar to those Gh=|Gy|

in Fig. 2. The exchange fields.; and G., mark the crossing of

barrier and LH energy branches with non-orthogonal states. The 4x4 matrix of the Luttinger Hamiltonian in the

space of eigenvectors of tlle operator breaks up into two
2% 2 submatrices fof+2, =1) subspacesRef. 1. For the
®+2, —1) subspace the matrices of Hamiltonian for the bar-
rier (B) and well (W) regions have the forms

states in a QW with semimagnetic barriers by changing th
magnetic fieldB.

In the following section we develop the theory of local-
ized hole states in a QW with DMS barriers. For simplicity py
we limit ourselves to the case 8fL C. Then we extend this
approach to the case of resonant LH states, and demonstrate
how the resonant energy-level position and level width can

be defined. Finally we discuss the influence of the transition 9 9
from localized to resonant states on the electron-LH optical —(nt7r2) ez 5> tu ‘@72@
transitions and other phenomena. = e 2 g ;
Vz?’za_gz _(7’1_72)&_‘52+5+U
BASIC EQUATIONS 3
We analyze the resonant hole states in a single QW with
DMS barriers using the following simplest model, which al- 2 2
low us to find an exact solution of Luttinger equation. A —(r1t72) €2 ﬁyZ@
(i) A hole under consideration is localized in a honmag- Hw= 2 9 (4)
netic QW with symmetric rectangular DMS barriers with V3yy—s _(71_72)‘9_2
sharp interfaces. For definiteness, the growth axis is directed 2 23

along CI[100]. We do not consider the interface effects \jatrices of the Hamiltonian for the-2, +1) subspace are

here, which, however, are important for a DMS QW undergpisined from Eqs(3) and (4) by replacingg with —g.

these conditiongRefs. 9—-11 Thus, the potential and ex- Corresponding wave functions for each subsystem

change field profiles along the growth axisaxis) have the  h5ve  the  form W (x) = O(Lw/2— |X|)TWY(x) + 6(|X]

forms —Lw/2)¥B(x), where (x) is Heaviside(unit step func-
tion. ¥W(x) and ¥B(x) are the two-component eigenfunc-

UL (0= 0, [|x|<Lw/2 G (X) = 0, [x[<Lw/2 tions of Hamiltoniang4) and (3), respectively,
=1y, x>, S F1G,, x>, N :
1) PW= W PB= Wh (5)
pN e

where zero energy corresponds to the QW bottom. 3 a1
(i) The magnetic field does not affect the hole kineticWhereh==z andl==5. )

energy. The influence of the magnetic fi@deduces to the The solutions of the LE with HamiltoniarH = 6(|x|

induction of the exchange fiel@,, only. —Lw/2)Hg+ 6(Lw/2—|x|)H\y are exponential functions
(i) The strain effect as well as any excitonic effects is¥"(x) =AY expikx) and ¥B(x)=ABexp(x), where AW

beyond the framework of consideration. Thus, it is assume@dndA® are the two-component numerical vectors. Generally,
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there are fourk; and \; satisfying LE’s with Hamiltonians
(3) and(4), respectively. So we can write

W= >

Al expik;§), WB= > APexp\;é),
j=1,23,4 j=1,234
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meaning: the eigenenergies of localized states in the QW
should be lower than the continuous barrier states far from
the QW region with effective spin projectionss and +3,
respectively.

Thus the parameteks [Eq. (7)] and\; [Eq. (8)] are real

(6) and positive. So the spinor components of the wave function
: have cosine or sine behaviors inside the well, and decay
with : . ) . .
exponentially in the barrier. Since we consider only the
e 12 e 12 ground state, corresponding wave functions for the sym-
Kig== ) ) ko 4= i( > ) . (7)  metrical potential should be even. In this case E§s.and
Yirey2 nimeve (6) can be rewritten in the following form:
1/2
9 wy W,
N0tz te \IfW<§>=(q,Cv)=(W“l cogk;€) +| 2 [coskeé),
Na—==* , I 11 12
' Y1~ 473 (12)
B vy Bh1 Bh2
g |\ VEE)=| 8| =| g |~ MléD+| g |exp—N,lD),
710+ v253—p ! 1 12
Nog4= =+ —az ] (8)  where the boundary condition®’|? ~—5 0 are taken into
Yim 72 account. -
where The relations between HH and LH components bf
functions(11) are obtained from LE’s with Hamiltonian(8)
2 1/2 .
5 2 5. g and (4):
p=|(2720)"+(71=372) 5 +2n17283)
Wi =CwiWh;,
s=u—e—gl6. 9 (12
€ g ( ) Bli:CBiBhil i:1,2,
Parameterﬂ}’V(B).aimd energy should be found from the \yith coefficients
LE, boundary conditions, and normalization condition for the
W function. All coefficientsk; [Eq. (7)] as well as square (y1+ y2)kP—¢
. |
root p [Eq. (9)] are real becausg;>27y,, while \; can be Cwi=——F——5—
both real and imaginary. The conditions faf to be real V3yoki
follow from Egs.(8), and have the fornu—e>g/2 for the
basis of(+2, —3) andu—&>g/6 for the basis of —2, +3). - 2.9, _
One can seéFig. 1) that just these inequalities satisfy the (it yIN+5Hu-e
requirement for energy to be separated from the continuous Cei=— V3yo\2 (13
I

barrier spectrum. We emphasize that the appearance of two
inequalities is the result of reduction of thex4 Hamil-
tonian matrix into two 22 matrices in the case @1 C.
Generally speaking, the first condition provides slito be

The remaining four unknown component,,, W,,
By1, andB;, are found from the set of four linear homoge-
neous equations, which stem from the continuity conditions

real. _ , on the interface:

Subsequent calculations essentially depend on the bound-
ary conditions far from the interface. So the localizatl \ lim  gw= lim ¢,
are real and extendedsome of\; are imaginary solutions {—1/2-0 {—1/2+0

of the LE will be considered separately. For numerical cal- (14)
culations throughout this paper we used the parameters cor- lim {/x[/W: lim {/qu,
responding to CglggVng 1,Te/CdTe/CgggMng ,Te 20-A- é-1/2-0 £-1/2+0
wide QW with a valence-band offset &= 0.41%* This
gives the barrier height for holes,=7.87 (in Eq units). where
Luttinger parameters are chosen to be equajte 5.3 and P P
¥2=1.62. —(nt 72)(9_5 VjYza_g
V= (15)
DISCRETE SPECTRUM Vi 9 Cm )
Y25 (y1— 72 Py

Let us consider the energy range corresponding to the real

values ofi; [Eq. (8)], i.e., The equating of corresponding determinant to zero leads

to a transcendental equation for the energiesThe explicit
form of the initial system is presented in Appendix|Bgs.
where A=E;8. Inequality (10) results in the conditiorE ~ Al].

<U—GJ/2 for the(+3,—3) subsystem oE<U — G/6 for the A numerical solution of the transcendental equation for
(—32,4+3) subsystem. These inequalities have a clear physicaach of the two subsystems gives at least two roots for each

A%>(GI3)?, (10
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value of the exchange fiel@ satisfying condition(10). One Z 45 . . .
of them corresponds to the HH state, while the other corre- § 40+ : -
sponds to the LH state. The example of the magnetic-field & 35[ : ]
dependence of HH and LH energies is shown in Fifsdlid E 30l ]
lines correspond to the-3,+3) subsystem and dashed lines s 251 ]
to the(+2,—3) systen}. One can see that LH branches break 2
at exchange field values violating conditiofi®). % fg A ]
CONTINUOUS SPECTRUM ,g& 10¢ ]
S 5 7 : )
At large enough values d& condition (10) is no longer % Qo 5 .
satisfied, so thax, 4in Eq. (8) become imaginary. This cor- s 5 : s .

responds to the appearance of the nonvanishing periodic part 2 4 E/E 6 8 10
in the barrier function®¥®(x) in Eq. (6). In this case the 0

boundary condltlomlf| [P 0 is no longer valid, which FIG. 2. Density of probability to find a hole in the QW region as

means that Coefficienﬁg andAE:’ in Eq. (6) are not zero. So  a function of the hole energy, calculated for the3,—3) subsystem
one can write the following expression for the wave functionin a 20-A-wide CggdVing 1,Te/CdTe/CgggMng;.Te QW for the
in the barrier instead of Eq11): value of the exchange field= 10 (compare with Fig. 1L The sense

of the vertical lines is disclosed in Fig. 3.
WE) (Bhl (th
= expl—A +
\PIB Bll q 1|§|) B|2

VB¢ = cogq| €]+ o). Simple calculations reduce the normalization condition

(16) (18) to the equation

L/2 1/2 L/2
Here we introduce the wave vector in the barrggs f |\If|2dng |qu|2d§+zf | WB|2d¢
—iA, and phasep. Contrary to the case of localized states, J-L/2 -2 1/2

we do not need to determine the eigenenergy. Rather, we

shall find phasep and other parameters of thie function at =2(B2,+B2) fuz co2(qé+ @)dé+ O l)
a given energy value. 0 L
We still limit consideration to even solutions of the LE
only. The reason for this is that only even hole states con- - EBZ (1+C2,)+0 E) =1
. . . h2 B2 y
tribute to optical transitions between the hole states and the 2 L
electron ground state which are under consideration. ) ) o
Equation(16) clearly shows peculiarities of the hole states that gives, in the limit.>1,
in a single QW with semimagnetic barriers. That is, the hole
state is now defined as a superposition of localizfct B2 :E 1 (19
term) and delocalizedsecond termhole states. The relative h2- L 1+C3,°
values of the corresponding coefficients represent their par-
tial contributions to eigenstate. To determine parameters of the wave function, one can

The following calculations are very similar to those for optain the system of three linear algebraic equations from
the discrete spectrum. The analog of E&3), however, is  Egs.(19) and(14) (Appendix B. We plot the results of the
different: wave-function calculations in Figs. 2 and 3. The probability

to find hole in the well regiorf % |W|2d¢ as a function of
(y1+ 72) G2+ g+u—e hole energye demonstrates a nonmonotonic behayior with
_ the maximum at some energy, and widthI" (see Fig. 2.
Ceo=— V37,02 ' 17) This can be associated with the enesgyand lifetime#/I" of
the resonangvirtual) level. Figure 3 shows the explicit form

of the hole wave function at<egq (a) ande>¢; (c), and at
a resonant value (b).

The resonant energieg as a function of exchange fietg
are plotted in Fig. 1(symbol3. The bars correspond to the

The continuity conditiong14) on the interface lead to a
set of four homogeneous algebraic equatiBee Appendix
A, Egs. (A2)]. Equating the corresponding determinant to

zero now gives the transcendental equation for pkaas a full width at half maximum of the curves in Fig. 2. Widfh

function of energye and exchange field. . 3, 0
To complete the determination of the wave functions, we{ogrt]hteh;‘tch\)/r'rttﬂil Il_el_\|/ e\lngsg? IZ T,Z%?;%rh;ﬁéi%) _ls;)lasrgg_r
need to normalize them. The most convenient and prope|h 2 2

way is to introduce the crystal size in tkelirectionL>1 (in system. This is not surprising because LH states in the QW

Ly, unit9 and normalize the integral of the wave function and in the barrier are characterized by stronger interaction
dgnsity' 9 than LH-HH ones. WidtH" is increased with distance from

the point of the localized-resonant transition, i.e., the width
Lo F(g'=8)>1“(g.=6) (see Fig._J. Note also that 'energieeso
f [P |2d¢=1. (18) provide a continuous transition between Iocallz_e_d and reso-
~L2 nant “phases” in terms of the energy-level position.
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HereE; is the electron ground-state energy in a QW, and
] E; is the LH energy depending on spa@ and spin(o)
. quantum numbersM; is proportional toep;; wheree and
1 ps; are the polarization vector of light and momentum matrix
element. The detailed calculation of the matrix elenmpts
performed in Appendix C. The expression

wave function

g Emax
i szE P(E)dE (21
can be applied to a calculation of the integral intensities we
. are interested in. In the case of the continuous hole spectrum,
the lower and upper limits of integration in E1) should
be chosen far enough from the intensity maximum.

In the case of the discrete hole spectrum, the calculations
(©) give t_he _following values of integral intensities farand o

1 polarizations:

wave function

wave function

27 4
=T 2 SIP D FW TP,

(wul) .

(22

1

V6

0 20 40 0 10 20 30 |—2WS Y2
a—7|<|pa|>|

1
5<‘Pe|q’\r¢/>+

FIG. 3. Two-component wave functions calculated ate, (),  Here W, is a confinement electron wave function.
£>g () and at resonant energy € ) (b) for parameters similar The case of the continuous spectrum is considered in the
to those in Fig. 2. Solid lines correspond to the HH component ofusual fashion by integratiofinstead of summationwith a
the wave function, while dotted lines correspond to the LH compo-one-dimensional density of statpéq) =L/27:
nent. The energies correspond to the positions of vertical lines in
Flg 2. L (Emax 07q
(B)=2 ﬂ Pl *6(Eq—Ei—E) = dEq. (23)
OPTICAL TRANSITIONS v Emin f
Among the different manifestations of the considered hole The derivativedg/JE; can be obtained by direct differen-
transformation, we choose the interband optical transition agation of Eq.(8) with respect to the relatiog= —i\,. The
a phenomenon sensitive to the transition from confinement totegration limit E,,;, is also determined by the condition
resonant hole states. In addition there are experimental datpposite to inequality10). Thus one can obtain
(see Refs. 9 and 13n GSS, which should be treated in
regard to the possibility of resonant dissociation of excitons L dq(Ei=¢) 2
to a bound electron and a free hole due to LH-HH mixing by I(s)=§ h o OE, pri(Ei=2)[%, (24)
a strong enough magnetic field directed in the plane of the
QW. For the sake of simplicity, we now consider optical wheree =E;—E, and the energy of optical perturbati@h
transitions without any excitonic effects to retrace the tran—=7%w. Therefore, the integral intensities of the optical tran-
sition through a critical valu&, in terms of the theory de- sitions in the case of continuous hole spectrum have the
veloped above. forms
Let us consider the probabilities of electron-hole optical
transitions between the considered hole states and the ground | _i Sp.|2)
state of the conduction electron in a QW. The shape and T34 KSlpzl2)|
width of the corresponding optical line in the energy range of
the continuous hole spectrum reflect the probability of find- % fsmafo(S) R% |\IfW NG 1 d
ing a hole in the QW region, and are similar to the shape and JE; el Vi'(e 1+Cb22(s) &
width of the curve in Fig. 2. In the energy range of the
discrete hole spectrum, the optical transition probabilities are 2
described bys functions. At the same time, the integral in- I(,=%|<S| py|Y>|Zf
tensity can be calculated and compared for both discrete and
continuous spectra.
So we consider the probability of optical transitions be- X
tween localized electron and LH states:

€min

€max aQ(S)
JE,

€min

2

1 1
5(‘1’e|‘1’\|4v(8)>+ %Wem’?’v(s))

1
) de. (25

2
_ = 12 _E _ X——
PE)=X FIMi?E~E~E. (0 17Co(e
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(&)

- ' i i ' N ! -
— =n- G<G, al 84 (b)'
4 ---- 5-G<G, . L] B ] 21A 13A ]
£ " 2-G>G
5, ° -GG, - ] 61 49A 7
£ o ]
= '-:- 4 4 .
‘@ 4 4
é 29 (32,+112) o ° o
E 14 ° 05 ° o i 2- 1
E Co~ &£ ] 5A
E S (+302,-172)
04 N E wEm g 04 1
i n [l 1 1 L + [
T T T é T 1‘0 ) i M 1 M A v i T 1 M T ]
-10 -5 0 21
GEE, 8- 49A (a)-
] 13A
FIG. 4. Integral intensities of the optical transitions between LH | _
g p 6

states and ground electron state in the 20-A-wide
Cdy gding 1,T€/CdTe/Cd gdMng 1o,Te QW as functions of the ex-
change field GL C. Negative values ofG correspond to the
(—3,+3) subsystem, while positivé corresponds to thé+ 32 —3)
subsystem. The solid line and square symbols correspomdpio-
larizations, in the region& <G, and G>G,, respectively. The ] A
dashed line and open circles correspondrtpolarization.

Figure 4 shows the dependence of the integral intensities
of the electron-LH optical transitions on the exchange field Xun
G. Symbols correspond to transitions involving the continu-

ous hole spectrum in the range GG, [Egs. (25)]. Inte- FIG. 5. Critical magnetic field8,, (a) for the (—3,+3%) sub-

gral intensities in the case @< G, are presented in Fig. 4 System and; (b) for the (+3,~3) subsystem as functions of mo-
° |.lar concentration of the Mn ions in the barriers for

by lines. Note, that the significant redistribution of the osci "
lator strength between transitions from discrete and continugdlfonXTe/ CdTe/CqLXMn?(Te QW structures atTfl'?’ K.

hole spectra takes place in the vicinity of the Criticalcurves correspond to the different values of the well width: 5, 7, 9,
ous : . 11, 13, 15, 17, 21, 25, 29, 35, 39, and 49 A. The valence-band-
exchange fieldS.. On the other hand, both discrdtEgs. .

. b offset parameter is taken to be equal to 0.4.

(22)] and continuou$Egs. (25)] spectra should contribute to
the optical line if the energy distance between them is aboutegion whereG>G,. The width of this distribution can be
the same as or smaller than the linewidth. Thus our calculaassociated with the probability for the hole to drain to infin-
tions of the integral intensity presented in Fig. 4 involve bothity. Thus we expect that the measurements of the giant spin
types of transitions. One can see that the integral intensitiesplitting of LH energies in the Voight configuration will have
demonstrate a smooth continuation from the region of locala smooth continuation from discrete to resonant states. The
ized (G<G,) states to the region of resonanG¥G,) intensities of the optical transitions are also expected to dem-
states. Therefore, the optical linewidths should reveal addienstrate a smooth continuation. In the case of relatively
tional homogeneous broadening in the region ®@>G,  small fluctuations, the widths of resonant levels can be asso-

without a significant change of integral intensity. ciated with a homogeneous broadening of the optical line in
the region of the transition from a localized states regime to
CONCLUSION a resonant state regime.

Another manifestation of resonant states is expected to be

This work shows that along with localized and delocal-the kinetics of luminescence in QW’s when the hole tunnel-
ized hole states, single quantum well can also possess amng to infinity (far from the QW can play the role of an
intermediate state consisting of their superposition if the baradditional channel for subsequent relaxation. In a similar
riers are semimagnetic and the external magnetic field isnanner, we expect the appearance of peculiarities in the
strong enough and inclined toward the growth &Xidn Fig.  transport properties of such structures. These problems,
5 we plot the values of critical magnetic fielég, and B, along with a detailed comparison with experimésee, for
for Cd,_,Mn,Te/CdTe/Cd_,Mn,Te QW structures as func- instance, Refs. 13 and JL4will be published elsewhere.
tions of molar concentration of the Mn-ions in the barriers
for different values of well widths. One can see that, for the ACKNOWLEDGMENTS
majority of commonly used structures, these critical fields
can be easily reached experimentally.

The considered model allows us to solve the proble
without any small parameter in the spirit of calculations of
the discrete spectrum with rectangular potential. The prob-
ability of finding a hole in the QW region has a resonantlike The system of equations for the coefficieits,, W;,,,
distribution with a clear maximum. Positions of the maximaB,,;, andB,,, stemming from Eqs(14) and (15) assumes
are smooth extensions of the localized LH branches to théne forms

We wish to thank J. Kossut for a critical reading of the
mmanuscript, and S. M. Ryabchenko for helpful discussions.

APPENDIX A
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By ex Y + B, ex 5 —W,,; co > —W,,co > =0,

Ay Ao Ky ky
BthBleX _7 +Bh2CBzeX _? _WthWI co E _WhZCWZ Cco 7 =0,

A Ao
Bhal (v1+ ¥2) —Cg1v37v2IN\y exF{ ) +Bnal (11 ¥2) —Cg2V3 72]7\2€XF< - 7)
Ky [ ko
—Whil(y1+ 72) = Cwa1V3 21K, Sin > =Who[ (71F 72) — Cw2V3 21K, Sin > 0, (A1)

A A2
Bha —v3y,+Cgi(y1— v2) N1 eXF{ - 7) +Bnal —=vV37y2+ Cpal y1— v2) I\ exl{ - ?>

Kz

K, .
+Who[V3y,— Cgaly1— v2) 1Kz 5'”( >

+Whi[v3y,— Cgs(y1— v2) 1Ky sin(i =0.

The transcendental equation with respect to the eigenerergfound by equating the determinant of systeéit) to zero.
Numerical solution of this equation with respectd@ives at least two roots associated with HH and LH states. To find the
components of corresponding wave functions, the normalization conditions should also be taken into account.

The system of four linear homogenous algebraic equations used for the determination of plsasdunction of energy

in the case of continuous spectrum has the forms
Ky ky
—W,, co > =W, co > =0,

B )\l
n1 €X —2
I(Z

N k
Bn1Cg1 exp{ — 71 —Wn1Cw1 cos{ 31) —W;,oCwo cos( ?) =0,

+thco{g+@

+ thch CO{% + ()

Ay

Bral (v1+ ¥2) —Cg1V372]\1 eXF{ > +Bnal (¥1+ ¥2) —Cg2V3y,]q sin

q

z*‘P)
kg (ko

—Wha[ (¥1+ ¥2) —CwiV3y,1ky sin > —Whal (1+ ¥2) — CwaV3 v2 1K, sin > =0, (A2)

A
Bnil —v3y2+Cgi(y1— v2) I\ eXF{ )

q
z*‘P)

(ko
+ W[ V3y,— Caa(y1— v2) 1Ko Sm( >

+Bhaol —v3y,+ Cga(y1— v2)1g sin

Ky

+ Wi [V3y,—Cgs(y1— 7v2) JKy Sin(E =0.

APPENDIX B

The system of equations for the coefficieBis , Wy,;, andW,,, takes the form
)\1 I(1 k2
eXx 7 Cco E co ?
A ky ka
Cgy€X -5 —Cwy CO > —Cyp»CO >

Ay (ke [k
[ 12— Cg1V37y2]N1 exl{ - 7) —[v12—= Cw1V3 721k, 5'”( §> —[ 712~ Cw2V3 721k, 5'”( e}

1/2
q
CO{ E + @

1/2 q
CBz CO{ E + (2]

2 1
L 1+C2,
2 1
L1+CZ,
112

[ 12— Cg2V37,]qsin

(B1)

2 1
L 1+C3,

q
z*‘P)
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Here y;,=y1+ v,.
APPENDIX C
For simplicity, the electron envelope function is chosen to be localized in the well region
WV .=v2 cog 7X). (Cy
Basis hole wave functions are determined by the transformation properties of the angular mog¢Rafml5:

2 3 1
§,+§ —5(X+|Y)T,

= i[(XJriY)l—ZZT],

»3

1
== (X=iY)1-22]],

-

3 3 1
373" XL (C2)

So the calculations of the momentum matrix elements in the basks € 3) give, for the 7-(€l0Z) and o-(€lOY)
polarizations,

1
—|<S|pz|Z>|2I<\I’ [P, Te=" 75
12_
%] 1
0: Ue:+§,
2
W+ (U (SpVIP, e+
- ‘/_ e h \/— e Y e 2
Ipy|“= L (C3)

01 O-e:_z.

Calculations in the basie-3,+3) result in formula(C3), with an inverse electron-spin projection— — 0.
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