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Self-consistent spin-wave theory of layered Heisenberg magnets

V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson
Institute of Metal Physics, 620219 Ekateriburg, Russia

~Received 4 January 1999!

The versions of the self-consistent spin-wave theories~SSWT! of two-dimensional Heisenberg ferro- and
antiferromagnets with a weak interlayer coupling and/or magnetic anisotropy, that are based on the nonlinear
Dyson-Maleev, Schwinger, and combined boson-pseudofermion representations, are analyzed. Analytical re-
sults for the temperature dependences of~sublattice! magnetization and the short-range order parameter, and
the critical points are obtained. The influence of external magnetic field is considered. Fluctuation corrections
to SSWT are calculated within a random-phase approximation which takes into account correctly leading and
next-leading logarithmic singularities. These corrections are demonstrated to improve radically the agreement
with experimental data on layered perovskites and other systems. Thus an account of these fluctuations pro-
vides a quantitative theory of layered magnets.@S0163-1829~99!12025-3#
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I. INTRODUCTION

Investigation of low-dimensional magnetism is an impo
tant branch of modern solid-state physics. Experimental
terest in this problem is connected with the magnetic pr
erties of copper-oxide high-Tc superconductors, organi
compounds, ferromagnetic films, multilayers, and surface1

As stated by the Mermin-Wagner theorem, tw
dimensional~2D! isotropic magnets possess long-range or
~LRO! only in the ground state. Unlike purely 2D Heise
berg magnets, real layered compounds have finite value
the magnetic ordering temperatureTM!uJu (J is the ex-
change integral! due to weak interlayer coupling and/or ma
netic anisotropy. The smallness of transition temperat
leads to some peculiar features of these systems. W
crossingTM , the short-range order~SRO! is not totally de-
stroyed~in the 2D situation it is maintained up toT;uJu),
and a broad region aboveTM with strong SRO exists. Cor
responding experimental indications are provided by the d
on elastic and inelastic neutron scattering: well-pronoun
peaks of diffuse scattering were observed in La2CuO4,2

Rb2MnF4 and K2NiF4,3 and well-defined spin waves i
K2MnF4 up to T;2TN .4

A great progress in the theory of the ground state a
thermodynamic properties was made with the use of rigor
mathematical methods @quantum Monte Carlo and
renormalization-group~RG! calculations#. At the same time,
simple approaches, which yield an analytical description o
wide range of physical properties, are very useful for pra
cal purposes. At low temperatures (T!TM) the standard
spin-wave theory works satisfactorily. At higher tempe
tures corrections owing to spin-wave interactions beco
important. These corrections were treated self-consiste
many years ago for the 3D Heisenberg model in Ref. 5 T
same results were obtained within a variational approach
isotropic6 and anisotropic7 Heisenberg magnets.

For 2D magnets, close ideas were used recently by
‘‘boson mean-field theory’’8,9 which is based on the repre
sentation of spin operators through Schwinger bosons,
the ‘‘modified spin-wave theory’’10 based on the Dyson
Maleev ~DM! representation. Note that the former approa
PRB 600163-1829/99/60~2!/1082~18!/$15.00
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differs drastically from the standard mean-field approxim
tion in the Heisenberg model: it takes into account spin-wa
excitations and is highly sensitive to the space dimensio
ity. The results of these theories are in a good agreem
with the scaling consideration11,12 and experimental data o
spin excitations in CuO2 planes. Being generalized to th
quasi-2D case~see, for example, Refs. 13–16!, these ap-
proaches lead to the same results as Refs. 5–7. The
proaches of Refs. 8–10 were also applied to frustrated
~Refs. 17–21! and 3D~Ref. 18! antiferromagnets.

In the approaches9,10 LRO is described in terms of boso
condensation, see also Ref. 22. To continue the region
applicability of the theory to disordered phase, a chemi
potential of the Bose system~fictious magnetic field! is in-
troduced atT.TM , which is determined from the conditio
of the vanishing of~staggered! magnetization. Introducing
such a field can be more strictly justified within the proje
tion operator technique.23

While the approach of Refs. 8,9 corresponds toN→`
limit of the generalized SU(N) Heisenberg model, the ap
proach of Ref. 10 can be considered as the result of
self-consistent first-order 1/S expansion, i.e., summation o
all the bubble diagrams for the self-energy~see also Ref. 5!.
As argued in the present paper, this equivalence is prese
also between the first-order 1/N expansion and second-orde
self-consistent 1/S expansion and seems to take place in
the orders of perturbation theories discussed.

At the same time, the above-discussed approaches~we
refer them to as the self-consistent spin-wave theor
SSWT! turn out to have some shortcomings. The first one
mainly technical: the Bose condensation picture is inap
cable for anisotropic systems, since they have a gap in
excitation spectrum. Further, the SU(N) symmetry in this
case is broken, and the 1/N expansion in the SU(N) model
cannot be performed in principle. However, as it was m
tioned, this expansion~and also the description of LRO in
terms of the Bose condensate! is not the only way to SSWT.

The second shortcoming is much more essential. It c
cerns the description of thermodynamics at temperatures
are comparable withTM . In particular, the description of the
~sublattice! magnetization curve near the ordering point
1082 ©1999 The American Physical Society
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poor: the corresponding equation has two solutions, so

S̄(T) does not vanish continuously~see, e.g., Refs. 5,16!.
Besides that, the transition points are strongly overestima
These drawbacks are due to that at sufficiently high temp
tures the higher-order processes connected with dynam
interaction between spin waves, and also kinematical in
action, should be taken into account.

The kinematical interaction is important in a wide tem
perature region only for systems whereTM is not small in
comparison withuJuS2 ~e.g., for 3D systems!. This interac-
tion can be, in principle, taken into account by the project
operator technique~see, e.g., Ref. 23!. However, this tech-
nique is rather complicated and is not convenient for pra
cal purposes. Another way to obtain the corrections owing
the kinematical interaction is the use of the Baryakht
Krivoruchko-Jablonsky~BKJ! representation24,25 of spin op-
erators via bosons and pseudofermions, which genera
the DM representation~we do not know such a generaliza
tion for the Schwinger bosons!. The introduction of pseudo
fermions gives, in principle, a possibility of excluding th
contribution of unphysical states. These pseudofermions
be easily incorporated into the theory and, at least for
magnets, partially correct the above-mentioned drawback
the early versions of SSWT.

For layered systems withTM!uJuS2 the kinematical in-
teraction is less important~in fact, it works only in a narrow
critical region nearTM), but higher-order~in the dynamic
interaction! contributions should be included. As will b
shown in the present paper, an infinite random-phase
proximation ~RPA!-type series of diagrams are to be tak
into account26 ~as already mentioned, this is equivalent to t
first-order 1/N expansion in the SU(N) model!. Such a pro-
cedure permits us to describe the ‘‘2D-like’’ Heisenbe
regime27,28 where thermodynamics is determined by fluctu
tions of a 2D Heisenberg nature. These results enable on
obtain the correct expression forTM up to some nonsingula
constant in the denominator. At the same time, the true c
cal region, where the spin-wave picture of the spectrum
completely inadequate, turns out to be very narrow in
layered systems. A satisfactory description of this region
possible within the 1/N expansion in theO(N) model ~see
Refs. 27,29!. The latter model is based on a fluctuation rath
than spin-wave picture of excitation spectrum. This circu
stance provides important advantages at high temperat
but leads to some difficulties at the description of the lo
and intermediate-temperature regions. Therefore, the
proach based on the SU(N) model (1/S expansion! is more
appropriate at not too high temperatures.

In the present paper we formulate a version of the SSW
which is to a large measure free from above-mention
shortcomings and is a good starting point for further i
provements. To this end we~i! use the BKJ representation t
obtain the correct description at not too low temperatures~ii !
discard the conditionS̄50 and do not describe LRO in term
of Bose condensate, which permits to us treat anisotro
systems. We also demonstrate~where possible! how our re-
sults can be obtained by the Schwinger boson method.9 Fur-
ther we calculate the corrections to SSWT for quasi-2D a
easy-axis 2D magnets with small interlayer coupling or
at

d.
a-
al
r-

n

i-
o
-

es

an
D
of

p-

-
to

i-
is
e
is

r
-
es,
-
p-

,
d
-

ic

d
-

isotropy using second-order spin-wave results in the s
consistent form.

The plan of the present paper is as follows. In Sec. II
describe the representation of spin operators by Schwin
and Baryakhtar-Krivoruchko-Yablonsky.24 In Secs. III and
IV we consider thermodynamics of quasi-2D and anisotro
2D layered magnets within SSWT and construct an inter
lation scheme between the 2D and 3D cases. In Sec. V
treat the problem of introducing the magnetic field in
SSWT and calculating magnetic susceptibility. In Sec. VI
investigate fluctuation corrections to the SSWT results,
particular to the~sublattice! magnetization and ordering tem
perature, and compare the results of our calculations w
experimental data.

II. BOSON REPRESENTATIONS OF THE SPIN
OPERATORS

We consider the anisotropic Heisenberg model

H52
1

2 (
i j

Ji j SiSj2
1

2
h(

i j
Ji j Si

zSj
z2D(

i
~Si

z!2, ~1!

whereJi j are the exchange integrals,h.0 andD.0 are the
two-site and single-site easy-axis anisotropy parameters

Consider first the Baryakhtar-Krivoruchko-Jablons
representation24,25

Si
15A2Sbi , Si

z5S2bi
†bi2~2S11!ci

†ci ,
~2!

Si
25A2SS bi

†2
1

2S
bi

†bi
†bi D2

2~2S11!

A2S
bi

†ci
†ci ,

wherebi
† ,bi are the Bose ideal magnon operators, andci

† ,ci

are the auxiliary pseudofermion operators at the sitei which
take into account the kinematic interaction of spin wav
For the statesup& in the physical subspace~with the boson
occupation numbersNi,2S and pseudofermion occupatio
numbersFi50) we havecup&50, and the representation~2!
reduces to the standard DM representation. The statesuu0&
with Ni.2S, Fi50 anduu1& with Fi51 are unphysical. As
shown in Ref. 24, the partition function can be calculated

Z5SpH expS 2bH@b,b†,c,c†#2 ip(
i

ci
†ci D J , ~3!

where H@b,b†,c,c†# is the original spin Hamiltonian~1!
written through the Bose and Fermi operators according
Eq. ~2!. Analogous relations take place for the averages
spin operators. It can be proved24 that the contribution of
statesuu0& in Eq. ~3! is exactly canceled by the contributio
of the statesuu1&.

Thus, unlike the DM representation, using the BKJ rep
sentation gives the possibility of excluding the contributi
of the states with the boson occupation numbersNi.2S to
thermodynamic quantities. It should be noted that this pr
erty relates to the exact Hamiltonian of the boso
pseudofermion systemH@b,b†,c,c†# only and does not nec
essarily hold for its approximate expressions. However,
could expect that the introduction of the Fermi operat
extends the region of the applicability of approximate me
ods to not too low temperatures.
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The factor exp(2ip(ici
†ci) in Eq. ~3! results in that the

distribution function of the pseudofermions becom
2N(Ef) whereN(E)51/@exp(E/T)21# is the Bose function,
Ef is the excitation energy for pseudofermions@as follows
from the representation~2!, thec field has no dispersion#.

In the case of a two-sublattice antiferromagnet we se
rate the lattice intoA andB sublattices. On the sublatticeA
we use a representation that is similar to Eq.~2!

Si
15A2Sai , Si

z5S2ai
†ai2~2S11!ci

†ci , i PA,
~4!

Si
25A2SS ai

†2
1

2S
ai

†ai
†ai D2

2~2S11!

A2S
ai

†ci
†ci ,

and on the sublatticeB the ‘‘conjugate’’ representation:

Si
15A2Sbi

† , Si
z52S1bi

†bi1~2S11!di
†di , i PB,

~5!

Si
25A2SS bi2

1

2S
bi

†bibi D2
2~2S11!

A2S
di

†dibi ,

whereai
† ,ai andbi

† ,bi are the Bose operators, andci
† ,ci and

di
† ,di are the Fermi operators.

Another useful representation of spin operators is
Schwinger-boson representation

Si5(
ss8

sis
† sss8sis8 , ~6!

wheres are the Pauli matrices,s,s85↑,↓, so that

Si
z5

1

2
~si↑

† si↑2si↓
† si↓!, Si

15si↑
† si↓ , Si

25si↓
† si↑ . ~7!

The constraint condition

si↑
† si↑1si↓

† si↓52S ~8!

should be satisfied at each lattice site. Since the phases osi↑
and si↓ can be simultaneously changed,sis→sis exp(ifi),
this representation possesses a gauge symmetry.
Schwinger-boson representation can be simply related
the Holstein-Primakoff representation if we fix the gauge
the condition of hermiticity for one of the operatorssis , say,
si↑ , i.e., si↑

† 5si↑ . Then we have from Eq.~8!

si↑5A2S2si↓
† si↓, ~9!

and substituting this into Eq.~7! we obtain the Holstein-
Primakoff representation. Thus the representations of
Schwinger bosons and by Holstein-Primakoff are equivale
As well as for the BKJ representation, this equivalence
be violated in approximate treatments. Unlike the Holste
Primakoff ~or DM! representation, the Schwinger-boson re
resentation can be easily generalized to an arbitrary num
of boson ‘‘flavors’’ N>2, and the 1/N expansion can be
developed. At the same time, there is no natural way to t
into account ‘‘roughly’’ the kinematical interaction by intro
ducing the Fermi operators into this representation.

In the antiferromagnetic case we pass~following Ref. 8!
to the local coordinate system by the replacement
s

a-

e

he
th
y

e
t.
n
-
-
er

e

si↑→2si↓ , si↓→si↑

at one of two sublattices.

III. SSWT OF QUASI-2D MAGNETS

A. Self-consistent approach within the BKJ representation

In this section we consider the quasi-2D case withD
5h i j 50 and the exchange integralsJi j 5J for i , j being
nearest neighbors in the same plane andJi j 5J8 for i , j in
different planes. First we use the BKJ representation. In
ferromagnetic~FM! case the Heisenberg Hamiltonian~1!
takes the form

H52
1

2 (
i j

Ji j F @S2bi
†bi2~2S11!ci

†ci #@S2bj
†bj

2~2S11!cj
†cj #12SS bi

†2
1

2S
bi

†bi
†bi Dbj

22~2S11!bi
†bjci

†ci G2m(
i

@bi
†bi1~2S11!ci

†ci #.

~10!

To satisfy the conditionS̄50 in the paramagnetic phase w
have introduced the Lagrange multiplierm. This multiplier
corresponds to the constraint of the total number of bos
and pseudofermions atT.TC and plays a role of common
chemical potentialm of the boson-pseudofermion syste
~for the pure boson system it was introduced in Refs. 30,1!.
At T,TC we havem50 since no restriction of boson an
pseudofermion occupation numbers is needed here. Intro
ing the chemical potential, which gives the possibility
continuing the theory into the disordered phase, can be
tified more strictly if one takes into account the kinematic
interaction in a regular way.23 Since the magnon number i
not conserved atT,TC , the Bose condensation which take
place in Refs. 9 and 10 does not occur in our approach.

Further, we perform decouplings of the quartic form
which occur in Eq.~10!. Introducing the averages

g5S̄1^bi
†bi 1d'

&, g85S̄1^bi
†bi 1d i

&, ~11!

we derive the quadratic Hamiltonian of the mean-field a
proximation in the form

H5(
id

Jdgd@bi
†bi2bi 1d

† bi1~2S11!ci
†ci #

2m(
i

@bi
†bi1~2S11!ci

†ci #, ~12!

wheregd'
5g and gd i

5g8. From the definition ofg, Eq.
~11!, one finds the system of self-consistent equations

g5S̄1(
k

Nk coskx , g85S̄1(
k

Nk coskz , ~13!

which should be solved together with the condition

S̄5S1~2S11!N~Ef !2(
k

Nk , ~14!
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whereNk5N(Ek) are the Bose occupation numbers,

Ef5~2S11!~G02m!, ~15!

Ek5G02Gk2m,

are the pseudofermion excitation energy, and the spin-w
spectrum, respectively,

Gk52@ uJug~coskx1cosky!1uJ8ug8coskz#. ~16!

Consider now the case of an antiferromagnet~AFM!. In-
troducing the operators

Bi5H ai i PA

bi
† i PB ,

Ci5H ci i PA

di i PB,
~17!

we derive

HAF5uJug(
i ,d'

@Bi
†Bi2Bi 1d

† Bi1~2S11!Ci
†Ci #

1uJ8ug8(
i ,d i

@Bi
†Bi2Bi 1d

† Bi1~2S11!Ci
†Ci #

2m(
i

@Bi
†Bi1~2S11!Ci

†Ci #, ~18!

where

g5S̄1^aibi 1d'
&, g85S̄1^aibi 1d i

&. ~19!

Diagonalizing this Hamiltonian one finds the self-consist
equations

g5S̄1(
k

Gk

2Ek
coskx coth

Ek

2T
, ~20!

g85S̄1(
k

Gk

2Ek
coskz coth

Ek

2T
,

S̄5~S11/2! coth
Ef

2T
2(

k

G02m

2Ek
coth

Ek

2T
,

where the antiferromagnetic spin-wave spectrum has
form

Ek5A~G02m!22Gk
2 ~21!

with Gk andEf being the same as in the ferromagnetic ca
For both ferro- and antiferromagnetic cases, the calc

tion of spin-correlation functions10 shows thatm is directly
connected with the correlation lengthjd in the directiond by
the relation

jd
215A2m/uJdgdu. ~22!

The parametersg andg8 are also simply related to the spin
correlation function at the nearest-neighbor sites

u^SiSi 1d&u5gd
2 , ~23!

and, therefore, play the role of SRO parameters. For the t
energy we readily obtain
ve

t

e

.
a-

tal

E52
1

2 (
d

uJi ,i 1dugd
252~2uJug21uJ8ug82!. ~24!

In the classical limitS→` the SSWT equations are simpl
fied. SupposingT@uJuS (TM;uJuS2 in this case! the equa-
tions for both FM and AFM cases reduce to

S̄/S5 coth~Ef /2T!2
T

S (
k

1

G02Gk2m
,

g5S̄1T(
k

coskx

G02Gk2m
,

g85S̄1T(
k

coskz

G02Gk2m
. ~25!

For T,TM (m50) the averaged~over nearest neighbors!
SRO parameter

gef~T!5~4Jg12J8g8!/J0 ~26!

~but not the magnetization! satisfies the standard mean-fie
equation

gef /S5B`~J0gefS/T!, ~27!

whereB`(x)5cothx21/x is the classical Brillouin function
~Langevin function!. The temperatureT* where gef(T* )
50 is higher thanTM , so that we havegef(TM).0 and the
behavior ofgef for T.TM is more complicated in compari
son with Eq.~27!.

B. Approximation of effective SRO parameter

Equations~13!, ~14!, and ~20! still demonstrate unphysi
cal behavior of magnetization forT close toTM at small
enough J8/J ~see below!. Introducing the pseudofermion
field does not improve the situation in this case: the tran
tion temperature is already too small to be influenced
pseudofermion excitations with the energy of the order
uJu. As discussed in the Introduction, the dynamical sp
wave interaction should be treated more correctly in suc
situation. A rough solution of this problem can be achiev
by the replacement

(
d

Ji ,i 1dgd~bi
†bi2bi

†bi 1d!→gef(
d

Ji ,i 1d~bi
†bi2bi

†bi 1d!,

~28!

where gef is determined by Eq.~26!. Then we obtain the
spectrum

Eq5gef~J02Jq!2m, FM,

Eq5A~J0gef2m!22~Jqgef!
2, AFM, ~29!

and the pseudofermion excitation energy

Ef5~2S11!~gef J02m!, ~30!

@here and hereafter we use the definitionJq
5(duJduexp(iqd)]. The SSWT equations take the form
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S̄5S1~2S11!N~Ef !2(
k

Nk , ~31!

gef5S̄1
1

J0
(

k
JkNk ,

in the FM case and

S̄5~S11/2! coth
Ef

2T
2gef (

k

J0

2Ek
coth

Ek

2T
, ~32!

gef5S̄1
gef

J0
(

k

Jk
2

2Ek
coth

Ek

2T
,

in the AFM case. The approximation~28! is analogous to
passing from the Hartree-Fock approximation to the lo
approximation in the spin-density-functional method for t
electron gas. As it is known, taking into account screen
effects, such approximations can lead to improving the
sults and eliminating the unphysical peculiarities. Note t
the same equations~31! and ~32! were obtained earlier in
Ref. 31. However, when deriving these equations, the
thors have used expressions for the spin Green’s func
which have incorrectv→` asymptotics.

Another approach, which gives the possibility of impro
ing the behavior of~sublattice! magnetization nearTM , is
based on a variational principle and is considered in App
dix A. It leads to the same spin-wave spectrum~29!, but the
corresponding SSWT equations are somewhat different f
Eqs. ~31! and ~32!. However, numerical calculations sho
that this difference is very small~several percents of magne
tization value!, and further we will refer to both these ap
proaches as the approximation of the effective SRO par
eter.

C. Temperature dependences of long- and short-range order
parameters

In the two-dimensional caseJ850 the spectrumEk is
independent ofg8, and two remaining equations forS̄ andg
differ from those of the approaches of Refs. 8 and 13 only
the presence of pseudofermion distribution functionN(Ef),
which describes the kinematical interaction of spin waves
T50 we havem50, andg5S̄5S in the FM case andg
.S, S̄,S in the AFM case, which corresponds to magne
ordering in the ground state. As well as in Refs. 8 and
Eqs.~13!, ~14!, and~20! do not have atT.0 solutions with
m50, S̄.0 since the integrals in Eqs.~13!, ~14!, and ~20!
are logarithmically divergent in this case, and the only so
tion of these equations forJ850 is S̄50, m,0, which cor-
responds to a disordered phase.

At low temperaturesT!uJuS2, we can neglect the pseudo
fermion contribution ~i.e., kinematical interaction of spin
waves! and we completely reproduce the results of Re
8–10,13. In particular, the correlation length has the ex
nential dependence

j5Cj
FAJ/T exp~2pJS2/T! ~FM!, ~33a!

j5Cj
AF~J/T!exp~2puJug0S̄0 /T! ~AFM!, ~33b!
l

g
-
t

u-
n

-

m

-

y

t

,

-

.
-

where

S̄05S20.1971, g05S10.079 ~34!

are the 2D ground-state LRO and SRO parameters, andCj
F,AF

are S-dependent constants. The results~33! were obtained
earlier within the one-loop RG approach.11,12 The two-loop
RG analysis changes the preexponential factor only: in
AFM case it becomes a temperature-independent consta11

while in the FM case the factor is proportional to (T/J)1/2

~see Ref. 12!.
With increasingT the role of the kinematical interactio

increases and forT;JS2 we cannot neglectN(Ef). The de-
pendenceg(T) for J850 is shown and compared with th
result of approaches9,10 in Fig. 1. Unlike the approaches i
Refs. 9,10, Eqs.~13!, ~14!, and~20! do not lead to the non-
physical phase transition with vanishing of the SRO para
eter, and the latter is finite at any temperatures. Note tha
J850 Eqs.~29! and ~32! give the same results.

In the presence of interlayer coupling, the integrals in
SSWT equations~13!, ~14!, and~20! becomes convergent a
finite T even at m50. For not too high temperaturesT
,TM ~the ordering temperatureTM will be calculated below!
these equations have the solution withS̄.0, which corre-
sponds to the ordered magnetic phase. ForT.TM we again
haveS̄50 andm,0 as well as in the 2D case at finiteT.

Figures 1–4 show the results of the numerical solution
the equations of Secs. III A, III B for different values of th
interlayer coupling. In the three-dimensional case (J85J)
the ~staggered! magnetization vanishes atTC51.20J (TN
51.33uJu) that is approximately by 20% higher than the co
responding value obtained from the high-temperature se
expansion. At the same time, the ratioTN /TC51.20 is in
agreement with the results of this expansion. The SRO
rameterg demonstrates a sharp decrease in a narrow t
perature region aboveTM and then asymptotically goes t
zero. One can see thatgAFM.gFM due to the quantum fluc

FIG. 1. Calculated temperature dependences of SRO param
in S51/2 quasi-2D ferro-~right-hand side! and antiferromagnets
~left-hand side!. The values ofJ8/J stand at the curves. Dots cor
respond to the 2D case (J8/J50) without including the pseudofer
mion contribution, long-dashed lines and circles correspond to
culations from Eqs.~13!, ~14!, ~20! and~29!, ~32!, respectively, for
J8/J50.3. Triangles mark the ordering temperatures.
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tuations. At the transition point we havegc[g(TM)50.62
for FM case andgc50.70 for AFM case. The dependenc
g(T)/S for 3D ferromagnets with differentS are shown in
Fig. 3. One can see that the valuegc /S rapidly decreases
with increasingS, reachinggc50.39 at S→`. Thus atS
51/2 strong quantum fluctuations are present even aT
5TM .

Consider now the quasi-2D case 0,J8/J,1. At J8/J
,0.4 Eqs.~13!, ~14!, and~20! still yield unphysical behavior
of magnetization and SRO parameters forT close toTM ~as
shown in Figs. 1 and 2 forJ8/J50.3). At the same time, the
approximation of single effective SRO parameter improv
the behavior of magnetization forT close toTM and provides
a qualitatively correct description of thermodynamics at
bitrary temperatures. The price which we pay is an overe

FIG. 2. Temperature dependence of the~staggered! magnetiza-

tion S̄ for S51/2 quasi-2D ferro-~right-hand side! and antiferro-
magnets~left-hand side! with different values ofJ8/J. Short-dashed
lines show the results without inclusion of pseudofermions, lo
dashed lines in the presence of pseudofermions, and solid
correspond to the approximation of the effective SRO paramete
Sec. III B. For J8/J51 the solid and long-dashed lines coincid
exactly, and forJ8/J50.01 long- and short-dashed lines coinci
practically.

FIG. 3. Temperature dependence of the SRO parameter
quasi-2D ferromagnets for different spin values in the approxim
tion of effective SRO parameter.
s

-
ti-

mation of TM even in comparison with the results of Eq
~13!, ~14!, and~20!, since the temperature dependence of
ratio of effective inter- and intralayer couplings@which is
J8/J for spectrum~29!# is absent in the approximation use
In particular, for J8/J→0 the results obtained within ap
proximation ~28! are different from those of standard spi
wave theory only by quantum~ground-state! renormalization
of g. Note that according to Fig. 1 with decreasingJ8/J the
size of the region with noticeable SRO increases.

At small T2TM we have2m}(T2TM)2 ~see Fig. 4 for
a ferromagnetic case, the same situation takes place in
AFM case! so that, according to Eq.~22!, the critical expo-
nent for the correlation length isn51. Since the magnetiza
tion changes linearly nearTM , we have alsob51. The in-
fluence of higher-order terms in 1/S on these results is
discussed in Sec. VI. Note that if we determine, followin
Ref. 32, the critical exponentn from a not too narrow tem-
perature interval nearTM , this becomes closer to the exper
mental value.

At very low temperatures (T!uJ8uS) and arbitraryJ8/J
the calculation can be performed analytically. The corr
tions to magnetization of a ferromagnet are proportiona
T3/2

S̄5S2
1

8p3/2
A J

J8
S T

JSD 3/2

z~3/2!, ~35!

wherez(3/2) is the Riemann zeta function. At the same tim
SRO parameters have a more weakT5/2 dependence

g5S2
3

32p3/2
A J

J8
S T

JSD 5/2

z~5/2!, ~36!

g85S2
3

32p3/2S J

J8
D 3/2S T

JSD 5/2

z~5/2!. ~37!

For J85J this result corresponds to that of the Dyso
theory33 to leading order in 1/S. For an antiferromagnet we
have

-
es
of

of
-

FIG. 4. Temperature dependence of the chemical potentia
the boson-pseudofermion systems in quasi-2D ferromagnets in
approximation of effective SRO parameter.
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S̄5S̄02
T2

24cAJJ8g0g08
, ~38!

whereg0 ,g08 and S̄0 are the zero-temperature values of co
responding parameters,c5A4Jg0(2Jg01J8g08) is the spin-
wave velocity. The corresponding temperature depende
of g andg8 are given by

g5g02
p2T4

120c3AJJ8g0g08
, ~39!

g85g082
p2T4

120c3A Jg0

~J8g08!3
. ~40!

In the case of small interlayer couplingsJ8/J!1 and
higher temperatures, logarithmic singularities occur, and
can pick out them from the integrals in Eqs.~13!, ~14!, and
~20! in the same way as discussed in Ref. 14. In the quan
regime which takes place at not too low temperatures, wh

J8S!T!JS ~FM!,

~JJ8!1/2S!T!uJuS ~AFM!, ~41!

we obtain

S̄5S2
T

4pJS
ln

T

J8S
~FM!, ~42a!

S̄5S̄02
T

4puJug
ln

T2

8JJ8gg8
~AFM!, ~42b!

with g.g0 @the 2D values~34! can be used forg0 and S̄0]
andg8 being defined by the equation

g85S2
T

4pJSS ln
T

J8g8
21D ~FM!, ~43a!

g85S̄02
T

4puJug S ln
T2

8JJ8gg8
21D ~AFM! ~43b!

so thatg085S̄0. Note that in this case the infrared cutoff fo
the integrals over quasimomenta is

q05H ~T/JS!1/2 ~FM!

T/c ~AFM!
~44!

(c5A8uJug) rather than the boundary of the Brillouin zon
Sinceq0!1, the continuum approximation for the excitatio
spectrum~and also interaction vertex! can be used in the
quantum regime. Owing to the thermodynamic ident
(]S̄/]T)S5(]S/]h)T ~with S being the entropy,h being the
magnetic field! the presence ofT ln T terms in the magneti-
zation of a ferromagnet may be of interest in connection w
the adiabatic cooling~see, e.g., Ref. 34!.

For the critical temperatures in the regime~41! we obtain
from Eqs.~42! the results
-

es

e

m
re

h

TC5
4pJS2

ln~T/J8gc8!
, ~45!

TN5
4puJugcS̄0

ln~T2/8JJ8gcgc8!

with gc5g(TM).g0 and gc85g8(TM)5TM/4puJug. Com-
paring these results with the criteria of quantum regime~41!
we obtain the condition of applicability of the results~45! as
2pS! ln(J/J8). It is important thatgc8!g8 and the interlayer
coupling is strongly renormalized with the temperature.
the same time, only ground-state~quantum! renormalizations
are important for the intralayer coupling atuJ8u!uJu.

In the case of largeS ~again supposingT@uJuS) we ob-
tain for both ferro- and antiferromagnet

S̄5S2
T

4puJuS
ln

32JS

J8g8
~46!

with

g85S2
T

4puJuSS ln
32JS

J8g8
21D , ~47!

This leads to the expression for the critical temperature o
classical magnet with 1! ln(J/J8)!2pS

TM5
4puJuS2

ln~32JS/J8gc8!
, ~48!

wheregc85TM/4puJuS. As it should be, the critical tempera
ture is the same for the classical ferro- and antiferromagn
case. With the logarithmic accuracy we reproduce in t
case the well-known results wheregc8/S→1 ~see, e.g., Ref.
35!. Note that the factor of 32 which is often neglected lea
to significant lowering ofTM as well as above-considere
temperature dependence ofg8.

D. Mean-field Schwinger-boson approach

Similar results can be obtained within the Schwing
boson representation. This is performed in the same wa
in Refs. 8, 9 and 13. The Heisenberg Hamiltonian is writt
down in the form

H52
1

2 (
i j

Ji j F1

4
~si↑

† si↑2si↓
† si↓!~sj↑

† sj↑2sj↓
† sj↓!

1si↑
† si↓sj↓

† sj↑G2m(
i

~si↑
† si↑1si↓

† si↓!, ~49!

where the chemical potential of bosons is introduced to t
into account the constraint~8!.

In the ferromagnetic case we subtract from the Ham
tonian ~49! the term

Hc5
1

8 (
i j

Ji j ~si↑
† si↑1si↓

† si↓!~sj↑
† sj↑1sj↓

† sj↓![
J0S2

2
~50!

to obtain
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H̃52
1

4 (̂
i j &

Ji j :F i j
†Fi j :2m(

i
~si↑

† si↑1si↓
† si↓!, ~51!

whereH̃5H2Hc , Fi j 5(ssis
† sj s , and : . . . :stands for the

normal ordering. Further the tilde at the HamiltonianH will
be dropped. Introducing the averages of the Bose opera

g i j 5^Fi j &5^F i j
† &, ~52!

we derive the mean-field Hamiltonian

HMF52
1

2 (̂
i j &

Ji j g i jFi j 2m(
i

~si↑
† si↑1si↓

† si↓!. ~53!

Such a procedure can be justified if we generalize
Schwinger-boson representation to the SU(N) model with
arbitrary N by introducing the operatorssim

† (m51 . . .N)
and consider the limitN→`.8

In the quasi-2D case there are only two independent
ues ofg i j :

g i j 5H g i , j within the same plane,

g8, otherwise.
~54!

Introducing l52m2gJ0 and passing to quasimomentu
representation we obtain

HMF5(
qs

Eqsqs
† sqs , ~55!

whereEq5l2Gq . Note that in the absence of external ma
netic field the spectrum of bosons is doubly degenerate.
self-consistent equations have the form

g5(
ks

Nks coskx , g85(
ks

Nks coskz ,

2S5(
ks

Nks . ~56!

As well as in Refs. 9 and 13, at low enough temperatures
Bose condensation takes place. Introducing external m
netic field~see Sec. V! removes the degeneracy of the bos
spectrum, and only one of two bosons is condensed. LetNk↑
~but notNk↓) contain the condensate contribution atk→0:

Nk↑→Nk12nBdk0 , ~57!

where 2nB is the density of condensed bosons. Thus
self-consistent equations takes the same form as in the
representation withS̄→nB , N(Ef)50.

In the antiferromagnetic case we subtract the term~50!
from the Hamiltonian to obtain~cf. Refs. 8, 14, and 15!

H̃52
1

2 (̂
i j &

Ji j :A i j
†Ai j :2m(

i
~si↑

† si↑1si↓
† si↓!, ~58!

whereAi j 5si↑
† sj↓

† . Passing to the mean-field approximatio
we have

HMF52
1

2 (̂
i j &

g i j Ji j ~Ai j 1A i j
† !2m(

i
~si↑

† si↑1si↓
† si↓!,

~59!
rs

e

l-

-
he

e
g-

e
KJ

where

g i j 5g i j 5^Ai j &5^Ai j
† &. ~60!

Diagonalizing the Hamiltonian obtained one obtains

HMF5(
q

Eq~aq
†aq1bq

†bq!, ~61!

where Eq5(l22Gq
2)1/2. Thus the self-consistent equation

take the form14,15

g5(
k

Gk

2Ek
coskx~Nk↑1Nk↓11!, ~62a!

g85(
k

Gk

2Ek
coskz~Nk↑1Nk↓11!, ~62b!

2S5(
k

Gk

Ek
~Nk↑1Nk↓11!21. ~62c!

As well as in the ferromagnetic case, onlyNk↑ contains the
condensate contribution. Picking this out as

Nk↑ /Ek↑→Nk /Ek1nB~dk01dkQ! ~63!

@Q5(p,p,p) is the wave vector of the antiferromagnet
structure# we get the SSWT equations~32! with coth(Ef /T)
51, S̄→nB .

The corrections to above results can be obtained wit
the 1/N expansion in a generalized Heisenberg SU(N) model
~see, e.g., Refs. 8,36–39!. As argued in the introduction~see
also Sec. VI!, the same results can be more easily obtain
by higher-order 1/S expansion. Thus the BKJ approach tur
out to be more practical than the Schwinger-boson one.

IV. SSWT OF THE EASY-AXIS 2D MAGNETS

Consider now the 2D magnets with the easy-axis anis
ropy. Besides the spin-wave excitations, the topological
citations~domain walls! contribute to thermodynamic quan
tities ~see, e.g., discussion in Ref. 40!. Such excitations
cannot be taken into account in the approach under con
eration. However, in the limit of small anisotropy

D/uJu!1,h!1, ~64!

one can expect that the non-spin-wave excitations are im
tant only in a narrow critical region. Outside this region the
modynamics can be described in terms of spin waves. T
we restict ourselves to the case where Eq.~64! is satisfied.

Consider first the ferromagnetic case. Decoupling fo
fold terms in the Hamiltonian we obtain

H5(
k

Ekbk
†bk1Ef(

k
ck

†ck , ~65!

where

Ek5l2Gk , Ef5~2S11!l, ~66!

l5J0~g1hS̄!1D@~2S21!24^bi
†bi&#2m,
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Gk5Jk@g1h^bi
†bi 1d&#,

and

g5S̄1^bi
†bi 1d&. ~67!

It should be noted that the expression for the excitation sp
trum ~66! is in fact the first-order 1/S expansion result. In
particular, the spectrum~66! violates the requirement of van
ishing of the single-site anisotropy atS51/2 ~this situation is
discussed in Ref. 7!. To correct this inconsistency we pe
form two replacements in the spectrum~66!, which can be
justified by calculating higher-order terms in 1/S:

~2S21!24^bi
†bi&→~2S21!@122^bi

†bi&/S#→~2S21!

3~S̄/S!2, ~68!

S̄2^bi
†bi 1d&→S@122^bi

†bi&/S#@11^bi
†bi&/S

2^bi
†bi 1d&/S#→S̄2/g.

Then the boson spectrum takes the form

Ek5g~J02Jk!1JSD2m, ~69!

where

D~T!5@~2S21!D/uJSu1~J0S/Jg!h#~S̄/S!2 ~70!

is the dimensionless energy gap renormalized by spin-w
interactions. The system of the self-consistent equati
reads

g5S̄1
1

J0
(

k
JkNk , ~71!

S̄5S2(
k

Nk1~2S11!N~Ef !.

In the antiferromagnetic case we obtain

H5(
k

Ek~ak
†ak1bk

†bk!1Ef(
k

~ck
†ck1dk

†dk! ~72!

with the spectrum

Ek5Al22Gk
2, Ef5~2S11!l, ~73!

l5gJ01uJSuD2m, Gk5gJk ,

and D is the same as in Eq.~70!. The system of the self
consistent equations takes the form

g5S̄1(
k

Gk

2Ek
coskx coth

Ek

2T
, ~74!

S̄5S S1
1

2D coth
Ef

2T
2(

k

l

2Ek
coth

Ek

2T
. ~75!

Note that the proportionality of the gap in the spin-wa
spectrum to the squared sublattice magnetization was
tained earlier within the renormalized spin-wave theory,7,41

which takes into account the influence of spin-wave inter
c-

ve
s

b-

-

tions on the spectrum in a non-self-consistent way, and
in agreement with the experimental data.42

Using the smallness of the anisotropy and picking out
logarithmic singularities in the same way as in Sec. III C w
obtain

S̄5S2
T

4pJS
ln

T

JSD
, ~FM), ~76!

S̄5S̄02
T

4puJug
ln

T2

8~Jg!2D
, ~AFM!.

Unlike the quasi-2D case, we have the unphysical re
D(TM)50 because of the proportionality of the gap
(S̄/S)2 ~in fact a finite value of the gap atT5TM should be
caused by topological effects which are not taken into
count!. Thus we are unable to describe the dependenceD(T)
close toTM . DenotingDc5D(TM) we have for the critical
temperature at 2pS! ln(1/D)

TC5
4pJS2

ln~T/JSDc!
, ~77!

TN5
4puJuS̄0gc

ln@T2/8~Jgc!
2Dc#

.

In the case of largeS we obtain for both ferro- and antifer
romagnets

S̄5S2
T

4puJuS
ln

32

D
. ~78!

This leads to the expression for the critical temperature o
classical magnet with 1! ln(1/D)!2pS

TM5
4puJuS2

ln~32/Dc!
. ~79!

To leading logarithmic accuracy we can setDc5D(0) in the
above results. A more correct calculation ofDc , as well as
the corrections to the results~77! and~79! will be obtained in
Sec. VI. Note also that in the approximationD(T)5D(0),
i.e., at neglecting the temperature dependence of the gap
reproduce correctly the mean-field result in the Ising limi

S̄5SBS~J0SS̄/T!, ~80!

whereBS(x) is the spin-S Brillouin function.

V. INFLUENCE OF THE EXTERNAL MAGNETIC FIELD
AND THE MAGNETIC SUSCEPTIBILITY

In this section we consider the influence of a weak ext
nal magnetic fieldh in a ferromagnet. This is described b
the additional term in the Hamiltonian

Hh52h(
i

Si
z . ~81!

The magnetic field results in an increase of magnetization
that the total magnetization can be represented as

S̄5S̄sp1S̄ind , ~82!
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where S̄sp5S̄(h50) is the spontaneous magnetization,S̄ind
is the field-induced part. Owing to the second term in E
~82! the temperature dependenceS̄(T) is changed: sharply
decreasing in the vicinity ofTM , S̄ nevertheless vanishe
only in the limit T→`. We consider a possible approach
the description of such a behavior in both versions of SS
that are based on the Dyson-Maleev representation~or its
generalization with the use of the BKJ representation! and
Schwinger-boson representation.

First we use the BKJ representation. The calculatio
which are similar to those described above, result in E
~13! and ~14! with the spectrum of spin waves

Ek5g~J02Jk!1h2m0 , ~83!

wherem0 is the chemical potential in the absence of a m
netic field: m050 at T,TC and m0(T.TC) is determined
from the conditionS̄(T,h50)50.

Formally, the spectrum~83! has the same form as in th
case of an anisotropic magnet~69! ~we can associate with th
anisotropy the effective ‘‘magnetic field’’hA5JSD). How-
ever, there is an important difference: in the case of
‘‘true’’ magnetic field the chemical potential is taken ath

50, so that the phase transition with vanishingS̄ is absent
~see below!, while in the case of anisotropic magnet it shou
be determined in the presence of anisotropy fieldhA , andS̄
vanishes atTC . However, atT!TC this difference is not
important (m5m050 in this region! and the magnetic an
isotropy can be also described by introducing t
temperature-dependent magnetic anisotropy fieldhA .

The temperature dependence of magnetization obta
by the numerical solution of Eqs.~13! and ~14! with the
spectrum~83! is shown in Fig. 5. At low temperaturesT
!TC we haveS̄sp@S̄ind and the magnetization has mainly a
exchange origin. On the other hand, atT.TC magnetization
is entirely caused by the influence of an external field an

S̄.x0
zzh, T@TC , ~84!

where

FIG. 5. Temperature dependence of the magnetizationS̄ for a
S51/2 quasi-2D ferromagnet withJ8/J50.1 in the external mag-
netic field.
.

T

s,
s.

-

e

ed

x0
zz5S ]S̄

]h
D

h50

5
1

4T (
q

1

sinh2~Eq/2T!
2

~S11/2!2

T sinh2~Ef /2T!
.

~85!

The first term in Eq.~85! differs from the result of the spin
wave theory by the form of the spectrum only, and the l
term describes the correction owing to the kinematical int
action. In a narrow region nearTC both contributions in Eq.
~82! are of the same order, and magnetization considera
differs from its zero-field value.

It follows from Eq. ~85! that x0
zz}(T2TM)22 so that the

critical exponent isg52. Note that magnon-magnon inte
actions are taken into account in Eq.~85! only by renormal-
ization of the single-particle spectrum. It is possible to im
prove result ~85! by taking into account two-particle
interactions in a RPA-type way, i.e., by considering the s
of the one-loop diagrams. This is performed in the next s
tion.

Now we consider the influence of the external field in t
Schwinger-boson representation. Carrying out calculati
similar to these in Sec. III D we find for the boson spectru

Eks5gs~J02Jk!2
1

2
hs2m, ~86!

where gs5^sis
† sis&. The expression for the magnetizatio

has the form

S̄5
1

2 (
k

~Nk↑2Nk↓!1nB , ~87!

where we have taken into account the possibility of the c
densation of bosons with up ‘‘spins.’’ There is also the co
dition of spin conservation at each site

S5
1

2 (
k

~Nk↑1Nk↓!1nB . ~88!

At not too high temperaturesT,Th , whereTh is determined
by the conditions

S5
1

2 (
k

~Nk↑1Nk↓!, m52h/2, ~89!

the branch Ek↑ is gapless andnB.0. At T.Th both
branches have a gap, and the condition~88! with nB50 de-
termines the common chemical potential. Thus,
Schwinger-boson representation also allows us to desc
the behavior of magnetization in the whole field interval, a
expression~87! just describes magnetization as a sum
spontaneous and field-induced components.

Up to now we have considered the small magnetic-fi
valuesh!J. In the opposite limit one can neglect the dispe
sion of the boson spectrum~83! and derive by using the BKJ
representation the standard result

S̄5SBS~Sh/T!. ~90!

It should be noted that the correct result~90! is obtained only
due to the presence of pseudofermions, the Bose field a
leading to the unphysical phase transition with the vanish
of magnetization atT;h.
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A somewhat different situation takes place in t
Schwinger boson representation. In the caseh@J, we have
nB[0 and the equation forx5exp(2m/T) has the form

x cosh~h/2T!21

x21122x cosh~h/2T!
5S. ~91!

The solution to this equation reads

x5S 11
1

2SD cosh
h

2T

1
1

2S
A~2S11!2 cosh2

h

2T
24S~S11!. ~92!

With the use of Eq.~91! we obtain the expression for th
magnetization

S̄5S
x sinh~h/2T!

x cosh~h/2T!21
.S tanh~h/2T![SB1/2~h/2T!.

~93!

Thus in the limit of large magnetic fields the Schwinge
boson approach reproduces the correct results only foS
51/2.

VI. FLUCTUATION CORRECTIONS TO SSWT FOR 2D
AND QUASI-2D MAGNETS

As already discussed, SSWT overestimates the valu
TM . In particular, for the simple cubic lattice the SSW
result forS→` is TM /S251.803uJu. At the same time, the
result of the spherical model~see, e.g., Refs. 32 and 43! in
this limit reads

S2

3TM
5(

k

1

J02Jk
, ~94!

which coincides with the corresponding result of the Tya
likov approximation.44 One obtains from Eq.~94! TM /S2

51.319uJu which is close to the result of the high
temperature series expansion~see, e.g., Refs. 35 and 44!. As
pointed in Sec. III, forS51/2 the value ofTM is overesti-
mated by 1.2 times.

In the quasi-2D case, formulas~45! and ~48! @and the
corresponding results of the 2D case with the small easy-
anisotropy~77! and~79!# coincide with the result of the Ty
ablikov approximation to logarithmic accuracy and th
seem to be correct. However, this accuracy is also insu
cient to treat the experimental data~see the detailed discus
sion in Ref. 27! and the overestimation ofTM reaches 1.7–
2.0 times for the quasi-2D case and nearly 1.5 times for
anisotropic 2D case~the reason for weaker overestimation
TM in the anisotropic case will be explained below!. Thus in
the quasi-2D magnets and 2D magnets with small easy-
anisotropy~in both casesTM!uJuS2), the overestimation of
TM is even higher than in the 3D case.

The values of the critical exponents derived aboveb
5n51 andg52) are also in drastic discrepance with t
molecular-field values (n5b51/2, g51), experimental
data (n50.7, b50.33, g51.4) for isotropic magnets, an
exact values (n51, b51/8, g57/4) for easy-axis magnets
of

-

is

-

e

is

which are known from the Onsager solution of the 2D Isi
model. Thus, SSWT poorly describes the critical behavio

At the same time, SSWT describes much better the lo
properties~e.g., the pair spin-correlation function at neighb
sites! than those determined by the scale of the correlat
length. Indeed, atS51/2 the Tyablikov approximation yields
the unphysical resultDE(TC)5E(TC)2E(0),0.45 In the
limit S→` this approximation givesDE(TC)/uE(0)u50.6
which is also lower than the value which can be derived fr
the calculations in Sec. III~0.84!. Besides that, the Tyablikov
approximation implies a not quite correct form of the ex
tation spectrum at low temperatures. In particular, the sp
wave stiffness demonstrates aT3/2 dependence at low tem
peratures, instead of aT5/2 one.

Generally speaking, the properties on the scales of o
of the correlation length cannot be treated correctly with
one-particle picture, and the Tyablikov approximation giv
only a rough~but rather successful! description of these. A
regular way of describing thermodynamics at not too lo
temperatures within spin-wave theory is to consider coll
tive excitations rather than one-particle ones. For lo
dimensional magnets withTM!uJuS2, where large loga-
rithms occur~see Secs. III A and IV! and fluctuations have a
2D nature in a broad temperature region~except for the criti-
cal region!, this can be performed analytically in a clos
analogy with the isotropic magnets of the dimensionalityd
521« @whereb511O(«), see, e.g., Ref. 46#.

In this section we take into account the interaction corr
tions to the SSWT results for the magnets with small int
layer coupling and/or anisotropy. Consider first the 2
Heisenberg magnet with the easy-axis anisotropy. In the
romagnetic case we have

H5(
q

Eq
0bq

†bq

1
1

4 (
q1 . . . q4

w~q1 ,q2;q3 ,q4!bq1

† bq2

† bq3
bq4

dq11q2 ,q31q4
,

~95!

where

Eq
05S~J02Jq!1uJuS f,

w~q1 ,q2;q3 ,q4!5Jq3
1Jq4

2Jq12q3
2Jq12q4

.22uJu~q1q21 f !, ~96!

and

f 5~2S21!D/uJSu1~J0 /J!hS ~97!

is the bare gap in the excitation spectrum. In the antifer
magnetic case, we use the operatorsBq which are the Fourier
transformation ofBi of Eq. ~17! and satisfy

aq5~Bq1Bq1Q!/2,

b2q
† 5~Bq2Bq1Q!/2, ~98!

whereQ5(p,p,p) is the wave vector of the AFM structure
Then, up to some unimportant constant, we have the Ha
tonian of the same form Eq.~95!, but for the operatorsBq .
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Note that in this caseEq
0 in Eq. ~95! has not the meaning o

an excitation spectrum because of non-Bose commuta
relations forBq :

@Bq ,Bp
†#5dq,p1dq,p1Q . ~99!

The diagrams which give the first-order renormalizatio
of Eq and correspond to SSWT are shown in Fig. 6~a! ~see,
e.g., Ref. 25 for a detailed description of this diagram te
nique!. Further on we suppose that all such renormalizati
~which result in the replacementsJ→Jg/S and f→D in Eq

0)
are already performed and such diagrams can be omitte

To obtain the corrections to SSWT, higher-order diagra
should be considered. They lead to renormalization of o
particle energy~and occurrence of the damping! and also to
vertex corrections. As discussed above, SSWT treats the
citation spectrum satisfactorily~this spectrum is already
renormalized by first-order diagrams!. The calculations of
damping of spin waves, which occurs only in the seco
order of perturbation theory, shows that it is small in a bro
temperature region.47 Thus only vertex corrections should b
taken into account. At not too low temperaturesT
@uJuSD) the RPA-type diagrams of Fig. 6~b! are most im-
portant since each loop contains a logarithmic divergenc
the type ln(1/D). The integral equation for the vertex read

F~k,k2q;p2q,p!5w~k,k2q;p2q,p!2
T

~Jg!2

3(
s

w~k,k2q;s2q,s…

~s21D!@~s2q!21D#

3F~s,s2q;p2q,p…. ~100!

@We have retained only the contribution of the modes w
the Matsubara frequencyvn50, which yields the logarith-
mic divergence, and dropped the terms withvnÞ0 with si-
multaneously cutting the summation over quasimomenta
the wave vectorq0, which is determined by Eq.~44!#. As can
be seen from Eq.~78!, the account of logarithmically diver

FIG. 6. Diagrams corresponding to the spin-wave interact
contribution to different quantities~a! one-particle Green function
of SSWT~b! effective vertex in RPA~c! nonuniform RPA suscep

tibility ~d! correction to ~staggered! magnetizationdS̄5S2S̄.
Simple and bold lines denote the bare and renormalized one-pa
Green functions, point stands for the bare vertex.
n

s

-
s

s
e-

x-

d
d

of

at

gent terms in the classical case can also be performed in
continuum approximation withq0

2532 ~in this case, the ‘‘lat-
tice’’ renormalizations are also present in model paramet
see Ref. 28!. The result of the solution of Eq.~100! ~see
Appendix B! in the 2D case reads

F~k,k2q;p2q,p!

5
2uJugk~q2p!

S̄02~T/2puJug!ln@q0 /max~D1/2,q!#

22uJu f F12
T

puJug2

q~q1k2p!

q2
ln

q

D1/2G . ~101!

Note that the logarithmic corrections to the vertex in t
isotropic case were obtained earlier in Ref. 48. For the st
~staggered! nonuniform longitudinal susceptibility~for the
AFM case the shiftq→q1Q is to be performed!, we obtain
from the diagrams of Fig. 6~c! the result

xq
zz5

xq0
zz

11~ uJug/2S̄!q2xq0
zz

5
~S̄/S̄0!xq0

zz

12~T/2puJugS̄0!ln@q0 /max~D1/2,q!#
, ~102!

where

xq0
zz5

T

~Jg!2 (
p

1

~p21D!@~p2q!21D#

.H T/@2p~Jgq!2# ln~q2/D!, q2@D

x05T/@4p~Jg!2D#, q2!D
~103!

is the ‘‘bare’’ longitudinal susceptibility. Thus, as well as
RPA for itinerant magnets,50 the spin susceptibility is en
hanced by the interaction. The first line of Eq.~102! was
obtained earlier for 3D magnets in Ref. 49. It follows fro
Eq. ~102! that the excitation spectrum has different forms
small and large enough momenta:

xq
zz.H xq0

zz , uJuq2xq0
zz!S̄/S

2S̄/~ uJugq2!, uJuq2xq0
zz@S̄/S.

~104!

The first line corresponds to the standard spin-wave con
bution @it is also subdivided in two cases as given by E
~103!#. The second line corresponds to the non-spin-wa
regime: atq2@D one can neglect the anisotropy andxq

zz

}1/q2 is given, in particular, by the spherical model,32 which
treats the spin excitations in essentially a non-spin-w
way. Depending on the temperature value, three cases
possible.

~i! Low temperatures,T!TM;2puJuS2/ln(q0
2/D). Then

the second condition in Eq.~104! cannot be satisfied and thu
the excitations in the whole Brillouin zone have a spin-wa
nature.

~ii ! Intermediate temperatures, (S̄/S)/ ln(q0
2/D)

!T/2puJuS2!S̄/S (T is of the same order asTM). Then at
small enoughq we still havexq

zz.xq0
zz , but the second con

dition in Eq. ~104! holds for large enoughq where
D exp(2puJugS̄/T)!q2,q0

2.
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~iii ! Critical region,T/2puJuS2@S̄/S (12T/TM!1). In
this regime the first condition in Eq.~104! is satisfied only
for q2!D ~hydrodynamic region! whereas at all otherq the
condition in the second line of Eq.~104! is satisfied.

The corrections to relative~sublattice! magnetizations̄

[S̄/S̄0 @see diagrams of Fig. 6~d!# are given by

s̄512
T

uJugS̄0
(

k

1

k21D

1
T2

2~ uJug!3S̄0
(
kq

F~k,k2q;k2q,k!

~k21D!2@~k2q!21D#
. ~105!

Integration leads to the result

s̄512
t

2 F ln
q0

2

D0
14ln

1

max~ s̄,t !
22~12s̄ !1Fa~ t/s̄ !G ,

~106!

where t5T/(2puJuS̄0g0). The functionFa takes into ac-
count the~unknown! nonsingular contribution of non-RPA
diagrams. Again, we have three temperature regions
scribed above. In region~i! only the first term in the squar
brackets is to be taken into account and the magnetiza
demonstrates the spin-wave behavior~76! and~78! for quan-
tum and classical cases, respectively. In region~ii ! all the
terms, except for the last, are important, which leads t
significant modification of the dependenceS̄(T). The func-
tion Fa in both regimes~i! and~ii ! can be neglected and th
result~106! completely describes the behavior of the mag
tization in these two regimes. Finally, in region~iii ! the con-
tribution of Fa is of the same order as the other terms in
square brackets. It should be noted that the factor of 4 be
the second term in the square brackets is the sum of 2 w
arises from the temperature renormalization ofD1/2(T)
}D0

1/2 max(s̄,t), and also a contribution of 2 arises from th
vertex renormalization. Thus one can see that in the cas
small anisotropy~the same situation takes place for sm
interlayer coupling, see below!, the contribution from the
renormalization of the single-particle spectrum and inter
tion vertex are of the same order, so that SSWT is insu
cient even outside the critical region.

For the Curie~Néel! temperatures we obtain the equatio

TC54pJS2F ln
TC

JSD0
14 ln

4pJS2

TC
1CFG21

~FM!,

~107a!

TN54pJS̄0g0F ln
TN

2

c2D0

14 ln
4puJuS̄0g0

TN
1CAFG21

~AFM!, ~107b!

TM54pJS2F ln
32

D0
14 ln

4puJuS2

TM
1CclG21

~classical!

~107c!

with the constantsCF,AF,cl52224 ln 21Fa
F,AF,cl(`), which

are still not determined within our approach. However, it
e-

n

a

-

e
re
ch

of
l

-
-

important that all the logarithmic terms are included in E
~107! andC gives only a small contribution to above result
The gapDc at the ordering temperature, which remain
indeterminate in Sec. IV, can be now estimated asDc}t2.
The coefficient of the proportionality is of the order of uni
and influences the constantsC only.

In the isotropic quasi-2D case the infrared cutoff for int
grals over the Brillouin zone isJ8/J rather thanD. Then we
obtain in the same way

s̄512
t

2 F lnS q0
2 uJug0

uJ8ug08
D 13 ln

1

max~ s̄,t !
22~12s̄ !

1F ic~ t/s̄ !G ~108!

and

TC54pJS2F ln
TC

uJ8uS
13 ln

4pJS2

TC
1CF8G21

~FM!,

~109a!

TN54puJuSS̄0g0F ln
TN

2

8uJJ8ug0g08
13 ln

4puJuS̄0g0

TN

1CAF8 G21

~AFM! ~109b!

TM54pJS2F ln
32

D0
13 ln

4pJS2

TM
1Ccl8 G21

~classical!.

~109c!

In this case we haveg8(T)}g08 max(s̄,t) which leads to that
the coefficient at the second term in the square brackets
~instead of 4 in the anisotropic case!. This is why the inter-
action corrections are weaker in the anisotropic case: wi
SSWT the above-mentioned coefficient is 1 in the quasi-
case~which is three times smaller than the correct value! and
2 in the anisotropic case~only two times smaller than the
correct value!. Note that the results~108!, ~109! are valid for
all four combinations of the signs of intra- and interpla
exchange integrals~for mixed combinations, FM and AFM
denote the type of the in-plane ordering!.

The same results~106!–~109! were obtained within the
RG approach in Ref. 28.~Note that the different sign at th
third term of the square brackets of Eqs.~106! and ~108! is
the misprint of this paper!. Derivation of general expression
for the case where both interlayer coupling and anisotro
are of the same order can be also found in Ref. 28.

With neglect of the functionsFa(x) and F ic(x), Eqs.
~106! and~108! still yield unphysical behavior nearTM . The
point T* , where the derivative]S̄/]T diverges, can be deter
mined from the conditions

s̄~ t* !/t* .H 3/2 quasi-2D,

2 easy-axis 2D,
~110!
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TABLE I. The experimental parameters and ordering temperatures of layered magnets and the
sponding calculated values ofTM in the standard spin-wave-theory~SWT!, SSWT, and RPA~in brackets
taking into account the constantCAF520.7).

Compound S J ~K! J8 ~K! D0 TM
SWT ~K! TM

SSWT ~K! TM
RPA ~K! TM

exp ~K!

La2CuO4 1/2 1600 0.8 '0 672 537 343 325
K2NiF4 1 102 '0 0.0088 160 125 90.0~97.0! 97.1
Rb2NiF4 1 82 '0 0.046 180 118 88.4~95.0! 94.5
K2MnF4 5/2 8.4 '0 0.015 74.8 52.1 42.7~45.1! 42.1
CrBr3 3/2 12.38 1.0 0.024 79.2 51.2 39.0 40.0
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which should be used together with Eq.~106! or Eq. ~108!;
t* is the value oft corresponding toT* . The condition~110!
should be used together with Eqs.~106! or ~108! to obtain
the value oft r* .

The functionsFa(x) and F ic(x) describe the crossove
from an isotropic 2D Heisenberg to 2D Ising and 3D Heise
berg behavior, respectively. As discussed above, these f
tions give considerable contributions in the crossover reg
between regimes~ii ! and~iii ! and in the critical regime~iii !,
where essentially non-spin-wave excitations should be ta
into account. An account of these functions results in sligh
decreasing the temperatureT* in comparison with that given
by Eq. ~110!, and T* becomes the temperature of a rap

decrease ofS̄ ~in fact, the characteristic temperature of
crossover!. For a quantum antiferromagnet, the calculation
F ic(x) can be performed within the 1/N expansion in the

O(N) model.27 For an arbitraryx5t/s̄, the result of this
calculation is very cumbersome. In the critical regionx
@1) it provides the correct critical behavior27

s̄25F TNeel

4puJuS̄0g0
G 12b3F 1

12A0
S 12

T

TNeel
D G2b3

~111!

with A0.0.9635 andb35(128/p2N)/2.0.36. The value
of CAF8 obtained by this expansion is very small,CAF8 5

20.0660. Other critical exponents can also be calcula
within the 1/N expansion in theO(N) model~see, e.g., Ref.
51!:

n351232/3p2N.0.64, g352~1212/p2N!.1.21

~note that the scaling relations are slightly violated beca
of approximate character of this expansion forN53). Thus
the results of the spherical model for the critical expone
aboveTM ~see, e.g., Ref. 32! become radically improved. In
particular, the fluctuations correct the critical behavior of t
magnetic susceptibility.

For practical purposes, it is useful to have simple inter
lation expressions for the functionsF(x), which enable one
to describe the crossover temperature region. Taking
account the closeness ofT* to TM which is given by Eqs.
-
c-
n

n
y

f

d

e

s

e

-

to

~107! and~109! and using Eq.~110!, we can write down the
simplest expressions forF(x) in the form:

Fa
F,AF,cl~x!5

x

Ax211
~CF,AF,cl2218 ln 2!,

F ic
F,AF,cl~x!5

x

Ax211
~CF,AF,cl8 2113 ln 3! ~112!

(x,1). The constantsCF,AF,cl andCF,cl8 can be, in principle,
obtained from numerical calculations or by comparing w
experimental data~see below!. However, one should expec
that they are small enough and can be neglected.

VII. COMPARISON WITH EXPERIMENTAL DATA

To discuss the experimental situation, we consider fi
the compounds with layered perovskite structure. The
rameters used are given by Table I. The experimental va
of transition temperatures are also given and compared
the theoretical one~for experimental data see Ref. 35 an
references therein, and Ref. 2 for La2CuO4). The values of
J8 andD05D(0) are obtained from the low-temperature b
havior of the sublattice magnetization. This procedure gi
the possibility of determining correctly the parameters sin
the results obtained in Secs. III C and IV work well at lo
temperatures~in particular they give correct results fo
ground-state renormalizations!. Note that for the anisotropic
perovskites the parameters obtained are also in agree
with the experimental data on the spin-wave spectrum.35 It
should be stressed that the experimentally observable ga
the spin-wave spectrum isD(T) whereasD,h plays the role
of the bare parameters. The same situation takes place in
quasi-2D case whereJg/S and J8g8/S are experimentally
observable rather than the bare parametersJ andJ8. Since in
the systems under consideration the parametersg8 and D
have strong temperature dependence~see Secs. III C and IV!,
it is important to take into account this dependence wh
treating the experimental data.

One can see from Table I that for all the systems
estimated values of transition temperatures are close to
experimental results~for La2CuO4 the experimental data on
J8 are contradictionary; one of the possibilities of improvin
the agreement with experimental data is introducing a sm
easy-axis anisotropy28!. At the same time, using SSWT with
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out fluctuation corrections overestimatesTN by about 1.7
times, although improves somewhat the results of stand
spin-wave theory. For the anisotropic compoundsTN is
slightly underestimated. This may be due to two reason
nonzero value ofCAF in this case (CAF.20.7 is obtained by
best fit to the experimental data! and~less important! a small
interlayer coupling which also increases the transition te
perature.

The temperature dependence of the sublattice magne
tion for K2NiF4 is shown and compared with different the
retical results in Fig. 7. Regimes~i! and ~ii ! correspond to
T,80 K where the RPA~RG! result is in good agreemen
with the experimental data. It can be seen also that the

count of the functionFa
AF(t/s̄) given by Eq.~112! improves

considerably the agreement in the crossover temperatur
gion. The 1/N expansion in theO(N) model27 also gives a
satisfactory description of this region, but does not desc
correctly low enough temperatures, since, as discussed in
Introduction, it implies an essentially non-spin-wave pictu
of the excitation spectrum.

The parameter values and Curie temperature for the
romagnetic compound CrBr3 ~see Ref. 52 for experimenta
data! are also presented in Table I. Here both interplane c
pling and anisotropy are important, and we obtain~see also
Ref. 28!

TM54puJuS̄0g0H ln@2q0
2/~Dc12ac1ADc

214acDc!#

12 ln
4puJuS̄0g0

TM
1CS D

a D J 21

, ~113!

FIG. 7. Temperature dependence of the relative sublattice m

netizations̄(T) of K2NiF4 in the SWT, SSWT, RPA approache
and 1/N expansion for theO(N) model as compared with the ex
perimental data~circles!. The RPA8 curve corresponds to the inclu

sion of the functionFa
AF(t/s̄) given by Eq.~112!. The short-dashed

line is the extrapolation of the result of the 1/N expansion to the
critical region~see Ref. 29!.
rd

a

-

a-

c-

re-

e
he

r-

u-

where

ac5J8gc8/~Jgc!5TMuJ8u/@4p~Jg0!2#,

Dc5D0@TM /~4pJS̄0g0!#2. ~114!

The ~unknown! function C(D/a) satisfiesC(0)5C8 and
C(`)5C whereC andC8 are defined above. Since the in
plane lattice structure is nonsquare, we have used the e
tive value of the in-plane exchange integral determined in
continuum limit from the excitation spectrum asEq
.gJef(qx

21qy
2)1O(J8,JD). One can see that the agreeme

with experimentalTC is excellent.

VIII. CONCLUSIONS

In the present paper we have investigated in detail
capabilities of the self-consistent spin-wave theory, which
based on boson representations for spin operators, for a
scription of layered magnets. To improve the SSWT at
too low temperatures, we have introduced a pseudoferm
field. For magnets with a low transition point,TM!uJuS2,
analytical results were obtained. These results have diffe
forms in quantum (T!uJuS) and classical (T@uJuS) re-
gimes. In the quantum case the magnetization demonstr
in some temperature region theT ln T behavior. The pro-
posed version of SSWT gives a qualitative~and at not too
high temperatures—quantitative! description of the thermo-
dynamics of layered magnets. An important advantage
SSWT ~in comparison with the methods that are based
investigation of continuum models, e.g., nonlinears model!
is the possibility of describing the short-range order abo
the transition point.

At the same time, even in the case of layered magn
SSWT is unable to treat quantitatively the transition poi
and thermodynamics at high enough temperaturesT
.0.8TM). We have performed a systematic treatment of c
rections to SSWT in the caseTM!uJuS2, which is based on
summation of the higher-order 1/S terms. The inclusion of
the RPA corrections~which permits us to take into accoun
next-leading logarithmic singularities! yields an excellent de-
scription of the behavior of~sublattice! magnetization at ar-
bitrary T,TM except for a narrow critical region, where a
account of non-spin-wave excitations is required. The
proach used is somewhat reminiscent of the theory of itin
ant magnets.50 As well as in the latter case, the fluctuatio
corrections within the RPA approximation lead to significa
lowering of the transition temperature and improve radica
the agreement with experimental data. The simple analyt
results obtained give a quantitative description of the m
netization behavior practically up toTM . At the same time,
the consideration of the critical region~e.g., correct calcula-
tion of critical exponents! requires an account of essential
non-spin-wave excitations. For quasi-2D isotropic magn
this can be performed within the 1/N expansion in theO(N)
model.27 A description of the critical region for magnets wit
the easy-axis anisotropy, where the topological~domain-
wall! excitations are present, is still an open problem.

A regular calculation of higher-order corrections in th
3D case, where the kinematical spin-wave interaction sho
be also taken into account, but the logarithmic terms

g-



e
ci
ge

t
an
o
a

on

h

th

ar

v
ki
e

ian

all
e-

PRB 60 1097SELF-CONSISTENT SPIN-WAVE THEORY OF LAYERED . . .
absent, is also a matter for further investigations. The sam
valid for magnets with the essential role of topological ex
tations ~easy-plane systems, antiferromagnetic half-inte
spin chains, etc.!.

APPENDIX A: VARIATIONAL PRINCIPLE
IN THE HEISENBERG MODEL

In this appendix we consider a variational approach
SSWT. This is a generalization of approaches of Refs. 6
7 to the quasi-2D case, which provides the possibility
improving the behavior of the magnetization at not too sm
J8/J.

We apply the Feynman-Peierls-Bogoliubov variati
principle for the free energyF52 ln Sp(e2bH) ~see, e.g.,
Refs. 44,53!

F,F01^H2H0&0 , ~A1!

where H0 is the trial Hamiltonian,F0 is the free energy
corresponding toH0, and^ . . . &0 stands for the average wit
H0.

Consider first the case of a ferromagnet. Assuming
spin-wave character of spin dynamics, we chooseH0 as the
Hamiltonian of noninteracting bosons and fermions

H052
1

2
J0gS1g(

k
~J02Jk!bk

†bk1~2S11!gJ0(
k

ck
†ck

2m(
k

@bk
†bk1~2S11!ck

†ck#. ~A2!

This expression differs from the Hamiltonian of the stand
spin-wave theory by the factorg which is a variational pa-
rameter describing the renormalization of the spin-wa
spectrum, and by the presence of the Fermi operators ta
into account the kinematical interaction between spin wav
Then we obtain

F05T(
q

ln
12exp~2Eq /T!

12exp~2Ef /T!
~A3!

and

^H&052
1

2
J0S̄22S̄(

q
JqNq2

1

2 (
pq

Jq2pNqNp

2m(
q

@Nq1~2S11!Nf #,

^H0&05gJ0~S2S̄!2g(
q

JqNq2m(
q

@Nq1~2S11!Nf #,

~A4!

where the magnetization reads

S̄5S S1
1

2D coth
Ef

T
2

1

2
2(

q
Nq ~A5!

andEf5gJ02m. The equation forg is determined from the
condition]F/]g50 and has the form
is
-
r

o
d
f
ll

e

d

e
ng
s.

~g2S̄!F(
q

Jq

]Nq

]g
1J0

]S̄

]gG
5(

pq
Jp2qNp

]Nq

]g
1(

q
JqNq

]S̄

]g
. ~A6!

In the antiferromagnetic case we use the trial Hamilton

H052
1

2
J0gS1

1

2
g(

k
@J0~ak

†ak1bk
†bk!

2Jk~ak
†b2k

† 1akb2k!#1~2S11!gJ0(
k

~ck
†ck1dk

†dk!

2m(
k

@ak
†ak1bk

†bk1~2S11!~ck
†ck1dk

†dk!# ~A7!

to obtain

~g2S̄!F(
q

Jq

]Lq

]g
1J0

]S̄

]gG
5(

pq
Jp2qLp

]Lq

]g
1(

q
JqLq

]S̄

]g
, ~A8!

where

Eq5A~gJ02m!22~gJq!2,

Lq5
gJq

Eq
S Nq1

1

2D , ~A9!

and

S̄5S S1
1

2D coth
Ef

T
2(

q

J0g2m

Eq
S Nq1

1

2D . ~A10!

In the 2D case (J850) we have

(
pq

Jp2qNp

]Nq

]g
5

1

J0
S (

q
JqNqD S (

p
Jp

]Np

]g D
~A11!

and a similar result with the replacementNq→Lq . Then Eqs.
~A6! and ~A8! reduce to

g2S̄5
1

J0
(

q
JqNq ~FM!,

g2S̄5
1

J0
(

q
JqLq ~AFM!. ~A12!

These equations coincide with those of Sec. III A. At sm
J8/J the values of integrals over the Brillouin zone are d
termined by the region of small quasimomentaqx

2 ,qy
2

,J8/J. Then it is possible to set
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Jp2q.J0 , Jq.J0 ~A13!

in this case, which again leads to Eqs.~A12!. If J8/J is not
small enough, the approximation~A13! becomes invalid and
it is necessary to use Eq.~A6! or ~A8! up to the limit of the
cubic crystal,J85J, where equality~A11! is again satisfied
and passing to Eq.~A12! becomes justified. The same situ
tion is realized for hypercubic lattices of any dimensional
in the nearest-neighbor approximation.

APPENDIX B: THE SOLUTION OF INTEGRAL
EQUATION FOR THE RENORMALIZED VERTEX OF

SPIN-WAVE INTERACTION

The equation for the vertex~100! has a degenerate kerne
We search for a solution in the form

F~k,k2q;p2q,p!5J~Aq2Bp!k22JD̃~p,q!. ~B1!

Then we obtain after some algebraic manipulations

A5
2

S̄0 /g2R1Mq

@112q~p2q!~Gq2Mq /q2!

12D~Jxq0
zz2Gq!# ,

B5
2

S̄0 /g2R1Mq

,

D̃~p,q!5D@12Gq~Apq1Bq2
…#, ~B2!

where we have introduced the correction to the magnet
tion R5(S̄02S̄)/g and the nonuniform susceptibilityxq0

zz
v.

A

a-

R5
T

uJug2Es,q0

d2s

~2p!2

1

s21D
,

xq0
zz5

T

~Jg!2E d2s

~2p!2

1

~s21D!@~s2q!21D#
, ~B3!

andGq , Mq are defined by

T

uJug2E d2s

~2p!2

s

~s21D!@~s2q!21D#
5qGq ,

T

uJug2Es,q0

d2s

~2p!2

sisj

~s21D!@~s2q!21D#

5
1

2
Rd i j 2MqS d i j

2
2

qiqj

q2 D . ~B4!

Calculating the integrals in Eq.~B4! and retaining only terms
which are logarithmically divergent atD→0 yields

Gq5Mq /q25
1

2
uJuxq0

zz , ~B5!

wherexq0
zz is given by Eq.~103!, and finally we get

R5
T

2puJug2
ln

q0

D1/2
. ~B6!

Combining the above formulas we obtain the result~101! of
the main text.
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