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Self-consistent spin-wave theory of layered Heisenberg magnets
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The versions of the self-consistent spin-wave theof®3WT) of two-dimensional Heisenberg ferro- and
antiferromagnets with a weak interlayer coupling and/or magnetic anisotropy, that are based on the nonlinear
Dyson-Maleev, Schwinger, and combined boson-pseudofermion representations, are analyzed. Analytical re-
sults for the temperature dependencegsoblatticé magnetization and the short-range order parameter, and
the critical points are obtained. The influence of external magnetic field is considered. Fluctuation corrections
to SSWT are calculated within a random-phase approximation which takes into account correctly leading and
next-leading logarithmic singularities. These corrections are demonstrated to improve radically the agreement
with experimental data on layered perovskites and other systems. Thus an account of these fluctuations pro-
vides a quantitative theory of layered magng¢80163-182@09)12025-3

I. INTRODUCTION differs drastically from the standard mean-field approxima-
tion in the Heisenberg model: it takes into account spin-wave

Investigation of low-dimensional magnetism is an impor-excitations and is highly sensitive to the space dimensional-
tant branch of modern solid-state physics. Experimental inity. The results of these theories are in a good agreement
terest in this problem is connected with the magnetic propwith the scaling consideratidh'? and experimental data on
erties of copper-oxide higl: superconductors, organic spin excitations in Cu® planes. Being generalized to the
compounds, ferromagnetic films, multilayers, and surfaces.quasi-2D casgsee, for example, Refs. 13-)1@hese ap-

As stated by the Mermin-Wagner theorem, two-proaches lead to the same results as Refs. 5-7. The ap-
dimensional2D) isotropic magnets possess long-range ordeproaches of Refs. 8—10 were also applied to frustrated 2D
(LRO) only in the ground state. Unlike purely 2D Heisen- (Refs. 17—-2) and 3D(Ref. 18 antiferromagnets.
berg magnets, real layered compounds have finite values of In the approachés® LRO is described in terms of boson
the magnetic ordering temperatufig,<|J| (J is the ex- condensation, see also Ref. 22. To continue the region of
change integraldue to weak interlayer coupling and/or mag- applicability of the theory to disordered phase, a chemical
netic anisotropy. The smallness of transition temperaturgotential of the Bose systeffictious magnetic fieldis in-
leads to some peculiar features of these systems. Whdmoduced aff>T),, which is determined from the condition
crossingTy,, the short-range ordéSRO) is not totally de- of the vanishing of(staggerefl magnetization. Introducing
stroyed(in the 2D situation it is maintained up f6~|J|), such a field can be more strictly justified within the projec-
and a broad region abovh, with strong SRO exists. Cor- tion operator techniqué.
responding experimental indications are provided by the data While the approach of Refs. 8,9 correspondsNe:o
on elastic and inelastic neutron scattering: well-pronouncedimit of the generalized SWN) Heisenberg model, the ap-
peaks of diffuse scattering were observed in,a0,>  proach of Ref. 10 can be considered as the result of the
Rb,MnF, and K,NiF,® and well-defined spin waves in self-consistent first-order $/expansion, i.e., summation of
K,MnF, up to T~2Ty.* all the bubble diagrams for the self-ener@ge also Ref. )5

A great progress in the theory of the ground state andhs argued in the present paper, this equivalence is preserved
thermodynamic properties was made with the use of rigorouslso between the first-orderN./expansion and second-order
mathematical methods[quantum Monte Carlo and self-consistent B expansion and seems to take place in all
renormalization-grougRG) calculationg. At the same time, the orders of perturbation theories discussed.
simple approaches, which yield an analytical description of a At the same time, the above-discussed approadives
wide range of physical properties, are very useful for practitefer them to as the self-consistent spin-wave theories,
cal purposes. At low temperature3<T),) the standard SSWT) turn out to have some shortcomings. The first one is
spin-wave theory works satisfactorily. At higher tempera-mainly technical: the Bose condensation picture is inappli-
tures corrections owing to spin-wave interactions becomeable for anisotropic systems, since they have a gap in the
important. These corrections were treated self-consistentlgxcitation spectrum. Further, the SUX symmetry in this
many years ago for the 3D Heisenberg model in Ref. 5 Thease is broken, and theNL/expansion in the SU) model
same results were obtained within a variational approach focannot be performed in principle. However, as it was men-
isotropi¢ and anisotropit Heisenberg magnets. tioned, this expansiofand also the description of LRO in

For 2D magnets, close ideas were used recently by thterms of the Bose condensate not the only way to SSWT.
“boson mean-field theory®® which is based on the repre-  The second shortcoming is much more essential. It con-
sentation of spin operators through Schwinger bosons, ancerns the description of thermodynamics at temperatures that
the “modified spin-wave theory!® based on the Dyson- are comparable witfiy, . In particular, the description of the
Maleev(DM) representation. Note that the former approach(sublattic¢ magnetization curve near the ordering point is
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poor: the corresponding equation has two solutions, so thasotropy using second-order spin-wave results in the self-

S(T) does not vanish continuouskgee, e.g., Refs. 5,16 consistent form. .
Besides that, the transition points are strongly overestimated. 1N€ plan of the present paper is as follows. In Sec. Il we
These drawbacks are due to that at sufficiently high temperl€scribe the representation of spin operators by Schwinger

tures the higher-order processes connected with dynamic Vd Baryalfgltar-rl](rivorléchko-_YabI(f)ns@._lr;DSeC(Sj. l and
interaction between spin waves, and also kinematical inter: we consider thermodynamics of quasi-2D and anisotropic
action. should be taken into account. 2D layered magnets within SSWT and construct an interpo-

. L RN . . lation scheme between the 2D and 3D cases. In Sec. V we
The kinematical interaction is important in a wide tem-

¢ . v f ¢ heFe | ( 0 treat the problem of introducing the magnetic field into
perature region onyz or systems whetg 1S not small N go\wT and calculating magnetic susceptibility. In Sec. VI we
comparison with|J|S* (e.g., for 3D systems This interac-

: . - . @~ investigate fluctuation corrections to the SSWT results, in
tion can be, in principle, taken into account by the projectiony,,icylar to the(sublatticé magnetization and ordering tem-

operator techniquesee, e.g., Ref. 33However, this tech-  perature, and compare the results of our calculations with
nique is rather complicated and is not convenient for practizxperimental data.

cal purposes. Another way to obtain the corrections owing to

the kinematical interaction is the use of the Baryakhtar- Il. BOSON REPRESENTATIONS OF THE SPIN

Krivoruchko-JablonskyBKJ) representatici?® of spin op- OPERATORS

erators via bosons and pseudofermions, which generalizes

the DM representatiofwe do not know such a generaliza-  We consider the anisotropic Heisenberg model

tion for the Schwinger bosopsThe introduction of pseudo- 1 1

ferm|_ons_ gives, in prlr_1C|pIe, a possibility of excludmg the H=— > 2 JiiSS— 57]2 Jijslzst—Dz ($H?, (D)

contribution of unphysical states. These pseudofermions can 1 J !

be easily incorporated into the theory and, at least for 3DNhereJij are the exchange integralg;>0 andD>0 are the

magnets, partlally correct the above-mentioned drawbacks Q%O_Site and Sing|e_site easy_axis anisotropy parameters.

the early versions of SSWT. Consider first the Baryakhtar-Krivoruchko-Jablonsky
For layered systems witfi,<|J|S? the kinematical in-  representatiott?®

teraction is less importariin fact, it works only in a narrow

critical region nearT,), but higher-order(in the dynamic S'=V2sh, S=S-b/bj—(2S+1)c/c;,

interactior) contributions should be included. As will be (2

shown in the present paper, an infinite random-phase ap- B 1 2(25+1)

proximation (RPA)-type series of diagrams are to be taken S = \/Z—S(biT_ Z_Sbinini) - ka?ci ,

into accourf® (as already mentioned, this is equivalent to the

first-order 1N expansion in the SW{) mode). Such a pro- whereb/ ,b; are the Bose ideal magnon operators, ahg;

cedure permits us to describe the “2D-like” Heisenbergare the auxiliary pseudofermion operators at the isitdich

regimé7~28where thermodynamics is determined by fluctua-take into account the kinematic interaction of spin waves.

tions of a 2D Heisenberg nature. These results enable one fr the stategp) in the physical subspadgvith the boson

obtain the correct expression f@f, up to some nonsingular 0occupation numberbl;<2S and pseudofermion occupation

constant in the denominator. At the same time, the true critinumbers=;=0) we havec|p)=0, and the representati¢®)

cal region, where the spin-wave picture of the spectrum igeduces to the standard DM representation. The sfaigs

completely inadequate, turns out to be very narrow in theVith Ni>2S, Fi=0 and|u,) with F;=1 are unphysical. As

layered systems. A satisfactory description of this region ishown in Ref. 24, the partition function can be calculated as

possible within the M expansion in theD(N) model (see

Refs. 27,29 The latter model is based on a fluctuation rather Z= Sp{ exp( —BH[b,b",c.cf—i7> ciTci) ] (3

than spin-wave picture of excitation spectrum. This circum- !

stance provides important advantages at high temperatureghere H[b,b",c,c'] is the original spin Hamiltoniar(1)

but leads to some difficulties at the description of the |OW-Written through the Bose and Fermi operators according to

and intermediate-temperature regions. Therefore, the afEq. (2). Analogous relations take place for the averages of

proach based on the SNf model (16 expansiohis more  spin operators. It can be prov&dhat the contribution of

appropriate at not too high temperatures. stateg uo) in Eq. (3) is exactly canceled by the contribution
In the present paper we formulate a version of the SSWTef the stategu;).

which is to a large measure free from above-mentioned Thus, unlike the DM representation, using the BKJ repre-

shortcomings and is a good starting point for further im-sentation gives the possibility of excluding the contribution

provements. To this end W@ use the BKJ representation to of the states with the boson occupation numbérs 2S to

obtain the correct description at not too low temperat(if¢s thermodynamic quantities. It should be noted that this prop-

discard the conditio®=0 and do not describe LRO in terms erty relates to the exact Hamiltonian of the boson-

of Bose condensate, which permits to us treat anisotropipseudofermion systetd[b,b,c,c'] only and does not nec-

systems. We also demonstrdtehere possiblehow our re-  essarily hold for its approximate expressions. However, one

sults can be obtained by the Schwinger boson meltfeut-  could expect that the introduction of the Fermi operators

ther we calculate the corrections to SSWT for quasi-2D anaxtends the region of the applicability of approximate meth-

easy-axis 2D magnets with small interlayer coupling or an-ods to not too low temperatures.
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The factor expéiTrEiciTci) in Eg. (3) results in that the Sit——Si|, Si;—Si
distribution function of the pseudofermions becomes
—N(E¢) whereN(E)=1[exp®/T)—1] is the Bose function,

E; is the excitation energy for pseudofermidres follows
from the representatio(®), the c field has no dispersidn Ill. SSWT OF QUASI-2D MAGNETS

In the case of a two-sublattice antiferromagnet we sepa- A. self-consistent approach within the BKJ representation
rate the lattice intcdA and B sublattices. On the sublattide
we use a representation that is similar to E2).

at one of two sublattices.

In this section we consider the quasi-2D case with
=7;;=0 and the exchange integralg;=J for i,j being
S'= \/2_56\. SF=S— aiTai_(23+ 1)CiTCir icA, nearest neighbors in the same plane dpekJ’ for i,j in
(4) different planes. First we use the BKJ representation. In the

ferromagnetic(FM) case the Heisenberg Hamiltonidt)

_ 1 2(25+1) takes the form
S =25 a'- Z_SaiTaiTai - Taﬁc?ci ;

1
. . . H:_—E J”[[S_brb|_(28+1)C|TC|:|[S_b}.bJ
and on the sublatticB the “conjugate” representation: 249

S'=\2Sh, S=-S+b'b+(2S+1)d'd;, ieB,

1
—(2S+1)c/c;]+28 bl - Z—Sbinini ) b;

5
_ 1 2(25+1) _ h.cle |- Th. te.
S :Jz_s( b, — Z—Sbﬁbibi) - Wd?dibi, 2(2S+1)b/b;cc; MEI‘, [blbj+(2S+1)clci].

wherea! ,a; andb] ,b; are the Bose operators, acf,c; and _ (10
d;r ,d; are the Fermi operators. To satisfy the conditior5=0 in the paramagnetic phase we

Another useful representation of spin operators is théhave introduced the Lagrange multipligr. This multiplier

Schwinger-boson representation corresponds to the constraint of the total number of bosons
and pseudofermions at>T: and plays a role of common

322 st o s, 6) chemical potentialy of the boson-pseudofermion system
&, TleTee e (for the pure boson system it was introduced in Refs. 30,10

At T<T. we haveu=0 since no restriction of boson and
pseudofermion occupation numbers is needed here. Introduc-
1 ing the chemical potential, which gives the possibility of
SiZ:_(SiTTSiT_SiTiSil)' S|+:SiTISii! Sii:SiTlsiT- 7 qqntinuing the_ theqry into the djsordered phase, can be_ jus-
2 tified more strictly if one takes into account the kinematical

where o are the Pauli matrices;,o’=1,], so that

The constraint condition interaction in a regular wa¥ Since the magnon number is
not conserved at <T, the Bose condensation which takes
SiJrTsiT+S;r¢Sii:28 8 place in Refs. 9 and 10 does not occur in our approach.

o ] ] ) Further, we perform decouplings of the quartic forms
should be satisfied at each lattice site. Since the phasgs of \yhich occur in Eq(10). Introducing the averages
ands;; can be simultaneously changesl,—s;, exp(¢),

this representation possesses a gauge symmetry. The 7:§+<b?bi+q>: 7'=§+<b?bi+5”>7 (12)
Schwinger-boson representation can be simply related with

the Holstein-Primakoff representation if we fix the gauge bywe derive the quadratic Hamiltonian of the mean-field ap-
the condition of hermiticity for one of the operatas, say, proximation in the form

Sit, i.e.,s;rfsm. Then we have from Ed8)

H=2 Jsy,iblbi—bl, b+ (2S+1)cfc
s1=\25-5 s, ) % Yl bibi— by sbi+( )Ci Ci]
and substituting this into Eq7) we obtain the Holstein- + +
Primakoff representation. Thus the representations of the —MZ [bibi+(25+1)¢jci, (12

Schwinger bosons and by Holstein-Primakoff are equivalent.

As well as for the BKJ representation, this equivalence cawhere y; =y and Vo= v'. From the definition ofy, Eqg.
be violated in approximate treatments. Unlike the H0Istein-(11)1 one finds the system of self-consistent equations
Primakoff (or DM) representation, the Schwinger-boson rep-
resentation can be easily generalized to an arbitrary number
of boson “flavors” N=2, and the I\ expansion can be
developed. At the same time, there is no natural way to take
into account “roughly” the kinematical interaction by intro- Which should be solved together with the condition
ducing the Fermi operators into this representation.

In the antiferromagnetic case we pdgslowing Ref. § S=S+(2S+ 1)N(Ef)—2 N, (14)
to the local coordinate system by the replacement K ’

y=S+ >, Nycosk,, v =S+> N,cosk,, (13
k k
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whereN,=N(E,) are the Bose occupation numbers, 1 .

E==5 2 i vi=— @RI+ Y. (29

Ei=(25+1)(I'g— ), (15) 0

In the classical limitS— the SSWT equations are simpli-
Bx=To—Tw—p, fied. Supposing>|J|S (Ty~|J|S? in this casg the equa-

are the pseudofermion excitation energy, and the spin-wavions for both FM and AFM cases reduce to

spectrum, respectively,

_ T 1
I'v=2[|J|y(cosky+cosk,) +|J'|y'cosk,].  (16) S/S= coth(E4/2T) — g ; To-Tr—p’
Consider now the case of an antiferromag@$tM). In- K
troducing the operators y:§+ TZ COSKx ,
- k Fo—T'—n
{ a; ieA c {Ci ieA ( 7)
= = 1
' L ' i — cosk
b/ ieB, d, ieB, 7,:S+TEF_FZ_ . 25
we derive ke bom kM
For T<Ty (u=0) the averagedover nearest neighbors
Ha=137S [BB,~B], B+ (25+1)C/C] SRO parameter
o,
Ye( T)=(43y+23"y")1Jg (26)
A th _pt ) el
+13"y ;5” [BiBi—Bi.sBi+(25+1)CiCi] (but not the magnetizatigrsatisfies the standard mean-field
equation
- B Tc.
ua (BB +(2S+1)C/C) (49 Yot/ S=B(3o7eST), (27
where whereB,.(x) = cothx—1/x is the classical Brillouin function
o o (Langevin function. The temperaturel* where y.(T*)
y= S+(aibi+5i), y’=S+<aibi+5H). (19 =0 is higher tharly,, so that we have/(Ty)>0 and the

. o ) o . ) behavior ofy for T>T), is more complicated in compari-
Diagonalizing this Hamiltonian one finds the self-consistentson with Eq.(27).

equations

B. Approximation of effective SRO parameter

y=S+ ; 3E, cosky coth——, (20)

Equations(13), (14), and(20) still demonstrate unphysi-
cal behavior of magnetization fof close toTy at small
_ I E, enoughJ’/J (see below Introducing the pseudofermion
y’=8+2 fcoskZ cothﬁ, field does not improve the situation in this case: the transi-
K k tion temperature is already too small to be influenced by
pseudofermion excitations with the energy of the order of
S=(S+1/2) cothE—E FO_’“CothE' |J|. As discussed in the Introduction, the dynamical spin-
2T 2Ey 2T wave interaction should be treated more correctly in such a
situation. A rough solution of this problem can be achieved

By the replacement

where the antiferromagnetic spin-wave spectrum has th

form
Ek=\/(l“0—,u)2—l“ﬁ (21) 25 Ji,i+5'y§(bini_biniJrzS)—"YefE& Ji,i+5(bini_bini+5)u
with T', andE; being the same as in the ferromagnetic case. (28

For both ferro- and antiferromagnetic cases, the calcula- ) ) .
tion of spin-correlation functiort shows thatu is directly ~ WNEre ver is determined by Eq(26). Then we obtain the

connected with the correlation lenggyin the directions by ~ SPECtrum
the relation
Eq:')’ef(JO_Jq)_My FM,
&5 =N=ull3s. (22
. ) Eq: \/(Joyef_ /-L)z_(‘]q')’ef)zy AFM, (29
The parametery andy’ are also simply related to the spin- . o
correlation function at the nearest-neighbor sites and the pseudofermion excitation energy
(SS+a)=75 (23 Et=(25+1)(Yer Jo— 1), (30)

and, therefore, play the role of SRO parameters. For the totghere and hereafter we use the definitiod,
energy we readily obtain =3,4Jslexpigd)]. The SSWT equations take the form
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T T T TP I TR R T [ T VT T T T T T T T T T[T T T [ TP T I T

S=S+(2S+ 1)N(Ef)—; Ny, (31) $ VIS

TTTTTTTITT
Lf

— 1
7ef=5+J—z Ny,
0 K

in the FM case and

y

RTENTRRT] ARRNTRRNTA IRRTVRVRVA SURARSANTA IRSRURRERL !

T O T T T[T T P T[T ]

_ E; Jo = :
_ —f_ ~o =k N - 0.40 |
S=(S+1/2) coth 5 = Yer ; ZEkcoth 57 (32 Yy : )
, ;} +0.20 I{
. Yef Ji Ex I 3
=S+ — g _— ’ ] I
yef S JO;ZEkCOth2T, |IIIIIIIIIIIIIII|III|l||II|I||IIII'I|III'IIIII\III‘I[ITIIIIIII
1.50 1.00 0.50 0.00 0.50 1.00 1.50
in the AFM case. The approximatiof28) is analogous to L

passing fro_m t_he Hartr_ee-Fock apprO)_(lmatlon to the local FIG. 1. Calculated temperature dependences of SRO parameters
approximation in the spin-density-functional method for the.

o L . _in S=1/2 quasi-2D ferro<right-hand sidg and antiferromagnets
electron gas. As it is known, taking into account SCreeniNG ot hand side The values of)’/J stand at the curves. Dots cor-

effects, such QpprOXImatlonS Car,] lead to !mPTOV'”g the reFespond to the 2D casd'(/{J=0) without including the pseudofer-
sults and eliminating the unphysical peculiarities. Note thajyion contribution, long-dashed lines and circles correspond to cal-
the same equationg@1) and (3_2? were obtained earlier in  ¢yjations from Eqs(13), (14), (20) and(29), (32), respectively, for
Ref. 31. However, when deriving these equations, the auj’;j=0.3. Triangles mark the ordering temperatures.

thors have used expressions for the spin Green’s function

which have incorrectv— o asymptotics. where
Another approach, which gives the possibility of improv-

ing the behavior of(sublatticé magnetization neal,,, is

based on a variational principle and is considered in Appen-

dix A. It Iea_ds to the same spin-wave spectr(&ﬁ),_but the are the 2D ground-state LRO and SRO parametersogrﬂﬁ

| . Mre S-dependent constants. The resul®8) were obtained
Egs. (31 and (32). However, numerical calculations show earlier within the one-loop RG approa%hl.z The two-loop

t_hat .th's difference is very sme(li;gveral percents of magne- RG analysis changes the preexponential factor only: in the
tization valug, and furthgr we will refer to b,Oth these ap- AFM case it becomes a temperature-independent constant
proaches as the approximation of the effective SRO param e in the EM case the factor is proportional /()Y
eter. (see Ref. 12
With increasingT the role of the kinematical interaction
C. Temperature dependences of long- and short-range order  jncreases and foF~J<? we cannot negledi(Ey). The de-
parameters pendencey(T) for J’=0 is shown and compared with the

In the two-dimensional casd' =0 the spectrunE, is  result of approachés®in Fig. 1. Unlike the approaches in
independent o', and two remaining equations ferandy  Refs: 9,10, Eqs(13), (14), and(20) do not lead to the non-

differ from those of the approaches of Refs. 8 and 13 only byPhysical phase transition with vanishing of the SRO param-
the presence of pseudofermion distribution functh(E;), eter, and the latter is finite at any temperatures. Note that for

which describes the kinematical interaction of spin waves. At Tnotrllze q;'r(ezsge)nir]edéfsiz%tgir\(:ygeciigienGrle?ﬁgsi.ntEQfa|5 in the
T=0 we have'“:O' and YZSZ.S in the FM case andy ~ SSWT equation$13), (14), and(20) becomes convergent at
>S, S<S in the AFM case, which Corresponds to magnethfinite T even at,bL:O. For not too h|gh tempera’[ure‘é
ordering in the ground state. As well as in Refs. 8 and 13T/ (the ordering temperatuf®, will be calculated below
Egs.(13), (14), and(20) do not have aff >0 solutions with equations have the solution wih0, which corre-

n=0, $>0 since the integrals in Eq¢13), (14), and(20)  sponds to the ordered magnetic phase. FaiTy, we again
are logarithmically divergent in this case, and the only SOlu'have§=o andu<0 as well as in the 2D case at finife

tion of these equations far' =0 is S=0, x<0, which cor- Figures 1—4 show the results of the numerical solution of
responds to a disordered pha;se. the equations of Secs. Ill A, 11l B for different values of the
At low temperatureJ <|J|S*, we can neglect the pseudo- jnterlayer coupling. In the three-dimensional casé=J)
fermion contribution(i.e., kinematical interaction of spin the (staggerepl magnetization vanishes &t.=1.20] (Ty
waveg and we (_:ompletely reprodt_Jce the results of Refs._ 1.33J|) that is approximately by 20% higher than the cor-
8-10,13. In particular, the correlation length has the exporesponding value obtained from the high-temperature series
nential dependence expansion. At the same time, the raflq /Tc=1.20 is in
F agreement with the results of this expansion. The SRO pa-
§=CVJIT exp(2m) SIT) (FM), (339 rametery demonstrates a sharp decrease in a narrow tem-
AF _ perature region abové&y, and then asymptotically goes to
§=C (IMexp2mI|yoSo/T)  (AFM), (33D zero. One can see thahey™ vy due to the quantum fluc-

Sy=S-0.1971, y,=S+0.079 (34)
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T

FIG. 4. Temperature dependence of the chemical potential of
the boson-pseudofermion systems in quasi-2D ferromagnets in the
approximation of effective SRO parameter.

FLG. 2. Temperature dependence of tbeaggerefimagnetiza-
tion S for S=1/2 quasi-2D ferro<{right-hand sidg and antiferro-
magnetgleft-hand sidg¢ with different values ofl’/J. Short-dashed

lines show the results without inclusion of pseudofermions, long- ) . . .
dashed lines in the presence of pseudofermions, and solid line®ation of Ty even in comparison with the results of Egs.

correspond to the approximation of the effective SRO parameter of13), (14), and(20), since the temperature dependence of the
Sec. Il B. ForJ'/J=1 the solid and long-dashed lines coincide ratio of effective inter- and intralayer couplingahich is
exactly, and forJ’/J=0.01 long- and short-dashed lines coincide J'/J for spectrum(29)] is absent in the approximation used.
practically. In particular, forJ'/J—0 the results obtained within ap-
proximation (28) are different from those of standard spin-
wave theory only by quanturfyround-staterenormalization
of v. Note that according to Fig. 1 with decreasiigJ the
size of the region with noticeable SRO increases.

At small T—Ty, we have— ux(T—Ty)? (see Fig. 4 for
a ferromagnetic case, the same situation takes place in the
AFM casg so that, according to Eq22), the critical expo-
nent for the correlation length is= 1. Since the magnetiza-
tion changes linearly nedr,,, we have alsg8=1. The in-
fluence of higher-order terms in 9/on these results is
discussed in Sec. VI. Note that if we determine, following
Ref. 32, the critical exponent from a not too narrow tem-
Sperature interval near), , this becomes closer to the experi-

tuations. At the transition point we have.=y(Ty)=0.62
for FM case andy.=0.70 for AFM case. The dependences
y(T)/S for 3D ferromagnets with differen are shown in
Fig. 3. One can see that the valge/S rapidly decreases
with increasingS reachingy.=0.39 atS—«. Thus atS
=1/2 strong quantum fluctuations are present everT at
=Ty
Consider now the quasi-2D case<Q'/J<1. At J'/J

<0.4 Egs.(13), (14), and(20) still yield unphysical behavior
of magnetization and SRO parameters Totlose toTy, (as
shown in Figs. 1 and 2 fai’'/J=0.3). At the same time, the
approximation of single effective SRO parameter improve
the behavior of magnetization farclose toT,, and provides mental value. .
a qualitatively correct description of therrrh{lodynamics at ar- At very low temperaturesT(<|J'|S) and arbitraryJ’/J

the calculation can be performed analytically. The correc-

bitrary temperatures. The price which we pay is an overesnﬁons to magnetization of a ferromagnet are proportional to

T3/2
1-20_| T T 7T T T L I T T T 1T L T l7
- ] o 1 3/ T\32
B é S= S—m J_’(J_S) §(3/2), (35)
0.80 - 1 , , . .
C ] where(3/2) is the Riemann zeta function. At the same time,
v/s - ] SRO parameters have a more wdak dependence
- s=12 ]
:_ 7: 3 JI T 5/2
040 $=5/2 . —q— — —
i 5ue : =S 32773’2\E<JS) (52, (30
E I E 3 J 3/2 5/2
0% 00 T e 200 Y =S 30732\ 37 (J_S) £(502). @37
T

FIG. 3. Temperature dependence of the SRO parameters dfor J'=J this result corresponds to that of the Dyson
quasi-2D ferromagnets for different spin values in the approximaiheor)f3 to leading order in B. For an antiferromagnet we
tion of effective SRO parameter. have
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-5 T? @8 _AmS 45
24c\33 yorh Ty
where yo, ¥4 and§0 are the zero-temperature values of cor- 4r|J] cho
responding parameters= \/4J yo(2Jyo+J’ o) is the spin- N:W
wave velocity. The corresponding temperature dependences n( Ye¥e)
of y andy" are given by with y,=¥(Tw)=7yo and y.=y'(Ty)=Tw/4m|J|y. Com-
paring these results with the criteria of quantum regi#®
I we obtain the condition of applicability of the resulb) as

(39 27S<In(J/J'). It is important thaty,<y’ and the interlayer

Y=Y o3
12055339070 coupling is strongly renormalized with the temperature. At
274 3 the same time, only ground-staguantum renormalizations
¥ =7 T Y (40) ~are important for the intralayer coupling [t | <|J|.
1203 V (3" yp) In the case of largé (again supposind>|J|S) we ob-
tain for both ferro- and antiferromagnet

In the case of small interlayer couplings/J<1 and
higher temperatures, logarithmic singularities occur, and we — T 321S

can pick out them from the integrals in Ed4.3), (14), and S=5- 47[J]S In Y (46)
(20) in the same way as discussed in Ref. 14. In the quantum
regime which takes place at not too low temperatures, wherwith
J'S<T<JIS (FM), , T | 32JS
VS a9
(JJ)Ys<T<|J|S (AFM), 47
biai This leads to the expression for the critical temperature of a
Wwe obtain classical magnet with €In(J/J')<2#S
— T 2
_ 47]J|S
S=5- In o (FM), (429 Ty=— 48)
4mIS s M InGBSI L) (
T T2 wherey,=Ty/4m|J|S. As it should be, the critical tempera-
(AFM), (42b)  ture is the same for the classical ferro- and antiferromagnetic

S=S,— In
4|y " 833 Yy case. With the logarithmic accuracy we reproduce in this

case the well-known results whe#g/S—1 (see, e.g., Ref.
35). Note that the factor of 32 which is often neglected leads
to significant lowering ofT,, as well as above-considered
temperature dependence of.

with y= vy, [the 2D valueg34) can be used for, andgo]
andy' being defined by the equation

T T
v =85— —— In——l) (FM), (439
4mJ S( J' vy D. Mean-field Schwinger-boson approach

Similar results can be obtained within the Schwinger-
boson representation. This is performed in the same way as
in Refs. 8, 9 and 13. The Heisenberg Hamiltonian is written
down in the form

S0 thatyg):go. Note that in this case the infrared cutoff for

TZ

'y'=_— In
S0 47T|J|7( 8JJ yy'

—1| (AFM) (43b

: : : 1 1
th t | t _
€ Integrals over quasimomenta IS H=— E ; Jij Z(SiTTSiT_SiTLSil)(S]TISjT_SjTlsjl)
[ (TII9Y?  (FM) )
q =
0 TiIc  (AFM) +sls sl s _“Zi (shsi1+slsi). (49)

(c=/8|J|y) rather than the boundary of the Brillouin zone. . ) L
Sinceqy<1, the continuum approximation for the excitation yvhere the chemical potential of bosons is introduced to take

spectrum(and also interaction vertgxcan be used in the into account the const'ralrQB). .
quantum regime. Owing to the thermodynamic identity In the ferromagnetic case we subtract from the Hamil-

— tonian (49) the term
(0S19T) 5= (0S5l 9h) (with S being the entropyh being the 49
magnetic fieldl the presence of InT terms in the magneti- 1 JoS?

; ; ; : ; == (s o s (sl s T )=00_

zation of a ferromagnet may be of interest in connectionwith ~ He=g > Jij(slisip+siisi)(s]sj sl )= 5
the adiabatic coolingsee, e.g., Ref. 34 !

For the critical temperatures in the regirt#) we obtain
from Egs.(42) the results to obtain

(50
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~ 1 where
H:_ZZ ‘JIJFI.G‘EJ_I"LE (SITTSIT+SITLSW)’ (51) N
i ' i = %ii = (Aij) = (Aij)- (60)
T v of : .
whereH=H—H., ;=2,S5,Sj,, and : ...: stands for the  pjagonalizing the Hamiltonian obtained one obtains
normal ordering. Further the tilde at the Hamiltonidrwill
be dropped. Introducing the averages of the Bose operators
. HMF=§ Eq(alaqg+ BBy, (62)
¥ii =(Fij) =(Fij)» (52
we derive the mean-field Hamiltonian where Eq=(\?~T3)"2 Thus the self-consistent equations
take the form**®
1
Hue=—5 > iy Fj—u (shsi+sis)). (53 r
2 R e y=2 52-c0ske( N +Ny +1), (623
K k

Such a procedure can be justified if we generalize the
Schwinger-boson representation to the NY(model with T
arbitraryN by intrth_Jcing tge operatorsTm (m=1...N) 7,/:; fcoskZ(NMJrNkpL 1), (62b
and consider the limiN—c. k
In the quasi-2D case there are only two independent val-

) r
ues ofy;; : 25=> _k(NkT+NkL+ 1)—1. (620
k Ex

vy i,j within the same plane, . _ .
(54)  As well as in the ferromagnetic case, oMl; contains the

condensate contribution. Picking this out as

YiT v', otherwise.

Introducing A\ = — u— yJgy and passing to quasimomentum

representation we obtain Ny /Ey;— Ny /E+ng( o+ Sk) (63
[Q=(m,m,m) is the wave vector of the antiferromagnetic
Hye= 2, Eqsgosq,,, (55)  structurd we get the SSWT equatior{82) with coth(&;/T)
qo =
:1, SH nB .

whereE,=\—T;. Note that in the absence of external mag-  The corrections to above results can be obtained within

netic field the spectrum of bosons is doubly degenerate. Thie 1N expansion in a generalized Heisenberg SY(odel

self-consistent equations have the form (see, e.g., Refs. 8,36—BRAs argued in the introductiofsee
also Sec. V), the same results can be more easily obtained

_ , by higher-order 13 expansion. Thus the BKJ approach turns
7_k2(, Nis COSKy, ¥ _kz(, N COSKz, out to be more practical than the Schwinger-boson one.
IV. SSWT OF THE EASY-AXIS 2D MAGNETS
2S= Ny, . (56)
ko

Consider now the 2D magnets with the easy-axis anisot-
As well as in Refs. 9 and 13, at low enough temperatures thEOPY- Besides the spin-wave excitations, the topological ex-
Bose condensation takes place. Introducing external magdtations(domain walls contribute to thermodynamic quan-
netic field(see Sec. Yremoves the degeneracy of the bosontities (see, e.g., discussion in Ref. J40Such excitations
spectrum, and only one of two bosons is condensedNjet ~ cannot be taken into account in the approach under consid-
(but notN,) contain the condensate contributionkat-0: ~ €ration. However, in the limit of small anisotropy

Ni;— N+ 2ngdyg, (57) D/|J|<1,7<1, (64)

where Zng is the density of condensed bosons. Thus thedne can expect that the .non—spi_n—wave excitapions are impor-
self-consistent equations takes the same form as in the BKant only in a narrow critical region. Outside this region ther-

representation witls—ng, N(E;)=0. modynamics can be described in terms of spin waves. Thus
In the antiferromagnetic case we subtract the t¢s@ e restict ourselves to the case where &) is satisfied.
from the Hamiltonian to obtailcf. Refs. 8, 14, and 15 Consider first the ferromagnetic case. Decoupling four-

fold terms in the Hamiltonian we obtain
~ 1
H=—22> 3 Al A — shsi+ss)), (589
2 ('EH AL =) (S sl H=2 Edbib+ErY cloy, (65)
where A;; =siTTs;rl . Passing to the mean-field approximation
we have where
1 Ek:)\_rk, Ef:(28+ l))\, (66)
Hwr=—>5 %‘4) 7iidij (Ajj +AiTj)—M§i: (ssip+sijsi)),
(59 N=Jo(y+ #S)+D[(25—1) —4(blby)] -,
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L= [y+ W(binwa)], f[ions on the spectrum ina npn-self-consistent way, and it is
in agreement with the experimental d&ta.
and Using the smallness of the anisotropy and picking out the

— logarithmic singularities in the same way as in Sec. Ill C we
y=S+(bibi, 5. (67 obtain

It should be noted that the expression for the excitation spec-

trum (66) is in fact the first-order B expansion result. In S=S
particular, the spectrurt66) violates the requirement of van-
ishing of the single-site anisotropy &t 1/2 (this situation is
discussed in Ref.)7 To correct this inconsistency we per- §=§o— In
form two replacements in the spectruié6), which can be 4wdly " 8(Jy)%A’
justified by calculating higher-order terms inSi/

I (FM), (76)

T 473s " JSA’

2

(AFM).

Unlike the quasi-2D case, we have the unphysical result
(28—1)—4(bi’rbi>—>(28— 1)[1—2(bi’rbi>/S]_>(2s— 1) A_(TM)=O because of the proportionality of the gap to
(S/S)? (in fact a finite value of the gap at=T,, should be

X(S/9)?, (68)  caused by topological effects which are not taken into ac-
_ coun). Thus we are unable to describe the dependar{(d@
S—(b'b;. ) —F1-2(b/b;}/S][1+ (b b;)/S close toT,,. DenotingA.=A(Ty,) we have for the critical

— temperature at 25<In(1/A)
—(bbi. 5)/S]—=Sy.
4mIS

Then the boson spectrum takes the form Tc=m,
C

(77)
Ex=7v(Jo—Jd) +IA - u, (69 _
_ 4nfifSee
_ I8y
A(T)=[(28-1)D/[IS+(I,SIy) n)(SI9)*  (70) In the case of larg& we obtain for both ferro- and antifer-

is the dimensionless energy gap renormalized by spin-wavéomagnets
interactions. The system of the self-consistent equations

where

— T 32
reads =S———|n—
S=S 4731S In A (78
y=S+ i >INy, (71  This leads to the expression for the critical temperature of a
Jo & classical magnet with %In(1/A)<2#S
S=5- S Nt (2S+1)N(E _ 4TS 79
- - k ( ) ( f)' M_ln(32/Ac) ( )

To leading logarithmic accuracy we can fgt=A(0) in the
above results. A more correct calculation&f, as well as
the corrections to the resulfg7) and(79) will be obtained in
H=2 Ex(ajai+BIB+ErX (clee+did) (72 Sec. VI. Note also that in the approximatidr(T)=A(0),
. K i.e., at neglecting the temperature dependence of the gap, we
with the spectrum reproduce correctly the mean-field result in the Ising limit

In the antiferromagnetic case we obtain

Ex=V\2—T2, E;=(2S+1)\, (73 S=SBy(J,SST), (80)

A=yJo+ 39—, Tp=9J,, whereBg(x) is the spinS Brillouin function.
and A is the same as in Eq70). The system of the self- V. INFLUENCE OF THE EXTERNAL MAGNETIC FIELD
consistent equations takes the form AND THE MAGNETIC SUSCEPTIBILITY

_ Ty = In this section we consider the influence of a weak exter-
y=S+ 2, = cosk, coth —, (74 nal magnetic fielch in a ferromagnet. This is described by
x 2Ey 2T i~ ) o9
the additional term in the Hamiltonian

E¢
L - = _ 4
coth > ; 2E, coth o= (75 Hy= hEi S, (81)
Note that the proportionality of the gap in the spin-waveThe magnetic field results in an increase of magnetization, so
spectrum to the squared sublattice magnetization was olthat the total magnetization can be represented as

tained earlier within the renormalized spin-wave thecty, L

which takes into account the influence of spin-wave interac- =Sspt Sind» (82
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FIG. 5. Temperature dependence of the magnetizﬁcﬁnr a
S=1/2 quasi-2D ferromagnet with’/J=0.1 in the external mag-
netic field.

where Sg,=S(h=0) is the spontaneous magnetizatiGh
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(S+1/2)?

aﬂ 1 1
dh/_o 4T G sintP(E2T) T sintP(Eq/2T)
(89

The first term in Eq(85) differs from the result of the spin-
wave theory by the form of the spectrum only, and the last
term describes the correction owing to the kinematical inter-
action. In a narrow region nedi: both contributions in Eq.
(82 are of the same order, and magnetization considerably
differs from its zero-field value.

It follows from Eq. (85) that x5 (T—Ty) 2 so that the
critical exponent isy=2. Note that magnon-magnon inter-
actions are taken into account in E§5) only by renormal-
ization of the single-particle spectrum. It is possible to im-
prove result (85 by taking into account two-particle
interactions in a RPA-type way, i.e., by considering the sum
of the one-loop diagrams. This is performed in the next sec-
tion.

Now we consider the influence of the external field in the
Schwinger-boson representation. Carrying out calculations
similar to these in Sec. 1l D we find for the boson spectrum

2Z__

Xo =

is the field-induced part. Owing to the second term in Eq.

(82 the temperature dependeng(aT) is changed: sharply
decreasing in the vicinity off,,, S nevertheless vanishes

only in the limit T—o. We consider a possible approach to
the description of such a behavior in both versions of SSW

that are based on the Dyson-Maleev representaionts
generalization with the use of the BKJ representatiand
Schwinger-boson representation.

First we use the BKJ representation. The calculations, 2
which are similar to those described above, result in Egs.

(13) and(14) with the spectrum of spin waves

Ex=v(Jo— ) +h— o, (83

where g is the chemical potential in the absence of a mag-

netic field: ug=0 at T<T; and po(T>T¢) is determined
from the conditionS(T,h=0)=0.

Formally, the spectruni83) has the same form as in the
case of an anisotropic magn@®) (we can associate with the
anisotropy the effective “magnetic fieldh,=JSA). How-

ever, there is an important difference: in the case of the S=§

“true” magnetic field the chemical potential is taken lat
=0, so that the phase transition with vanishiaigs absent

1
Eka': ’}/U(‘]O_Jk)—zho-_lbl” (86)

-Iwhere y(,z(sit,si(,). The expression for the magnetization

has the form

=

§=35 2 (Niy=Nig) +1g, (87)
Where we have taken into account the possibility of the con-
densation of bosons with up “spins.” There is also the con-

dition of spin conservation at each site

1
s=§; (Ngi + Ny ) +ng. (88)

At not too high temperatureB<T,,, whereT, is determined
by the conditions

=

; (N +Ny),  pw=—h/2, (89)

the branchE,; is gapless andng>0. At T>T, both

(see below, while in the case of anisotropic magnet it should branches have a gap, and the conditi88) with ng=0 de-

be determined in the presence of anisotropy fleld andS

vanishes afl. However, atT<T. this difference is not
important w=ue=0 in this region and the magnetic an-
isotropy can be also described by
temperature-dependent magnetic anisotropy fild

The temperature dependence of magnetization obtaine

by the numerical solution of Eq413) and (14) with the
spectrum(83) is shown in Fig. 5. At low temperatureb

<T.we haveSSp>§md and the magnetization has mainly an

exchange origin. On the other hand,Tat T magnetization
is entirely caused by the influence of an external field and

S=x2 T>Te, (84)

where

introducing the

termines the common chemical potential. Thus, the
Schwinger-boson representation also allows us to describe
the behavior of magnetization in the whole field interval, and
expression(87) just describes magnetization as a sum of
spontaneous and field-induced components.

d Up to now we have considered the small magnetic-field
valuesh<J. In the opposite limit one can neglect the disper-
sion of the boson spectru(83) and derive by using the BKJ
representation the standard result

S=SBy(SHT). (90)

It should be noted that the correct req@0) is obtained only

due to the presence of pseudofermions, the Bose field alone
leading to the unphysical phase transition with the vanishing
of magnetization af ~h.
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A somewhat different situation takes place in thewhich are known from the Onsager solution of the 2D Ising
Schwinger boson representation. In the chsel, we have model. Thus, SSWT poorly describes the critical behavior.

ng=0 and the equation far=exp(—w/T) has the form At the same time, SSWT describes much better the local
propertiege.g., the pair spin-correlation function at neighbor
x coshith/2T) -1 siteg than those determined by the scale of the correlation

= (91 length. Indeed, ab= 1/2 the Tyablikov approximation yields
2 ’

X“+ 1= 2xcostth/2T) the unphysical resul\&(Tc)=E&(Te)—£(0)<0.% In the
The solution to this equation reads limit S—o this approximation giveA&(Tc)/|£(0)|=0.6
which is also lower than the value which can be derived from
the calculations in Sec. I(0.84). Besides that, the Tyablikov
approximation implies a not quite correct form of the exci-
tation spectrum at low temperatures. In particular, the spin-
wave stiffness demonstratesTa? dependence at low tem-
peratures, instead of B one.
) ] ) Generally speaking, the properties on the scales of order
With the use of Eq(91) we obtain the expression for the of the correlation length cannot be treated correctly within

=1 ! hh
X= +2—SCOSE

1\/ ) r?h
+ 55\ (25+1)? cosf o= —4S(S+1). (92)

magnetization one-particle picture, and the Tyablikov approximation gives
in(h/2T only a rough(but rather successfutlescription of these. A
S= xsmr(—): = regular way of describing thermodynamics at not too low
Stani(h/2T)=SB,,(h/2T). describi : _
xcoshh/2T)—1 temperatures within spin-wave theory is to consider collec-

(939 tive excitations rather than one-particle ones. For low-

i i : 2
Thus in the limit of large magnetic fields the Schwinger-dimensional magnets witlTy <|J|S*, where large loga-

boson approach reproduces the correct results onlySfor rithms occur(see Secs. Il A and IYand fluctuations have a
=1/2. 2D nature in a broad temperature regiencept for the criti-

cal region, this can be performed analytically in a close
T T LT analogy with the isotropic magnets of the dimensionatity
: =2+¢ [where=1+0(¢e), see, e.g., Ref. 46

AND QUASI-2D MAGNETS In this section we take into account the interaction correc-
As already discussed, SSWT overestimates the value dfons to the SSWT results for the magnets with small inter-
Tw. In particular, for the simple cubic lattice the SSWT layer coupling and/or anisotropy. Consider first the 2D
result for S—o is Ty, /S?=1.803J|. At the same time, the Heisenberg magnet with the easy-axis anisotropy. In the fer-
result of the spherical modésee, e.g., Refs. 32 and 4B romagnetic case we have
this limit reads

2

_ 0 T
S L H-% Edblb,
3Ty, =§k‘, Jo—J’ o4

2y : bl bl by by 8
4ql.“q ¢(Q1,Q21Q3aQ4) 4170y -d3dy 0y +0p,03+ 0y’

which coincides with the corresponding result of the Tyab- 4

likov approximatiorf** One obtains from Eq(94) T\, /S?
=1.319J| which is close to the result of the high-
temperature series expansi@ee, e.g., Refs. 35 and4#As  where
pointed in Sec. lll, forS=1/2 the value ofT,, is overesti- 0
mated by 1.2 times. Eq=S(Jo—Jg) +[J[ST,

In the quasi-2D case, formulag5) and (48) [and the
corresponding results of the 2D case with the small easy-axis ¢(01,92:93,04) =Jg,+ Jg, = Jg;~q; 7 g, —q,
anisotropy(77) and(79)] coincide with the result of the Ty-
ablikov approximation to logarithmic accuracy and thus =—2[3[(qa+ 1), (96)
seem to be correct. However, this accuracy is also insuffigng
cient to treat the experimental datsee the detailed discus-
sion in Ref. 27 and the overestimation df, reaches 1.7— f=(25-1)D/|I9+(Jp/I) S (97
2.0 times for the quasi-2D case and nearly 1.5 times for the . o .
anisotropic 2D casé&he reason for weaker overestimation of 1S the b.are gap in the excitation spect_rum. In the anuferro-
T, in the anisotropic case will be explained bejowhus in magnetic case, we use the opera®gsvhich are the Fourier

the quasi-2D magnets and 2D magnets with small easy—axg":meormatlon oB; of Eq. (17) and satisfy

(99

. . < 2 . .
anls_otropy(m_both case§M<|J|S ), the overestimation of ag=(Bg+Bq.0)/2,
Ty is even higher than in the 3D case.
The values of the critical exponents derived aboye ( b1q=(Bq—Bq+Q)/2, (98)

=y=1 andy=2) are also in drastic discrepance with the

molecular-field values ¥=p8=1/2, y=1), experimental whereQ=(,,) is the wave vector of the AFM structure.
data (#=0.7, 8=0.33, y=1.4) for isotropic magnets, and Then, up to some unimportant constant, we have the Hamil-
exact values k=1, 8=1/8, y=7/4) for easy-axis magnets, tonian of the same form Eq95), but for the operator8,.
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gent terms in the classical case can also be performed in the
continuum approximation with3= 32 (in this case, the “lat-
tice” renormalizations are also present in model parameters;
see Ref. 28 The result of the solution of Eq100 (see
Appendix B in the 2D case reads

®(k,k—q;p—qa.,p)

_ 2|3 yk(a—p)
So— (T/27|3|y)In[qo/max A2 q)]
T +k—
—2|J|f| 1— a0 P) 3| (101)
w3y A2

FIG. 6. Diagrams corresponding to the spin-wave interactionNote that the logarithmic corrections to the vertex in the

contribution to different quantitieé) one-particle Green function
of SSWT (b) effective vertex in RPAc) nonuniform RPA suscep-
tibility (d) correction to (staggerefl magnetization §S=S—S.
Simple and bold lines denote the bare and renormalized one-partic
Green functions, point stands for the bare vertex.

Note that in this caség in Eq. (95 has not the meaning of
an excitation spectrum because of non-Bose commutatio
relations forB:

[Bq.B1=8qpF Sapro- (99)

isotropic case were obtained earlier in Ref. 48. For the static
(staggered nonuniform longitudinal susceptibilityfor the
AFM case the shifg—q+Q is to be performed we obtain
fsom the diagrams of Fig.(6) the result

e Xo_
1+ ()9]y/29)q

2.2z

Xqo
n

The diagrams which give the first-order renormalizations

of Eq and correspond to SSWT are shown in Fita)@see,

e.g., Ref. 25 for a detailed description of this diagram tech-

nique. Further on we suppose that all such renormalizations

(which result in the replacemenis~Jy/S andf—A in EJ)
are already performed and such diagrams can be omitted.
To obtain the corrections to SSWT, higher-order diagram

should be considered. They lead to renormalization of one

particle energy(and occurrence of the dampingnd also to
vertex corrections. As discussed above, SSWT treats the e
citation spectrum satisfactorilythis spectrum is already
renormalized by first-order diagramsThe calculations of

damping of spin waves, which occurs only in the secon

order of perturbation theory, shows that it is small in a broad

temperature regioff. Thus only vertex corrections should be
taken into account. At not too low temperature3 (
>|J|SA) the RPA-type diagrams of Fig.(l5) are most im-

portant since each loop contains a logarithmic divergence

the type In(1A). The integral equation for the vertex reads (

-
®(k,k—q;p—0q,p)=e(k,k—0q;p—q,p)—
(Jy)?
o(k,k—q;s—q,9)

% s (SP+A)[(s—q)°+A]

X (s,s—q;p—0q,p). (100

[We have retained only the contribution of the modes with
the Matsubara frequency,=0, which yields the logarith-
mic divergence, and dropped the terms with# 0 with si-

§/_ 7z
_ (_SO)XqO (102
1—(T/27|3] ySp)In[ g/ max A2,q)]
where
L, T 1
Xqo™ 2 2 2
dy) P (P+A)[(p—q)+A]
TI[2w(Jyq)?]In(g?/A), g?>A
| xo=T/[4m(Iy)?A],  gP<A (103

S

is the “bare” longitudinal susceptibility. Thus, as well as in

RPA for itinerant magnet® the spin susceptibility is en-

Q_anced by the interaction. The first line of EQ.02) was

Obtained earlier for 3D magnets in Ref. 49. It follows from
Eqg. (102 that the excitation spectrum has different forms at

dsmall and large enough momenta:

2.2z

4 -,
‘Z‘Z:[ e HATES g
28/(131v9?), [3a*xqe>S/S.

he first line corresponds to the standard spin-wave contri-
ution [it is also subdivided in two cases as given by Eq.
103)]. The second line corresponds to the non-spin-wave
regime: atg®>A one can neglect the anisotropy ang”
«1/g? is given, in particular, by the spherical modélyhich
treats the spin excitations in essentially a non-spin-wave
way. Depending on the temperature value, three cases are
possible.

(i) Low temperaturesT<Ty,~27|J|S¥In(gy/A). Then
the second condition in E104) cannot be satisfied and thus
the excitations in the whole Brillouin zone have a spin-wave
nature.

(i) Intermediate temperatures, §/6)/In(q§/A)
<T/2m|J|S?<S/S (T is of the same order aBy). Then at

multaneously cutting the summation over quasimomenta amall enoughg we still havexg*= xqq, but the second con-

the wave vectoqg, which is determined by E¢44)]. As can
be seen from Eq(78), the account of logarithmically diver-

dition in Eg. (104 holds for large enoughgq where
A exp(2mlyST)<g’<c.
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(iii) Critical region,T/2W|J|82>§/S (1-T/Ty<1). In important that all the logarithmic terms are included in Eq.
this regime the first condition in Eq104) is satisfied only ~(107) andC gives only a small contribution to above results.
for g<A (hydrodynamic regionwhereas at all othe the ~ The gapA. at the ordering temperature, which remglned
condition in the second line of E4104) is satisfied. indeterminate in Sec. IV, can be now estimatedAgst*.

The corrections to relativésublattice magnetization; The coefficient of the proportionality is of the order of unity

e~ . . ) and influences the constar@sonly.
=8/S, [see diagrams of Fig.(8)] are given by In the isotropic quasi-2D case the infrared cutoff for inte-

grals over the Brillouin zone i8'/J rather tharA. Then we

T 1 obtain in the same way
13|9Sy ¥ K2+A
— t J 1 _
T2 d(k,k—q;k—q,k) o=1—=|In q§| 7o +3In——-2(1-0)
+ ey 2 2 2 - (109 2 19" vo maxo,t)
2(]3[7)°Sy *a (k*+A)[(k—q)*+A]
Integration leads to the result +q>ic(t/_)1 (108
— t| q? 1 — —
o=1—=|In2+4ln————2(1— )+ D t/7) |, and
2| Ay max o,t)
106 _
B (108 | Te amg |
where t=T/(27]J|Syyo). The function®, takes into ac- Te=4mJS|In | |S+3 In Tc +Cr (FM),

count the(unknown) nonsingular contribution of non-RPA (1093
diagrams. Again, we have three temperature regions de-
scribed above. In regiofi) only the first term in the square
brackets is to be taken into account and the magnetization
demonstrates the spin-wave behavit8) and(78) for quan-

tum and classical cases, respectively. In regionall the
terms, except for the last, are important, which leads to a

significant modification of the dependen8€T). The func- +Car
tion &, in both regimegi) and(ii) can be neglected and the

result(106) completely describes the behavior of the magne-

tization in these two regimes. Finally, in regi@ii) the con- 32 ) i
tribution of ®, is of the same order as the other terms in the '™ =4m& I”A_O +31n T, +Cq (classica).
square brackets. It should be noted that the factor of 4 before (1099
the second term in the square brackets is the sum of 2 which

arises from the temperature renormalization ®T) |y this case we have’ (T)x v}, max(c.t) which leads to that
«Ag? max(ot), and also a contribution of 2 arises from the the coefficient at the second term in the square brackets is 3
vertex renormalization. Thus one can see that in the case @instead of 4 in the anisotropic cas@his is why the inter-
small anisotropy(the same situation takes place for smallaction corrections are weaker in the anisotropic case: within
interlayer coupling, see belgwthe contribution from the SSWT the above-mentioned coefficient is 1 in the quasi-2D
renormalization of the single-particle spectrum and interaccase(which is three times smaller than the correct vialaed
tion vertex are of the same order, so that SSWT is insuffi2 in the anisotropic caséonly two times smaller than the
cient even outsidg the critical region. correct valug¢ Note that the result€108), (109 are valid for
For the Curig(Neel) temperatures we obtain the equationsall four combinations of the signs of intra- and interplane
- 4] 1 exchange integral§for mixed combinations, FM and AFM
C iain ™ +Cp (FM), denote the type of the in-plane ordering

T2 47|3|S;
In ’N ,+3 In |T|So7’o
8/33'[v070 N

Tn=473|SS 70

-1
(AFM) (109

473 -1

Tc=473S In : L
JSA Tc The same result§106)—(109 were obtained within the
(107a RG approach in Ref. 28Note that the different sign at the
. third term of the square brackets of Eq$06) and (108) is
— T,%, 47131y y0 - the misprint of this paper Derivation of general expressions
Tn=4mISy| In A, +41In T—N+CAF for the case where both interlayer coupling and anisotropy

are of the same order can be also found in Ref. 28.
(AFM), (107b With neglect of the functionsb,(x) and ®,.(x), Egs.
(106 and(108 still yield unph;EicaI behavior nedr, . The

3 47]J|S? -1 point T*, where the derivativédS/JT diverges, can be deter-
_ 2 _ i ’ !
Tu=4mJS]In A, +4In T | Ca (classica) mined from the conditions
(1070
with the constant€ ag o= —2—4 In 2+®FAF(e0) | which — 3/2 quasi-D,

o(t*)/t* = (110

are still not determined within our approach. However, it is 2 easy-axis D,
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TABLE I. The experimental parameters and ordering temperatures of layered magnets and the corre-
sponding calculated values @}, in the standard spin-wave-theo(@WT), SSWT, and RPA(in brackets
taking into account the consta@{,-=—0.7).

Compound S JK) I (K) Ao TWTK) T (K) TREA (K) TSP (K)

La,CuQy 1/2 1600 0.8 ~0 672 537 343 325
KoNiF, 1 102 ~0 0.0088 160 125 90.097.0 97.1
Rb,NiF,4 1 82 ~0 0.046 180 118 88.495.0 94.5
KoMnFy 5/2 8.4 ~0 0.015 74.8 52.1 42.745.1) 42.1
CrBr; 3/2 12.38 1.0 0.024 79.2 51.2 39.0 40.0

which should be used together with E406) or Eq. (108); (107) and (109 and using Eq(110), we can write down the
t* is the value ot corresponding td*. The condition(110)  simplest expressions fab(x) in the form:

should be used together with Eq4.06) or (108 to obtain

the value oft; .

The functions® ,(x) and ®(x) describe the crossover OFEARC %) = ——(Crarc™
from an isotropic 2D Heisenberg to 2D Ising and 3D Heisen- e+l
berg behavior, respectively. As discussed above, these func-
tions give considerable contributions in the crossover region
between regimeéi) and(iii) and in the critical regiméiii ), OEAF )= ——(CLar—1+31In3) (112
where essentially non-spin-wave excitations should be taken Vxe+1 n
into account. An account of these functions results in slightly
decreasing the temperatufé in comparison with that given (x<1). The constant€¢ ar o andC¢  can be, in principle,
by Eqg. (110, and T* becomes the temperature of a rapid obtained from numerical calculations or by comparing with
decrease oS (in fact, the characteristic temperature of a €xperimental datésee below. However, one should expect
crossover. For a quantum antiferromagnet, the calculation ofthat they are small enough and can be neglected.
®,.(x) can be performed within the N/ expansion in the

2+81In 2),

O(N) model?” For an arbitraryx=t/o, the result of this Vil. COMPARISON WITH EXPERIMENTAL DATA
calculation is very cumbersome. In the critical region ( To discuss the experimental situation, we consider first
>1) it provides the correct critical behavior the compounds with layered perovskite structure. The pa-

rameters used are given by Table I. The experimental values
of transition temperatures are also given and compared with
Ry g T |13 the theoretical ondfor experimental data see Ref. 35 and
[1—A0(1_ TNeeI) (11D references therein, and Ref. 2 for cuQ,). The values of
J’ andA,=A(0) are obtained from the low-temperature be-
havior of the sublattice magnetization. This procedure gives

with A;=0.9635 andB;=(1—8/72N)/2=0.36. The value the possibility of dete_rmining correctly the parameters since
/ : . L ' the results obtained in Secs. Il C and IV work well at low
of C,r obtained by this expansion is very small,-=

_ - mperatures(in particular they give correct results for
,0'9660' Other cntu;al gxponents can also be calculate round-state renormalizations\Note that for the anisotropic
within the 1N expansion in thé@d(N) model(see, e.g., Ref.

perovskites the parameters obtained are also in agreement
51): with the experimental data on the spin-wave spectiuih.
should be stressed that the experimentally observable gap in
the spin-wave spectrum i$(T) wheread, » plays the role
v3=1-32/3m°N=0.64, y3=2(1-12/m*N)=121 of the bare parameters. The same situation takes place in the
quasi-2D case wherdy/S and J’y'/S are experimentally
. . . . observable rather than the bare paramelensdJ’. Since in
(note that. the scaling relat|0n§ are shgh'tly violated becausg1e systems under consideration the parameférand A
of approximate character of this expansion fo+3). Thus o6 strong temperature dependefsee Secs. 11l C and I

the results of the spherical model for the critical exponents; g important to take into account this dependence when
aboveTy (see, e.g., Ref. 3become radically improved. In  yreating the experimental data.

particular, the fluctuations correct the critical behavior of the  one can see from Table | that for all the systems the
magnetic susceptibility. estimated values of transition temperatures are close to the
For practical purposes, it is useful to have simple interpoexperimental resultéfor La,CuQ, the experimental data on
lation expressions for the functiods(x), which enable one J’ are contradictionary; one of the possibilities of improving
to describe the crossover temperature region. Taking intthe agreement with experimental data is introducing a small
account the closeness @f to Ty, which is given by Egs. easy-axis anisotrop§). At the same time, using SSWT with-

o=

TNeeI
47T|J|So?’o
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' | : l ' I where
1.00 — , ,
i ac=3"yd 3y =TulI'[I[47(I¥0)°],
0.80 — _ = 2
A=A Tu/(4mISy0) )" (114
The (unknown function C(A/«) satisfiesC(0)=C’ and
o 00 ) N C(»)=C whereC andC’ are defined above. Since the in-
-% - plane lattice structure is nonsquare, we have used the effec-
040 '3 {\ B tive value of the in-plane exchange integral determined in the
’ o continuum limit from the excitation spectrum ag,
- o z:’\;T : . :_yJef(qf(wL_qi) +0(J’,JA). One can see that the agreement
0.20 - con ! — with experimentall¢ is excellent.
u ‘o §
| L | VIIl. CONCLUSIONS
0.00 . . L
0 40 80 120 In the present paper we have investigated in detail the
T (K capabilities of the self-consistent spin-wave theory, which is

ased on boson representations for spin operators, for a de-
cription of layered magnets. To improve the SSWT at not
00 low temperatures, we have introduced a pseudofermion
field. For magnets with a low transition poiny,<|J|S?,
analytical results were obtained. These results have different
forms in quantum T<|J|S) and classical T>|J|S) re-
gimes. In the quantum case the magnetization demonstrates
in some temperature region tieln T behavior. The pro-
posed version of SSWT gives a qualitatitend at not too
out fluctuation corrections overestimatég by about 1.7 high temperatures—quantitativdescription of the thermo-
times, although improves somewhat the results of standardynamics of layered magnets. An important advantage of
spin-wave theory. For the anisotropic compounflg is SSWT (in comparison with the methods that are based on
slightly underestimated. This may be due to two reasons: #vestigation of continuum models, e.g., nonlineamode)
nonzero value of 4 in this case Ca=—0.7 is obtained by IS the po.s_S|b|I|ty. of describing the short-range order above
best fit to the experimental datand (less importanta small  the transition point. _
interlayer coupling which also increases the transition tem- At the same time, even in the case of layered magnets
perature. SSWT is unable to_ treat qua}ntltatlvely the transition points
The temperature dependence of the sublattice magnetizﬁpd thermodynamics at high enough. temperaturd@s (
tion for K;NiF, is shown and compared with different theo- >0'.8T’V')' We have_ performed a SyStgmat'Q tre_:atment of cor-
retical results in Fig. 7. Regimég$) and (ii) correspond to rections to SSWT in the casky <|J|S*, which is based on

. summation of the higher-order 3 terms. The inclusion of
T<80 K where the RPARG) result is in good agreement the RPA correctiongwhich permits us to take into account

A — . fext-leading logarithmic singularitipgields an excellent de-
count of the functionb7"(t/o) given by Eq.(112) improves  scription of the behavior ofsublatticé magnetization at ar-

considerably the agreement in the crossover temperature ritrary T<T,, except for a narrow critical region, where an
gion. The 1N expansion in th@d(N) modef’ also gives a account of non-spin-wave excitations is required. The ap-
satisfactory description of this region, but does not describ@roach used is somewhat reminiscent of the theory of itiner-
correctly low enough temperatures, since, as discussed in that magnets® As well as in the latter case, the fluctuation
Introduction, it implies an essentially non-spin-wave picturecorrections within the RPA approximation lead to significant
of the excitation spectrum. lowering of the transition temperature and improve radically
The parameter values and Curie temperature for the fethe agreement with experimental data. The simple analytical
romagnetic Compound Crgr(see Ref. 52 for experimenta| results obtained give a quantitative deSCfiption of the mag-
datg are also presented in Table I. Here both interplane couP€tization behavior practically up @y . At the same time,
pling and anisotropy are important, and we obtéiee also the consideration of the critical regide.g., correct calcula-
Ref. 29 tion of _cr|t|cal exponentbreqU|res an account of e_ssent|ally
non-spin-wave excitations. For quasi-2D isotropic magnets
this can be performed within theN/expansion in th@©(N)

FIG. 7. Temperature dependence of the relative sublattice magi3
netizationa(T) of K,NiF, in the SWT, SSWT, RPA approaches
and 1N expansion for theO(N) model as compared with the ex-
perimental datdcircles. The RPA curve corresponds to the inclu-
sion of the functiond4"(t/o) given by Eq.(112). The short-dashed
line is the extrapolation of the result of theNLexpansion to the
critical region(see Ref. 28

model?’ A description of the critical region for magnets with
Tu :47T|\]|§070| In[2q§/(Ac+ 20+ /Ac?+4acAc)] the easy-axis anisotropy, where_ the topologit@main-
wall) excitations are present, is still an open problem.

4mJd|S A
2 10 dIS00 |S°y°+c(—

1 A regular calculation of higher-order corrections in the
a)} '

(113 3D case, where the kinematical spin-wave interaction should

M be also taken into account, but the logarithmic terms are
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absent, is also a matter for further investigations. The same is Py
valid for magnets with the essential role of topological exci- (y— S) 2 J +Jo

tations (easy-plane systems, antiferromagnetic half-integer Iy
spin chains, etg. —

=>1 NéNq+ZJN s (A6)
g TPy GV ay

APPENDIX A: VARIATIONAL PRINCIPLE

IN THE HEISENBERG MODEL In the antiferromagnetic case we use the trial Hamiltonian

In this appendix we consider a variational approach to
SSWT. This is a generalization of approaches of Refs. 6 an
7 to the quasi-2D case, which provides the possibility of °
improving the behavior of the magnetization at not too small

1 1
== 53075+ 5 724 [Jo(acac+biby)

J'1J.
We apply the Feynman-Peierls-Bogoliubov variation —J(afbl +ab )]+ (2S+ 1)3’Jo§k: (ckei+didy)
principle for the free energfF=— In Sple #") (see, e.g.,
Refs. 44,53
+ t t +
- a,a+bb+(25+1)(c.c+dd A7
F<Fot (H—Ho)o, A1 u2 [afatbib+(2S+1)(cicr dido] (A7)
where Hq is the trial Hamiltonian,F, is the free energy , gptain
corresponding tél,, and( . . . ), stands for the average with
Ho.
Consider first the case of a ferromagnet. Assuming the _3 z 3 dLlq a g S
spin-wave character of spin dynamics, we chodgeas the (y=9) T day an
Hamiltonian of noninteracting bosons and fermions o
JL J
1 =D Jpglp——+> Jbg=—,  (A8)
Ho=— 53075+ 7> (Jo=J0bibic+ (28+1)73, > cio i T oy g Ty
K K
where

- M; [biby+(2S+1)clcy]. (A2)

Eq=V(ydo—1)*— (739"
This expression differs from the Hamiltonian of the standard

spin-wave theory by the factoy which is a variational pa- YJq 1
rameter describing the renormalization of the spin-wave Lq= E. N at 5] (A9)
spectrum, and by the presence of the Fermi operators taking d
into account the kinematical interaction between spin waves,
Then we obtain
1—exp(—Eq4/T) = 1 Es Joy— 1
_ S= S+ coth—— —— | Ng+=|. (A10
Fo=T2 N T e —E,1T) (A3) 2 g Nat3)- (A10
and In the 2D case ' =0) we have
(Hyo=— 2305~ 53, IgNg— 2 S Jq_pNoN > EJN s 3, e
om 270 g ata 2 Tampiatp pqpa L
(A11)
_'““% [Ng+(2S+DN¢], and a similar result with the replacemeéiy— L. Then Egs.
(A6) and(A8) reduce to
= — 1
(Hobo=¥Jo(S=9)= 72 JgNg~u2 [N+ (2S+ 1N, 1SN, (FW),
(A4)
where the magnetization reads — 1
y—S=— > JiLq (AFM). (A12)
Jo g
_ 1 E; 1
S:(S+ 5) coth—— 5_% Nq (AS) " These equations coincide with those of Sec. Il A. At small

J’/J the values of integrals over the Brillouin zone are de-
andE;= yJy— u. The equation fory is determined from the termined by the region of small quasimomemﬁ,q§
conditiongF/dy=0 and has the form <J'/J. Then it is possible to set
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Jo-q=do.  Jg=Jo (AL3)

in this case, which again leads to E§a12). If J'/J is not
small enough, the approximatigA13) becomes invalid and
it is necessary to use EGA6) or (A8) up to the limit of the
cubic crystal,J’ =J, where equalitfAll) is again satisfied

and passing to EqA12) becomes justified. The same situa-
tion is realized for hypercubic lattices of any dimensionality

in the nearest-neighbor approximation.

APPENDIX B: THE SOLUTION OF INTEGRAL
EQUATION FOR THE RENORMALIZED VERTEX OF
SPIN-WAVE INTERACTION

The equation for the verte®d00 has a degenerate kernel.
We search for a solution in the form

@ (k,k—q;p—0,p)=J(Aq—Bp)k—2JA(p,q). (BY)
Then we obtain after some algebraic manipulations

A [1+2q(p—q)(F'q—Mq4/9?)

 Sely—R+Mq
+2A(Ixgqo—Tg)1,
2
B:_—'
So/y—R+Mq

A(p,q)=A[1-T4(Apg+Bg?)], (B2

V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON
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d’.s 1

=)
s<aop(2m)2 2+ A’

R:
NE%

(J;)J

andl'y, M, are defined by
T

192

d%s 1
(2m)2 (S2+A)[(s—q)?+A]’

(B3)

2z _
Xqo™

d?s s
(2m)? (S*+A)[(s—q)?+A]

.
9]

:qFQ!

f d’s SiSj
s<qo(27)? (s*+A)[(s—q)>+A]
3 ag
2 q2 '

Calculating the integrals in EgB4) and retaining only terms
which are logarithmically divergent &t—0 yields

1
==R§

5 Rdj—Mg (B4)

1
Fq=Mq/a*=5]3IxG. (BS)
where xgg is given by Eq.(103), and finally we get
T
do (B6)

R=— In—.
27T|J|’y2 Al/Z

where we have introduced the correction to the magnetizacombining the above formulas we obtain the re$uil) of

tion R=(Sy—S)/y and the nonuniform susceptibility23
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